This disclosure generally relates to composite structures, and deals more particularly with a method and composite patch for reworking areas of composite structures containing inconsistencies.
Composite structures sometimes have localized areas containing one or more inconsistencies that may require rework in order to bring the structure within design tolerances.
In the past, one rework process was performed using a patch that was placed over the inconsistent area and secured to the parent structure using mechanical fasteners. This rework technique was desirable because the condition of the patch could be monitored over time by visually inspecting the fasteners. However, the use of fasteners may increase aircraft weight and/or drag on the aircraft, and may be esthetically undesirable in some applications.
In some applications, rework patches have been secured to a parent structure using a bonded joint, however this technique may also require the use of mechanical fasteners that provide secondary load paths forming an arrestment mechanism to limit the growth of an inconsistency. Furthermore, changes in a bonded joint securing a rework patch on a parent structure may not be easily monitored over time because the attaching mechanism of the joint or joint interface may not be visible.
Accordingly, there is a need for a rework patch and method of reworking inconsistent areas of composite structures, while allowing the condition of the reworked area to be monitored over time using visual or other types of non-destructive inspection techniques.
The disclosed embodiments provide a rework patch and method of reworking composite structures using a bonded rework patch without the need for mechanical fasteners. The rework patch includes features that allow visual inspection of the condition of the reworked area over time and permit reliable prediction of future bond joint changes. Because the condition of the reworked area may be visually inspected and predictions made about future bond condition, the bonded rework patch and visual inspection technique may allow certification of the rework by aircraft certifying authorities.
According to one disclosed embodiment, a patch for reworking an inconsistent area of a composite structure comprises a composite laminate patch and a layer of adhesive for bonding the laminate patch to the composite structure. The laminate patch is adapted to cover the inconsistent area and has at least first and second regions for releasing strain energy around the inconsistent area respectively at different rates. The laminate patch may include a plurality of fiber reinforced composite laminate plies, wherein the plies in the first region possess characteristics that are different from those of the plies in the second region. The layer of adhesive may include at least first and second sections that respectively underlie and are substantially coextensive with the first and second regions of the laminate patch.
According to another embodiment, a composite rework patch is adapted to be adhesively bonded to a composite structure over an area containing inconsistencies in the structure. The rework patch comprises a plurality of laminated composite plies. The composite plies have multiple regions of differing interlaminar fracture toughness for controlling changes in the condition of the patch. The multiple regions may include first, second and third regions that are substantially concentric around the area of inconsistencies.
According to a further embodiment, a method is provided for reworking an area of a composite structure. The method includes fabricating a composite laminate patch and bonding the laminate patch to the composite structure in the rework area. Fabricating the laminate patch includes forming multiple regions respectively having differing interlaminar fracture toughnesses. Fabricating the patch may be performed by forming a layup of fiber reinforced polymer plies, including forming the multiple regions within the layup, and curing the layup. Forming the multiple regions may include providing the plies in each of the regions with respectively differing characteristics related to interlaminar fracture toughnesses.
The disclosed embodiments satisfy the need for a bonded composite rework patch and method of rework that allow rework of an inconsistent area in a composite structure, in which the condition of the rework can be visually monitored, and any change of the bonded joint may be predicted based on the visual inspection.
a-3c are illustrations of plan views respectively of sections of the adhesive layer shown in
Referring now to
The composite patch 30 comprises a composite laminate patch 32 which overlies the inconsistent area 22 and is bonded to the composite structure 24 by a layer 34 of a structural adhesive forming a bond joint 42. The size of the patch 30 may vary with the application and the dimensions of the inconsistent area 22. The adhesive layer 34 divides the bonded joint 42 and area 22 into first, second and third control regions 36, 38, 40 respectively, that may provide a graceful reduction of transition loads transmitted between the structure 24 and the patch 30. The first control region 36 is centrally located over the inconsistent area 22, and the second and third control regions 46, 48 may respectively comprise a pair of substantially concentric rings surrounding the centrally located first region 36. While the regions 36, 38, 40 are shown as being generally circular in the disclosed embodiment, a variety of other shapes are possible. Also, in other embodiments, the patch 30 may have only two control regions 36, 38, or may have more than three control regions 36, 38, 40.
The first control region 36 may exhibit favorable in-plane adhesive stresses. The second control region 38 may be referred to as a durability region and any disbond within this region between the patch 32 and the parent structure 24 may need to be evaluated and quantified in order to determine whether rework should be performed. The third control region 40, which may be dominated by in-plane shear and peeling moments, may affect the behavior of the entire structural bond between the patch 32 and parent structure 24.
Referring now particularly to
In one embodiment, circumferential gaps “g” may be formed between adhesive sections 44, 46, 48 to aid in arresting the growth of potential debonding between the laminate patch 32 and the composite structure 24. A filler 50 may be placed in one or both of the gaps “g” to aid in the arrestment.
The properties of each of the adhesive sections 44, 46, 48 may be tailored in a manner that affects the rate at which first, second and third control regions 36, 38, 40 of the bond joint 42 respectively release strain energy. Tailoring of each of the adhesive sections 44, 46, 48 may be achieved by altering the dimensions of the adhesive sections 44, 46, 48, such as thickness “t” or width “w”, or by altering the form of the film, paste, scrim, etc., as well as by altering the structural properties of the adhesive layer, such as fracture toughness, peel or shear properties, or by providing the gap “g” between the adhesive sections 44, 46, 48. Fracture toughness may be described as the general resistance of a material to delaminate. Additionally, a spacer or filler 50 may be interposed between adhesive sections 44, 46, 48 to aid in arresting disbond growth.
