PREDICTING BLOOD METABOLITES

Information

  • Patent Application
  • 20220102000
  • Publication Number
    20220102000
  • Date Filed
    January 30, 2020
    4 years ago
  • Date Published
    March 31, 2022
    2 years ago
  • CPC
  • International Classifications
    • G16H50/20
    • G16B10/00
    • G16B30/10
    • G16H20/60
    • G16B40/20
    • C12Q1/10
Abstract
A method of predicting the quantity of a metabolite in the blood of a subject, accesses a computer readable medium storing a library of trained machine learning procedures, searches the library for a trained machine learning procedure associated with the metabolite, feeds the selected procedure with amount of a plurality of microbes of a microbiome of the subject, and receives from the selected procedure an output indicative of the quantity of the metabolite in the blood.
Description
RELATED APPLICATION

This application claims the benefit of priority Israeli Patent Application No. 264581 filed Jan. 31, 2019, the contents of which are incorporated herein by reference in their entirety.


SEQUENCE LISTING STATEMENT

The ASCII file, entitled 80593 Sequence Listing.txt, created on 28 Jan. 2020, comprising 82,571,264 bytes, submitted concurrently with the filing of this application is incorporated herein by reference.


FIELD AND BACKGROUND OF THE INVENTION

The present invention, in some embodiments thereof, relates to a non-invasive method of quantifying blood metabolites.


Blood serves as a liquid conveyor for molecules inside the body by delivering necessary substances to the cells and transporting metabolic waste products. Of particular importance are the thousands of circulating small molecules termed the serum metabolome, which are either naturally produced by the body or taken up from the environment. While the connection of most of these metabolites to human health is yet to be elucidated, some are known to be predictive diagnostic biomarkers or even causal agents in the development of disease. For example, high blood cholesterol leads to buildup of plaque in the blood vessels, termed atherosclerosis, which in turn increases the risk for a major cardiovascular event such as heart attack, stroke, and peripheral artery disease. As a result, blood cholesterol level serves as both a diagnostic biomarker and a therapeutic target for drugs such as statins. As another example, type II diabetes which impacts around 10% of the population, is diagnosed in part by measurements of blood glucose levels, with a recent study suggesting that a new set of metabolites significantly improves diagnosis. These are only examples for the wealth of potential biomarkers and therapeutic targets that could be found in the blood, making blood an attractive source in which to search for novel biomarkers for early detection and treatment of disease.


Mass spectrometry can accurately identify thousands of metabolites from different biofluids. While some of its identified compounds are well studied and characterized, the determinants of most serum metabolites are still unknown. Studies focusing on human genetics estimated a median heritability of 6.9% for serum metabolites, thereby leaving much of the variation in metabolite levels unaccounted for and suggesting major contributions from environmental factors. Other studies have suggested that the gut microbiome is actively involved in the metabolism of many metabolites which are detectable in human serum, including a diverse set of biochemicals such branched-chain and aromatic amino acids. A notable example is the metabolite trimethylamine N-oxide (TMAO), which is derived from gut microbial metabolism of choline and carnitine, and was reported to act as a marker for cardiovascular disease in humans, with further evidence indicating proatherogenicity and prothromboticity in mouse models. The effect of nutrition on serum metabolites was long established as dietary patterns such as the intake of red meat, whole-grain bread, tea and coffee were linked to changes in a wide range of compounds. Smoking was suggested as impacting serum metabolites, with some of these smoking-related changes in human serum metabolites being reversible after smoking cessation. However, no study to date incorporated all of the above potential determinants within a single human cohort and quantified their relative contribution in explaining serum metabolites.


SUMMARY OF THE INVENTION

According to an aspect of some embodiments of the present invention there is provided a method of predicting the quantity of a metabolite in the blood of a subject. The method comprises: accessing a computer readable medium storing a library of trained machine learning procedures, each being associated with a different metabolite; searching the library for a trained machine learning procedure associated with the metabolite; feeding the selected procedure with amount of a plurality of microbes of a microbiome of the subject; and receiving from the selected procedure an output indicative of the quantity of the metabolite in the blood.


According to some embodiments of the invention the method comprises measuring the amount of microbes of the microbiome of the subject prior to the analyzing.


According to some embodiments of the invention the microbiome is a fecal microbiome.


According to some embodiments of the invention the plurality of microbes comprises more than 20 microbes.


According to some embodiments of the invention the metabolite is set forth in Table 2.


According to some embodiments of the invention the metabolite is other than glucose and other than cholesterol.


According to some embodiments of the invention at least some of the trained machine learning procedures in the library comprises a set of decision trees.


According to some embodiments of the invention the selected machine learning procedure comprises a set of decision trees, each decision tree comprises a plurality of nodes associated with a respective plurality of decision rules, each decision rule relating to at least one microbe of the microbiome, and wherein a number of decision rules relating to microbes listed in Table 1 is larger than a number of decision rules relating to other microbes of the microbiome.


According to an aspect of some embodiments of the present invention there is provided a method of predicting the quantity of a metabolite set forth in Table 1. The method comprises: accessing a computer readable medium storing a trained machine learning procedure associated with the metabolite; feeding the trained procedure with an amount of N of the corresponding microbes set forth in Table 1, the N being at most 50; and receiving from the procedure an output indicative of the quantity of the metabolite in the blood, thereby predicting the quantity of the metabolite in the blood.


According to some embodiments of the invention the method comprises measuring the amount of microbes of the fecal microbiome of the subject prior to the analyzing.


According to some embodiments of the invention the metabolite is other than glucose and other than cholesterol.


According to an aspect of some embodiments of the present invention there is provided a method of predicting the quantity of a metabolite in the blood of a subject that consumes a diet of a plurality of food types. The method comprises: accessing a computer readable medium storing a library of trained machine learning procedures, each being associated with a different metabolite; searching the library for a trained machine learning procedure associated with the metabolite; feeding the selected procedure with a frequency of consumption of at least 5 of the food types over at least one month and/or a daily mean consumption of at least 5 of the food types; and receiving from the selected procedure an output indicative of the quantity of the metabolite in the blood.


According to some embodiments of the invention the metabolite is other than glucose and other than cholesterol.


According to some embodiments of the invention at least some of the trained machine learning procedures in the library comprises a set of decision trees.


According to some embodiments of the invention each set of decision trees comprises at least 1000 decision trees.


According to some embodiments of the invention the selected machine learning procedure comprises a set of decision trees, each decision tree comprises a plurality of nodes associated with a respective plurality of decision rules, each decision rule relating to at least one food type, and wherein a number of decision rules relating to food types listed in Table 3 is larger than a number of decision rules relating to other food types.


According to an aspect of some embodiments of the present invention there is provided a method of predicting the quantity of a metabolite set forth in Table 3. The method comprises: accessing a computer readable medium storing a trained machine learning procedure associated with the metabolite; feeding the selected procedure with a daily mean consumption and/or frequency of consumption over at least one month of N of the corresponding food types set forth in Table 3 of the subject; and receiving from the selected procedure an output indicative of the quantity of the metabolite in the blood, thereby predicting the quantity of the metabolite in the blood.


According to some embodiments of the invention the N is at most 50.


According to some embodiments of the invention the metabolite is other than glucose and other than cholesterol.


According to some embodiments of the invention the method comprises corroborating the quantity of the metabolite by measuring the amount of the metabolite in a blood sample of the subject.


According to an aspect of some embodiments of the present invention there is provided a method of diagnosing a disease of a subject. The method comprises predicting the quantity of at least one metabolite which is indicative of the disease, wherein the predicting is carried out according to any one of claims 1-21, thereby diagnosing the disease.


According to some embodiments of the invention the disease is selected from the group consisting of a metabolic disease, a cardiovascular disease and kidney disease.


According to an aspect of some embodiments of the present invention there is provided a method of altering the quantity of a metabolite in the blood of the subject. The method comprises: predicting the quantity of the metabolite; and administering to the subject at least one agent which specifically increases or decreases at least one microbe, wherein the agent is selected based on the quantity of the metabolite; wherein the predicting the quantity of the metabolite comprises: accessing a computer readable medium storing a library of trained machine learning procedures, each being associated with a different metabolite; searching the library for a trained machine learning procedure associated with the metabolite; feeding the selected procedure with an amount of a plurality of microbes; and receiving from the selected procedure an output indicative of the quantity of the metabolite in the blood.


According to an aspect of some embodiments of the present invention there is provided a method of altering the amount of a metabolite in the blood of the subject. The method comprises: accessing a computer readable medium storing a library of trained machine learning procedures, each being associated with a different metabolite; searching the library for a trained machine learning procedure associated with the metabolite; feeding the selected procedure with a predetermined quantity of the metabolite; receiving from the selected procedure an output indicative of at least one microbe; and administering to the subject at least one agent which specifically increases or decreases the amount of the at least one microbe, thereby altering the amount of the metabolite in the blood of the subject.


According to some embodiments of the invention the agent which increases the microbe is a probiotic.


According to some embodiments of the invention the agent which decreases the microbe is an antibiotic or a phage directed to the microbe.


According to an aspect of some embodiments of the present invention there is provided a method of providing dietary advice to a subject. The method comprises predicting the quantity of a metabolite in the blood by carrying out the method according to claim 14-22, wherein when the metabolite is above or below the recommended quantity of the metabolite, recommending consumption of at least one food type that alters the quantity of the metabolite.


According to some embodiments of the invention the metabolite is set forth in Table 4.


According to some embodiments of the invention the food type is the corresponding food type set forth in Table 4.


According to an aspect of some embodiments of the present invention there is provided a method of altering the amount of a metabolite set forth in Table 3 in the blood of the subject. The method comprises: accessing a computer readable medium storing a library of trained machine learning procedures, each being associated with a different metabolite; searching the library for a trained machine learning procedure associated with the metabolite; feeding the selected procedure with a predetermined quantity of the metabolite; receiving from the selected procedure an output indicative of a list of food types; and providing dietary advice to the subject, based on the output.


According to some embodiments of the invention the method comprises predicting the amount of the metabolite using another trained machine learning procedure.


Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.





BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments of the invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of embodiments of the invention. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced.


In the drawings:



FIGS. 1A-E. Accurate and reproducible serum metabolomics from a deeply phenotyped human cohort. (A) Illustration of the measurements we obtained from our cohort. (B) Basic characteristics and demographics of our main and replication cohorts. P-values were calculated using Mann-Whitney U test for continuous variables and Fisher's exact test for binary variables. (C) Breakdown of the 1251 measured metabolites by type. (D) Number of samples (y-axis) in which each metabolite (x-axis) was identified, sorted by prevalence. (E) Spearman correlations (y-axis; box—IQR, whiskers—IQR*1.5) between standardized metabolomic profiles (Methods) of different individuals (n=475; median Spearman 0.05, std=0.12) stratified by sex, and between standardized metabolomic profiles of the same participant (n=20; median Spearman 0.68, std=0.06) taken one week apart. C&V, Cofactors and vitamins; std, Standard deviation.



FIGS. 2A-F. Diet, gut microbiome, genetics and clinical data predict the levels of most serum metabolites. Figure panels refer to results of 5-fold cross validation predictions of the levels of every metabolite based on models derived separately for each feature group. An exception is human genetics for which the EV of each metabolite is determined as that of the single most associated SNP. (A) Box and swarm plots (box, IQR; whiskers, 1.5*IQR) showing the EV (R2) of the top 50 predicted metabolites of each feature group (group names below panel C). Feature groups are sorted by their median EV across these 50 metabolites. (B) Heatmap showing the 95% confidence interval (CI) for EV (color gradient from left to right corresponds to lower and higher CI bounds) predicted for each metabolite (y-axis) by every feature group (x-axis). Only metabolites with significant predictions after strict Bonferonni correction are shown, their number per column shown above panel B. P-values and CIs were estimated using bootstrapping (Methods). (C) Enrichment of metabolite types in the metabolites predicted by each feature group (Mann-Whitney U test; Methods). Only significant enrichments are shown (p<0.05 after 10% FDR correction). Exact p-values are written in each cell. (D) A histogram of the number of metabolites (y-axis) with any value of EV (x-axis) as obtained using the full model. Inset shows the metabolites with EV in the range of 0.3-0.8. (E) Spearman correlations computed between the EV of metabolites for every pair of feature groups. Rows and columns are hierarchically clustered using Euclidean distances between the Spearman correlations. (F) The fraction of total EV (x-axis) of each feature group (y-axis) compared to the total EV of a model with all feature groups excluding genetics (full model). Total EV is the sum of the EV of the first 15 metabolite principal components (PCs) weighted by the EV of each PC (Methods).



FIGS. 3A-C. Validation of metabolite predictions on an independent cohort. (A) R2 multiplied by the sign of the Pearson correlation coefficient (x-axis) between metabolite levels and BMI in our study, versus the mean R2 multiplied by the sign of the Pearson correlation coefficient (y-axis) of BMI associated metabolites recently reported by a different group. Shown are 36 (out of 49) BMI associated metabolites that were also measured in this cohort. Line and shaded coloring represent the fitting of a linear model and the 95% confidence interval. (B-C) Dot plots showing the R2 of metabolites obtained from prediction models trained on the main cohort (x-axis) and evaluated on the validation cohort (y-axis), for models based on microbiome (B) and diet (C) features. Only metabolites for which we obtained statistically significant predictions with over 5% of their variance explained in the main cohort are presented.



FIGS. 4A-F. Diet and gut microbiome data independently explain a wide range of biochemicals. (A) Shown is the EV of every metabolite from prediction models based on the gut microbiome (x-axis) versus diet (y-axis). Dashed red line is y=x. (B) Same for prediction models based on both gut microbiome and diet (x-axis) compared to using only diet (y-axis). (C) A histogram of the differences between the axes in B for metabolites whose predictions were statistically significant and over 5% of their variance was explained in at least one of the models. (D) Shown is the EV of every metabolite from prediction models based on all gut microbiome features (x-axis) compared to using only the top predictor of that metabolite, selected as the feature with the largest mean absolute SHAP value (y-axis). Dashed red palette lines mark different y:x ratios. (E) The levels of the unknown compound X-16124 in individuals for which the bacterial taxa from the Eggerthellaceae family was detectable in stool versus individuals for which it was not. *** Mann-Whitney U p<0.001; (F) Heatmap showing the directional mean absolute SHAP values (Methods) of various features (x-axis) computed from 5-fold cross validation models that predict metabolite levels (y-axis) using two separate models, one based on diet and another on gut microbiome data. Positive SHAP values indicate that higher feature values lead, on average, to higher predicted values, while negative SHAP values indicate that lower feature values lead, on average, to lower predicted values. Metabolites are sorted by their type and clustered within each group. Shown are the top 200 predicted metabolites using diet and gut microbiome, and the top 50 features by maximum mean absolute SHAP value across all metabolites. C&V, Cofactors and vitamins; AAs, Amino Acids.



FIGS. 5A-D. Networks of interactions between phenotypes explain diverse metabolites. Interactions between features from different feature groups predictive of similar metabolites are presented in a graphical layout, in which nodes are either metabolites or features, and edges are the directional mean absolute SHAP values (Methods) computed from models trained only on features from the respective feature group. Circular nodes—metabolites; predictive feature nodes—squares; both colored by relevant categories. Shown are only edges with a mean absolute SHAP value greater than 0.12. (A) Network of associations for the following feature groups: macronutrients, diet, microbiome, lifestyle, drugs and seasonal effects. (B) A large group of metabolites which their predictions are mainly driven by the reported consumption of coffee and the relative abundance of a bacteria from the Clostridiales order. (C) Metabolites explained by seasonal fruit consumption. (D) Selected examples of interactions between metabolites and features in predictive models.



FIGS. 6A-F. Metabolites explained by bread increase following an intervention that increases bread consumption. (A) Measuring associations between dietary features and metabolite levels using samples from this study. (B) Histogram of directional mean absolute SHAP values of whole-wheat bread consumption for metabolites computed based on held-out samples from our cohort. The top 5% (n=62; blue) positively associated metabolites and the top 5% (n=62; red) negatively associated metabolites are marked and used for further analysis. (C) A randomized controlled trial with 20 healthy subjects comparing the effect of consuming traditionally milled and prepared whole-grain sourdough bread to that of consuming industrial white bread made from refined wheat. We analyzed samples from the first week of the trial, in which 10 subjects increased consumption of sourdough bread and 10 others increased consumption of white bread. (D) Box plots (box, IQR; whiskers, 1.5*IQR) showing the mean fold-change (FC) of the top 5% positively (blue) and negatively (red) associated metabolites, separated by intervention group. Among the group which received the sourdough bread intervention the mean FC of the top 5% positively associated metabolites was significantly higher than the mean FC of the top 5% negatively associated metabolites (p<10−12, Mann-Whitney U). *** Mann-Whitney U p<0.001; n.s., Not significant. (E-F) FC (y-axis) of two metabolites separated by intervention groups. In the sourdough bread group the FC of both betaine (E; Mann-Whitney U p<0.004) and cytosine (F; Mann-Whitney U p<0.002) were higher compared to the same FC in the group having white bread.



FIGS. 7A and 7B show results of experiments in which the model of the present embodiments was applied, without modification, to an independent cohort demonstrating a cross-cohort prediction ability.



FIGS. 8A and 8B. Validating metabolomics accuracy by comparing measurements to standard lab tests. Mass-spectrometry measurements (y-axis) versus standardized lab tests results (x-axis; Methods) for creatinine (E; Pearson R=0.87, p<10-20) and cholesterol (F; R=0.79, p<10-20). a.u., Arbitrary units.



FIGS. 9A-E. Gradient boosting decision trees outperform Lasso regression on diet and microbiome data. (A) Metabolite prediction R2 of GBDT vs Lasso regression models using diet data. Shown are only metabolites for which both models achieved significant predictions with R2 above 0.05. (B) Histogram of the differences between the R2 of GBDT compared to Lasso regression using the diet data. (C) The levels of the metabolite hydroxy-CMPF* vs the monthly consumption of cooked, baked or grilled fish as reported in a food frequency questionnaire. The comparison of Spearman and Pearson correlation coefficients suggests that the relationship between the metabolite and the numerical values of the question are monotonic yet non-linear, which explains why GBDT performs better in predicting the levels of hydroxy-CMPF* from diet data. The x-axis is not in scale. (D-E) Same as A-B for microbiome. GBDT, Gradient Boosting Decision Trees; a.u., arbitrary units.



FIG. 10. Comparison of explained variance of metabolites for every pair of feature groups. Every panel shows a dot plot of the explained variance of the metabolite groups from models based on every pair of feature groups. Panels on the diagonal shows the marginal distribution of explained variance of metabolite groups for a certain feature group.



FIG. 11 is a schematic illustration of a computer readable medium storing a library of trained machine learning (ML) procedures, according to some embodiments of the present invention.



FIG. 12 is a schematic illustration of a method suitable for predicting a quantity of a metabolite using a machine learning procedure which is associated with the metabolite and which is trained using microbiome data, according to some embodiments of the present invention.



FIG. 13 is a schematic illustration of a method suitable for predicting a quantity of a metabolite using a machine learning procedure which is associated with the metabolite and which is trained using food consumption data, according to some embodiments of the present invention.



FIG. 14 is a schematic illustration of a method suitable for solving an inverse problem using a machine learning procedure which is trained using microbiome data, according to some embodiments of the present invention.



FIG. 15 is a schematic illustration of a method suitable for solving an inverse problem using a machine learning procedure which is trained using food consumption data, according to some embodiments of the present invention.



FIG. 16. Principal component analysis over the metabolomics data. Shown are the proportion of variance explained by each of the first 400 principal components (left y-axis; black) and their cumulative EV (right y-axis; blue).



FIG. 17. Overall predictive power of gut microbiome and diet data replicates in an independent cohort. The sum of the explained variance (y-axis, R2) for diet and microbiome (x-axis) in the main (blue) and replication (red) cohorts. Shown are only metabolites for which the models achieved significant out-of-sample predictions with R2 above 0.05 in the main cohort.



FIG. 18. Replication of associations between genetic loci and the levels of circulating blood metabolites. Explained variance (R2) of a model based on top significantly associated SNPs in the TwinsUK cohort from a previous study6 (x-axis) vs the explained variance of a model based on a single top associated SNP from this study (y-axis). Shown are results for 301 metabolites which were measured in both studies. Line and shaded coloring represent the fitting of a linear model and the 95% confidence interval.



FIGS. 19A-F. Specific dietary features and bacterial taxa underlie the accurate prediction of circulating metabolites. (A-F) Predicted (y-axis) vs measured (x-axis) levels (arbitrary units) of X-16124 (A; Pearson R=0.77, p<10-20), phenylacetylglutamine (B; R=0.63, p<10-20), p-cresol-glucuronide (C; R=0.64, p<10-20), caffeine (D; R=0.68, p<10-20), hydroxy-CMPF (E; R=0.72, p<10-20) and stachydrine (F; R=0.5, p<10-20). Predictions of A-C are based only on microbiome data, and colored by the relative abundance of the bacterial taxa having the highest mean absolute SHAP value for each metabolite. Predictions of D-F are based only on diet data, and colored by the reported consumption of the dietary item having the highest mean absolute SHAP value for each metabolite. p-values for prediction were estimated via bootstrapping.



FIG. 20. Distribution of bacterial phyla in our cohort. Stacked bar plots per sample (x-axis) showing the relative abundance of bacterial phyla (y-axis). Samples are sorted by the relative abundance of the most abundant phylum, Firmicutes. Bacteroidetes is the second most abundant phylum in our cohort. Relative abundance of a phylum is computed as the sum over relative abundances of all bacterial features belonging to that phylum.





DESCRIPTION OF SPECIFIC EMBODIMENTS OF THE INVENTION

The present invention, in some embodiments thereof, relates to a non-invasive method of quantifying blood metabolites.


Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not necessarily limited in its application to the details set forth in the following description or exemplified by the Examples. The invention is capable of other embodiments or of being practiced or carried out in various ways.


The collection of metabolites circulating in the human blood, termed the serum metabolome, contains a plethora of biomarkers and causative agents. Although the origin of specific compounds is known, the understanding of the key determinants of most metabolites is poor.


The present inventors have now measured the levels of 1251 circulating metabolites in 521 serum samples from a healthy cohort, and devised machine learning algorithms to predict their levels in held-out subjects based on a comprehensive profile consisting of gut microbiome, clinical parameters, diet, lifestyle, anthropometric measurements and medication data. Notably, they obtained significant predictions for over 92% of the profiled metabolites, with diet and microbiome each explaining hundreds of metabolites, and with 64% of the variance of some metabolites explained using only gut microbiome data. To corroborate the causality of these predictions, the present inventors showed that some metabolites that were predicted to be positively associated with bread increased in levels following a randomized clinical trial of bread intervention. Overall, the present results unravel the potential determinants of over 1000 metabolites, paving the way towards mechanistic understanding of the alterations in metabolites under different conditions and to designing interventions for manipulating metabolite levels.


Thus, according to a first aspect of the present invention there is provided a method of predicting the quantity of a metabolite in the blood of a subject, the method comprising analyzing the amount of a plurality of microbes of a microbiome of the subject so as to reach a confidence level of at least 95% in the significance of the predictions, thereby predicting the quantity of the metabolite in the blood.


The methods described herein are preferably non-invasive methods. Thus, in one embodiment, the methods described herein are carried out without blood sampling.


As used herein the term “subject” refers to a mammalian subject (e.g. mouse, cow, dog, cat, horse, monkey, human), preferably human.


In one embodiment, the subject is a healthy subject.


