Retreaded tires provide an economical way to gain additional use from tire casings after the original tread or retread has become worn. According to a conventional method of retreading, sometimes referred to as cold process retreading, worn tire tread on a used tire is removed to create a buffed, treadless surface about the circumference of the tire casing to which a new layer of tread may be bonded.
The tire casing is then typically inspected, some of which may be skived and filled with a repair gum while others may warrant rejection of the casing. Next, a layer of cushion gum may be applied to the back, i.e., the inside surface of a new layer of tread, or alternatively, the layer of cushion gum may be applied directly to the tacky surface on the tire casing. The cushion gum is typically a layer of uncured rubber material. The cushion gum and tread may be applied in combination about the circumference of the tire casing to create a retreaded tire assembly for curing. As an alternative, a length of tire tread may be wrapped around the tire casing with the cushion gum already applied. The cushion gum may form the bond between the tread and the tire casing during curing.
New tread for precured retreading applications is typically molded as a single piece with the tread pattern on one side. Such treads are sometimes referred to as a precured tread. The precured tread typically has a width corresponding to the width of the crown of the casing and is cut to the length corresponding to the casing circumference. Alternatively, continuous replacement tread is applied, a roller pressing process, commonly referred to as stitching, is next performed on the assembly to force air from between the tread strip and casing.
Following assembling of the tire casing, cement, cushion gum, and tread, the overall retreaded tire assembly may be placed within a flexible rubber envelope. An airtight seal may be created between the envelope and the bead of the tire. The entire envelope tire assembly may be placed within a curing chamber and subjected to a vulcanization process that binds the materials together.
As the precured tread is vital for a successful tire retread, there is a need to ensure the precured tread is ready for adherence to the tire casing prior to application. When precured tread is manufactured, attributes occasionally appear on the tread surface, which need to be removed. Current practices cut out the affected portion of the tire tread and splice together portions without attributes. Thus, it may be desirable to have a tool that can remove attributes from a tire tread without having to cut out an entire portion of tire.
In one embodiment, a grinding bit includes a shank having a central axis and comprising a first shank end and a second shank end opposite to the first shank end, the first shank end configured for operably coupling to a tool and a cutting body coupled to the second shank end and extending axially away from the shank along the central axis.
Another embodiment relates to a method of using a stepped grinding bit to repair a tread attribute, the method includes operably coupling the stepped grinding bit to a router, the stepped grinding bit includes a shank having a central axis and includes a first shank end configured for operably coupling to a tool and a cutting body having a diameter and a cutting height, the cutting body coupled to the second shank end and extending axially away from the shank along the central axis, setting a router speed, and engaging the tread attribute with the cutting body.
This summary is illustrative only and is not intended to be in any way limiting.
The disclosure will become more fully understood from the following detailed description, taken in conjunction with the accompanying figures, wherein like reference numerals refer to like elements, in which:
Before turning to the figures, which illustrate certain exemplary embodiments in detail, it should be understood that the present disclosure is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology used herein is for the purpose of description only and should not be regarded as limiting.
As used herein, the term “precured” refers to a material that is cured. Conversely, “uncured” refers to materials that are in their raw form and have not been cured. For example, curing an uncured material results in a cured or precured material.
As used herein, the term “precured tire tread” refers to a tire tread or build-up (e.g., precured product having no tread pattern thereon; blank; slick) that is separate from (e.g., not cured to) a tire casing. After a precured tire tread has been cured to a tire casing, the precured tire tread becomes a tire tread, and the combination of the precured tread cured to the tire casing forms a tire. The precured tire tread may take the form of a strip, oval, circle, ring, or similar shape.
As used herein, the term “attribute” may refer to a features, material, or flash on a tire tread that results from the manufacturing processes associated with forming the tire tread.
As described herein, the terms “axial” and “axially” refers to the direction parallel to an axis.
As described herein, the terms “radial” and “radially” refer to the direction toward or away from a central axis.