The use of the tailored adhesive sections 44, 46, 48 may result in a bonded rework patch 30 that is divided into multiple control regions 36, 38, 40 that respectively release strain energy at different rates. The first, second and third control regions 36, 38, 40 provide for a graceful reduction of transition loads between the patch 32 and the structure 24, which may not only allow prediction of a course of disbond extension, but can allow assessment of the condition of the rework patch 30 through simple visual inspection, or other non-destructive inspection techniques. Although three control regions 36, 38, 40, are shown and discussed, more or less than three control regions may be possible.
The first control region 36 of the patch 30 which overlies the inconsistent area 22 exhibits favorable in-plane stresses that may suppress the stress concentration around the boundary of a disbond of the bonded joint 42. The global adhesive stresses within the first control region 36 may reduce the strain energy release rate necessary for extension of a disbond under maximum load limits applied to the composite structure 24.
The characteristics of the rework patch 30 within the second control region 38 may result in the release of strain energy at a rate greater than that of the first control region 36. Any disbond that may occur in the bond joint 42 within the second control region 38 may be anticipated by a fatigue durability disbond curve (not shown) which defines the work input required to initiate disbond growth. The characteristics of the third control region 40 are selected such that the strain energy release rate within the third control region 40 is greater than that of the second control region 38 to discourage disbond initiation and growth, as well as in-plane shear and peeling moments.
Attention is now directed to
The strain energy release rate within one of more of the control regions 36, 38, 40 may be tailored by forming a scarf or tapered joint (not shown) between the patch 32 and the structure 24. The strain energy release rate may also be tailored by providing gaps (not shown) in certain areas between plies 52 in a manner that may alter the mechanical properties of the laminated patch 32 in each of the control regions 36, 38, 40. Also, it may be possible to employ differing orientation sequences of the plies 52 in order to aid in achieving the defined control regions 36, 38, 40. Orientation refers to the layup angle or direction of reinforcing fibers in a ply, for example and without limitation, 0°, 30°, 60°, 90° and/or 0°, +45°, −45°, 90°.
In the example illustrated in
Attention is now directed to
As mentioned above in connection with
The particular values of the interlaminar fracture toughness for the regions 36, 38, 40 will depend upon the application and the particular mechanical properties of the plies 52 that are present within the regions 36, 38, 40. Moreover, the values for the interlaminar fracture toughness within the regions 36, 38, 40 may be tailored to the properties of the adhesive layer 34 (see
As previously discussed, the interlaminar fracture toughness within the regions 36, 38, 40 may be controlled by using differing prepreg materials in the plies 52, and/or by overlapping the plies 52 between adjacent ones of the regions 36, 38, 40, and/or by using different ply orientation sequences within each of the regions 36, 38, 40. For example,
Referring now particularly to FIGS. 7 and 9-12, it can be seen that ply #1 comprises a single, circularly shaped section 51 (
From the forgoing, it can be appreciated that each of the regions 36, 38, 40 possesses a unique interlaminar fracture toughness in the tailored laminate patch 32a, and/or the bond joint 42 (
Referring concurrently to
As shown in
Attention is now directed to
At 84, a layer 34 of adhesive is formed, and at 86, the adhesive layer 34 is divided into multiple sections 44, 46, 48. The regions 36, 38, 40 of the tailored patch 32a are then aligned, as shown at step 88, with the sections 44, 46, 48 of the adhesive layer 34. The adhesive layer 34 is used to bond the tailored patch 32a to a composite structure, as shown at step 90. At step 92, the patch may be visually inspected over time to determine the condition of the patch in each of the regions 36, 38, 40.
Embodiments of the disclosure may find use in a variety of potential applications, particularly in the transportation industry, including for example, aerospace, marine and automotive applications. Thus, referring now to
During production, component and subassembly manufacturing 108 and system integration 110 of the aircraft 102 takes place. The patches 30 may be used during production to rework inconsistencies that occur during the manufacturing 108 and/or system integration 110. Thereafter, the aircraft 102 may go through certification and delivery 112 in order to be placed in service 114. The patches 30 may be used to rework inconsistencies in order to achieve certification of the aircraft 102 and/or to satisfy delivery requirements. While in service by a customer, the aircraft 102 is scheduled for routine maintenance and service 116 (which may also include modification, reconfiguration, refurbishment, and so on). The patches 30 may be used while the aircraft 102 is in service to rework areas of the aircraft 102 that may develop inconsistencies while in service, and the condition of the patches 30 may be checked as part of a periodic maintenance routine.
Each of the processes of method 100 may be performed or carried out by a system integrator, a third party, and/or an operator (e.g., a customer). For the purposes of this description, a system integrator may include without limitation any number of aircraft manufacturers and major-system subcontractors; a third party may include without limitation any number of vendors, subcontractors, and suppliers; and an operator may be an airline, leasing company, military entity, service organization, and so on.
As shown in
Systems and methods embodied herein may be employed during any one or more of the stages of the production and service method 100. For example, components or subassemblies corresponding to production process 108 may be fabricated or manufactured in a manner similar to components or subassemblies produced while the aircraft 102 is in service. Also, one or more apparatus embodiments, method embodiments, or a combination thereof may be utilized during the production stages 108 and 110, for example, by substantially expediting assembly of or reducing the cost of an aircraft 102. Similarly, one or more of apparatus embodiments, method embodiments, or a combination thereof may be utilized while the aircraft 102 is in service, for example and without limitation, to maintenance and service 116.
Although the embodiments of this disclosure have been described with respect to certain exemplary embodiments, it is to be understood that the specific embodiments are for purposes of illustration and not limitation, as other variations will occur to those of skill in the art.
This application is related to co-pending U.S. patent application Ser. Nos. ______, (Attorney Docket No. 82,000-227) ______, (Attorney Docket No. 82,000-249), both of which applications are filed concurrently herewith on ______ and are incorporated by reference herein in their entireties.