As used herein, a “metabolite” is an intermediate or product of metabolism. The term metabolite is generally restricted to small molecules and does not include polymeric compounds such as DNA or proteins greater than 100 amino acids in length. A metabolite may serve as a substrate for an enzyme of a metabolic pathway, an intermediate of such a pathway or the product obtained by the metabolic pathway.


In preferred embodiments, metabolites include but are not limited to sugars, organic acids, amino acids, fatty acids, hormones, vitamins, as well as ionic fragments thereof. In another embodiment, the metabolite is an oligopeptides (less than about 100 amino acids in length). In still another embodiment, the metabolite is not a peptide or a nucleic acid.


In particular, the metabolites are less than about 3000 Daltons in molecular weight, and more particularly from about 50 to about 3000 Daltons.


The metabolite of this aspect of the present invention may be a primary metabolite (i.e. essential to the microbe for growth) or a secondary metabolite (one that does not play a role in growth, development or reproduction, and is formed during the end or near the stationary phase of growth.


Representative examples of metabolic pathways in which the metabolites of the present invention are involved include, without limitation, citric acid cycle, respiratory chain, photosynthesis, photorespiration, glycolysis, gluconeogenesis, hexose monophosphate pathway, oxidative pentose phosphate pathway, production and β-oxidation of fatty acids, urea cycle, amino acid biosynthesis pathways, protein degradation pathways such as proteasomal degradation, amino acid degrading pathways, biosynthesis or degradation of: lipids, polyketides (including, e.g., flavonoids and isoflavonoids), isoprenoids (including, e.g., terpenes, sterols, steroids, carotenoids, xanthophylls), carbohydrates, phenylpropanoids and derivatives, alkaloids, benzenoids, indoles, indole-sulfur compounds, porphyrines, anthocyans, hormones, vitamins, cofactors such as prosthetic groups or electron carriers, lignin, glucosinolates, purines, pyrimidines, nucleosides, nucleotides and related molecules such as tRNAs, microRNAs (miRNA) or mRNAs.


Preferably, the metabolite is set forth in the Human Metabolite Database which is available online at wwwdothmdb.ca/metabolites.


Exemplary metabolites that may be analyzed include, but are not limited to: (N(1)+N(8))-acetylspermidine, “1,2,3-benzenetriol sulfate (1)”, “1,2,3-benzenetriol sulfate (2)”, “1,2-dilinoleoyl-GPC (18:2/18:2)”, “1,2-dilinoleoyl-GPE (18:2/18:2)*”, “1,2-dipalmitoyl-GPC (16:0/16:0)”, “1,3,7-trimethylurate”, “1,3-dimethylurate”, “1,5-anhydroglucitol (1,5-AG)”, “1,7-dimethylurate”, 1-(1-enyl-oleoyl)-GPE (P-18:1)*, 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4)*, 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE (P-16:0/20:4)*, 1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2)*, 1-(1-enyl-palmitoyl)-2-linoleoyl-GPE (P-16:0/18:2)*, 1-(1-enyl-palmitoyl)-2-oleoyl-GPC (P-16:0/18:1)*, 1-(1-enyl-palmitoyl)-2-oleoyl-GPE (P-16:0/18:1)*, 1-(1-enyl-palmitoyl)-2-palmitoleoyl-GPC (P-16:0/16:1)*, 1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0)*, 1-(1-enyl-palmitoyl)-GPC (P-16:0)*, 1-(1-enyl-palmitoyl)-GPE (P-16:0)*, 1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (P-18:0/20:4)*, 1-(1-enyl-stearoyl)-2-linoleoyl-GPE (P-18:0/18:2)*, 1-(1-enyl-stearoyl)-2-oleoyl-GPE (P-18:0/18:1), 1-(1-enyl-stearoyl)-GPE (P-18:0)*, 1-arachidonoyl-GPA (20:4), 1-arachidonoyl-GPC (20:4n6)*, 1-arachidonoyl-GPE (20:4n6)*, 1-arachidonoyl-GPI (20:4)*, 1-arachidonylglycerol (20:4), 1-dihomo-linolenylglycerol (20:3), 1-dihomo-linoleoylglycerol (20:2), 1-docosahexaenoylglycerol (22:6), 1-lignoceroyl-GPC (24:0), 1-linolenoyl-GPC (18:3)*, 1-linolenoylglycerol (18:3), 1-linoleoyl-2-arachidonoyl-GPC (18:2/20:4n6)*, 1-linoleoyl-2-linolenoyl-GPC (18:2/18:3)*, 1-linoleoyl-GPA (18:2)*, 1-linoleoyl-GPC (18:2), 1-linoleoyl-GPE (18:2)*, 1-linoleoyl-GPG (18:2)*, 1-linoleoyl-GPI (18:2)*, 1-linoleoylglycerol (18:2), 1-methylhistidine, 1-methylimidazoleacetate, 1-methylnicotinamide, 1-methylurate, 1-methylxanthine, 1-myristoyl-2-arachidonoyl-GPC (14:0/20:4)*, 1-myristoyl-2-palmitoyl-GPC (14:0/16:0), 1-myristoylglycerol (14:0), 1-oleoyl-2-docosahexaenoyl-GPC (18:1/22:6)*, 1-oleoyl-2-docosahexaenoyl-GPE (18:1/22:6)*, 1-oleoyl-GPC (18:1), 1-oleoyl-GPE (18:1), 1-oleoyl-GPG (18:1)*, 1-oleoyl-GPI (18:1)*, 1-oleoylglycerol (18:1), 1-palmitoleoyl-2-linolenoyl-GPC (16:1/18:3)*, 1-palmitoleoyl-2-linoleoyl-GPC (16:1/18:2)*, 1-palmitoleoyl-GPC (16:1)*, 1-palmitoleoylglycerol (16:1)*, 1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4n6), 1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4)*, 1-palmitoyl-2-arachidonoyl-GPI (16:0/20:4)*, 1-palmitoyl-2-docosahexaenoyl-GPC (16:0/22:6), 1-palmitoyl-2-docosahexaenoyl-GPE (16:0/22:6)*, 1-palmitoyl-2-gamma-linolenoyl-GPC (16:0/18:3n6)*, 1-palmitoyl-2-linoleoyl-GPC (16:0/18:2), 1-palmitoyl-2-linoleoyl-GPE (16:0/18:2), 1-palmitoyl-2-linoleoyl-GPI (16:0/18:2), 1-palmitoyl-2-oleoyl-GPC (16:0/18:1), 1-palmitoyl-2-oleoyl-GPE (16:0/18:1), 1-palmitoyl-2-oleoyl-GPI (16:0/18:1)*, 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1)*, 1-palmitoyl-GPA (16:0), 1-palmitoyl-GPC (16:0), 1-palmitoyl-GPE (16:0), 1-palmitoyl-GPG (16:0)*, 1-palmitoyl-GPI (16:0), 1-palmitoylglycerol (16:0), 1-stearoyl-2-arachidonoyl-GPC (18:0/20:4), 1-stearoyl-2-arachidonoyl-GPE (18:0/20:4), 1-stearoyl-2-arachidonoyl-GPI (18:0/20:4), 1-stearoyl-2-docosahexaenoyl-GPC (18:0/22:6), 1-stearoyl-2-docosahexaenoyl-GPE (18:0/22:6)*, 1-stearoyl-2-linoleoyl-GPC (18:0/18:2)*, 1-stearoyl-2-linoleoyl-GPE (18:0/18:2)*, 1-stearoyl-2-linoleoyl-GPI (18:0/18:2), 1-stearoyl-2-oleoyl-GPC (18:0/18:1), 1-stearoyl-2-oleoyl-GPE (18:0/18:1), 1-stearoyl-2-oleoyl-GPI (18:0/18:1)*, 1-stearoyl-2-oleoyl-GPS (18:0/18:1), 1-stearoyl-GPC (18:0), 1-stearoyl-GPE (18:0), 1-stearoyl-GPG (18:0), 1-stearoyl-GPI (18:0), 1-stearoyl-GPS (18:0)*, 10-heptadecenoate (17:1n7), 10-nonadecenoate (19:1n9), 10-undecenoate (11:1n1), “12,13-DiHOME”, 12-HETE, 12-HHTrE, 13-HODE+9-HODE, 13-methylmyristate, 14-HDoHE/17-HDoHE, 15-methylpalmitate, 16a-hydroxy DHEA 3-sulfate, 17-methylstearate, 17alpha-hydroxypregnanolone glucuronide, 17alpha-hydroxypregnenolone 3-sulfate, 1H-indole-7-acetic acid, 2′-deoxyuridine, 2′-O-methylcytidine, 2′-O-methyluridine, “2,3-dihydroxy-2-methylbutyrate”, “2,3-dihydroxyisovalerate”, “2,3-dihydroxypyridine”, 2-acetamidophenol sulfate, 2-aminoadipate, 2-aminobutyrate, 2-aminoheptanoate, 2-aminooctanoate, 2-aminophenol sulfate, 2-arachidonoylglycerol (20:4), 2-docosahexaenoylglycerol (22:6)*, 2-hydroxy-3-methylvalerate, 2-hydroxyacetaminophen sulfate*, 2-hydroxyadipate, 2-hydroxybehenate, 2-hydroxybutyrate/2-hydroxyisobutyrate, 2-hydroxydecanoate, 2-hydroxyglutarate, 2-hydroxyhippurate (salicylurate), 2-hydroxyibuprofen, 2-hydroxylaurate, 2-hydroxynervonate*, 2-hydroxyoctanoate, 2-hydroxypalmitate, 2-hydroxyphenylacetate, 2-hydroxystearate, 2-keto-3-deoxy-gluconate, 2-linoleoylglycerol (18:2), 2-methoxyacetaminophen glucuronide*, 2-methoxyacetaminophen sulfate*, 2-methoxyresorcinol sulfate, 2-methylbutyrylcarnitine (C5), 2-methylcitrate/homocitrate, 2-methylserine, 2-oleoylglycerol (18:1), 2-oxoarginine*, 2-palmitoleoyl-GPC (16:1)*, 2-palmitoyl-GPC (16:0)*, 2-palmitoylglycerol (16:0), 2-piperidinone, 2-pyrrolidinone, 2-stearoyl-GPE (18:0)*, 21-hydroxypregnenolone disulfate, “3,4-methyleneheptanoate”, “3,7-dimethylurate”, 3-(3-hydroxyphenyl)propionate, 3-(3-hydroxyphenyl)propionate sulfate, 3-(4-hydroxyphenyl)lactate, 3-(cystein-S-yl)acetaminophen*, 3-(N-acetyl-L-cystein-S-yl) acetaminophen, 3-acetylphenol sulfate, 3-aminoisobutyrate, 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF), 3-hydroxy-2-ethylpropionate, 3-hydroxy-3-methylglutarate, 3-hydroxybutyrate (BHBA), 3-hydroxybutyrylcarnitine (1),3-hydroxybutyrylcarnitine (2),3-hydroxycotinine glucuronide, 3-hydroxydecanoate, 3-hydroxyhexanoate, 3-hydroxyhippurate, 3-hydroxyisobutyrate, 3-hydroxylaurate, 3-hydroxyoctanoate, 3-hydroxypyridine sulfate, 3-hydroxyquinine, 3-indoxyl sulfate, 3-methoxycatechol sulfate (1),3-methoxycatechol sulfate (2),3-methoxytyramine sulfate, 3-methoxytyrosine, 3-methyl catechol sulfate (1),3-methyl catechol sulfate (2), 3-methyl-2-oxobutyrate, 3-methyl-2-oxovalerate, 3-methyladipate, 3-methylcytidine, 3-methylglutaconate, 3-methylglutarylcarnitine (2),3-methylhistidine, 3-methylxanthine, 3-phenylpropionate (hydrocinnamate), 3-sulfo-L-alanine, 3-ureidopropionate, 3b-hydroxy-5-cholenoic acid, 3beta-hydroxy-5-cholestenoate, 4-acetamidobenzoate, 4-acetamidobutanoate, 4-acetamidophenol, 4-acetamidophenylglucuronide, 4-acetaminophen sulfate, 4-acetylphenol sulfate, 4-allylphenol sulfate, 4-ethylphenylsulfate, 4-guanidinobutanoate, 4-hydroxybenzoate, 4-hydroxychlorothalonil, 4-hydroxycinnamate sulfate, 4-hydroxycoumarin, 4-hydroxyhippurate, 4-hydroxyphenylacetate, 4-hydroxyphenylpyruvate, 4-imidazoleacetate, 4-methyl-2-oxopentanoate, 4-methylcatechol sulfate, 4-vinylguaiacol sulfate, 4-vinylphenol sulfate, “5,6-dihydrothymine”, 5-(galactosylhydroxy)-L-lysine, 5-acetylamino-6-amino-3-methyluracil, 5-acetylamino-6-formylamino-3-methyluracil, 5-bromotryptophan, 5-dodecenoate (12:1n7), 5-hydroxyhexanoate, 5-hydroxyindoleacetate, 5-hydroxylysine, 5-hydroxymethyl-2-furoic acid, 5-methylthioadenosine (MTA), 5-methyluridine (ribothymidine), 5-oxoproline, “5alpha-androstan-3alpha,17alpha-diol monosulfate”, “5 alpha-androstan-3 alpha,17beta-diol disulfate”, “5alpha-androstan-3alpha,17beta-diol monosulfate (1)”, “5 alpha-androstan-3alpha,17beta-diol monosulfate (2)”, “5alpha-androstan-3beta,17alpha-diol disulfate”, “5alpha-androstan-3beta,17beta-diol disulfate”, “5alpha-androstan-3beta,17beta-diol monosulfate (2)”, “5alpha-pregnan-3 (alpha or beta),20beta-diol disulfate”, “5alpha-pregnan-3beta,20alpha-diol disulfate”, “5alpha-pregnan-3beta,20alpha-diol monosulfate (1)”, “5alpha-pregnan-3beta,20alpha-diol monosulfate (2)”, “5alpha-pregnan-3beta,20beta-diol monosulfate (1)”, “5alpha-pregnan-3beta-ol,20-one sulfate”, 6-hydroxyindole sulfate, 6-oxopiperidine-2-carboxylate, 7-alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca), 7-methylguanine, 7-methylurate, 7-methylxanthine, “9,10-DiHOME”, 9-hydroxystearate, acesulfame, acetoacetate, acetylcarnitine (C2), acisoga, aconitate [cis or trans], adenine, adenosine, adenosine 5′-monophosphate (AMP), adipate, adipoylcarnitine (C6-DC), ADpSGEGDFXAEGGGVR*, adrenate (22:4n6), ADSGEGDFXAEGGGVR*, alanine, allantoin, alliin, alpha-hydroxyisocaproate, alpha-hydroxyisovalerate, alpha-ketobutyrate, alpha-ketoglutarate, alpha-tocopherol, andro steroid monosulfate C19H28O6S (1)*, “androstenediol (3alpha, 17alpha) monosulfate (2)”, “androstenediol (3alpha, 17alpha) monosulfate (3)”, “androstenediol (3beta,17beta) disulfate (1)”, “androstenediol (3beta,17beta) disulfate (2)”, “androstenediol (3beta,17beta) monosulfate (1)”, “androstenediol (3beta,17beta) monosulfate (2)”, androsterone sulfate, anthranilate, arabinose, arabitol/xylitol, arabonate/xylonate, arachidate (20:0), arachidonate (20:4n6), arachidonoylcarnitine (C20:4), arachidonoylcholine, arachidoylcarnitine (C20)*, argininate*, arginine, asparagine, aspartate, atenolol, azelate (nonanedioate), behenoyl dihydrosphingomyelin (d18:0/22:0)*, behenoyl sphingomyelin (d18:1/22:0)*, benzoate, benzoylcarnitine*, beta-alanine, beta-citrylglutamate, beta-cryptoxanthin, beta-hydroxyisovalerate, betaine, “bilirubin (E,E)*”, “bilirubin (E,Z or Z,E)*”, “bilirubin (Z,Z)”, biliverdin, “bradykinin, des-arg(9)”, butyrylcarnitine (C4), C-glycosyltryptophan, caffeic acid sulfate, caffeine, caprate (10:0), caproate (6:0), caprylate (8:0), carboxyethyl-GABA, carboxyibuprofen, carnitine, carotene diol (1), carotene diol (2), carotene diol (3), catechol glucuronide, catechol sulfate, “ceramide (d16:1/24:1, d18:1/22:1)*”, “ceramide (d18:1/14:0, d16:1/16:0)*”, “ceramide (d18:1/20:0, d16:1/22:0, d20:1/18:0)*”, “ceramide (d18:2/24:1, d18:1/24:2)*”, cerotoylcarnitine (C26)*, cetirizine, chenodeoxycholate, chiro-inositol, cholate, cholesterol, choline, choline phosphate, cinnamoylglycine, cis-4-decenoylcarnitine (C10:1), citraconate/glutaconate, citrate, citrulline, corticosterone, cortisol, cortisone, cotinine, cotinine N-oxide, creatine, creatinine, “cys-gly, oxidized”, cystathionine, cysteine, cysteine s-sulfate, cysteine sulfinic acid, cysteine-glutathione disulfide, cysteinylglycine, cystine, cytidine, cytosine, daidzein sulfate (2), decanoylcarnitine (C10), dehydroisoandrosterone sulfate (DHEA-S), deoxycarnitine, deoxycholate, desmethylnaproxen sulfate, dexlansoprazole, dihomo-linoleate (20:2n6), dihomo-linolenate (20:3n3 or n6), dihomo-linolenoyl-choline, dihomo-linolenoylcarnitine (20:3n3 or 6)*, dihomo-linoleoylcarnitine (C20:2)*, dihydroferulic acid, dihydroorotate, dimethyl sulfone, dimethyl sulfoxide (DMSO), dimethylarginine (SDMA+ADMA), dimethylglycine, docosadienoate (22:2n6), docosadioate, docosahexaenoate (DHA; 22:6n3), docosahexaenoylcarnitine (C22:6)*, docosahexaenoylcholine, docosapentaenoate (n3 DPA; 22:5n3), docosapentaenoate (n6 DPA; 22:5n6), docosatrienoate (22:3n3), dodecanedioate, dopamine 3-O-sulfate, dopamine 4-sulfate, DSGEGDFXAEGGGVR*, ectoine, eicosanodioate, eicosapentaenoate (EPA; 20:5n3), eicosapentaenoylcholine, eicosenoate (20:1), eicosenoylcarnitine (C20:1)*, epiandrosterone sulfate, ergothioneine, erucate (22:1n9), erythritol, erythronate*, escitalopram, estrone 3-sulfate, ethyl glucuronide, ethylmalonate, etiocholanolone glucuronide, eugenol sulfate, ferulic acid 4-sulfate, ferulylglycine (1), fexofenadine, fluoxetine, formiminoglutamate, fructose, fumarate, furaneol sulfate, gabapentin, galactonate, gamma-CEHC, gamma-CEHC glucuronide*, gamma-glutamyl-2-aminobutyrate, gamma-glutamyl-alpha-lysine, gamma-glutamyl-epsilon-lysine, gamma-glutamylalanine, gamma-glutamylglutamate, gamma-glutamylglutamine, gamma-glutamylglycine, gamma-glutamylhistidine, gamma-glutamylisoleucine*, gamma-glutamylleucine, gamma-glutamylmethionine, gamma-glutamylphenylalanine, gamma-glutamylthreonine, gamma-glutamyltryptophan, gamma-glutamyltyrosine, gamma-glutamylvaline, gamma-tocopherol/beta-tocopherol, gentisate, gentisic acid-5-glucoside, gluconate, glucose, glucuronate, glutamate, glutamine, glutarate (pentanedioate), glutarylcarnitine (C5-DC), glycerate, glycerol, glycerol 3-phosphate, glycerophosphoethanolamine, glycerophosphoinositol*, glycerophosphorylcholine (GPC), glycine, glycochenodeoxycholate, glycochenodeoxycholate glucuronide (1), glycochenodeoxycholate sulfate, glycocholate, glycocholate glucuronide (1), glycocholenate sulfate*, glycodeoxycholate, glycodeoxycholate glucuronide (1), glycodeoxycholate sulfate, glycohyocholate, glycolithocholate, glycolithocholate sulfate*, “glycosyl ceramide (d18:1/20:0, d16:1/22:0)*”, “glycosyl ceramide (d18:2/24:1, d18:1/24:2)*”, glycosyl-N-(2-hydroxynervonoyl)-sphingosine (d18:1/24:1(2OH))*, glycosyl-N-behenoyl-sphingadienine (d18:2/22:0)*, glycosyl-N-palmitoyl-sphingosine (d18:1/16:0), glycosyl-N-stearoyl-sphingosine (d18:1/18:0), glycoursodeoxycholate, glycylvaline, guanidinoacetate, guanidinosuccinate, guanosine, gulonate*, heneicosapentaenoate (21:5n3), HEPES, heptanoate (7:0), hexadecadienoate (16:2n6), hexadecanedioate, hexanoylcarnitine (C6), hexanoylglutamine, hippurate, histidine, histidylalanine, homoarginine, homocitrulline, homostachydrine*, HWESASXX*, hydantoin-5-propionic acid, hydrochlorothiazide, hydroquinone sulfate, hydroxybupropion, hydroxycotinine, hypotaurine, hypoxanthine, I-urobilinogen, ibuprofen, ibuprofen acyl glucuronide, imidazole lactate, imidazole propionate, indole-3-carboxylic acid, indoleacetate, indoleacetylglutamine, indolelactate, indolepropionate, indolin-2-one, inosine, isobutyrylcarnitine (C4), isocitrate, isoeugenol sulfate, isoleucine, isoursodeoxycholate, isovalerate, isovalerylcarnitine (C5), isovalerylglycine, kynurenate, kynurenine, L-urobilin, lactate, lactose, lactosyl-N-behenoyl-sphingosine (d18:1/22:0)*, lactosyl-N-nervonoyl-sphingosine (d18:1/24:1)*, lactosyl-N-palmitoyl-sphingosine (d18:1/16:0), lanthionine, laurate (12:0), laurylcarnitine (C12), leucine, leucylalanine, leucylglycine, lignoceroyl sphingomyelin (d18:1/24:0), lignoceroylcarnitine (C24)*, linoleamide (18:2n6), linoleate (18:2n6), linolenate [alpha or gamma; (18:3n3 or 6)], linolenoylcarnitine (C18:3)*, linoleoyl ethanolamide, linoleoyl-arachidonoyl-glycerol (18:2/20:4) [1]*, linoleoyl-arachidonoyl-glycerol (18:2/20:4) [2]*, linoleoyl-linoleoyl-glycerol (18:2/18:2) [1]*, linoleoylcarnitine (C18:2)*, linoleoylcholine*, lysine, malate, maleate, malonate, mannitol/sorbitol, mannose, margarate (17:0), margaroylcarnitine*, metformin, methionine, methionine sulfone, methionine sulfoxide, methyl glucopyranoside (alpha+beta),methyl-4-hydroxybenzoate sulfate, methylphosphate, methylsuccinate, methylsuccinoylcarnitine (1), myo-inositol, myristate (14:0), myristoleate (14:1n5), myristoleoylcarnitine (C14:1)*, myristoyl dihydrosphingomyelin (d18:0/14:0)*, myristoylcarnitine (C14), “N,O-didesmethylvenlafaxine glucuronide”, N-(2-furoyl)glycine, N-acetyl-1-methylhistidine*, N-acetyl-3-methylhistidine*, N-acetyl-aspartyl-glutamate (NAAG), N-acetyl-beta-alanine, N-acetyl-cadaverine, N-acetyl-S-allyl-L-cysteine, N-acetylalanine, N-acetylalliin, N-acetylarginine, N-acetylasparagine, N-acetylaspartate (NAA), N-acetylcarnosine, N-acetylcitrulline, N-acetylglucosamine/N-acetylgalactosamine, N-acetylglucosaminylasparagine, N-acetylglutamate, N-acetylglutamine, N-acetylglycine, N-acetylhistidine, N-acetylisoleucine, N-acetylkynurenine (2), N-acetylleucine, N-acetylmethionine, N-acetylmethionine sulfoxide, N-acetylneuraminate, N-acetylphenylalanine, N-acetylproline, N-acetylputrescine, N-acetylserine, N-acetyltaurine, N-acetylthreonine, N-acetyltryptophan, N-acetyltyrosine, N-acetylvaline, N-behenoyl-sphingadienine (d18:2/22:0)*, N-delta-acetylornithine, N-formylanthranilic acid, N-formylmethionine, N-formylphenylalanine, N-methylpipecolate, N-methylproline, N-methyltaurine, N-oleoylserine, N-oleoyltaurine, N-palmitoyl-heptadecasphingosine (d17:1/16:0)*, N-palmitoyl-sphingadienine (d18:2/16:0)*, N-palmitoyl-sphinganine (d18:0/16:0), N-palmitoyl-sphingosine (d18:1/16:0), N-palmitoylglycine, N-palmitoylserine, N-palmitoyltaurine, N-stearoyl-sphingosine (d18:1/18:0)*, N-stearoyltaurine, N-trimethyl 5-aminovalerate, N1-Methyl-2-pyridone-5-carboxamide, N1-methyladenosine, N1-methylinosine, “N2,N2-dimethylguanosine”, “N2,N5-diacetylornithine”, N2-acetyllysine, N4-acetylcytidine, “N6,N6,N6-trimethyllysine”, N6-acetyllysine, N6-carbamoylthreonyladenosine, N6-succinyladenosine, naproxen, naringenin, naringenin 7-glucuronide, nervonoylcarnitine (C24:1)*, nicotinamide, nisinate (24:6n3), nonadecanoate (19:0), norcotinine, norfluoxetine, o-cresol sulfate, O-desmethylvenlafaxine, O-methylcatechol sulfate, O-sulfo-L-tyrosine, octadecanedioate, octanoylcarnitine (C8), oleamide, oleate/vaccenate (18:1), oleoyl ethanolamide, oleoyl-linoleoyl-glycerol (18:1/18:2) [1], oleoyl-linoleoyl-glycerol (18:1/18:2) [2], oleoylcarnitine (C18:1), oleoylcholine, omeprazole, ornithine, orotate, orotidine, oxalate (ethanedioate), oxypurinol, p-cresol sulfate, p-cresol-glucuronide*, palmitate (16:0), palmitic amide, palmitoleate (16:1n7), palmitoleoylcarnitine (C16:1)*, palmitoloelycholine, palmitoyl dihydrosphingomyelin (d18:0/16:0)*, palmitoyl sphingomyelin (d18:1/16:0), palmitoylcarnitine (C16), palmitoylcholine, pantoprazole, pantothenate, paraxanthine, paroxetine, pentadecanoate (15:0), perfluorooctanesulfonic acid (PFOS), phenol glucuronide, phenol sulfate, phenylacetate, phenylacetylcarnitine, phenylacetylglutamine, phenylalanine, phenylalanylglycine, phenyllactate (PLA), phenylpyruvate, phosphate, phosphoethanolamine, phytanate, picolinate, pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC), pipecolate, piperine, pivaloylcarnitine (C5), pregn steroid monosulfate C21H34O5S*, pregnanediol-3-glucuronide, pregnanolone/allopregnanolone sulfate, pregnen-diol disulfate C21H34O8S2*, pregnenolone sulfate, pristanate, pro-hydroxy-pro, proline, prolylglycine, propionylcarnitine (C3), propionylglycine, propyl 4-hydroxybenzoate, propyl 4-hydroxybenzoate sulfate, pseudoephedrine, pseudouridine, pyridostigmine, pyridoxate, pyroglutamine*, pyrraline, pyruvate, quetiapine, quinate, quinine, quinolinate, retinol (Vitamin A), ribitol, riboflavin (Vitamin B2), ribonate, ribose, riluzole, S-1-pyrroline-5-carboxylate, S-adenosylhomocysteine (SAH), S-allylcysteine, S-carboxymethyl-L-cysteine, S-methylcysteine, S-methylcysteine sulfoxide, S-methylmethionine, saccharin, salicylate, salicyluric glucuronide*, sarcosine, sebacate (decanedioate), serine, serotonin, silibinin, sitagliptin, spermidine, sphinganine-1-phosphate, “sphingomyelin (d17:1/16:0, d18:1/15:0, d16:1/17:0)*”, “sphingomyelin (d17:2/16:0, d18:2/15:0)*”, “sphingomyelin (d18:0/18:0, d19:0/17:0)*”, “sphingomyelin (d18:0/20:0, d16:0/22:0)*”, “sphingomyelin (d18:1/14:0, d16:1/16:0)*”, “sphingomyelin (d18:1/17:0, d17:1/18:0, d19:1/16:0)”, “sphingomyelin (d18:1/18:1, d18:2/18:0)”, “sphingomyelin (d18:1/19:0, d19:1/18:0)*”, “sphingomyelin (d18:1/20:0, d16:1/22:0)*”, “sphingomyelin (d18:1/20:1, d18:2/20:0)*”, “sphingomyelin (d18:1/20:2, d18:2/20:1, d16:1/22:2)*”, “sphingomyelin (d18:1/21:0, d17:1/22:0, d16:1/23:0)*”, “sphingomyelin (d18:1/22:1, d18:2/22:0, d16:1/24:1)*”, “sphingomyelin (d18:1/22:2, d18:2/22:1, d16:1/24:2)*”, “sphingomyelin (d18:1/24:1, d18:2/24:0)*”, “sphingomyelin (d18:1/25:0, d19:0/24:1, d20:1/23:0, d19:1/24:0)*”, “sphingomyelin (d18:2/14:0, d18:1/14:1)*”, “sphingomyelin (d18:2/16:0, d18:1/16:1)*”, sphingomyelin (d18:2/18:1)*, “sphingomyelin (d18:2/21:0, d16:2/23:0)*”, “sphingomyelin (d18:2/23:0, d18:1/23:1, d17:1/24:1)*”, sphingomyelin (d18:2/23:1)*, “sphingomyelin (d18:2/24:1, d18:1/24:2)*”, sphingomyelin (d18:2/24:2)*, sphingosine, sphingosine 1-phosphate, stachydrine, stearate (18:0), stearidonate (18:4n3), stearoyl sphingomyelin (d18:1/18:0), stearoylcarnitine (C18), stearoylcholine*, suberate (octanedioate), suberoylcarnitine (C8-DC), succinate, succinylcarnitine (C4-DC), sucrose, sulfate*, syringol sulfate, tartarate, tartronate (hydroxymalonate), taurine, tauro-beta-muricholate, taurochenodeoxycholate, taurocholate, taurocholenate sulfate, taurodeoxycholate, taurolithocholate 3-sulfate, tauroursodeoxycholate, tetradecanedioate, theanine, theobromine, theophylline, thioproline, threonate, threonine, threonylphenylalanine, thymol sulfate, thyroxine, tiglylcarnitine (C5:1-DC), trans-4-hydroxyproline, trans-urocanate, tricosanoyl sphingomyelin (d18:1/23:0)*, triethanolamine, trigonelline (N′-methylnicotinate), trimethylamine N-oxide, tryptophan, tryptophan betaine, tyramine O-sulfate, tyrosine, umbelliferone sulfate, undecanedioate, uracil, urate, urea, uridine, ursodeoxycholate, valerate, valine, valsartan, vanillactate, vanillic alcohol sulfate, vanillylmandelate (VMA), venlafaxine, warfarin, xanthine, xanthosine, xanthurenate, ximenoylcarnitine (C26:1)*, xylose, X-01911, X-07765, X-11261, X-11299, X-11308, X-11315, X-11372, X-11378, X-11381, X-11407, X-11441, X-11442, X-11444, X-11470, X-11478, X-11483, X-11485, X-11491, X-11522, X-11530, X-11593, X-11640, X-11787, X-11795, X-11843, X-11847, X-11849, X-11850, X-11852, X-11858, X-11880, X-12007, X-12013, X-12015, X-12026, X-12063, X-12096, X-12100, X-12101, X-12104, X-12112, X-12117, X-12126, X-12127, X-12193, X-12206, X-12212, X-12216, X-12221, 4-ethylcatechol sulfate, X-12261, X-12263, X-12283, X-12306, X-12329, X-12407, X-12410, X-12411, X-12456, X-12462, X-12472, X-12524, X-12543, X-12544, X-12565, X-12680, X-12701, X-12712, X-12714, X-12718, X-12726, X-12729, X-12730, X-12731, X-12738, X-12739, X-12740, X-12753, X-12798, X-12812, X-12816, X-12818, X-12820, X-12822, X-12830, X-12831, X-12837, X-12839, X-12844, X-12846, X-12847, X-12849, X-12851, X-12879, X-12906, X-13007, X-13255, X-13431, X-13435, X-13553, X-13658, X-13684, X-13703, X-13723, X-13728, X-13729, X-13737, X-13835, X-13844, X-13846, X-13866, X-14056, X-14082, X-14095, X-14096, X-14314, X-14364, X-14662, X-14904, X-14939, X-15220, X-15245, X-15461, X-15469, X-15486, X-15492, X-15503, X-15666, X-15674, X-15728, X-16087, X-16124, X-16132, X-16397, X-16570, X-16576, X-16580, X-16654, X-16935, X-16938, X-16944, X-16946, X-16964, X-17010, X-17145, X-17146, X-17185, X-17325, X-17327, X-17328, X-17335, X-17337, X-17340, X-17343, X-17348, X-17351, X-17353, X-17354, X-17357, X-17359, X-17367, X-17438, X-17469, X-17612, X-17653, X-17654, X-17655, X-17673, X-17676, X-17677, X-17685, X-17690, X-17704, X-17765, X-18240, X-18249, X-18345, X-18606, X-18779, X-18886, X-18887, X-18899, X-18901, X-18913, X-18914, X-18921, X-18922, X-19141, X-19183, X-19434, X-19438, X-19561, X-21258, X-21285, X-21286, X-21295, X-21310, X-21312, X-21319, X-21327, X-21339, X-21341, X-21342, X-21353, X-21364, X-21383, X-21410, X-21411, X-21441, X-21442, X-21444, X-21448, X-21467, X-21470, X-21474, X-21607, X-21628, X-21657, X-21659, X-21661, X-21729, X-21736, X-21737, X-21742, X-21752, X-21792, X-21796, X-21803, X-21807, X-21815, X-21816, X-21821, X-21829, X-21834, X-21838, X-21839, X-21842, X-21845, X-21851, X-22143, X-22162, X-22475, X-22509, X-22520, X-22716, X-22764, X-22771, X-22775, X-22834, X-23276, X-23291, X-23294, X-23295, X-23297, X-23314, X-23369, X-23583, X-23585, X-23587, X-23588, X-23593, X-23637, X-23639, X-23644, X-23649, X-23652, X-23654, X-23655, X-23659, X-23666, X-23680, X-23739, X-23780, X-23782, X-23787, X-23974, X-23997, X-24106, X-24243, X-24293, X-24295, X-24309, X-24328, X-24329, X-24337, X-24348, X-24352, X-24410, X-24411, X-24422, X-24425, X-24432, X-24435, X-24455, X-24456, X-24473, X-24475, X-24498, X-24512, X-24518, X-24519, X-24527, X-24542, X-24544, X-24546, X-24549, X-24550, X-24551, X-24552, X-24554, X-24555, X-24556, X-24557, X-24558, X-24560, X-24571, X-24588, X-24637, X-24655, X-24686, X-24693, X-24699, X-24706, X-24728, X-24736, X-24747, X-24748, X-24757, X-24760, X-24765, X-24801, X-24809, X-24811, X-24812, X-24813, X-24831, X-24832, X-24849, X-24932, X-24947, X-24948, X-24949, X-24951, X-24952, X-24972, X-24983, X-25116, 1-carboxyethylisoleucine, 1-carboxyethylleucine, 1-carboxyethylphenylalanine, 1-carboxyethylvaline, 1-methyl-5-imidazoleacetate, 1-ribosyl-imidazoleacetate*, “2,2′-Methylenebis(6-tert-butyl-p-cresol)”, “2,3-dihydroxy-5-methylthio-4-pentenoate (DMTPA)*”, “2,6-dihydroxybenzoic acid”, 2-naphthol sulfate, 3-(methylthio)acetaminophen sulfate*, 3-amino-2-piperidone, 3-carboxy-4-methyl-5-pentyl-2-furanpropionate (3-CMPFP)**, 3-formylindole, 3-hydroxyhippurate sulfate, 3-hydroxystachydrine*, “5,6-dihydrouridine”, 5-dodecenoylcarnitine (C12:1), 5-methylthioribose**, androsterone glucuronide, cis-4-decenoate (10:1n6)*, cysteinylglycine disulfide*, dihydrocaffeate sulfate (2), dodecadienoate (12:2)*, dodecenedioate (C12:1-DC)*, eicosenedioate (C20:1-DC)*, Fibrinopeptide A (2-15)**, Fibrinopeptide A (3-15)**, Fibrinopeptide A (3-16)**, Fibrinopeptide A (4-15)**, Fibrinopeptide A (5-16)*, Fibrinopeptide A (7-16)*, Fibrinopeptide B (1-11)**, Fibrinopeptide B (1-12)**, Fibrinopeptide B (1-13)**, gamma-glutamylcitrulline*, glu-gly-asn-val**, glucuronide of C10H18O2 (1)*, glucuronide of C10H18O2 (7)*, glucuronide of C10H18O2 (8)*, glycine conjugate of C10H14O2 (1)*, glyco-beta-muricholate**, hexadecenedioate (C16:1-DC)*, hydroxy-CMPF*, “hydroxy-N6,N6,N6-trimethyllysine*”, hydroxyasparagine**, hydroxypalmitoyl sphingomyelin (d18:1/16:0(OH))**, “N,N,N-trimethyl-alanylproline betaine (TMAP)”, “N,N-dimethyl-5-aminovalerate”, N-acetyl-2-aminooctanoate*, N-acetyl-isoputreanine*, N-methylhydroxyproline**, nonanoylcarnitine (C9), octadecadienedioate (C18:2-DC)*, octadecenedioate (C18:1-DC)*, octadecenedioylcarnitine (C18:1-DC)*, perfluorooctanoate (PFOA), picolinoylglycine, pregnenetriol disulfate*, sulfate of piperine metabolite C16H19NO3 (2)*, sulfate of piperine metabolite C16H19NO3 (3)*, taurochenodeoxycholic acid 3-sulfate, taurodeoxycholic acid 3-sulfate, tetradecadienoate (14:2)*, tridecenedioate (C13:1-DC)*