In order to retread a tire, a precured tire tread must first be manufactured. During the manufacturing of the precured tire tread, the precured tire tread may include undesirable attributes that are to be removed before being coupled to a tire casing during a retread process. To remove the undesirable artifact, a widthwise portion of the precured tire tread having the undesirable artifact is removed. Removal of a full width of the precured tire tread can cause a large amount of waste. Acceptable portions then need to be spliced together. A device and a method for removing undesirable artifacts on a precured tire tread saves both time and money in the manufacturing process, as operators may avoid scrapping precured tire tread and may save time by avoiding the splicing process.
Referring now to
The first attribute 108 on the first lug portion 104 may prevent the precured tire tread 102 from being in condition for optimal use or sale. Thus, it may be desirable to remove the first attribute 108 from the first lug portion 104 to result in a smooth lug surface such as in the second lug portion 110. The second attribute 116 on the third lug portion 114 may prevent the precured tire tread 102 from being in condition for optimal use or sale. Thus, it may be desirable to fill in the second attribute 116 need to be filled to result in a smooth lug surface such as in the second lug portion 110.
Referring now to
The grinding bit 200 is configured for rotating at a predetermined speed, such as measured in rotations per minute (RPM). At the predetermined speed, the grinding bit 200 is configured to produce low (e.g., below OSHA standards) noise, is capable of withstanding (e.g., not bending or breaking during) loads produced during operation, and does not produce smoke. In some embodiments, the grinding bit 200 is configured for operating at a rotational speed of between 8,000 RPM to 24,000 RPM, inclusive. In some embodiments, the grinding bit 200 is configured for rotating at approximately 11,200 RPM (e.g., between 10,640 RPM and 11,760 RPM, inclusive).
The grinding bit 200 includes a shank 202 and a cutting body 204, both centered on a central axis 206. The shank 202 includes a first shank end 208 and a second shank end 210. The shank 202 is formed of a tool steel and may include metals such as, chromium, tungsten, molybdenum, cobalt, and vanadium. In some embodiments, the shank 202 is formed of a high-speed tool steel. In some embodiments, the shank 202 is formed of stainless steel or carbon steel. The shank 202 is configured for coupling to a rotary tool, such as a drill, router, mill, and the like. The shape of the shank 202 prevents the grinding bit 200 form being inserted into the rotary tool past an insertion depth. In some embodiments, at least a portion of the shank 202 is substantially cylindrical such that the shank 202 is operably coupled to a collet. In some embodiments, at least a portion of the shank 202 includes flat surfaces for operably coupling to a drill chuck or for holding with pliers or a wrench. In some embodiments, the shank 202 has at least two parallel surfaces opposite to one another. For example, the shank 202 may have a square cross-sectional shape, a hexagonal cross-sectional shape, an octagonal cross-sectional shape, and so on.
The cutting body 204 may be formed of the same material as the shank 202. In some embodiments, the cutting body 204 is formed of a material having a greater hardness than a hardness of the shank 202. For example, the shank 202 may be formed of a low carbon steel, and the cutting body 204 may be formed of a high-carbon steel, hardened steel, ceramic, carbide, stone, silica, and the like. The cutting body 204 is configured for engaging a polymeric substrate (e.g., rubber surface, tire tread) and removing attributes from the polymeric surface. In some embodiments, the cutting body 204 defines a substantially annular body. In some embodiments, the cutting body 204 is fluted (e.g., double fluted, triple fluted, etc.) such that the cutting body 204 is configured for cutting in one rotational direction. In some embodiments, the cutting body 204 is configured for cutting in both rotational directions. For example, the cutting body 204 may include a rough coating that is not directionally applied to the cutting body 204. In some embodiments, the cutting body 204 is formed of an abrasive material, such as ceramic or stone.
The shank 202 includes a first portion 212 having a first surface (e.g., top surface) corresponding to the first shank end 208 and a first curved surface 214. The first portion 212 is configured for operably coupling to a rotary tool via a chuck or a collet. For example, the first portion 212 may be inserted into a router collet and the router collet may be tightened around the first curved surface 214 and locked such that the grinding bit 200 is securely attached to the router collet.