According to a particular embodiment, the metabolite is not glucose and not cholesterol. According to a particular embodiment the metabolite is set forth in Table 1 and more preferably in Table 2. Sequence identifier for the metagenomic sequences of the unknown bacteria recited in Tables 1 and 2 are provided in Table 10.










Lengthy table referenced here




US20220102000A1-20220331-T00001


Please refer to the end of the specification for access instructions.














Lengthy table referenced here




US20220102000A1-20220331-T00002


Please refer to the end of the specification for access instructions.






As used herein, the term “microbiome” refers to the totality of microbes (bacteria, fungae, protists), their genetic elements (genomes) in a defined environment.


According to a particular embodiment, the microbiome is a gut microbiome (i.e. microbiota of the digestive track). In one embodiment, the environment is the small intestine. In another embodiment the environment is the large intestine. The microbiome may be of the lumen or the mucosa of the small intestine or large intestine. In still another embodiment, the gut microbiome is a fecal microbiome.


In some embodiments, a microbiota sample is collected by any means that allows recovery of the microbes and without disturbing the relative amounts of microbes or components or products thereof of a microbiome. In some embodiments, the microbiota sample is a fecal sample. In other embodiments, the microbiota sample is retrieved directly from the gut—e.g. by endoscopy from the lower gastrointestinal (GI) tract or from the upper GI tract. The microbiota sample may be of the lumen of the GI tract or the mucosa of the GI tract.


According to one embodiment the microbiome sample (e.g. fecal sample) is frozen and/or lyophilized prior to analysis. According to another embodiment, the sample may be subjected to solid phase extraction methods.


In some embodiments, the presence, level, and/or activity of between 5 and 10 species of microbes are measured. In some embodiments, the presence, level, and/or activity of between 5 and 20 species of microbes are measured. In some embodiments, the presence, level, and/or activity of between 5 and 50 species of microbes are measured. In some embodiments, the presence, level, and/or activity of between 5 and 100 species of microbes are measured. In some embodiments, the presence, level, and/or activity of between 5 and 500 species of microbes are measured. In some embodiments, the presence, level, and/or activity of between 5 and 1000 species of microbes are measured. In some embodiments, the presence, level, and/or activity of between 50 and 500 species of microbes (e.g. bacteria) are measured. In some embodiments, the presence, level, and/or activity of substantially all species/classes/families of bacteria within the microbiome are measured. In still more embodiments, the presence, level, and/or activity of substantially all the bacteria within the microbiome are measured.


Measuring a level or presence of a microbe may be effected by analyzing for the presence of microbial component or a microbial by-product. Thus, for example the level or presence of a microbe may be effected by measuring the level of a DNA sequence. In some embodiments, the level or presence of a microbe may be effected by measuring 16S rRNA gene sequences or 18S rRNA gene sequences. In other embodiments, the level or presence of a microbe may be effected by measuring RNA transcripts. In still other embodiments the level or presence of a microbe may be effected by measuring proteins. In still other embodiments, the level or presence of a microbe may be effected by measuring metabolites present in the microbiome sample.


Quantifying Microbial Levels:


It will be appreciated that determining the abundance of microbes may be affected by taking into account any feature of the microbiome. Thus, the abundance of microbes may be affected by taking into account the abundance at different phylogenetic levels; at the level of gene abundance; gene metabolic pathway abundances; sub-species strain identification; SNPs and insertions and deletions in specific bacterial regions; growth rates of bacteria, the diversity of the microbes of the microbiome, as further described herein below.


In some embodiments, determining a level or set of levels of one or more types of microbes or components or products thereof comprises determining a level or set of levels of one or more DNA sequences. In some embodiments, one or more DNA sequences comprises any DNA sequence that can be used to differentiate between different microbial types. In certain embodiments, one or more DNA sequences comprises 16S rRNA gene sequences. In certain embodiments, one or more DNA sequences comprises 18S rRNA gene sequences. In some embodiments, 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 100, 1,000, 5,000 or more sequences are amplified.


16S and 18S rRNA gene sequences encode small subunit components of prokaryotic and eukaryotic ribosomes respectively. rRNA genes are particularly useful in distinguishing between types of microbes because, although sequences of these genes differs between microbial species, the genes have highly conserved regions for primer binding. This specificity between conserved primer binding regions allows the rRNA genes of many different types of microbes to be amplified with a single set of primers and then to be distinguished by amplified sequences.


In some embodiments, a microbiota sample (e.g. fecal sample) is directly assayed for a level or set of levels of one or more DNA sequences. In some embodiments, DNA is isolated from a microbiota sample and isolated DNA is assayed for a level or set of levels of one or more DNA sequences. Methods of isolating microbial DNA are well known in the art. Examples include but are not limited to phenol-chloroform extraction and a wide variety of commercially available kits, including QIAamp DNA Stool Mini Kit (Qiagen, Valencia, Calif.).


In some embodiments, a level or set of levels of one or more DNA sequences is determined by amplifying DNA sequences using PCR (e.g., standard PCR, semi-quantitative, or quantitative PCR) and then sequencing. In some embodiments, a level or set of levels of one or more DNA sequences is determined by amplifying DNA sequences using quantitative PCR. These and other basic DNA amplification procedures are well known to practitioners in the art and are described in Ausebel et al. (Ausubel F M, Brent R, Kingston R E, Moore D, Seidman J G, Smith J A, Struhl K (eds). 1998. Current Protocols in Molecular Biology. Wiley: New York).


In some embodiments, DNA sequences are amplified using primers specific for one or more sequence that differentiate(s) individual microbial types from other, different microbial types. In some embodiments, 16S rRNA gene sequences or fragments thereof are amplified using primers specific for 16S rRNA gene sequences. In some embodiments, 18S DNA sequences are amplified using primers specific for 18S DNA sequences.


In some embodiments, a level or set of levels of one or more 16S rRNA gene sequences is determined using phylochip technology. Use of phylochips is well known in the art and is described in Hazen et al. (“Deep-sea oil plume enriches indigenous oil-degrading bacteria.” Science, 330, 204-208, 2010), the entirety of which is incorporated by reference. Briefly, 16S rRNA genes sequences are amplified and labeled from DNA extracted from a microbiota sample. Amplified DNA is then hybridized to an array containing probes for microbial 16S rRNA genes. Level of binding to each probe is then quantified providing a sample level of microbial type corresponding to 16S rRNA gene sequence probed. In some embodiments, phylochip analysis is performed by a commercial vendor. Examples include but are not limited to Second Genome Inc. (San Francisco, Calif.).


In some embodiments, determining a level or set of levels of one or more types of microbes comprises determining a level or set of levels of one or more microbial RNA molecules (e.g., transcripts). Methods of quantifying levels of RNA transcripts are well known in the art and include but are not limited to northern analysis, semi-quantitative reverse transcriptase PCR, quantitative reverse transcriptase PCR, and microarray analysis.


Methods for sequence determination are generally known to the person skilled in the art. Preferred sequencing methods are next generation sequencing methods or parallel high throughput sequencing methods. For example, a bacterial genomic sequence may be obtained by using Massively Parallel Signature Sequencing (MPSS). An example of an envisaged sequence method is pyrosequencing, in particular 454 pyrosequencing, e.g. based on the Roche 454 Genome Sequencer. This method amplifies DNA inside water droplets in an oil solution with each droplet containing a single DNA template attached to a single primer-coated bead that then forms a clonal colony. Pyrosequencing uses luciferase to generate light for detection of the individual nucleotides added to the nascent DNA, and the combined data are used to generate sequence read-outs. Yet another envisaged example is Illumina or Solexa sequencing, e.g. by using the Illumina Genome Analyzer technology, which is based on reversible dye-terminators. DNA molecules are typically attached to primers on a slide and amplified so that local clonal colonies are formed. Subsequently one type of nucleotide at a time may be added, and non-incorporated nucleotides are washed away. Subsequently, images of the fluorescently labeled nucleotides may be taken and the dye is chemically removed from the DNA, allowing a next cycle. Yet another example is the use of Applied Biosystems' SOLiD technology, which employs sequencing by ligation. This method is based on the use of a pool of all possible oligonucleotides of a fixed length, which are labeled according to the sequenced position. Such oligonucleotides are annealed and ligated. Subsequently, the preferential ligation by DNA ligase for matching sequences typically results in a signal informative of the nucleotide at that position. Since the DNA is typically amplified by emulsion PCR, the resulting bead, each containing only copies of the same DNA molecule, can be deposited on a glass slide resulting in sequences of quantities and lengths comparable to Illumina sequencing. A further method is based on Helicos' Heliscope technology, wherein fragments are captured by polyT oligomers tethered to an array. At each sequencing cycle, polymerase and single fluorescently labeled nucleotides are added and the array is imaged. The fluorescent tag is subsequently removed and the cycle is repeated. Further examples of sequencing techniques encompassed within the methods of the present invention are sequencing by hybridization, sequencing by use of nanopores, microscopy-based sequencing techniques, microfluidic Sanger sequencing, or microchip-based sequencing methods.


According to one embodiment, the sequencing method allows for quantitating the amount of microbe—e.g. by deep sequencing such as Illumina deep sequencing.


As used herein, the term “deep sequencing” refers to a sequencing method wherein the target sequence is read multiple times in the single test. A single deep sequencing run is composed of a multitude of sequencing reactions run on the same target sequence and each, generating independent sequence readout.


In some embodiments, determining a level or set of levels of one or more types of microbes comprises determining a level or set of levels of one or more microbial polypeptides. Methods of quantifying polypeptide levels are well known in the art and include but are not limited to Western analysis and mass spectrometry.


It will be appreciated that although the abundance of any number of microbes may be measured, a limited number are preferably used in the prediction analysis.


The present inventors have shown that the number of microbes whose abundance should be analyzed in order to predict the amount of a blood metabolite may be particular to that metabolite. Preferably, the abundance of at least 5 bacterial species are analyzed, at least 10 bacterial species are analyzed, at least 15 bacterial species are analyzed, at least 20 bacterial species are analyzed, at least 25 bacterial species are analyzed or more than 25 bacterial species are analyzed.


According to another embodiment, in order to classify a microbe as belonging to a particular genus, family, order, class or phylum, it must comprise at least 90% sequence homology, at least 91% sequence homology, at least 92% sequence homology, at least 93% sequence homology, at least 94% sequence homology, at least 95% sequence homology, at least 96% sequence homology, at least 97% sequence homology, at least 98% sequence homology, at least 99% sequence homology to a reference microbe known to belong to the particular genus. According to a particular embodiment, the sequence homology is at least 95%.


According to another embodiment, in order to classify a microbe as belonging to a particular species, it must comprise at least 90% sequence homology, at least 91% sequence homology, at least 92% sequence homology, at least 93% sequence homology, at least 94% sequence homology, at least 95% sequence homology, at least 96% sequence homology, at least 97% sequence homology, at least 98% sequence homology, at least 99% sequence homology to a reference microbe known to belong to the particular species. According to a particular embodiment, the sequence homology is at least 97%.


In determining whether a nucleic acid or protein is substantially homologous or shares a certain percentage of sequence identity with a sequence of the invention, sequence similarity may be defined by conventional algorithms, which typically allow introduction of a small number of gaps in order to achieve the best fit. In particular, “percent identity” of two polypeptides or two nucleic acid sequences is determined using the algorithm of Karlin and Altschul (Proc. Natl. Acad. Sci. USA 87:2264-2268, 1993). Such an algorithm is incorporated into the BLASTN and BLASTX programs of Altschul et al. (J. Mol. Biol. 215:403-410, 1990). BLAST nucleotide searches may be performed with the BLASTN program to obtain nucleotide sequences homologous to a nucleic acid molecule of the invention. Equally, BLAST protein searches may be performed with the BLASTX program to obtain amino acid sequences that are homologous to a polypeptide of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST is utilized as described in Altschul et al. (Nucleic Acids Res. 25:3389-3402, 1997). When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., BLASTX and BLASTN) are employed. See www(dot)ncbi(dot)nlm(dot)nih(dot)gov for more details.


In one embodiment, the abundance of no more than 30 bacterial species are analyzed, no more than 40 bacterial species are analyzed or no more than 50 bacterial species are analyzed.


Preferably, at least one of the bacteria that is analyzed belongs to the Clostridiales order.


Preferably at least one of the bacteria that is analyzed belongs to the phylum Firmicutes.


Preferably, at least 20% of the bacteria that are analyzed for the prediction of a single metabolite belong to the phylum Firmicutes. Preferably, at least 30% of the bacteria that are analyzed for the prediction of a single metabolite belong to the phylum Firmicutes. Preferably, at least 40% of the bacteria that are analyzed for the prediction of a single metabolite, belong to the phylum Firmicutes. Preferably, at least 50% of the bacteria that are analyzed for the prediction of a single metabolite belong to the phylum Firmicutes. Preferably, at least 60% of the bacteria that are analyzed for the prediction of a single metabolite belong to the phylum Firmicutes. Preferably, at least 70% of the bacteria that are analyzed for the prediction of a single metabolite belong to the phylum Firmicutes.


In another embodiment, the bacteria that is analyzed does not belong to the Bacteroidetes phylum. Preferably, less than 50% of the bacteria that are analyzed for the prediction of a single metabolite belong to the Bacteroidetes phylum. Preferably, less than 40% of the bacteria that are analyzed for the prediction of a single metabolite belong to the Bacteroidetes phylum. Preferably, less than 30% of the bacteria that are analyzed for the prediction of a single metabolite belong to the Bacteroidetes phylum. Preferably, less than 20% of the bacteria that are analyzed for the prediction of a single metabolite belong to the Bacteroidetes phylum. Preferably, less than 10% of the bacteria that are analyzed for the prediction of a single metabolite belong to the Bacteroidetes phylum.


According to a particular embodiment at least one of the bacterial features whose abundance are analyzed includes: (8002) S: Streptococcus thermophiles; (4810) S: Blautia sp CAG 237; (4961) G: Eubacterium; (3957) F: Lachnospiraceae; (4960) G: Eubacterium; (4581) S: Dorea longicatena; (4782) U: Unknown; (14322) S: Eggerthella sp CAG 209; (5190) S: Firmicutes bacterium CAG 102; (4577) S: Coprococcus comes; (6359) F: Clostridiaceae; (14861) U: Unknown; (3926) U: Unknown; (15073) G: Oscillibacter; (4749) S: Clostridium sp CAG 7; (6148) F: Peptostreptococcaceae; (4705) S: Clostridium sp CAG 43; (14397) S: Collinsella sp CAG 289; (15119) F: Clostridiales unclassified; (15041) F: Clostridiales unclassified; (5843) S: Allisonella histaminiformans; (14921) U: Unknown; (14306) S: Clostridium sp CAG 138; (15154) F: Clostridiales unclassified; (14816) F: Eggerthellaceae.


Table 1 provides a list of preferred bacteria whose abundance may be measured for the quantitative prediction per metabolite.


According to a particular embodiment, the metabolite which is analyzed is set forth in Table 1 and more preferably in Table 2.


The analysis of the amounts of the microbes of the microbiome is optionally and preferably by executing a machine learning procedure.


As used herein the term “machine learning” refers to a procedure embodied as a computer program configured to induce patterns, regularities, or rules from previously collected data to develop an appropriate response to future data, or describe the data in some meaningful way.


Representative examples of machine learning procedures suitable for the present embodiments, include, without limitation, clustering, association rule algorithms, feature evaluation algorithms, subset selection algorithms, support vector machines, classification rules, cost-sensitive classifiers, vote algorithms, stacking algorithms, Bayesian networks, decision trees, neural networks, instance-based algorithms, linear modeling algorithms, k-nearest neighbors (KNN) analysis, ensemble learning algorithms, probabilistic models, graphical models, logistic regression methods (including multinomial logistic regression methods), gradient ascent methods, singular value decomposition methods and principle component analysis.


Following is an overview of some machine learning procedures suitable for the present embodiments.


Support vector machines are algorithms that are based on statistical learning theory. A support vector machine (SVM) according to some embodiments of the present invention can be used for classification purposes and/or for numeric prediction. A support vector machine for classification is referred to herein as “support vector classifier,” support vector machine for numeric prediction is referred to herein as “support vector regression”.


An SVM is typically characterized by a kernel function, the selection of which determines whether the resulting SVM provides classification, regression or other functions. Through application of the kernel function, the SVM maps input vectors into high dimensional feature space, in which a decision hyper-surface (also known as a separator) can be constructed to provide classification, regression or other decision functions. In the simplest case, the surface is a hyper-plane (also known as linear separator), but more complex separators are also contemplated and can be applied using kernel functions. The data points that define the hyper-surface are referred to as support vectors.


The support vector classifier selects a separator where the distance of the separator from the closest data points is as large as possible, thereby separating feature vector points associated with objects in a given class from feature vector points associated with objects outside the class. For support vector regression, a high-dimensional tube with a radius of acceptable error is constructed which minimizes the error of the data set while also maximizing the flatness of the associated curve or function. In other words, the tube is an envelope around the fit curve, defined by a collection of data points nearest the curve or surface.


An advantage of a support vector machine is that once the support vectors have been identified, the remaining observations can be removed from the calculations, thus greatly reducing the computational complexity of the problem. An SVM typically operates in two phases: a training phase and a testing phase. During the training phase, a set of support vectors is generated for use in executing the decision rule. During the testing phase, decisions are made using the decision rule. A support vector algorithm is a method for training an SVM. By execution of the algorithm, a training set of parameters is generated, including the support vectors that characterize the SVM. A representative example of a support vector algorithm suitable for the present embodiments includes, without limitation, sequential minimal optimization.


In KNN analysis, the affinity or closeness of objects is determined. The affinity is also known as distance in a feature space between objects. Based on the determined distances, the objects are clustered and an outlier is detected. Thus, the KNN analysis is a technique to find distance-based outliers based on the distance of an object from its kth-nearest neighbors in the feature space. Specifically, each object is ranked on the basis of its distance to its kth-nearest neighbors. The farthest away object is declared the outlier. In some cases the farthest objects are declared outliers. That is, an object is an outlier with respect to parameters, such as, a k number of neighbors and a specified distance, if no more than k objects are at the specified distance or less from the object. The KNN analysis is a classification technique that uses supervised learning. An item is presented and compared to a training set with two or more classes. The item is assigned to the class that is most common amongst its k-nearest neighbors. That is, compute the distance to all the items in the training set to find the k nearest, and extract the majority class from the k and assign to item.


Association rule algorithm is a technique for extracting meaningful association patterns among features.


The term “association”, in the context of machine learning, refers to any interrelation among features, not just ones that predict a particular class or numeric value. Association includes, but it is not limited to, finding association rules, finding patterns, performing feature evaluation, performing feature subset selection, developing predictive models, and understanding interactions between features.


The term “association rules” refers to elements that co-occur frequently within the datasets. It includes, but is not limited to association patterns, discriminative patterns, frequent patterns, closed patterns, and colossal patterns.


A usual primary step of association rule algorithm is to find a set of items or features that are most frequent among all the observations. Once the list is obtained, rules can be extracted from them.


The aforementioned self-organizing map is an unsupervised learning technique often used for visualization and analysis of high-dimensional data. Typical applications are focused on the visualization of the central dependencies within the data on the map. The map generated by the algorithm can be used to speed up the identification of association rules by other algorithms. The algorithm typically includes a grid of processing units, referred to as “neurons”. Each neuron is associated with a feature vector referred to as observation. The map attempts to represent all the available observations with optimal accuracy using a restricted set of models. At the same time the models become ordered on the grid so that similar models are close to each other and dissimilar models far from each other. This procedure enables the identification as well as the visualization of dependencies or associations between the features in the data.


Feature evaluation algorithms are directed to the ranking of features or to the ranking followed by the selection of features based on their impact.


Information gain is one of the machine learning methods suitable for feature evaluation. The definition of information gain requires the definition of entropy, which is a measure of impurity in a collection of training instances. The reduction in entropy of the target feature that occurs by knowing the values of a certain feature is called information gain. Information gain may be used as a parameter to determine the effectiveness of a feature in explaining the response to the treatment. Symmetrical uncertainty is an algorithm that can be used by a feature selection algorithm, according to some embodiments of the present invention. Symmetrical uncertainty compensates for information gain's bias towards features with more values by normalizing features to a [0,1] range.


Subset selection algorithms rely on a combination of an evaluation algorithm and a search algorithm. Similarly to feature evaluation algorithms, subset selection algorithms rank subsets of features. Unlike feature evaluation algorithms, however, a subset selection algorithm suitable for the present embodiments aims at selecting the subset of features with the highest impact on the metabolite of interest, while accounting for the degree of redundancy between the features included in the subset. The benefits from feature subset selection include facilitating data visualization and understanding, reducing measurement and storage requirements, reducing training and utilization times, and eliminating distracting features to improve classification.


Two basic approaches to subset selection algorithms are the process of adding features to a working subset (forward selection) and deleting from the current subset of features (backward elimination). In machine learning, forward selection is done differently than the statistical procedure with the same name. The feature to be added to the current subset in machine learning is found by evaluating the performance of the current subset augmented by one new feature using cross-validation. In forward selection, subsets are built up by adding each remaining feature in turn to the current subset while evaluating the expected performance of each new subset using cross-validation. The feature that leads to the best performance when added to the current subset is retained and the process continues. The search ends when none of the remaining available features improves the predictive ability of the current subset. This process finds a local optimum set of features.


Backward elimination is implemented in a similar fashion. With backward elimination, the search ends when further reduction in the feature set does not improve the predictive ability of the subset. The present embodiments contemplate search algorithms that search forward, backward or in both directions. Representative examples of search algorithms suitable for the present embodiments include, without limitation, exhaustive search, greedy hill-climbing, random perturbations of subsets, wrapper algorithms, probabilistic race search, schemata search, rank race search, and Bayesian classifier.


A decision tree is a decision support algorithm that forms a logical pathway of steps involved in considering the input to make a decision.


The term “decision tree” refers to any type of tree-based learning algorithms, including, but not limited to, model trees, classification trees, and regression trees.


A decision tree can be used to classify the datasets or their relation hierarchically. The decision tree has tree structure that includes branch nodes and leaf nodes. Each branch node specifies an attribute (splitting attribute) and a test (splitting test) to be carried out on the value of the splitting attribute, and branches out to other nodes for all possible outcomes of the splitting test. The branch node that is the root of the decision tree is called the root node. Each leaf node can represent a classification (e.g., whether a particular input dataset corresponds to a particular metabolite in the subject's blood) or a value (e.g., the predicted quantity of the particular metabolite in the subject's blood). The leaf nodes can also contain additional information about the represented classification such as a confidence score that measures a confidence level in the represented classification (i.e., the likelihood of the classification being accurate). For example, the confidence score can be a continuous value ranging from 0 to 1, in which a score of 0 indicating a very low confidence (e.g., the indication value of the represented classification is very low) and a score of 1 indicating a very high confidence (e.g., the represented classification is almost certainly accurate).


Regression techniques which may be used in accordance with some embodiments the present invention include, but are not limited to linear Regression, Multiple Regression, logistic regression, probit regression, ordinal logistic regression ordinal Probit-Regression, Poisson Regression, negative binomial Regression, multinomial logistic Regression (MLR) and truncated regression.


A logistic regression or logit regression is a type of regression analysis used for predicting the outcome of a categorical dependent variable (a dependent variable that can take on a limited number of values, whose magnitudes are not meaningful but whose ordering of magnitudes may or may not be meaningful) based on one or more predictor variables. Logistic regression may also predict the probability of occurrence for each data point. Logistic regressions also include a multinomial variant. The multinomial logistic regression model is a regression model which generalizes logistic regression by allowing more than two discrete outcomes. That is, it is a model that is used to predict the probabilities of the different possible outcomes of a categorically distributed dependent variable, given a set of independent variables (which may be real-valued, binary-valued, categorical-valued, etc.). For binary-valued variables, a cutoff between the 0 and 1 associations is typically determined using the Yuden Index.


A Bayesian network is a model that represents variables and conditional interdependencies between variables. In a Bayesian network variables are represented as nodes, and nodes may be connected to one another by one or more links. A link indicates a relationship between two nodes. Nodes typically have corresponding conditional probability tables that are used to determine the probability of a state of a node given the state of other nodes to which the node is connected. In some embodiments, a Bayes optimal classifier algorithm is employed to apply the maximum a posteriori hypothesis to a new record in order to predict the probability of its classification, as well as to calculate the probabilities from each of the other hypotheses obtained from a training set and to use these probabilities as weighting factors for future predictions of the subject's blood contents (particularly the metabolites and optionally and preferably their quantity). An algorithm suitable for a search for the best Bayesian network, includes, without limitation, global score metric-based algorithm. In an alternative approach to building the network, Markov blanket can be employed. The Markov blanket isolates a node from being affected by any node outside its boundary, which is composed of the node's parents, its children, and the parents of its children.


Instance-based techniques generate a new model for each instance, instead of basing predictions on trees or networks generated (once) from a training set.


The term “instance”, in the context of machine learning, refers to an example from a dataset.


Instance-based techniques typically store the entire dataset in memory and build a model from a set of records similar to those being tested. This similarity can be evaluated, for example, through nearest-neighbor or locally weighted methods, e.g., using Euclidian distances. Once a set of records is selected, the final model may be built using several different techniques, such as the naive Bayes.


Neural networks are a class of algorithms based on a concept of inter-connected “neurons.” In a typical neural network, neurons contain data values, each of which affects the value of a connected neuron according to connections with pre-defined strengths, and whether the sum of connections to each particular neuron meets a pre-defined threshold. By determining proper connection strengths and threshold values (a process also referred to as training), a neural network can achieve efficient recognition of images and characters. Oftentimes, these neurons are grouped into layers in order to make connections between groups more obvious and to each computation of values. Each layer of the network may have differing numbers of neurons, and these may or may not be related to particular qualities of the input data.


In one implementation, called a fully-connected neural network, each of the neurons in a particular layer is connected to and provides input value to those in the next layer. These input values are then summed and this sum compared to a bias, or threshold. If the value exceeds the threshold for a particular neuron, that neuron then holds a positive value which can be used as input to neurons in the next layer of neurons. This computation continues through the various layers of the neural network, until it reaches a final layer. At this point, the output of the neural network routine can be read from the values in the final layer. Unlike fully-connected neural networks, convolutional neural networks operate by associating an array of values with each neuron, rather than a single value. The transformation of a neuron value for the subsequent layer is generalized from multiplication to convolution.


The machine learning procedure used according to some embodiments of the present invention is a trained machine learning procedure. A machine learning procedure can be trained according to some embodiments of the present invention by feeding a machine learning training program with microbiome data of a cohort of subjects from which the quantities of the metabolite have been determined by blood tests. Once the data are fed, the machine learning training program generates a trained machine learning procedure of a selected type which can then be used without the need to re-train it.


For example, when it is desired to employ decision trees, machine learning training program learns the structure of each tree in a plurality of decision trees (e.g., how many nodes there are in each tree, and how these are connected to one another), and also selects the decision rules for split nodes of each tree. At least a portion of the decision rules relate to one or more microbes in the microbiome. A simple decision rule may be a threshold for the amount of a particular microbes, but more complex rules, relating to more than one microbes are also contemplated. The machine learning training program also accumulates data at the leaves of the trees. The structures of the trees, the decision rules for the split nodes, and the data at the leaves are all selected by the machine learning training program, automatically and typically without user intervention, such that the microbiome data at the root of the trees provide the quantities of the metabolite as determined by blood tests at the leaves of the trees. The final result of the machine learning training program in this case is a set of trees for each metabolite, where the structures, the decision rules for split nodes, and leaf data for each trees are defined by the machine learning training program.


The Examples section that follows describes machine learning training that was used to generate a set of trees for each of a plurality of metabolite, using training data including metabolite quantities and microbiome data collected from a cohort of about 500 subjects.


While the embodiments below are described with a particular emphasis to decision trees, it is to be understood that other types of machine learning procedures can be employed. The skilled person, provided with training data and the description provided herein would know how to train a different type of machine learning procedure to predict the quantity of the metabolite one fed by a plurality of microbes of the microbiome of the subject.


A schematic illustration of the analysis technique according to some embodiments of the present invention is illustrated in FIG. 11. Shown in FIG. 11 is a computer readable medium 110 storing a library of trained machine learning (ML) procedures. Shown are N machine learning (ML) procedures. Typically, each trained machine learning procedures being associated with a different metabolite. Thus, for example, the library can include a machine learning procedure for each of the aforementioned metabolites (in which case N equals the number of the aforementioned metabolites), or a machine learning procedure for each of the metabolites set forth in Table 1 (in which case N equals the number of the metabolites set forth in Table 1), or a machine learning procedure for each of the metabolites set forth in Table 2 (in which case N equals the number of the metabolites set forth in Table 2). Also contemplated are embodiments in which the library includes a machine learning procedure for each of a subset of the aforementioned metabolites or of the metabolites in set forth Table 1, or of the metabolites in set forth Table 2.


The library is accessed and searched for a trained machine learning procedure associated with the metabolite. FIG. 12 illustrates a machine learning procedure 112 which is the Kth (1≤K≤N) procedure in the library, and which is associated with the metabolite of which the quantity in the blood of the subject is to be predicted. The selected trained procedure 112 is fed with the amount of the microbes, and provides an output indicative of the quantity of the metabolite in the blood.


When machine learning procedure 112 includes a set of decision trees, each of the trees receives amounts of microbes, processes these amounts by the split node decision rules that were defined during the training phase, and provides output values in accordance with the data at the leaves that were also defined during the training phase. The output of all trees is optionally and preferably combined (e.g., summed) to provide the quantity of the respective metabolite.


Preferably, the number of trees in the set is at least 1000 or at least 2000 or more. It was found by the inventors that the microbes listed in Table 1 dominate the predicting ability of the decision trees. Thus, in some embodiments of the present invention the number of decision rules relating to microbes listed in Table 1 for the respective metabolite is larger than the number of decision rules relating to other microbes of the microbiome.


According to another aspect of the present invention, there is provided a method of predicting the quantity of a metabolite set forth in Table 1, comprising analyzing the amount of each of the corresponding microbes set forth in Table 1 in the fecal microbiome of the subject, wherein the predicting does not comprise analyzing more than 50 microbes, thereby predicting the quantity of the metabolite in the blood.


Table 1 provides the top five microbes whose abundance should be analyzed in order to predict the quantity of that metabolite.


It will be appreciated that in some cases, additional microbes may be analyzed for each metabolite such that a level of confidence is reached such that the outputted quantities are of clinical relevance e.g. a confidence level of at least 90% and more preferably at least 95%.


As well as using microbial levels to predict the quantity of a blood metabolite, the present inventors further propose using dietary data of the subjects as a proxy for predicting the quantity of a blood metabolite.


Thus, according to another aspect of the present invention there is provided a method of predicting the quantity of a metabolite in the blood of a subject that consumes a diet of a plurality of food types, the method comprising analyzing the frequency of consumption of at least 5 of said food types over at least one month and/or the daily mean consumption of at least 5 of said food types, wherein said frequency and/or said daily mean consumption is predicative, within a confidence level of at least 95% in the significance of the predictions, of the quantity of the metabolite in the blood of the subject consuming said diet.


It will be appreciated that for this aspect of the present invention, the level of a particular metabolite can be predicted in a subject so long as he/she has not significantly changed his/her dietary habits at the time of prediction.


The term “food type” as used herein refers to either a general classification of a food or a particular food product.