The shank 202 further includes a second portion 216 interposed (e.g., positioned between) the first portion 212 and the cutting body 204. The second portion 216 has a greater diameter than the first portion 212 as defined by a second curved portion 218. A first portion second end 220 of the first portion 212 opposite to the first shank end 208 is contiguous with the second portion 216 at a first shoulder 222 (e.g., first shoulder surface). The first shoulder 222 is parallel to the first shank end 208 and extends radially from the first curved surface 214 such that the first shoulder 222 is formed proximate to the second portion first end 224. In some embodiments, the first shoulder 222 extends approximately ⅛ of an inch (e.g., between 1/16 inch and 3/16 inch). The first shoulder 222 is configured to prevent the grinding bit 200 from being inserted too far when operably coupled to a rotary tool.
The second portion provides additional structure for the grinding bit 200. When the grinding bit 200 is in use (e.g., grinding a surface), the grinding bit 200 experiences lateral forces and radial forces that may cause failure of the grinding bit 200. As the grinding bit 200 rotates during use, vibration may also occur, which can be hazardous for an operator. The greater diameter of the second portion 216 when compared to the diameter of the first portion 212 increases the lateral strength that the grinding bit 200 is able to withstand before failure. When the first portion 212 is operably coupled to a rotary tool such that the first shoulder 222 contacts the rotary tool, the first shoulder 222 receives a portion of the lateral loads during operation.
The cutting body 204 is coupled to the second portion 216 at a second portion second end 226 of the second portion 216 opposite to the first portion 212. The second portion second end 226 of the second portion 216 is contiguous with a cutting body 204 at a second shoulder 228 (e.g., second shoulder surface). In some embodiments, the second shoulder 228 is smooth and is not configured for cutting or grinding. The cutting body 204 includes a first cutting surface 230 (e.g., annular cutting surface) and a second cutting surface 232 (e.g., cutting bottom surface). The first cutting surface 230 and the second cutting surface 232 are configured for engagement with a polymeric substrate (e.g., tire tread). The first cutting surface 230 and the second cutting surface 232 may be configured for targeted coating (e.g., only the first cutting surface 230 and the second cutting surface 232 are coated). In some embodiments, the first cutting surface 230 and the second cutting surface 232 include a coating 234 (e.g., carbide, oxide, etc.). In some embodiments, the coating 234 includes particulates (e.g., steel shot, diamond pieces, etc.) that increase the roughness of the coated surface. In some embodiments, the coating 234 is only disposed on one of the first cutting surface 230 and the second cutting surface 232. In some embodiments, the coating 234 is disposed on both the first cutting surface 230 and the second cutting surface 232. In some embodiments, the coating 234 is a carbide with S330 steel shot (e.g., SAE Size No. S330 grit steel shot). A benefit of using carbide with S330 steel shot as the coating 234 is that little to no smoke is produced when the cutting body 204 is engaging a precured tire tread.
In some embodiments, the grinding bit 200 includes a third portion. For example, the third portion may be positioned (e.g., interposed) between the first portion 212 and the second portion 216. The third portion may provide additional length to the shank 202 and may provide increased support and strength to the grinding bit 200. In some embodiments, the grinding bit 200 includes only the first portion 212 and the cutting body 204. In some embodiments, the edges of the grinding bit 200 receive after-treatment (e.g., chamfering, deburring, filleting). After-treatment may aid in protecting an operator from sharp edges or may provide additional support (e.g., preventing stress concentrations in corners.)
Referring now to
The second portion 216 has a second height 304, measured as the distance between the first shoulder 222 and the second shoulder 228. In some embodiments, the second height 304 is about 1.5 inches (e.g., between 1.25 inches and 1.75 inches). In some embodiments, the second height 304 is configured for use on various tools or is configured for use on a specific tool. In some embodiments, the second height 304 is resized to change the cutting depth of the grinding bit 200.
The cutting body 204 has a cutting height 306, measured as the distance between the second shoulder 228 and the second cutting surface 232. The cutting height 306 is configured for a removing material to a specific depth, such that the grinding bit 200 removes neither too much nor too little material. In some embodiments, the cutting height 306 is approximately 0.25 inches (e.g., between 0.125 inches and 0.375 inches, inclusive). In some embodiments, the cutting height 306 is approximately 0.5 inches. In some embodiments, the cutting height 306 is configured for different removal purposes or to remove different types of artifacts. In some embodiments, the cutting height 306 is sized to remove attributes between approximately 0.030 inches and 0.060 inches, inclusive.
Referring now to
The first portion 212 has a first diameter 402. The first diameter 402 is configured such that the first portion 212 may be inserted into a tool receiving end. In some embodiments, the first diameter 402 is approximately 0.5 inches (e.g., between 0.25 inches and 0.75 inches, inclusive). In some embodiments, the first diameter 402 is configured to fit into a tool receiving end. In some embodiments, the cross-sectional shape (e.g., profile) of the first portion 212 has a square shape, hexagonal shape, octagonal shape, or the like. In some embodiments, the cross-sectional shape of the first portion 212 is formed based on the requirements of the rotary tool the grinding bit 200 will be operably used with.
The second portion 216 has a second diameter 404. The second diameter 404 is equal to or greater than the first diameter 402. The second diameter 404 is sized to engage a tool receiving end without being positioned within the tool receiving end. For example, the tool receiving end may have a cylindrical shape. The first shoulder 222 defined by the second diameter 404 prevents the shank 202 from being inserted too far into the tool receiving end (e.g., collet, chuck, etc.). Additionally, the second diameter 404 is configured such that the second portion 216 is sufficiently sized to provide structural support for the grinding bit 200 to decrease the likelihood of the bit vibrating and/or bending during use. In some embodiments, the second diameter 404 is approximately 0.625 inches (e.g., between 0.375 inches and 0.875 inches, inclusive). In some embodiments, the second diameter 404 is sized based on the strength (e.g., torque produced, rotational speed, etc.) of the tool that the grinding bit 200 will be used with.
The cutting body 204 has a cutting diameter 406. The cutting diameter 406 is equal to or greater than the second diameter 404. The cutting diameter 406 is configured to provide an effectively large surface for removing, such that the second cutting surface 232 is small enough to only remove the artifacts on a work surface while being large enough to allow an operator to remove artifacts quickly. In some embodiments, the cutting diameter 406 is approximately 0.75 inches (e.g., between 0.5 and 1 inch, inclusive). In some embodiments, the cutting diameter 406 is increased for larger artifacts, or the cutting diameter 406 is decreased for smaller artifacts.
Referring now to
Referring now to
Referring now to
The coating 234 reduces or inhibits smoke from being produced when removing artifacts from precured tire tread. Another benefit of the coating 234 is that the cutting body 204, after being used to remove an artifact, provides the removed area with a texture suitable for adhesion to a repair substance (e.g., uncured rubber), allowing the operators to avoid additional steps when repairing precured tire tread.
Referring now to
At 1202, the grinding bit 200 is inserted into a tool end until the first shoulder 222 contacts the tool end. Inserting the grinding bit 200 as such allows for a consistent distance from the tool to the cutting body 204 when the grinding bit 200 is removed and reinserted without additional calibration steps. This installation saves time during the removal process and allows for various bits to be used interchangeably. For example, the grinding bit 200 may be inserted into a router collet. In such a case, the grinding bit 200 is configured (e.g., has a correct length, shape, and diameter) for insertion in the router collet. In some embodiments, the grinding bit 200 is inserted such that the first shoulder 222 does not contact the tool end.
At 1204, the grinding bit 200 is locked to the tool end by a locking mechanism (e.g., clamp, pin, set screw, magnet, etc.). In some embodiments, the locking mechanism is part of the tool end, such as a collet or a chuck. In some embodiments, the locking mechanism is an additional component, such as a pin. The locking mechanism rigidly couples the grinding bit 200 to the tool such that the grinding bit 200 may not slide in and out of the tool end. Furthermore, the locking mechanism operably couples the grinding bit 200 to the rotational mechanism of the tool such that the grinding bit 200 rotates in tandem with the tool. For example, once the grinding bit 200 is inserted into a router collet, the router collet is tightened. The collar of the collet clamps down on the first portion 212 of the grinding bit 200 to prevent the grinding bit 200 from sliding or rotating independently of the rotary tool.
At 1206, a tool speed is set. Setting the tool speed may be a manual process (e.g., adjusting a dial, pressing a button, flipping a switch, etc.) or an automatic process (e.g., preprogramed into the tool). For example, on a router such as the Hitachi M 12VC, the speed is set by adjusting a dial to a position from ‘1’ to ‘6’, where ‘1’ corresponds to 8,000 RPM and ‘6’ corresponds to 24,000 RPM. In some embodiments, the rotary tool is advantageously limited to approximately 11,200 RPM. In some embodiments, the preferred and operable range for the grinding bit 200 changes depending on the condition (e.g., age, roughness, use, etc.) of the grinding bit 200.