In some embodiments of the present invention the food is a food product (e.g., a specific food product marketed as such by a specific manufacturer, or by two or more manufacturers manufacturing the same food product). In some embodiments of the present invention the food is a food type (e.g., a food which exhibit different modifications, for example, white rice, that may have different species, all of which are referred to as “white rice”, or whole wheat bread that may be backed from various mixtures, etc). In some embodiments of the present invention the food is a family of food types. The family can be categorized according to the main ingredient of the food type, for example, sweets, dairies, fruits, herbs, vegetables, fish, meet, etc. In some embodiments of the present invention the family of food types is a food group, such as, but not limited to, carbohydrates, which is a family encompassing food types rich in carbohydrates, proteins, which is a family encompassing food types rich in protein, and fats, which is a family encompassing food types rich in fats, minerals which is a family encompassing food types rich in minerals, vitamins which is a family encompassing food types rich in vitamins, etc. In some embodiments of the present invention the food is a food combination which comprises a plurality of different food products, and/or different food types and/or different food families. Such a combination is referred to as “a complex meal.” The complex meal can be provided as a list of the food products, food types and/or families of food types that form the combination. The list may or may not include the particular amount of each food product, food type and/or family of food types in the combination.


Depending on the particular metabolite being predicted, only the long-term consumption (e.g. over the period of one month) of a particular food type is measured. In another embodiment, only the average daily consumption of a particular food type is measured for predicting the amount of particular metabolites. In other embodiments both the long-term consumption and the average daily consumption is measured.


The information about the subject's food consumption may be obtained by providing the subject with a food questionnaire. The questionnaire may be tailored according to the particular metabolite (or metabolites) which are being investigated. In a particular embodiment, a full survey is obtained from the subject in which the subject is asked to divulge a complete set of food intake per month/per day.


Irrespective of the level of detail the subject is asked to provide with respect to his/her food intake, at least 5 food types are used to predict the level of metabolite. In a particular embodiment, at least 10 food types are used to predict the level of metabolite, at least 15 food types are used to predict the level of metabolite, at least 20 food types are used to predict the level of metabolite, at least 25 food types are used to predict the level of metabolite, at least 30 food types are used to predict the level of metabolite, at least 4 food types are used to predict the level of metabolite, at least 50 food types are used to predict the level of metabolite, or even more than 50 food types are used to predict the level of metabolite. In one embodiment, no more than 50, 60, 70, 80, 90 or 100 food types are used to predict the quantity of a particular metabolite.


The number of food types that are used in the prediction are also dependent on the level of confidence required in the prediction. According to a particular embodiment, the level of confidence is such that the predicted level is clinically relevant. In one embodiment, the prediction is within a confidence level of at least 90%. In another embodiment, the prediction is within a confidence level of at least 95%.


Table 3 herein below, provides exemplary food types that can used to predict particular metabolites.















TABLE 3








Top
Directional
Top
Directional
Top
Directional



predictor
SHAP value
predictor
SHAP value
predictor
SHAP value


BIOCHEMICAL
#1
#1
#2
#2
#3
#3





X - 16124
(14816) F:
0.731921
(14764) U:
0.124282
(14815) F:
0.120698



Eggerthellaceae

Unknown

Eggerthellaceae


X - 11850
(14306) S:
0.377657
(3926) U:
0.109301
(14924) S:
0.096641




Clostridium sp


Unknown


Firmicutes




CAG 138




bacterium








CAG 137


X - 11843
(14306) S:
0.354303
(14924) S:
0.127773
(3926) U:
0.1236




Clostridium sp



Firmicutes


Unknown



CAG 138


bacterium






CAG 137


X - 12261
(3926) U:
0.165364
(14306) S:
0.160851
(14311) F:
0.050686



Unknown


Clostridium sp


Clostridiaceae





CAG 138


X - 12013
(14306) S:
0.302711
(3926) U:
0.138182
(14924) S:
0.076535




Clostridium sp


Unknown


Firmicutes




CAG 138




bacterium








CAG 137


p-cresol-
(14306) S:
0.169906
(15271) S:
0.110439
(2328) F:
0.089761


glucuronide*

Clostridium sp



Ruthenibacterium


Rikenellaceae



CAG 138


lactatiformans



phenylacetylglutamine
(4951) S:
−0.07214
(3957) F:
0.067863
(15369) S:
0.048009




Roseburia


Lachnospiraceae


Faecalibacterium sp





intestinalis




CAG 74


p-cresol sulfate
(15271) S:
0.131445
(14306) S:
0.092024
(15236) G:
0.069206




Ruthenibacterium



Clostridium sp



Firmicutes





lactatiformans


CAG 138

unclassified


phenylacetate
(3957) F:
0.083075
(14306) S:
0.081132
(15236) G:
0.054952



Lachnospiraceae


Clostridium sp



Firmicutes






CAG 138

unclassified


X - 12816
(14921) U:
0.34516
(15154) F:
0.256765
(15085) F:
0.075267



Unknown

Clostridiales

Clostridiales





unclassified

unclassified


quinate
(15154) F:
0.32007
(14322) S:
0.119716
(4537) S:
−0.06657



Clostridiales


Eggerthella sp



Eubacterium




unclassified

CAG 209


hallii



1-methylurate
(15154) F:
0.354954
(14921) U:
0.157361
(4581) S:
0.092513



Clostridiales

Unknown


Dorea




unclassified




longicatena



X - 24811
(15154) F:
0.486675
(14322) S:
0.13517
(14921) U:
0.096585



Clostridiales


Eggerthella sp


Unknown



unclassified

CAG 209


5-acetylamino-
(15154) F:
0.384464
(14921) U:
0.118517
(4537) S:
−0.07535


6-amino-3-
Clostridiales

Unknown


Eubacterium



methyluracil
unclassified




hallii



1-
(15154) F:
0.409986
(14921) U:
0.097051
(4581) S:
0.072722


methylxanthine
Clostridiales

Unknown


Dorea




unclassified




longicatena



1,7-
(15154) F:
0.379716
(14921) U:
0.103533
(4537) S:
−0.07348


dimethylurate
Clostridiales

Unknown


Eubacterium




unclassified




hallii



cinnamoylglycine
(15236) G:
0.09571
(15216) F:
0.071199
(6140) S:
−0.0711




Firmicutes


Clostridiales


Intestinibacter




unclassified

unclassified


bartlettii



X - 12126
(15369) S:
0.116283
(15234) S:
0.067535
(6140) S:
−0.06194




Faecalibacterium



Firmicutes



Intestinibacter




sp CAG 74


bacterium



bartlettii






CAG 124


1,3-
(15154) F:
0.43238
(14921) U:
0.085018
(1861) S:
−0.07465


dimethylurate
Clostridiales

Unknown


Bacteroides




unclassified




thetaiotaomicron



theophylline
(15154) F:
0.351395
(14921) U:
0.105075
(4537) S:
−0.07713



Clostridiales

Unknown


Eubacterium




unclassified




hallii



paraxanthine
(15154) F:
0.48002
(14322) S:
0.142044
(14921) U:
0.139775



Clostridiales


Eggerthella sp


Unknown



unclassified

CAG 209


X - 21442
(15154) F:
0.325318
(14921) U:
0.149762
(15295) G:
0.075169



Clostridiales

Unknown


Gemmiger




unclassified


1,3,7-
(15154) F:
0.332818
(14921) U:
0.100008
(4537) S:
−0.08922


trimethylurate
Clostridiales

Unknown


Eubacterium




unclassified




hallii



X - 12851
(4782) U:
0.141919
(15346) G:
−0.05185
(5792) S:
0.05115



Unknown


Faecalibacterium



Phascolarctobacterium








sp CAG







207


caffeine
(15154) F:
0.247432
(4537) S:
−0.08898
(4960) G:
−0.07476



Clostridiales


Eubacterium



Eubacterium




unclassified


hallii



X - 12216
(15369) S:
0.081022
(15031) S:
0.075632
(3957) F:
0.060757




Faecalibacterium



Firmicutes


Lachnospiraceae



sp CAG 74


bacterium






CAG 110


N-acetyl-
(5843) S:
0.339842
(17249) S:
0.055673
(15089) S:
0.042223


cadaverine

Allisonella



Bifidobacterium



Firmicutes





histaminiformans



longum



bacterium








CAG 83


3-
(15236) G:
0.061088
(15216) F:
0.05498
(15081) F:
0.042382


phenylpropionate

Firmicutes


Clostridiales

Clostridiales


(hydrocinnamate)
unclassified

unclassified

unclassified


glycolithocholate
(4552) S:
0.113145
(15216) F:
0.077314
(4584) S:
−0.06418


sulfate*

Ruminococcus


Clostridiales


Ruminococcus




sp

unclassified


gnavus



phenylacetylcarnitine
(14306) S:
0.10229
(15356) U:
0.078615
(6753) G:
−0.07861




Clostridium sp


Unknown


Clostridium




CAG 138


isoursodeoxycholate
(15265) S:
−0.07283
(15090) S:
−0.06502
(15236) G:
−0.06195




Firmicutes



Oscillibacter



Firmicutes





bacterium


sp CAG 241

unclassified



CAG 103


X - 12837
(15154) F:
0.178333
(6359) F:
0.162766
(15106) S:
0.082873



Clostridiales

Clostridiaceae


Firmicutes




unclassified




bacterium








CAG 176


X - 24410
(15119) F:
−0.20813
(1867) S:
−0.08056
(1857) S:
−0.05901



Clostridiales


Bacteroides



Bacteroides




unclassified


xylanisolvens



salyersiae



5alpha-
(14311) F:
0.099953
(15244) F:
0.05353
(15356) U:
0.05228


androstan-
Clostridiaceae

Clostridiales

Unknown


3beta,17alpha-


unclassified


diol disulfate


X - 21821
(4564) S:
−0.06798
(4940) S:
−0.05164
(15225) F:
0.051026




Ruminococcus



Roseburia


Clostridiales




torques



inulinivorans


unclassified


3-methyl
(15154) F:
0.195565
(14861) U:
0.111519
(4537) S:
−0.08036


catechol
Clostridiales

Unknown


Eubacterium



sulfate (1)
unclassified




hallii



X - 17612
(3957) F:
0.086058
(4940) S:
−0.07886
(4964) F:
0.074335



Lachnospiraceae


Roseburia


Eubacteriaceae






inulinivorans



3-
(15154) F:
0.158727
(14861) U:
0.132339
(4537) S:
−0.06078


hydroxypyridine
Clostridiales

Unknown


Eubacterium



sulfate
unclassified




hallii



X - 23655
(15154) F:
0.266598
(14861) U:
0.135836
(4961) G:
0.086895



Clostridiales

Unknown


Eubacterium




unclassified


X - 17351
(4564) S:
−0.08581
(4940) S:
−0.05069
(4540) S:
0.046133




Ruminococcus



Roseburia



Anaerostipes





torques



inulinivorans



hadrus



X - 23997
(15356) U:
0.109761
(15271) S:
0.097158
(4951) S:
−0.08016



Unknown


Ruthenibacterium



Roseburia







lactatiformans



intestinalis



4-
(14861) U:
0.13518
(15154) F:
0.126693
(4537) S:
−0.05277


ethylcatechol
Unknown

Clostridiales


Eubacterium



sulfate


unclassified


hallii



X - 13729
(5190) S:
0.149036
(3957) F:
0.116266
(4571) S:
0.040898




Firmicutes


Lachnospiraceae


Dorea sp





bacterium




CAG 105



CAG 102


ursodeoxycholate
(6148) F:
0.133438
(6140) S:
0.100249
(4964) F:
−0.09912



Peptostrep-


Intestinibacter


Eubacteriaceae



tococcaceae


bartlettii



taurolithocholate
(15216) F:
0.082625
(14861) U:
0.050683
(15356) U:
0.046204


3-sulfate
Clostridiales

Unknown

Unknown



unclassified


X - 17469
(4552) S:
0.067777
(15265) S:
0.054965
(4964) F:
0.054616




Ruminococcus



Firmicutes


Eubacteriaceae



sp


bacterium






CAG 103


X - 23649
(15154) F:
0.214755
(14861) U:
0.163407
(4961) G:
0.139405



Clostridiales

Unknown


Eubacterium




unclassified


4-
(14397) S:
0.210295
(3957) F:
0.034038
(15124) F:
0.028421


methylcatechol

Collinsella sp


Lachnospiraceae

Clostridiales


sulfate
CAG 289



unclassified


indolepropionate
(4810) S:
0.090297
(14861) U:
0.054396
(4711) F:
0.049274




Blautia sp


Unknown

Clostridiaceae



CAG 237


citraconate/
(15154) F:
0.126893
(14861) U:
0.082607
(4961) G:
0.078733


glutaconate
Clostridiales

Unknown


Eubacterium




unclassified


X - 21752
(6358) S:
0.070757
(14311) F:
0.067583
(4395) U:
0.051457




Clostridium sp


Clostridiaceae

Unknown



CAG 440


X - 24243
(15119) F:
−0.22517
(4925) S:
0.057446
(4771) G:
−0.05377



Clostridiales


Roseburia



Clostridium




unclassified


faecis



1-(1-enyl-
(4577) S:
0.150485
(6148) F:
0.074767
(4960) G:
−0.06689


palmitoyl)-2-

Coprococcus


Peptostrep-


Eubacterium



arachidonoyl-

comes


tococcaceae


GPE


(P-16:0/20:4)*


5alpha-
(4581) S:
0.141547
(4779) S:
0.105521
(15120) S:
−0.0944


androstan-

Dorea



Clostridium sp



Firmicutes



3alpha,17beta-

longicatena





bacterium



diol




CAG 114


monosulfate


(2)


hippurate
(14322) S:
0.086846
(14861) U:
0.065422
(14921) U:
0.040347




Eggerthella sp


Unknown

Unknown



CAG 209


5-
(15041) F:
0.287227
(15356) U:
0.110162
(15042) F:
0.076708


hydroxyhexanoate
Clostridiales

Unknown

Clostridiales



unclassified



unclassified


indolin-2-one
(3957) F:
0.085644
(5190) S:
0.062315
(15054) F:
0.061201



Lachnospiraceae


Firmicutes


Clostridiales






bacterium


unclassified





CAG 102


X - 17145
(4564) S:
−0.06692
(4951) S:
−0.06218
(15225) F:
0.051982




Ruminococcus



Roseburia


Clostridiales




torques



intestinalis


unclassified


2,3-
(15154) F:
0.289624
(4537) S:
−0.126
(14924) S:
−0.1156


dihydroxypyridine
Clostridiales


Eubacterium



Firmicutes




unclassified


hallii



bacterium








CAG 137


X - 17354
(15369) S:
0.100784
(4782) U:
0.089582
(3940) U:
0.060603




Faecalibacterium


Unknown

Unknown



sp CAG 74


glycodeoxycholate
(4705) S:
0.197631
(4749) S:
0.173623
(3957) F:
0.094735




Clostridium sp



Clostridium sp


Lachnospiraceae



CAG 43

CAG 7


X - 23639
(15154) F:
0.162241
(4714) S:
0.076215
(4577) S:
−0.05028



Clostridiales


Clostridium sp



Coprococcus




unclassified




comes



6-
(3957) F:
0.140853
(5190) S:
0.077382
(4581) S:
0.036247


hydroxyindole
Lachnospiraceae


Firmicutes



Dorea



sulfate



bacterium



longicatena






CAG 102


X - 12306
(4810) S:
0.135685
(4960) G:
0.064322
(6376) F:
0.05012




Blautia sp



Eubacterium


Clostridiaceae



CAG 237


phenol sulfate
(4749) S:
0.062555
(4788) S:
0.039635
(4575) S:
0.039561




Clostridium sp



Firmicutes



Dorea




CAG 7


bacterium



formicigenerans






CAG 227


5-acetylamino-
(15154) F:
0.299558
(14322) S:
0.082648
(4810) S:
−0.06078


6-formylamino-
Clostridiales


Eggerthella sp



Blautia sp



3-methyluracil
unclassified

CAG 209

CAG 237


1,5-
(15342) S:
0.096092
(15154) F:
−0.05172
(4816) S:
−0.05113


anhydroglucitol

Faecalibacterium


Clostridiales


Blautia sp



(1,5-AG)

prausnitzii


unclassified


N-
(4581) S:
0.086095
(15216) F:
−0.05304
(6750) S:
0.052829


acetylcarnosine

Dorea


Clostridiales


Clostridium





longicatena


unclassified

sp


3-indoxyl
(3957) F:
0.108384
(5190) S:
0.079725
(4581) S:
0.042161


sulfate
Lachnospiraceae


Firmicutes



Dorea







bacterium



longicatena






CAG 102


maleate
(14861) U:
0.080097
(4961) G:
0.068112
(15154) F:
0.063772



Unknown


Eubacterium


Clostridiales







unclassified


L-urobilin
(4425) S:
0.076548
(3940) U:
0.056758
(15265) S:
0.051089




Ruminococcus


Unknown


Firmicutes




sp CAG 254




bacterium








CAG 103


X - 21286
(15054) F:
0.058079
(4749) S:
−0.05542
(14252) U:
0.046933



Clostridiales


Clostridium sp


Unknown



unclassified

CAG 7


X - 12718
(15054) F:
0.087109
(3957) F:
0.056475
(15089) S:
0.056144



Clostridiales

Lachnospiraceae


Firmicutes




unclassified




bacterium








CAG 83


carotene diol
(4810) S:
0.082594
(4816) S:
0.080074
(4714) S:
0.062624


(2)

Blautia sp



Blautia sp



Clostridium




CAG 237



sp


X - 21310
(3957) F:
0.104323
(5190) S:
0.057593
(6367) F:
−0.04338



Lachnospiraceae


Firmicutes


Clostridiaceae






bacterium






CAG 102


X - 14662
(6148) F:
0.055765
(6140) S:
0.041721
(6139) G:
0.04016



Peptostrep-


Intestinibacter



Intestinibacter




tococcaceae


bartlettii



glycoursodeoxycholate
(6140) S:
0.077726
(15054) F:
−0.05732
(2325) S:
−0.05048




Intestinibacter


Clostridiales


Alistipes





bartlettii


unclassified


indistinctus



X - 12283
(4564) S:
−0.08204
(4608) S:
−0.04699
(6148) F:
−0.04697




Ruminococcus



Ruminococcus


Peptostrep-




torques



torques


tococcaceae


X - 11315
(4714) S:
0.070728
(4826) S:
−0.04857
(4810) S:
0.048092




Clostridium sp



Blautia sp



Blautia sp








CAG 237


trigonelline
(15154) F:
0.211621
(14322) S:
0.083329
(4961) G:
0.055074


(N′-
Clostridiales


Eggerthella sp



Eubacterium



methylnicotinate)
unclassified

CAG 209


X - 16654
(4705) S:
0.209353
(4749) S:
0.121907
(6962) S:
0.042728




Clostridium sp



Clostridium sp



Megamonas




CAG 43

CAG 7


funiformis



X - 22162
(15225) F:
0.080695
(4867) S:
0.071521
(15089) S:
0.051304



Clostridiales


Roseburia sp



Firmicutes




unclassified

CAG 471


bacterium








CAG 83


X - 12329
(14861) U:
0.108962
(15154) F:
0.088758
(15073) G:
0.077389



Unknown

Clostridiales


Oscillibacter






unclassified


ergothioneine
(4816) S:
0.062162
(14991) F:
0.056879
(5087) S:
0.054452




Blautia sp


Clostridiaceae


Eubacterium








sp CAG







86


anthranilate
(3957) F:
0.097675
(15369) S:
0.068549
(5190) S:
0.065016



Lachnospiraceae


Faecalibacterium



Firmicutes






sp CAG 74


bacterium








CAG 102


cholate
(6148) F:
0.141591
(4914) S:
−0.06003
(6141) F:
0.055909



Peptostrep-


Clostridium sp


Peptostrep-



tococcaceae



tococcaceae


4-
(15369) S:
0.082561
(4782) U:
0.082151
(2295) S:
0.058974


hydroxycoumarin

Faecalibacterium


Unknown


Alistipes




sp CAG 74




shahii



X - 11880
(17244) S:
0.125349
(4940) S:
0.052936
(4540) S:
−0.0492




Bifidobacterium



Roseburia



Anaerostipes





adolescentis



inulinivorans



hadrus



X - 22509
(4782) U:
0.046536
(15236) G:
0.043619
(4575) S:
−0.03925



Unknown


Firmicutes



Dorea






unclassified


formicigenerans



1-lignoceroyl-
(4828) S:
0.084514
(4750) G:
−0.05147
(4705) S:
−0.04686


GPC (24:0)

Blautia sp



Clostridium



Clostridium








sp CAG







43


N2,N5-
(4933) S:
−0.06233
(15132) S:
−0.06226
(4750) G:
−0.0484


diacetylornithine

Eubacterium



Flavonifractor



Clostridium





rectale



plautii



3-methyl
(15073) G:
0.085671
(15295) G:
0.082458
(14861) U:
0.080126


catechol

Oscillibacter



Gemmiger


Unknown


sulfate (2)


glutarate
(15119) F:
−0.129
(4581) S:
0.043202
(15154) F:
0.033058


(pentanedioate)
Clostridiales


Dorea


Clostridiales



unclassified


longicatena


unclassified


X - 18249
(4960) G:
−0.12359
(8002) S:
0.08456
(14861) U:
0.069294




Eubacterium



Streptococcus


Unknown






thermophilus



methyl
(4960) G:
0.116849
(4608) S:
−0.05795
(4867) S:
0.040669


glucopyranoside

Eubacterium



Ruminococcus



Roseburia



(alpha +



torques


sp CAG


beta)




471


7-
(3957) F:
−0.07918
(15216) F:
−0.05296
(17244) S:
0.052885


methylguanine
Lachnospiraceae

Clostridiales


Bifidobacterium






unclassified


adolescentis



X - 11308
(4540) S:
−0.06723
(5736) S:
0.065334
(4581) S:
0.064426




Anaerostipes



Acidaminococcus



Dorea





hadrus



intestini



longicatena



X - 12738
(4537) S:
−0.09692
(15073) G:
0.078229
(15295) G:
0.069438




Eubacterium



Oscillibacter



Gemmiger





hallii



gentisate
(4957) F:
0.09566
(15225) F:
0.069217
(4940) S:
−0.06788



Eubacteriaceae

Clostridiales


Roseburia






unclassified


inulinivorans



carotene diol
(4810) S:
0.069944
(15132) S:
−0.06279
(4714) S:
0.054082


(1)

Blautia sp



Flavonifractor



Clostridium




CAG 237


plautii


sp


5alpha-
(4779) S:
0.12193
(15120) S:
−0.09663
(4581) S:
0.095979


androstan-

Clostridium sp



Firmicutes



Dorea



3alpha,17beta-



bacterium



longicatena



diol disulfate


CAG 114


X - 11372
(17244) S:
0.100328
(5736) S:
0.044797
(4940) S:
0.042096




Bifidobacterium



Acidaminococcus



Roseburia





adolescentis



intestini



inulinivorans



X - 17185
(15154) F:
0.194347
(14807) S:
−0.0697
(1872) S:
−0.06057



Clostridiales


Gordonibacter



Bacteroides




unclassified


pamelaeae



ovatus



X - 23652
(4577) S:
0.088679
(4581) S:
0.062406
(6148) F:
0.05654




Coprococcus



Dorea


Peptostrep-




comes



longicatena


tococcaceae


X - 18240
(15073) G:
0.170823
(1903) S:
0.059164
(13982) U:
0.045312




Oscillibacter



Bacteroides


Unknown






plebeius CAG






211


X - 18914
(4960) G:
−0.14091
(8002) S:
0.133779
(14921) U:
0.061579




Eubacterium



Streptococcus


Unknown






thermophilus



X - 22520
(4705) S:
0.130912
(4575) S:
0.070979
(15265) S:
0.05918




Clostridium sp



Dorea



Firmicutes




CAG 43


formicigenerans



bacterium








CAG 103


3-(3-
(15154) F:
0.141603
(15028) G:
−0.06131
(17248) S:
0.058498


hydroxyphe-
Clostridiales


Firmicutes



Bifidobacterium



nyl)propionate
unclassified

unclassified


longum



dimethyl
(4652) S:
0.064972
(4940) S:
−0.04917
(14921) U:
0.046472


sulfoxide

Clostridium sp



Roseburia


Unknown


(DMSO)
CAG 75


inulinivorans



threonate
(4714) S:
0.070537
(4705) S:
−0.0479
(10068) S:
−0.04741




Clostridium sp



Clostridium sp



Escherichia






CAG 43


coli



X - 12730
(4537) S:
−0.10589
(14861) U:
0.086735
(4961) G:
0.065742




Eubacterium


Unknown


Eubacterium





hallii



X - 19434
(6148) F:
0.189861
(15154) F:
−0.0362
(4839) G:
0.033262



Peptostrep-

Clostridiales


Blautia




tococcaceae

unclassified


X - 24948
(4940) S:
0.050366
(8002) S:
−0.04688
(4750) G:
0.044448




Roseburia



Streptococcus



Clostridium





inulinivorans



thermophilus



1-(1-enyl-
(4577) S:
0.120768
(6148) F:
0.07976
(5190) S:
0.061221


stearoyl)-2-

Coprococcus


Peptostrep-


Firmicutes



arachidonoyl-

comes


tococcaceae


bacterium



GPE




CAG 102


(P-18:0/20:4)*


X - 23659
(4893) S:
0.07246
(4816) S:
0.059256
(4810) S:
0.047963




Clostridium sp



Blautia sp



Blautia sp








CAG 237


5alpha-
(15326) G:
0.084106
(4940) S:
0.064928
(3964) U:
−0.06018


androstan-

Faecalibacterium



Roseburia


Unknown


3alpha,17alpha-



inulinivorans



diol


monosulfate


X - 21339
(17244) S:
0.067938
(4540) S:
−0.06656
(3964) U:
−0.05966




Bifidobacterium



Anaerostipes


Unknown




adolescentis



hadrus



4-
(15370) F:
0.05494
(14899) U:
0.034552
(4957) F:
0.031231


ethylphenylsulfate
Ruminococcaceae

Unknown

Eubacteriaceae


gamma-
(15078) S:
−0.07302
(4714) S:
−0.07004
(4564) S:
0.065122


glutamylvaline

Oscillibacter



Clostridium sp



Ruminococcus




sp




torques



beta-
(4705) S:
−0.05634
(15132) S:
−0.0536
(4575) S:
−0.03664


cryptoxanthin

Clostridium sp



Flavonifractor



Dorea




CAG 43


plautii



formicigenerans



sphingomyelin
(8002) S:
0.10129
(14921) U:
0.052085
(15271) S:
0.041212


(d18:1/14:0,

Streptococcus


Unknown


Ruthenibacterium



d16:1/16:0)*

thermophilus





lactatiformans



X - 21736
(4940) S:
0.054973
(14823) F:
0.051274
(17248) S:
−0.04421




Roseburia


Eggerthellaceae


Bifidobacterium





inulinivorans





longum



O-methylcatechol
(4537) S:
−0.09144
(15154) F:
0.073441
(14322) S:
0.057463


sulfate

Eubacterium


Clostridiales


Eggerthella





hallii


unclassified

sp CAG







209


N-(2-
(14861) U:
0.071344
(15154) F:
0.068474
(15295) G:
0.066258


furoyl)glycine
Unknown

Clostridiales


Gemmiger






unclassified


sphingomyelin
(4714) S:
−0.05271
(5736) S:
−0.05148
(15373) F:
0.050773


(d17:2/16:0,

Clostridium sp



Acidaminococcus


Ruminococcaceae


d18:2/15:0)*



intestini



3-
(4577) S:
0.098923
(6148) F:
0.038941
(5190) S:
0.031545


methylhistidine

Coprococcus


Peptostrep-


Firmicutes





comes


tococcaceae


bacterium








CAG 102


X - 13835
(4577) S:
0.129616
(4581) S:
0.086872
(6148) F:
0.083047




Coprococcus



Dorea


Peptostrep-




comes



longicatena


tococcaceae


propionylcarnitine
(15286) F:
−0.0589
(4575) S:
0.056616
(6179) G:
0.05558


(C3)
Ruminococcaceae


Dorea



Clostridium







formicigenerans



3-
(15154) F:
0.097476
(4537) S:
−0.04878
(6359) F:
0.042861


hydroxyhippurate
Clostridiales


Eubacterium


Clostridiaceae



unclassified


hallii



X - 11640
(4782) U:
0.065486
(2295) S:
0.027253
(15229) F:
0.02622



Unknown


Alistipes


Clostridiales






shahii


unclassified


3-acetylphenol
(4537) S:
−0.1503
(4961) G:
0.10868
(4953) S:
−0.09756


sulfate

Eubacterium



Eubacterium



Roseburia





hallii




sp CAG







182


myo-inositol
(3574) U:
0.058789
(17244) S:
−0.05649
(6754) S:
0.053803



Unknown


Bifidobacterium



Clostridium sp







adolescentis



sphingomyelin
(15271) S:
0.043125
(4540) S:
0.040324
(5803) S:
−0.037


(d18:2/23:1)*

Ruthenibacterium



Anaerostipes



Dialister sp





lactatiformans



hadrus


CAG 357


2-naphthol
(15350) U:
0.090311
(14861) U:
0.085983
(15132) S:
0.055031


sulfate
Unknown

Unknown


Flavonifractor









plautii



N-delta-
(5087) S:
0.045935
(4960) G:
0.035767
(9283) S:
0.027156


acetylornithine

Eubacterium



Eubacterium



Sutterella




sp CAG 86




wadsworthensis



benzoylcarnitine*
(15081) F:
0.071059
(4648) G:
0.049972
(14322) S:
0.048698



Clostridiales


Roseburia



Eggerthella




unclassified



sp CAG







209


X - 24473
(4960) G:
0.085911
(4714) S:
0.069271
(4269) S:
0.050226




Eubacterium



Clostridium sp



Clostridium sp



X - 11381
(8002) S:
0.055129
(4714) S:
−0.04985
(4960) G:
−0.04506




Streptococcus



Clostridium sp



Eubacterium





thermophilus



X - 22834
(4705) S:
0.159163
(4824) G:
0.078445
(1877) S:
−0.05965




Clostridium sp



Blautia



Bacteroides




CAG 43




caccae



oxalate
(4705) S:
−0.06967
(6754) S:
0.06754
(14909) S:
−0.05608


(ethanedioate)

Clostridium sp



Clostridium sp



Clostridium




CAG 43



sp CAG







169


alpha-
(4940) S:
0.060534
(4951) S:
0.057954
(1814) S:
0.05535


hydroxyisovalerate

Roseburia



Roseburia



Bacteroides





inulinivorans



intestinalis



vulgatus



X - 24693
(4581) S:
−0.05561
(4810) S:
0.051504
(8002) S:
−0.04807




Dorea



Blautia sp



Streptococcus





longicatena


CAG 237


thermophilus



X - 24736
(4960) G:
0.128623
(14991) F:
0.089667
(4810) S:
0.08736




Eubacterium


Clostridiaceae


Blautia sp








CAG 237


1H-indole-7-
(4804) S:
0.076411
(15225) F:
0.073963
(3952) U:
0.062717


acetic acid

Blautia sp


Clostridiales

Unknown





unclassified


urate
(9226) S:
−0.04466
(4540) S:
−0.04131
(4705) S:
0.038998




Akkermansia



Anaerostipes



Clostridium





muciniphila



hadrus


sp CAG







43


taurodeoxycholate
(4705) S:
0.117422
(5785) S:
0.05815
(6148) F:
−0.05486




Clostridium sp



Phascolarctobacterium


Peptostrep-



CAG 43

sp

tococcaceae





CAG 266


sphingomyelin
(15373) F:
0.074581
(4564) S:
−0.04682
(5736) S:
−0.0443


(d18:2/14:0,
Ruminococcaceae


Ruminococcus



Acidaminococcus



d18:1/14:)*



torques



intestini



glycolithocholate
(6747) S:
−0.09414
(4425) S:
0.041059
(4940) S:
−0.04097




Clostridium



Ruminococcus



Roseburia





spiroforme


sp CAG 254


inulinivorans



X - 15728
(15322) S:
0.063863
(14311) F:
0.042364
(4957) F:
0.041103




Faecalibacterium


Clostridiaceae

Eubacteriaceae




prausnitzii



creatinine
(6750) S:
0.092459
(4581) S:
0.058309
(4820) S:
−0.04065




Clostridium sp



Dorea



Blautia sp







longicatena



X - 15461
(5843) S:
0.121367
(4581) S:
0.071379
(1872) S:
−0.03418




Allisonella



Dorea



Bacteroides





histaminiformans



longicatena



ovatus



X - 12822
(6796) G:
−0.15731
(6806) S:
−0.08175
(4871) S:
0.04609




Holdemanella



Holdemanella



Ruminococcus







biformis


sp


4-allylphenol
(6362) S:
−0.05081
(4781) U:
0.046877
(4826) S:
−0.04474


sulfate

Clostridium sp


Unknown


Blautia sp




CAG 343


X - 23782
(14974) U:
0.063947
(15154) F:
0.045085
(14400) G:
−0.03917



Unknown

Clostridiales


Collinsella






unclassified


X - 12212
(9262) S:
−0.14662
(4834) G:
0.03958
(4810) S:
0.039211




Burkholderiales



Blautia



Blautia sp





bacterium




CAG 237



1 1 47


tryptophan
(4564) S:
−0.04635
(4714) S:
0.039997
(14861) U:
−0.03518


betaine

Ruminococcus



Clostridium sp


Unknown




torques



I-urobilinogen
(2318) S:
−0.04726
(4198) S:
−0.04003
(15249) S:
−0.03252




Alistipes



Eubacterium



Firmicutes





putredinis



siraeum



bacterium








CAG 129


sphingomyelin
(15154) F:
0.047126
(4714) S:
−0.04651
(8002) S:
0.033388


(d18:1/19:0,
Clostridiales


Clostridium sp



Streptococcus



d19:1/18:0)*
unclassified




thermophilus



3-carboxy-4-
(4839) G:
0.080966
(4828) S:
0.027953
(17244) S:
−0.02581


methyl-5-

Blautia



Blautia sp



Bifidobacterium



pentyl-2-





adolescentis



furanpropionate


(3-CMPFP)**


X - 16935
(17244) S:
0.083128
(3964) U:
−0.0762
(4581) S:
0.054756




Bifidobacterium


Unknown


Dorea





adolescentis





longicatena



sphingomyelin
(14921) U:
0.064692
(4714) S:
−0.04131
(15271) S:
0.035821


(d17:1/16:0,
Unknown


Clostridium sp



Ruthenibacterium



d18:1/15:0,





lactatiformans



d16:1/17:0)*


X - 21829
(4940) S:
0.088208
(14823) F:
0.058811
(14993) S:
0.043001




Roseburia


Eggerthellaceae


Butyricicoccus





inulinivorans




sp


cystine
(1836) S:
−0.08619
(6796) G:
0.046165
(15216) F:
−0.02599




Bacteroides



Holdemanella


Clostridiales




uniformis




unclassified


X - 24475
(4964) F:
0.092409
(4810) S:
0.03616
(4197) G:
0.031048



Eubacteriaceae


Blautia sp



Ruminiclostridium






CAG 237


1-stearoyl-2-
(1862) S:
0.046774
(15295) G:
0.035784
(4658) S:
0.029873


docosahexaenoyl-GPC

Bacteroides



Gemmiger



Clostridium



(18:0/22:6)

finegoldii




sp CAG







253


X - 24951
(4540) S:
−0.04655
(4581) S:
0.043836
(17244) S:
0.043256




Anaerostipes



Dorea



Bifidobacterium





hadrus



longicatena



adolescentis



X - 24949
(4936) S:
0.071924
(8002) S:
−0.05766
(14861) U:
−0.05612




Roseburia



Streptococcus


Unknown




hominis



thermophilus



2-
(3964) U:
−0.04587
(4540) S:
−0.04577
(17244) S:
0.03493


hydroxylaurate
Unknown


Anaerostipes



Bifidobacterium







hadrus



adolescentis



X - 12063
(4705) S:
0.107575
(4644) S:
−0.06968
(6376) F:
−0.05699




Clostridium sp



Clostridium sp


Clostridiaceae



CAG 43

CAG 62


2-hydroxy-3-
(4940) S:
0.052212
(1814) S:
0.035716
(4564) S:
0.027496


methylvalerate

Roseburia



Bacteroides



Ruminococcus





inulinivorans



vulgatus



torques



argininate*
(15132) S:
−0.06754
(4953) S:
0.063846
(4811) S:
−0.05058




Flavonifractor



Roseburia sp



Blautia





plautii


CAG 182


obeum



indoleacetate
(3926) U:
0.092723
(14899) U:
0.026394
(4933) S:
−0.02197



Unknown

Unknown


Eubacterium









rectale



ceramide
(8002) S:
0.122669
(15154) F:
0.088126
(15315) G:
−0.05644


(d18:1/14:0,

Streptococcus


Clostridiales


Faecalibacterium



d16:1/16:0)*

thermophilus


unclassified


5alpha-
(15120) S:
−0.04398
(4581) S:
0.042816
(4303) S:
0.041358


androstan-

Firmicutes



Dorea



Clostridium



3beta,17beta-

bacterium



longicatena


sp CAG


diol disulfate
CAG 114



217


citrulline
(4930) F:
0.036932
(5082) S:
−0.03622
(15272) F:
−0.03503



Lachnospiraceae


Eubacterium


Ruminococcaceae






eligens



1-methyl-5-
(4577) S:
0.100013
(4581) S:
0.05893
(6148) F:
0.044928


imidazoleacetate

Coprococcus



Dorea


Peptostrep-




comes



longicatena


tococcaceae


X - 12263
(15154) F:
0.115405
(14322) S:
0.06079
(1872) S:
−0.05794



Clostridiales


Eggerthella sp



Bacteroides




unclassified

CAG 209


ovatus



taurodeoxycholic
(6148) F:
−0.0488
(15143) S:
0.046284
(15078) S:
0.034546


acid 3-
Peptostrep-


Flavonifractor



Oscillibacter sp



sulfate
tococcaceae

sp


X - 12543
(15154) F:
0.128502
(15028) G:
−0.05789
(4771) G:
−0.04424



Clostridiales


Firmicutes



Clostridium




unclassified

unclassified


sphingomyelin
(15154) F:
0.047841
(15373) F:
0.045007
(15271) S:
0.043435


(d18:2/21:0,
Clostridiales

Ruminococcaceae


Ruthenibacterium



d16:2/23:0)*
unclassified




lactatiformans



N-
(6179) G:
0.033585
(2303) S:
0.025064
(6750) S:
0.015072


acetylmethionine

Clostridium



Alistipes



Clostridium sp







finegoldii



X - 18901
(15385) U:
0.033368
(4782) U:
0.023265
(6422) S:
0.020133



Unknown

Unknown


Clostridium








sp CAG







433


1-
(15132) S:
0.080403
(5075) S:
0.071374
(15216) F:
−0.05975


palmitoylglycerol

Flavonifractor



Lachnospira


Clostridiales


(16:0)

plautii



pectinoschiza


unclassified


X - 23587
(4706) F:
0.052422
(15031) S:
−0.05126
(6140) S:
−0.04005



Clostridiaceae


Firmicutes



Intestinibacter







bacterium



bartlettii






CAG 110


androstenediol
(4581) S:
0.039049
(4940) S:
0.036934
(5736) S:
0.027905


(3beta,17beta)

Dorea



Roseburia



Acidaminococcus



disulfate (2)

longicatena



inulinivorans



intestini



tartronate
(4705) S:
−0.08833
(6754) S:
0.059431
(3988) F:
−0.04224


(hydroxymalonate)

Clostridium sp



Clostridium sp


Firmicutes



CAG 43



unclassified


X - 24352
(4964) F:
0.064927
(4953) S:
0.043616
(4269) S:
0.03609



Eubacteriaceae


Roseburia sp



Clostridium sp






CAG 182


X - 23654
(1812) S:
0.086706
(15286) F:
−0.08556
(10068) S:
−0.04185




Bacteroides


Ruminococcaceae


Escherichia





massiliensis





coli



dihydrocaffeate
(15154) F:
0.136675
(15225) F:
−0.0452
(4029) U:
0.041803


sulfate (2)
Clostridiales

Clostridiales

Unknown



unclassified

unclassified


sphingomyelin
(15154) F:
0.054011
(4714) S:
−0.05102
(14921) U:
0.039123


(d18:1/17:0,
Clostridiales


Clostridium sp


Unknown


d17:1/18:0,
unclassified


d19:1/16:0)


3-carboxy-4-
(15332) S:
0.040653
(17239) S:
−0.03551
(4810) S:
0.033552


methyl-5-

Faecalibacterium



Bifidobacterium



Blautia sp



propyl-2-

prausnitzii


sp N4G05

CAG 237


furanpropanoate


(CMPF)


X - 18606
(14991) F:
0.075629
(15216) F:
−0.03112
(6174) S:
0.029137



Clostridiaceae

Clostridiales


Clostridium






unclassified

sp CAG







265


2,3-dihydroxy-
(4608) S:
−0.07499
(4810) S:
0.063775
(4811) S:
−0.0333


2-methylbutyrate

Ruminococcus



Blautia sp



Blautia





torques


CAG 237


obeum



X - 12221
(4960) G:
−0.08349
(14861) U:
0.058238
(6173) S:
0.052317




Eubacterium


Unknown


Clostridium








sp CAG







221


X - 14082
(4961) G:
0.082112
(15154) F:
0.066348
(14861) U:
0.04638




Eubacterium


Clostridiales

Unknown





unclassified


X - 13703
(14322) S:
0.05466
(4961) G:
0.046668
(15073) G:
0.041537




Eggerthella sp



Eubacterium



Oscillibacter




CAG 209


X - 17676
(14861) U:
0.11075
(4537) S:
−0.07179
(15154) F:
0.065636



Unknown


Eubacterium


Clostridiales






hallii


unclassified


X - 24801
(4705) S:
0.054674
(14894) S:
−0.02865
(2303) S:
−0.0282




Clostridium sp



Anaeromassili



Alistipes




CAG 43


bacillus sp



finegoldii






An250


N-
(4960) G:
0.127868
(4582) S:
−0.03177
(4581) S:
0.030253


methylproline

Eubacterium



Dorea



Dorea







longicatena



longicatena



1-(1-enyl-
(4577) S:
0.092485
(5190) S:
0.068759
(6148) F:
0.040227


palmitoyl)-2-

Coprococcus



Firmicutes


Peptostrep-


linoleoyl-GPE

comes



bacterium


tococcaceae


(P-16:0/18:2)*


CAG 102


sphingomyelin
(15373) F:
0.049768
(5736) S:
−0.04939
(15266) G:
−0.04526


(d18:2/23:0,
Ruminococcaceae


Acidaminococcus



Firmicutes



d18:1/23:1,



intestini


unclassified


d17:1/24:1)*


eicosenedioate
(17244) S:
0.04508
(3964) U:
−0.03989
(4540) S:
−0.03295


(C20:1-DC)*

Bifidobacterium


Unknown


Anaerostipes





adolescentis





hadrus



picolinoylglycine
(8002) S:
0.071639
(6179) G:
0.067192
(4577) S:
0.062939




Streptococcus



Clostridium



Coprococcus





thermophilus





comes



5alpha-
(4940) S:
0.067331
(15326) G:
0.041349
(3964) U:
−0.03758


androstan-

Roseburia



Faecalibacterium


Unknown


3alpha,17beta-

inulinivorans



diol


monosulfate


(1)


S-
(15078) S:
−0.03677
(5843) S:
−0.03242
(14594) G:
−0.03007


methylmethionine

Oscillibacter



Allisonella



Collinsella




sp


histaminiformans



glycocholate
(17237) S:
−0.06445
(15164) F:
0.060041
(4782) U:
0.055125


glucuronide (1)

Bifidobacterium


Clostridiales

Unknown




pseudocatenulatum


unclassified


1-
(1786) S:
0.060988
(15332) S:
0.059863
(3957) F:
−0.04925


docosahexaenoylglycerol

Butyricimonas



Faecalibacterium


Lachnospiraceae


(22:6)

synergistica



prausnitzii



dodecanedioate
(14921) U:
0.054548
(15395) U:
0.039669
(15132) S:
0.034876



Unknown

Unknown


Flavonifractor









plautii



androstenediol
(4940) S:
0.058422
(3964) U:
−0.0375
(4564) S:
0.033429


(3beta,17beta)

Roseburia


Unknown


Ruminococcus



monosulfate

inulinivorans





torques



(1)


X - 16087
(4839) G:
0.082987
(14400) G:
−0.07288
(15322) S:
0.047156




Blautia



Collinsella



Faecalibacterium









prausnitzii



S-
(4652) S:
0.047736
(6139) G:
0.025248
(4584) S:
−0.02511


methylcysteine

Clostridium sp



Intestinibacter



Ruminococcus



sulfoxide
CAG 75




gnavus



X - 23314
(4960) G:
0.115378
(15452) S:
−0.02867
(4714) S:
0.025175




Eubacterium



Bilophila sp 4



Clostridium sp






1 30


N1-
(4960) G:
−0.10761
(4644) S:
−0.02687
(1872) S:
−0.02297


methylinosine

Eubacterium



Clostridium sp



Bacteroides






CAG 62


ovatus



isobutyrylcarnitine
(9283) S:
−0.05323
(15356) U:
0.043612
(4933) S:
−0.03785


(C4)

Sutterella


Unknown


Eubacterium





wadsworthensis





rectale



X - 12830
(4577) S:
0.048621
(15081) F:
0.041164
(15265) S:
0.029408




Coprococcus


Clostridiales


Firmicutes





comes


unclassified


bacterium








CAG 103


pyroglutamine *
(5785) S:
−0.02204
(5851) F:
0.016558
(15300) S:
0.015461




Phascolarctobacterium


Veillonellaceae


Gemmiger




sp




formicilis




CAG 266


X - 11491
(6148) F:
0.097771
(1845) S:
−0.04456
(9283) S:
−0.03993



Peptostrep-


Bacteroides



Sutterella




tococcaceae


intestinalis



wadsworthensis






CAG 315


N-palmitoyl-
(6140) S:
−0.05902
(15154) F:
0.057518
(2303) S:
−0.04623


sphingosine

Intestinibacter


Clostridiales


Alistipes



(d18:1/16:0)

bartlettii


unclassified


finegoldii



alpha-
(1814) S:
0.032839
(15390) U:
−0.02523
(6148) F:
0.024285


hydroxyisocaproate

Bacteroides


Unknown

Peptostrep-




vulgatus




tococcaceae


X - 21410
(15132) S:
0.088736
(1814) S:
0.079056
(15332) S:
0.058448




Flavonifractor



Bacteroides



Faecalibacterium





plautii



vulgatus



prausnitzii



nonadecanoate
(15073) G:
0.043398
(6338) F:
0.028339
(14974) U:
0.027807


(19:0)