At 1208, the grinding bit 200 removes an artifact from a precured tire tread. Removing the artifact from a precured tire tread allows for tire tread manufacturers to decrease waste and reduce lost time when producing precured tire treads. In some embodiments, the grinding bit 200 is used to remove an artifact from a material other than rubber (e.g., metal, plastic, etc.). In some embodiments, removal of the artifact (e.g., grinding, cutting, etc.) is done without lubrication, as lubricants (e.g., graphite, oil, etc.) may contaminate the precured tire tread. In some embodiments, the rotary tool is configured to remove attributes extending between approximately 0.03 inches and approximately 0.06 inches from the surface, inclusive, of rubber per pass. In some embodiments, no more than approximately 0.045 inches of rubber are removed per pass. In some embodiments, an artifact requires multiple passes of the grinding bit 200 for removal from a precured tire tread. After an artifact is removed from a precured tire tread, additional processes may be required to prepare the precured tire tread surface for repair. For example, the grinding bit 200 may provide the precured tire tread with a texture (e.g., surface roughness) suitable for repair.
Referring now to
Referring now to
Referring now to
Referring now to
Having an additional portion may allow the grinding bit 200 to be operably coupled to tools having differently sized collets. The first portion 212 may be sized to operably couple with a first collet, configured to accept the first portion 212 such that the grinding bit 200 is inserted until the first shoulder 222 interfaces with the tool end. The second portion 216 may be sized to operably couple with a second collet, configured to accept the second portion 216 such that the grinding bit 200 is inserted until the second portion second end 226 interfaces with the tool end.
As utilized herein with respect to numerical ranges, the terms “approximately,” “about,” “substantially,” and similar terms generally mean +/−10% of the disclosed values. When the terms “approximately,” “about,” “substantially,” and similar terms are applied to a structural feature (e.g., to describe its shape, size, orientation, direction, etc.), these terms are meant to cover minor variations in structure that may result from, for example, the manufacturing or assembly process and are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the disclosure as recited in the appended claims.
It should be noted that the term “exemplary” and variations thereof, as used herein to describe various embodiments, are intended to indicate that such embodiments are possible examples, representations, or illustrations of possible embodiments (and such terms are not intended to connote that such embodiments are necessarily extraordinary or superlative examples).
The term “coupled” and variations thereof, as used herein, means the joining of two members directly or indirectly to one another. Such joining may be stationary (e.g., permanent or fixed) or moveable (e.g., removable or releasable). Such joining may be achieved with the two members coupled directly to each other, with the two members coupled to each other using a separate intervening member and any additional intermediate members coupled with one another, or with the two members coupled to each other using an intervening member that is integrally formed as a single unitary body with one of the two members. If “coupled” or variations thereof are modified by an additional term (e.g., directly coupled), the generic definition of “coupled” provided above is modified by the plain language meaning of the additional term (e.g., “directly coupled” means the joining of two members without any separate intervening member), resulting in a narrower definition than the generic definition of “coupled” provided above. Such coupling may be mechanical, electrical, or fluidic.
References herein to the positions of elements (e.g., “top,” “bottom,” “above,” “below”) are merely used to describe the orientation of various elements in the FIGURES. It should be noted that the orientation of various elements may differ according to other exemplary embodiments, and that such variations are intended to be encompassed by the present disclosure.
Although the figures and description may illustrate a specific order of method steps, the order of such steps may differ from what is depicted and described, unless specified differently above. Also, two or more steps may be performed concurrently or with partial concurrence, unless specified differently above.
It is important to note that the construction and arrangement of grinding bit as shown in the various exemplary embodiments is illustrative only. Additionally, any element disclosed in one embodiment may be incorporated or utilized with any other embodiment disclosed herein. For example, the coating described in reference to
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2022/077050 | 9/27/2022 | WO |
Number | Date | Country | |
---|---|---|---|
63254427 | Oct 2021 | US |