Oscillibacter


Clostridiaceae

Unknown


X - 11478
(6148) F:
−0.0575
(6367) F:
−0.03621
(9226) S:
−0.03547



Peptostrep-

Clostridiaceae


Akkermansia




tococcaceae




muciniphila



formiminoglutamate
(8002) S:
0.063505
(15332) S:
0.062189
(6179) G:
0.050739




Streptococcus



Faecalibacterium



Clostridium





thermophilus



prausnitzii



X - 11378
(5736) S:
0.029329
(4540) S:
−0.02698
(2328) F:
−0.02572




Acidaminococcus



Anaerostipes


Rikenellaceae




intestini



hadrus



erucate
(5075) S:
0.08554
(15154) F:
0.05548
(4540) S:
−0.04539


(22:1n9)

Lachnospira


Clostridiales


Anaerostipes





pectinoschiza


unclassified


hadrus



7-
(14921) U:
0.085909
(4644) S:
−0.04971
(4537) S:
−0.04821


methylxanthine
Unknown


Clostridium sp



Eubacterium






CAG 62


hallii



3-
(4644) S:
−0.0645
(14921) U:
0.05496
(15154) F:
0.052571


methylxanthine

Clostridium sp


Unknown

Clostridiales



CAG 62



unclassified


7-alpha-
(4951) S:
0.054502
(1790) S:
−0.04171
(14909) S:
0.040551


hydroxy-3-oxo-

Roseburia



Odoribacter



Clostridium



4-cholestenoate

intestinalis



splanchnicus


sp CAG


(7-Hoca)




169


2-
(6179) G:
0.075033
(15332) S:
0.066471
(4643) S:
−0.05036


aminoadipate

Clostridium



Faecalibacterium



Clostridium







prausnitzii


sp CAG







167


N-
(15252) F:
0.035442
(4608) S:
−0.03347
(6939) S:
0.023519


acetylaspartate
Clostridiales


Ruminococcus



Veillonella



(NAA)
unclassified


torques



parvula



3-
(14114) S:
0.057994
(15256) F:
0.054033
(15154) F:
0.041405


methyladipate

Subdoligranulum


Clostridiales

Clostridiales



sp CAG

unclassified

unclassified



314


gamma-
(6179) G:
0.047897
(4714) S:
−0.03889
(15326) G:
0.03737


glutamylleucine

Clostridium



Clostridium sp



Faecalibacterium



X - 12101
(6174) S:
0.041003
(4652) S:
0.034255
(4953) S:
0.020797




Clostridium sp



Clostridium sp



Roseburia




CAG 265

CAG 75

sp CAG







182


theobromine
(4532) S:
0.057608
(4644) S:
−0.05257
(4537) S:
−0.0471




Eubacterium



Clostridium sp



Eubacterium





hallii


CAG 62


hallii



1-
(4577) S:
0.086446
(4581) S:
0.045221
(4933) S:
−0.0319


methylhistidine

Coprococcus



Dorea



Eubacterium





comes



longicatena



rectale



trimethylamine
(17248) S:
−0.03971
(4721) S:
0.02819
(1934) S:
0.022967


N-oxide

Bifidobacterium



Clostridium sp



Parabacteroides





longum


CAG 58


distasonis



X - 17654
(17244) S:
0.053964
(4581) S:
0.043974
(15342) S:
0.034623




Bifidobacterium



Dorea



Faecalibacterium





adolescentis



longicatena



prausnitzii



ximenoylcarnitine
(1903) S:
0.10427
(15346) G:
0.036248
(1786) S:
0.031769


(C26:1)*

Bacteroides



Faecalibacterium



Butyricimonas





plebeius CAG





synergistica




211


glycosyl
(5843) S:
−0.03897
(4705) S:
−0.03595
(4577) S:
−0.02522


ceramide

Allisonella



Clostridium sp



Coprococcus



(d18:2/24:1,

histaminiformans


CAG 43


comes



d18:1/24:2)*


tiglylcarnitine
(4121) U:
0.09362
(8002) S:
0.045442
(4577) S:
0.04075


(C5:1-DC)
Unknown


Streptococcus



Coprococcus







thermophilus



comes



isovalerylglycine
(15339) S:
−0.1054
(4940) S:
−0.07971
(14861) U:
0.074656




Faecalibacterium



Roseburia


Unknown




prausnitzii



inulinivorans



glutamate
(5075) S:
0.037256
(1949) S:
0.028971
(9226) S:
−0.02818




Lachnospira



Parabacteroides



Akkermansia





pectinoschiza



merdae



muciniphila



7-methylurate
(14921) U:
0.098308
(15154) F:
0.092927
(4537) S:
−0.05381



Unknown

Clostridiales


Eubacterium






unclassified


hallii



2-
(4552) S:
0.055011
(4933) S:
−0.05078
(15286) F:
−0.04322


methylbutyrylcarnitine

Ruminococcus



Eubacterium


Ruminococcaceae


(C5)
sp


rectale



X - 13844
(15154) F:
0.264017
(14322) S:
0.105664
(1872) S:
−0.04441



Clostridiales


Eggerthella sp



Bacteroides




unclassified

CAG 209


ovatus



X - 12739
(6140) S:
−0.05159
(8002) S:
−0.04703
(1786) S:
0.024304




Intestinibacter



Streptococcus



Butyricimonas





bartlettii



thermophilus



synergistica



androstenediol
(15154) F:
−0.06373
(15315) G:
0.04232
(9346) S:
−0.03422


(3alpha,
Clostridiales


Faecalibacterium



Azospirillum



17alpha)
unclassified



sp CAG


monosulfate




239


(2)


palmitoylcarnitine
(17237) S:
−0.04386
(6376) F:
−0.03781
(4804) S:
−0.03548


(C16)

Bifidobacterium


Clostridiaceae


Blautia sp





pseudocatenulatum



gamma-
(15238) S:
−0.04886
(15346) G:
0.04735
(4951) S:
0.045291


glutamyl-2-

Firmicutes



Faecalibacterium



Roseburia



aminobutyrate

bacterium





intestinalis




CAG 170


acisoga
(4804) S:
−0.0601
(4749) S:
0.050771
(5792) S:
0.046751




Blautia sp



Clostridium sp



Phascolarctobacterium






CAG 7

sp CAG







207


1-(1-enyl-
(4705) S:
−0.0961
(5843) S:
−0.03567
(4782) U:
0.0157


palmitoyl)-2-

Clostridium sp



Allisonella


Unknown


oleoyl-GPC
CAG 43


histaminiformans



(P-16:0/18:1)*


catechol
(4537) S:
−0.11047
(14322) S:
0.056511
(15154) F:
0.045195


sulfate

Eubacterium



Eggerthella sp


Clostridiales




hallii


CAG 209

unclassified


3-
(2290) F:
−0.03072
(9391) F:
−0.02095
(15390) U:
−0.01941


methylcytidine
Rikenellaceae

Oxalobacteraceae

Unknown


X - 14939
(17244) S:
0.07344
(15271) S:
−0.034
(8002) S:
−0.03222




Bifidobacterium



Ruthenibacterium



Streptococcus





adolescentis



lactatiformans



thermophilus



pregnenetriol
(8002) S:
−0.04437
(4940) S:
0.039132
(6328) S:
−0.02765


disulfate*

Streptococcus



Roseburia



Clostridium





thermophilus



inulinivorans


sp CAG







492


1-(1-enyl-
(4577) S:
0.054186
(6148) F:
0.039898
(17244) S:
−0.03794


stearoyl)-GPE

Coprococcus


Peptostrep-


Bifidobacterium



(P-18:0)*

comes


tococcaceae


adolescentis



carnitine
(2303) S:
−0.05057
(4575) S:
0.042866
(4933) S:
−0.04003




Alistipes



Dorea



Eubacterium





finegoldii



formicigenerans



rectale



X - 11261
(4816) S:
−0.03889
(15216) F:
−0.03588
(6962) S:
0.032803




Blautia sp


Clostridiales


Megamonas






unclassified


funiformis



gamma-
(5082) S:
−0.08064
(8069) S:
−0.03854
(14899) U:
0.035089


glutamylcitrulline*

Eubacterium



Streptococcus


Unknown




eligens



parasanguinis



N-acetyl-
(4960) G:
0.038558
(6148) F:
−0.03847
(4714) S:
0.028079


isoputreanine*

Eubacterium


Peptostrep-


Clostridium sp






tococcaceae


5alpha-
(14252) U:
0.044691
(15089) S:
−0.0257
(4644) S:
0.024759


pregnan-
Unknown


Firmicutes



Clostridium



3beta,20alpha-



bacterium


sp CAG


diol


CAG 83

62


monosulfate


(2)


o-cresol sulfate
(15154) F:
0.11338
(14993) S:
0.054371
(14992) G:
0.048313



Clostridiales


Butyricicoccus



Butyricicoccus




unclassified

sp


phenol
(6148) F:
−0.0527
(4758) S:
0.036881
(14861) U:
−0.02897


glucuronide
Peptostrep-


Clostridium


Unknown



tococcaceae


bolteae



leucine
(4714) S:
−0.06304
(6179) G:
0.042849
(15326) G:
−0.03459




Clostridium sp



Clostridium



Faecalibacterium



X - 24544
(4940) S:
0.045137
(8002) S:
−0.04184
(4750) G:
0.039685




Roseburia



Streptococcus



Clostridium





inulinivorans



thermophilus



deoxycholate
(4705) S:
0.2139
(14824) F:
0.084854
(4749) S:
0.05729




Clostridium sp


Eggerthellaceae


Clostridium




CAG 43



sp CAG







7


2-methylserine
(4882) S:
0.107518
(14909) S:
−0.09433
(4933) S:
−0.08823




Roseburia sp



Clostridium sp



Eubacterium




CAG 100

CAG 169


rectale



N-stearoyl-
(14253) U:
−0.03739
(2303) S:
−0.02878
(8002) S:
0.024406


sphingosine
Unknown


Alistipes



Streptococcus



(d18:1/18:0)*



finegoldii



thermophilus



2-
(15346) G:
0.037708
(4571) S:
0.027395
(15238) S:
−0.02494


aminobutyrate

Faecalibacterium



Dorea sp CAG



Firmicutes






105


bacterium








CAG 170


imidazole
(15120) S:
−0.03446
(8076) S:
0.033378
(4575) S:
0.027709


propionate
Firmicutes


Streptococcus



Dorea




bacterium


parasanguinis



formicigenerans




CAG 114


sphingomyelin
(15154) F:
0.044792
(4670) S:
0.035114
(4704) F:
−0.02605


(d18:1/22:1,
Clostridiales


Coprococcus


Clostridiaceae


d18:2/22:0,
unclassified


catus



d16:1/24:1)*


X - 16944
(4882) S:
−0.05443
(4706) F:
−0.02469
(6340) S:
−0.02445




Roseburia sp


Clostridiaceae


Clostridium




CAG 100



sp CAG







269


X - 24947
(4940) S:
0.055102
(15233) G:
−0.04833
(4816) S:
−0.03889




Roseburia



Firmicutes



Blautia sp





inulinivorans


unclassified


indole-3-
(14899) U:
0.074191
(14306) S:
0.022859
(3996) S:
0.021827


carboxylic acid
Unknown


Clostridium sp



Firmicutes






CAG 138


bacterium








CAG 145


perfluorooctanesulfonic
(2303) S:
−0.0692
(4581) S:
0.051697
(4711) F:
−0.04587


acid

Alistipes



Dorea


Clostridiaceae


(PFOS)

finegoldii



longicatena



4-
(14816) F:
0.090167
(4705) S:
−0.0882
(15154) F:
0.054538


imidazoleacetate
Eggerthellaceae


Clostridium sp


Clostridiales





CAG 43

unclassified


androstenediol
(4940) S:
0.042587
(15326) G:
0.041594
(8002) S:
−0.03498


(3alpha,17alpha)

Roseburia



Faecalibacterium



Streptococcus



monosulfate

inulinivorans





thermophilus



(3)


X - 11444
(4581) S:
0.057246
(5090) S:
−0.03361
(8007) S:
−0.03187




Dorea



Clostridiales



Streptococcus





longicatena



bacterium



salivarius






KLE1615


N-
(4652) S:
0.094585
(15132) S:
−0.09258
(4957) F:
0.044323


methyltaurine

Clostridium sp



Flavonifractor


Eubacteriaceae



CAG 75


plautii



adipoylcarnitine
(15318) S:
0.076462
(4552) S:
0.037269
(15451) G:
−0.03198


(C6-DC)

Faecalibacterium



Ruminococcus



Bilophila





prausnitzii


sp


X - 18922
(14861) U:
−0.05743
(4936) S:
0.039004
(14853) S:
−0.03691



Unknown


Roseburia



Clostridium







hominis



leptum



dehydroisoand
(4940) S:
0.047967
(15317) S:
0.03251
(4750) G:
0.030966


rosterone

Roseburia



Faecalibacterium



Clostridium



sulfate (DHEA-S)

inulinivorans


sp CAG 82


perfluorooctanoate
(17256) S:
−0.04541
(4871) S:
0.037434
(5087) S:
0.033656


(PFOA)

Bifidobacterium



Ruminococcus



Eubacterium





bifidum


sp

sp CAG







86


pregn steroid
(15317) S:
0.069611
(9346) S:
−0.0507
(8002) S:
−0.04222


monosulfate

Faecalibacterium



Azospirillum



Streptococcus



C21H34O5S*
sp CAG 82

sp CAG 239


thermophilus



X - 12798
(4814) S:
−0.05657
(4960) G:
−0.03758
(14921) U:
0.03569




Blautia



Eubacterium


Unknown




obeum



gamma-
(14470) G:
0.022843
(4871) S:
0.022047
(4553) S:
0.021627


glutamylglutamate

Collinsella



Ruminococcus



Clostridium sp






sp


X - 13431
(4581) S:
0.073345
(6750) S:
0.041298
(4577) S:
0.039097




Dorea



Clostridium sp



Coprococcus





longicatena





comes



caffeic acid
(15154) F:
0.068272
(4961) G:
0.040585
(4844) S:
−0.02968


sulfate
Clostridiales


Eubacterium



Blautia




unclassified




obeum



4-
(6308) G:
0.063085
(3964) U:
0.032636
(4767) U:
−0.03257


hydroxychlorothalonil

Clostridium


Unknown

Unknown


X - 17685
(15154) F:
0.097833
(17244) S:
−0.04853
(15028) G:
−0.04273



Clostridiales


Bifidobacterium



Firmicutes




unclassified


adolescentis


unclassified


thyroxine
(3988) F:
−0.07384
(15385) U:
−0.04022
(4721) S:
−0.02471



Firmicutes

Unknown


Clostridium




unclassified



sp CAG







58


sphingomyelin
(4540) S:
0.060424
(4705) S:
−0.04405
(6754) S:
0.02946


(d18:2/24:1,

Anaerostipes



Clostridium sp



Clostridium sp



d18:1/24:2)*

hadrus


CAG 43


Fibrinopeptide
(17241) S:
−0.0508
(4342) U:
−0.05029
(9391) F:
−0.04086


A (3-16)**

Bifidobacterium


Unknown

Oxalobacteraceae




catenulatum



pregnanediol-
(14252) U:
0.042367
(15216) F:
0.034203
(3957) F:
0.031372


3-glucuronide
Unknown

Clostridiales

Lachnospiraceae





unclassified


N-
(4828) S:
0.048588
(15078) S:
−0.0419
(15265) S:
−0.02874


acetylarginine

Blautia sp



Oscillibacter



Firmicutes






sp


bacterium








CAG 103


pregnen-diol
(8002) S:
−0.04271
(15317) S:
0.034709
(4779) S:
0.033699


disulfate

Streptococcus



Faecalibacterium



Clostridium sp



C21H34O8S2*

thermophilus


sp CAG 82


1-oleoyl-2-
(15369) S:
0.030771
(4749) S:
−0.02947
(5076) S:
0.029252


docosahexaenoyl-

Faecalibacterium



Clostridium sp



Eubacterium



GPC
sp CAG 74

CAG 7

sp CAG


(18:1/22:6)*




252


3-(4-
(15332) S:
0.047177
(15126) S:
−0.04031
(4425) S:
0.032587


hydroxyphenyl)lactate

Faecalibacterium



Intestinimonas



Ruminococcus





prausnitzii



butyriciproducens


sp CAG







254


N-acetylglycine
(6754) S:
0.040646
(4705) S:
−0.04062
(15081) F:
−0.03903




Clostridium sp



Clostridium sp


Clostridiales





CAG 43

unclassified


propionylglycine
(17241) S:
−0.04787
(4753) F:
−0.03739
(4121) U:
0.034891




Bifidobacterium


Lachnospiraceae

Unknown




catenulatum



taurine
(6179) G:
0.041423
(1786) S:
0.03273
(4537) S:
0.020686




Clostridium



Butyricimonas



Eubacterium







synergistica



hallii



glycine
(9226) S:
−0.07967
(15049) F:
0.044421
(4936) S:
0.041638


conjugate of

Akkermansia


Clostridiales


Roseburia



C10H14O2 (1)*

muciniphila


unclassified


hominis



sphingomyelin
(4714) S:
−0.03796
(15154) F:
0.036928
(4670) S:
0.034768


(d18:1/21:0,

Clostridium sp


Clostridiales


Coprococcus



d17:1/22:0,


unclassified


catus



d16:1/23:0)*


acetylcarnitine
(4940) S:
0.039533
(15322) S:
0.020313
(4933) S:
−0.01983


(C2)

Roseburia



Faecalibacterium



Eubacterium





inulinivorans



prausnitzii



rectale



X - 18899
(15271) S:
−0.04086
(14991) F:
0.026288
(9391) F:
0.016897




Ruthenibacterium


Clostridiaceae

Oxalobacteraceae




lactatiformans



X - 12906
(4810) S:
0.08805
(4940) S:
−0.05919
(4705) S:
−0.05477




Blautia sp



Roseburia



Clostridium




CAG 237


inulinivorans


sp CAG







43


3-sulfo-L-
(5076) S:
−0.06914
(1872) S:
0.043914
(1949) S:
0.042877


alanine

Eubacterium



Bacteroides



Parabacteroides




sp CAG 252


ovatus



merdae



biliverdin
(4842) G:
−0.03558
(4582) S:
−0.03161
(4571) S:
0.030959




Blautia



Dorea



Dorea sp







longicatena


CAG 105


1-linoleoyl-
(5843) S:
−0.05184
(17248) S:
0.032153
(4705) S:
−0.02669


GPA (18:2)*

Allisonella



Bifidobacterium



Clostridium





histaminiformans



longum


sp CAG







43


3-hydroxy-2-
(14823) F:
0.057813
(4552) S:
0.039847
(1957) S:
0.035421


ethylpropionate
Eggerthellaceae


Ruminococcus



Bacteroides






sp

sp CAG







144


carotene diol
(4705) S:
−0.03301
(14980) F:
−0.02632
(4782) U:
0.025581


(3)

Clostridium sp


Clostridiaceae

Unknown



CAG 43


X - 17325
(14322) S:
0.061078
(4537) S:
−0.03802
(14844) S:
0.025173




Eggerthella sp



Eubacterium



Firmicutes




CAG 209


hallii



bacterium








CAG 94


docosahexaenoate
(4905) F:
0.036171
(17256) S:
−0.01939
(1934) S:
0.018516


(DHA;
Clostridiaceae


Bifidobacterium



Parabacteroides



22:6n3)



bifidum



distasonis



N6,N6,N6-
(6750) S:
0.041594
(4828) S:
0.038495
(15350) U:
0.021287


trimethyllysine

Clostridium sp



Blautia sp


Unknown


deoxycarnitine
(4575) S:
0.049704
(4933) S:
−0.03669
(4581) S:
0.031065




Dorea



Eubacterium



Dorea





formicigenerans



rectale



longicatena



2,3-dihydroxy-
(15236) G:
−0.03061
(4957) F:
0.030057
(4644) S:
−0.02449


5-methylthio-

Firmicutes


Eubacteriaceae


Clostridium



4-pentenoate
unclassified



sp CAG


(DMTPA)*




62


arabonate/xylonate
(4540) S:
0.035354
(1934) S:
0.029404
(4648) G:
0.027639




Anaerostipes



Parabacteroides



Roseburia





hadrus



distasonis



X - 11852
(6179) G:
0.081815
(4810) S:
0.054093
(15260) G:
0.018769




Clostridium



Blautia sp



Firmicutes






CAG 237

unclassified


urea
(4577) S:
0.079002
(4121) U:
0.074149
(4933) S:
−0.06803




Coprococcus


Unknown


Eubacterium





comes





rectale



indoleacetylglutamine
(3926) U:
0.076706
(13983) U:
0.035244
(6754) S:
−0.03479



Unknown

Unknown


Clostridium sp



vanillylmandelate
(4608) S:
−0.06458
(1872) S:
−0.03822
(5190) S:
0.027211


(VMA)

Ruminococcus



Bacteroides



Firmicutes





torques



ovatus



bacterium








CAG 102


X - 13255
(15073) G:
0.071721
(15295) G:
0.063039
(14322) S:
0.061006




Oscillibacter



Gemmiger



Eggerthella








sp CAG







209


androstenediol
(4940) S:
0.051222
(3964) U:
−0.03788
(15120) S:
−0.02846


(3beta,17beta)

Roseburia


Unknown


Firmicutes



disulfate (1)

inulinivorans





bacterium








CAG 114


valine
(4577) S:
0.042291
(4714) S:
−0.03571
(15339) S:
−0.0347




Coprococcus



Clostridium sp



Faecalibacterium





comes





prausnitzii



X - 11485
(1812) S:
0.095402
(4953) S:
0.094858
(15452) S:
0.035684




Bacteroides



Roseburia sp



Bilophila





massiliensis


CAG 182

sp 4 1 30


X - 24757
(14322) S:
0.082937
(14844) S:
0.02957
(8002) S:
0.022257




Eggerthella sp



Firmicutes



Streptococcus




CAG 209


bacterium



thermophilus






CAG 94


chenodeoxycholate
(6148) F:
0.081226
(2328) F:
−0.05036
(4914) S:
−0.03421



Peptostrep-

Rikenellaceae


Clostridium sp




tococcaceae


17-
(6174) S:
0.037474
(4608) S:
0.022117
(6750) S:
0.021955


methylstearate

Clostridium sp



Ruminococcus



Clostridium sp




CAG 265


torques



3-
(4804) S:
−0.07983
(4940) S:
0.063162
(14823) F:
0.045146


hydroxybutyryl

Blautia sp



Roseburia


Eggerthellaceae


carnitine (1)



inulinivorans



sphingomyelin
(14909) S:
−0.03771
(4191) S:
0.019822
(4705) S:
−0.01832


(d18:2/24:2)*

Clostridium sp



Eubacterium



Clostridium




CAG 169

sp CAG 115

sp CAG







43


5alpha-
(15326) G:
0.043048
(4940) S:
0.042472
(4198) S:
−0.02814


androstan-

Faecalibacterium



Roseburia



Eubacterium



3beta,17beta-



inulinivorans



siraeum



diol


monosulfate


(2)


stearoyl
(4826) S:
0.045456
(4959) S:
0.038113
(4670) S:
0.035029


sphingomyelin

Blautia sp



Eubacterium



Coprococcus



(d18:1/18:0)



ramulus



catus



2-
(8601) S:
−0.05442
(5068) S:
−0.03666
(4931) G:
−0.02636


linoleoylglycerol

Candidatus



Bacteroides



Lachnospiraceae



(18:2)

Gastranaerophilales



pectinophilus


unclassified




bacterium


CAG 437



HUM 10


xanthurenate
(8002) S:
0.121598
(6140) S:
0.064645
(15323) S:
−0.04045




Streptococcus



Intestinibacter



Faecalibacterium





thermophilus



bartlettii



prausnitzii



X - 12411
(9226) S:
−0.03831
(6148) F:
0.022854
(4577) S:
0.022152




Akkermansia


Peptostrep-


Coprococcus





muciniphila


tococcaceae


comes



5-oxoproline
(1786) S:
0.080071
(4553) S:
0.023267
(5087) S:
0.019376




Butyricimonas



Clostridium sp



Eubacterium





synergistica




sp CAG







86


1-(1-enyl-
(14921) U:
0.060526
(6148) F:
0.017928
(14861) U:
0.016349


palmitoyl)-GPC
Unknown

Peptostrep-

Unknown


(P-16:0)*


tococcaceae


N-
(15154) F:
0.047969
(15272) F:
−0.03431
(4933) S:
−0.02566


acetylglutamate
Clostridiales

Ruminococcaceae


Eubacterium




unclassified




rectale



tetradecanedioate
(1957) S:
0.075198
(4874) S:
0.065262
(4575) S:
0.056747




Bacteroides



Fusicatenibacter



Dorea




sp CAG 144


saccharivorans



formicigenerans



glutarylcarnitine
(9226) S:
−0.02149
(4564) S:
0.021473
(4121) U:
0.021392


(C5-DC)

Akkermansia



Ruminococcus


Unknown




muciniphila



torques



X - 24337
(4581) S:
0.0651
(2318) S:
−0.04373
(5082) S:
−0.03891




Dorea



Alistipes



Eubacterium





longicatena



putredinis



eligens



gamma-
(15078) S:
−0.04589
(6179) G:
0.038598
(15326) G:
−0.03007


glutamylisoleucine*

Oscillibacter



Clostridium



Faecalibacterium




sp


1-(1-enyl-
(4577) S:
0.109115
(14909) S:
0.052957
(5792) S:
0.038317


palmitoyl)-2-

Coprococcus



Clostridium sp



Phascolarctobacterium



arachidonoyl-

comes


CAG 169

sp CAG


GPC (P-




207


16:0/20:4)*


1-(1-enyl-
(4577) S:
0.083702
(4960) G:
−0.03791
(4712) F:
−0.03677


stearoyl)-2-

Coprococcus



Eubacterium


Clostridiaceae


oleoyl-GPE

comes



(P-18:0/18:1)


1-(1-enyl-
(6148) F:
0.038014
(4577) S:
0.035976
(1862) S:
0.025325


palmitoyl)-GPE
Peptostrep-


Coprococcus



Bacteroides



(P-16:0)*
tococcaceae


comes



finegoldii



epiandrosterone
(15315) G:
0.038067
(4303) S:
0.029738
(3964) U:
−0.02883


sulfate

Faecalibacterium



Clostridium sp


Unknown





CAG 217


2-
(4644) S:
0.048154
(5083) G:
0.034863
(4547) S:
0.034632


acetamidophenol

Clostridium sp



Eubacterium



Anaerostipes



sulfate
CAG 62




hadrus



1-myristoyl-2-
(15326) G:
−0.02009
(4933) S:
0.017622
(15216) F:
−0.01423


arachidonoyl-

Faecalibacterium



Eubacterium


Clostridiales


GPC



rectale


unclassified


(14:0/20:4)*


N,N,N-
(4581) S:
0.036467
(5082) S:
−0.03317
(4820) S:
−0.0319


trimethyl-

Dorea



Eubacterium



Blautia sp



alanylproline

longicatena



eligens



betaine


(TMAP)


X - 13684
(1815) S:
−0.0851
(15106) S:
−0.02385
(4648) G:
−0.01711




Bacteroides



Firmicutes



Roseburia





dorei



bacterium






CAG 176


X - 24748
(5075) S:
0.024809
(4933) S:
0.020641
(14991) F:
0.018936




Lachnospira



Eubacterium


Clostridiaceae




pectinoschiza



rectale



malate
(17249) S:
−0.06347
(4655) S:
0.021372
(15467) S:
0.018214




Bifidobacterium



Clostridium sp



Desulfovibrio





longum


CAG 277


piger



isovalerylcarnitine
(6179) G:
0.048503
(4581) S:
0.046117
(7985) S:
0.039503


(C5)

Clostridium



Dorea



Lactococcus







longicatena



lactis



2-
(14924) S:
−0.05728
(15073) G:
0.054514
(2303) S:
−0.04394


hydroxynervonate*

Firmicutes



Oscillibacter



Alistipes





bacterium





finegoldii




CAG 137


X - 11858
(15078) S:
−0.02592
(15132) S:
−0.01619
(15124) F:
−0.01299




Oscillibacter



Flavonifractor


Clostridiales



sp


plautii


unclassified


3-
(15154) F:
0.096561
(2326) S:
−0.03556
(4537) S:
−0.03231


hydroxyhippurate
Clostridiales


Faecalibacterium



Eubacterium



sulfate
unclassified


prausnitzii



hallii



lactosyl-N-
(7985) S:
−0.04284
(4705) S:
−0.04131
(8002) S:
−0.0391


nervonoyl-

Lactococcus



Clostridium sp



Streptococcus



sphingosine

lactis


CAG 43


thermophilus



(d18:1/24:1)*


1-(1-enyl-
(4577) S:
0.040681
(5190) S:
0.031594
(2311) F:
0.027897


palmitoyl)-2-

Coprococcus



Firmicutes


Rikenellaceae


oleoyl-GPE

comes



bacterium



(P-16:0/18:1)*


CAG 102


X - 18886
(4940) S:
0.1102
(14993) S:
0.030132
(14823) F:
0.028101




Roseburia



Butyricicoccus


Eggerthellaceae




inulinivorans


sp


Fibrinopeptide
(4342) U:
−0.04477
(9391) F:
−0.03691
(4553) S:
−0.03651


B (1-13)**
Unknown

Oxalobacteraceae


Clostridium sp



taurochenodeoxycholic
(4749) S:
−0.03801
(4705) S:
−0.01807
(4367) S:
−0.01552


acid 3-

Clostridium sp



Clostridium sp



Ruminococcus



sulfate
CAG 7

CAG 43

sp CAG







177


DSGEGDFXAEGGGVR*
(17241) S:
−0.0563
(4342) U:
−0.05006
(1786) S:
−0.04787




Bifidobacterium


Unknown


Butyricimonas





catenulatum





synergistica



tauroursodeoxycholate
(4552) S:
−0.06347
(14844) S:
0.034069
(15154) F:
0.033536




Ruminococcus



Firmicutes


Clostridiales



sp


bacterium


unclassified





CAG 94


X - 13723
(15154) F:
0.099408
(14322) S:
0.064691
(1872) S:
−0.03785



Clostridiales


Eggerthella sp



Bacteroides




unclassified

CAG 209


ovatus



1-stearoyl-2-
(15229) F:
−0.03036
(4448) G:
0.029146
(4804) S:
−0.02635


docosahexaenoyl-GPE
Clostridiales


Eubacterium



Blautia sp



(18:0/22:6)*
unclassified


14-HDoHE/17-
(6179) G:
0.09176
(4191) S:
0.032071
(15081) F:
0.027606


HDoHE

Clostridium



Eubacterium


Clostridiales





sp CAG 115

unclassified


1-
(15216) F:
−0.01615
(5090) S:
−0.01475
(4828) S:
0.009504


linolenoylglycerol
Clostridiales


Clostridiales



Blautia sp



(18:3)
unclassified


bacterium






KLE1615


X - 11299
(1836) S:
−0.0339
(14797) G:
0.031022
(5785) S:
0.028369




Bacteroides



Adlercreutzia



Phascolarctobacterium





uniformis




sp CAG







266


X - 21285
(4940) S:
0.084041
(15233) G:
−0.04693
(4581) S:
0.04181




Roseburia



Firmicutes



Dorea





inulinivorans


unclassified


longicatena



Fibrinopeptide
(17241) S:
−0.04287
(4342) U:
−0.04129
(9391) F:
−0.03389


A (5-16)*

Bifidobacterium


Unknown

Oxalobacteraceae




catenulatum



X - 21661
(15078) S:
−0.01988
(15124) F:
−0.01812
(4582) S:
−0.01351




Oscillibacter


Clostridiales


Dorea




sp

unclassified


longicatena



dodecenedioate
(6465) S:
0.054859
(4964) F:
0.035591
(4839) G:
−0.0334


(C12:1-DC)*

Mycoplasma


Eubacteriaceae


Blautia




sp CAG 611


3-methyl-2-
(14909) S:
0.03462
(4951) S:
0.027326
(15089) S:
−0.02103


oxovalerate

Clostridium sp



Roseburia



Firmicutes




CAG 169


intestinalis



bacterium








CAG 83


X - 11847
(15078) S:
−0.02382
(4811) S:
−0.02231
(14542) G:
−0.01526




Oscillibacter



Blautia



Collinsella




sp


obeum



1-myristoyl-2-
(15233) G:
−0.04287
(4936) S:
−0.03127
(8002) S:
0.01649


palmitoyl-GPC
Firmicutes


Roseburia



Streptococcus



(14:0/16:0)
unclassified


hominis



thermophilus



3-aminoisobutyrate
(4130) U:
0.048514
(14992) G:
0.038371
(3940) U:
0.02967



Unknown


Butyricicoccus


Unknown


stachydrine
(4960) G:
0.111027
(5089) S:
0.041966
(4582) S:
−0.03922




Eubacterium



Eubacterium



Dorea






sp CAG 38


longicatena



eicosenoate
(14992) G:
0.03625
(15154) F:
0.03301
(15073) G:
0.024107


(20:1)

Butyricicoccus


Clostridiales


Oscillibacter






unclassified


isocitrate
(6754) S:
0.092134
(4714) S:
0.077375
(4779) S:
−0.04582




Clostridium sp



Clostridium sp



Clostridium sp



X - 21364
(4750) G:
0.040436
(4581) S:
0.023042
(4564) S:
0.021019




Clostridium



Dorea



Ruminococcus







longicatena



torques



X - 12007
(4960) G:
−0.03341
(4782) U:
0.02307
(4532) S:
0.021818




Eubacterium


Unknown


Eubacterium









hallii



N1-Methyl-2-
(4577) S:
0.067729
(14999) U:
0.040532
(14861) U:
0.033075


pyridone-5-

Coprococcus


Unknown

Unknown


carboxamide

comes



X - 21659
(1812) S:
0.067379
(4577) S:
0.053012
(4964) F:
0.050115




Bacteroides



Coprococcus


Eubacteriaceae




massiliensis



comes



gamma-
(4540) S:
−0.03464
(15124) F:
−0.02828
(5792) S:
−0.02305


tocopherol/beta-

Anaerostipes


Clostridiales


Phascolarctobacterium



tocopherol

hadrus


unclassified

sp CAG







207


X - 12117
(15326) G:
−0.03722
(1790) S:
−0.03141
(4670) S:
−0.02739




Faecalibacterium



Odoribacter



Coprococcus







splanchnicus



catus



1-
(15452) S:
0.03446
(5190) S:
−0.02729
(15332) S:
0.02379


myristoylglycerol

Bilophila sp 4



Firmicutes



Faecalibacterium



(14:0)
1 30


bacterium



prausnitzii






CAG 102


X - 21845
(14816) F:
−0.0468
(4577) S:
0.038822
(1812) S:
0.032944



Eggerthellaceae


Coprococcus



Bacteroides







comes



massiliensis



N-
(4960) G:
0.071663
(4933) S:
−0.03528
(4871) S:
−0.03173


methylhydroxy

Eubacterium



Eubacterium



Ruminococcus



proline**



rectale


sp


stearoylcarnitine
(6750) S:
0.065403
(17237) S:
−0.02695
(4780) G:
−0.02624


(C18)

Clostridium sp



Bifidobacterium



Clostridium







pseudocatenulatum



X - 24546
(14991) F:
−0.07482
(15350) U:
0.046263
(4197) G:
−0.03719



Clostridiaceae

Unknown


Ruminiclostridium



2-
(14921) U:
0.021881
(15216) F:
−0.01795
(1797) S:
0.017445


hydroxyglutarate
Unknown

Clostridiales


Paraprevotella






unclassified


xylaniphila



X - 23787
(4940) S:
0.080894
(4564) S:
0.024221
(15299) G:
0.021077




Roseburia



Ruminococcus



Gemmiger





inulinivorans



torques



4-
(4714) S:
0.040799
(14992) G:
0.037468
(4940) S:
−0.03035


hydroxyhippurate

Clostridium sp



Butyricicoccus



Roseburia









inulinivorans



glycylvaline
(1786) S:
0.056913
(17241) S:
0.055379
(4342) U:
0.025881




Butyricimonas



Bifidobacterium


Unknown




synergistica



catenulatum



cerotoylcarnitine
(4828) S:
0.058453
(1903) S:
0.038339
(4779) S:
0.03178


(C26)*

Blautia sp



Bacteroides



Clostridium sp







plebeius CAG






211


methylsuccinoylcarnitine
(4933) S:
−0.0424
(9226) S:
0.020355
(6173) S:
0.01984


(1)

Eubacterium



Akkermansia



Clostridium





rectale



muciniphila


sp CAG







221


X - 15492
(5843) S:
0.040621
(14894) S:
−0.03993
(1815) S:
−0.03886




Allisonella



Anaeromassili



Bacteroides





histaminiformans



bacillus sp



dorei






An250


X - 23585
(15451) G:
0.054984
(15229) F:
0.049947
(2311) F:
0.033186




Bilophila


Clostridiales

Rikenellaceae





unclassified


X - 24556
(1934) S:
0.048685
(17244) S:
−0.03436
(4303) S:
0.027297




Parabacteroides



Bifidobacterium



Clostridium





distasonis



adolescentis


sp CAG







217


N1-
(6962) S:
0.021221
(15216) F:
−0.01933
(5043) S:
−0.01892


methyladenosine

Megamonas


Clostridiales


Eubacterium





funiformis


unclassified

sp CAG







156


1,2,3-
(15154) F:
0.03668
(5111) S:
−0.02883
(14773) F:
−0.02293


benzenetriol
Clostridiales


Clostridium sp


Eggerthellaceae


sulfate (2)
unclassified

CAG 127


21-
(4882) S:
−0.05051
(8002) S:
−0.04853
(6334) F:
−0.04584


hydroxypregnenolone

Roseburia sp



Streptococcus


Clostridiaceae


disulfate
CAG 100


thermophilus



hexanoylglutamine
(2328) F:
0.054311
(4940) S:
0.047796
(17249) S:
−0.04182



Rikenellaceae


Roseburia



Bifidobacterium







inulinivorans



longum



X - 17367
(14322) S:
0.056771
(14844) S:
0.022509
(15085) F:
0.015576




Eggerthella sp



Firmicutes


Clostridiales



CAG 209


bacterium


unclassified





CAG 94


tridecenedioate
(4826) S:
0.074521
(14921) U:
0.053997
(4714) S:
−0.0487


(C13:1-DC)*

Blautia sp


Unknown


Clostridium sp



phytanate
(14974) U:
0.023498
(5075) S:
0.01916
(4940) S:
0.017494



Unknown


Lachnospira



Roseburia







pectinoschiza



inulinivorans



hydroxy-
(1798) S:
−0.0339
(5803) S:
−0.03266
(6141) F:
0.031911


CMPF*

Paraprevotella



Dialister sp


Peptostrep-




clara


CAG 357

tococcaceae


N-palmitoyl-
(4659) S:
0.032555
(5062) G:
−0.03093
(15315) G:
−0.02939


sphinganine

Clostridium sp



Firmicutes



Faecalibacterium



(d18:0/16:0)
CAG 122

unclassified


4-methyl-2-
(14909) S:
0.038456
(4951) S:
0.025853
(15390) U:
−0.02486


oxopentanoate

Clostridium sp



Roseburia


Unknown



CAG 169


intestinalis



cys-gly,
(14020) U:
−0.0333
(15350) U:
0.02773
(15299) G:
0.02709


oxidized
Unknown

Unknown


Gemmiger



glycerate
(4540) S:
0.054775
(4714) S:
0.031525
(4705) S:
−0.02888




Anaerostipes



Clostridium sp



Clostridium





hadrus




sp CAG







43


bradykinin,
(15158) G:
0.012129
(5184) U:
0.011144
(6140) S:
−0.00955


des-arg(9)

Flavonifractor


Unknown


Intestinibacter









bartlettii



15-
(1957) S:
0.025477
(14823) F:
0.021239
(15132) S:
0.019465


methylpalmitate

Bacteroides


Eggerthellaceae


Flavonifractor




sp CAG 144




plautii



X - 11795
(4608) S:
−0.05172
(6750) S:
−0.04128
(17244) S:
0.037572




Ruminococcus



Clostridium sp



Bifidobacterium





torques





adolescentis



16a-hydroxy
(14991) F:
−0.02375
(4750) G:
0.021978
(6334) F:
−0.01932


DHEA 3-sulfate
Clostridiaceae


Clostridium


Clostridiaceae


arachidoylcarnitine
(6750) S:
0.087103
(1872) S:
−0.06921
(17249) S:
−0.06082


(C20)*

Clostridium sp



Bacteroides



Bifidobacterium







ovatus



longum



choline
(6179) G:
0.02188
(4198) S:
0.018296
(14252) U:
0.015386




Clostridium



Eubacterium


Unknown






siraeum



palmitoyl
(4964) F:
0.054995
(4834) G:
0.038795
(4953) S:
0.022056


dihydrosphingomyelin
Eubacteriaceae


Blautia



Roseburia



(d18:0/16:0)*




sp CAG







182


glycosyl-N-
(4961) G:
0.043081
(15390) U:
0.030939
(4780) G:
0.022634


behenoyl-

Eubacterium


Unknown


Clostridium



sphingadienine


(d18:2/22:0)*


hydroxy-
(15216) F:
−0.02635
(15028) G:
−0.01812
(9226) S:
−0.01758


N6,N6,N6-
Clostridiales


Firmicutes



Akkermansia



trimethyllysine *
unclassified

unclassified


muciniphila



lysine
(17278) S:
0.052259
(15332) S:
0.045987
(6179) G:
0.038203




Bifidobacterium



Faecalibacterium



Clostridium





animalis



prausnitzii



tyrosine
(4425) S:
0.056453
(8002) S:
0.040884
(6179) G:
0.040077




Ruminococcus



Streptococcus



Clostridium




sp CAG 254


thermophilus



androsterone
(4940) S:
0.043759
(15315) G:
0.033205
(3964) U:
−0.02985


sulfate

Roseburia



Faecalibacterium


Unknown




inulinivorans



glycodeoxycholate
(4705) S:
0.045146
(4829) S:
−0.03794
(4540) S:
−0.03277


sulfate

Clostridium sp



Blautia sp



Anaerostipes




CAG 43




hadrus



alpha-
(15154) F:
0.040527
(1862) S:
0.035612
(1934) S:
0.027055


tocopherol
Clostridiales


Bacteroides



Parabacteroides




unclassified


finegoldii



distasonis



3-(3-
(15154) F:
0.083726
(4938) S:
−0.02004
(2326) S:
−0.01745


hydroxyphenyl)propionate
Clostridiales


Roseburia sp



Faecalibacterium



sulfate
unclassified




prausnitzii



linoleate
(15120) S:
−0.02249
(15073) G:
0.020876
(3957) F:
−0.02028


(18:2n6)

Firmicutes



Oscillibacter


Lachnospiraceae




bacterium




CAG 114


17alpha-
(15317) S:
0.055301
(8002) S:
−0.03468
(4779) S:
0.032196


hydroxypregnenolone 3-

Faecalibacterium



Streptococcus



Clostridium sp



sulfate
sp CAG 82


thermophilus



xanthosine
(9712) S:
0.043563
(6506) S:
−0.02903
(4537) S:
−0.02411




Haemophilus



Mycoplasma



Eubacterium





parainfluenzae


sp CAG 472


hallii



4-
(8002) S:
0.075469
(15090) S:
0.033012
(6179) G:
0.031415


hydroxyphenyl

Streptococcus



Oscillibacter



Clostridium



pyruvate

thermophilus


sp CAG 241


S-
(15132) S:
−0.03076
(4652) S:
0.024054
(1814) S:
−0.01913


methylcysteine

Flavonifractor



Clostridium sp



Bacteroides





plautii


CAG 75


vulgatus



dodecadienoate
(15120) S:
−0.03576
(6174) S:
0.012225
(15073) G:
0.008508


(12:2)*

Firmicutes



Clostridium sp



Oscillibacter





bacterium


CAG 265



CAG 114


1-palmitoyl-2-
(4936) S:
−0.02797
(15233) G:
−0.02551
(1790) S:
−0.02175


palmitoleoyl-

Roseburia



Firmicutes



Odoribacter



GPC

hominis


unclassified


splanchnicus



(16:0/16:1)*


2-
(4582) S:
−0.05742
(15342) S:
0.054321
(9340) F:
−0.03421


arachidonoylglycerol

Dorea



Faecalibacterium


Rhodospirillaceae


(20:4)

longicatena



prausnitzii



sphingomyelin
(4714) S:
−0.07138
(4826) S:
0.030292
(6148) F:
0.027858


(d18:1/25:0,

Clostridium sp



Blautia sp


Peptostrep-


d19:0/24:1,




tococcaceae


d20:1/23:0,


d19:1/24:0)*


1-palmitoyl-2-
(1862) S:
0.03076
(1786) S:
0.028072
(1948) S:
0.019686


docosahexaenoyl-

Bacteroides



Butyricimonas



Parabacteroides



GPC

finegoldii



synergistica



johnsonii



(16:0/22:6)


Fibrinopeptide
(4342) U:
−0.03571
(5045) S:
−0.0354
(17241) S:
−0.03458


A (7-16)*
Unknown


Eubacterium



Bifidobacterium







ventriosum



catenulatum



N6-
(4834) G:
−0.0168
(15154) F:
−0.01297
(6750) S:
0.010781


carbamoylthre-

Blautia


Clostridiales


Clostridium sp



onyladenosine


unclassified


glycohyocholate
(5843) S:
−0.04941
(15317) S:
0.048986
(4705) S:
−0.04526




Allisonella



Faecalibacterium



Clostridium





histaminiformans


sp CAG 82

sp CAG







43


N-
(4779) S:
−0.05561
(6174) S:
0.037775
(1790) S:
0.031518


oleoyltaurine

Clostridium sp



Clostridium sp



Odoribacter






CAG 265


splanchnicus



X - 11593
(4644) S:
−0.0252
(1790) S:
−0.01633
(8002) S:
0.013312




Clostridium sp



Odoribacter



Streptococcus




CAG 62


splanchnicus



thermophilus



phenyllactate
(14424) G:
0.032886
(15146) F:
0.022813
(2290) F:
−0.02269


(PLA)

Collinsella


Clostridiales

Rikenellaceae





unclassified


beta-
(5087) S:
0.026445
(17256) S:
−0.02453
(4871) S:
0.024255


citrylglutamate

Eubacterium



Bifidobacterium



Ruminococcus sp




sp CAG 86


bifidum



X - 14314
(14861) U:
0.018415
(6179) G:
0.016682
(5087) S:
0.015524



Unknown


Clostridium



Eubacterium








sp CAG







86


creatine
(5785) S:
0.033942
(9283) S:
−0.03123
(15051) F:
−0.01673




Phascolarctobacterium



Sutterella


Clostridiales



sp


wadsworthensis


unclassified



CAG 266


arabitol/xylitol
(4648) G:
0.040273
(4532) S:
0.0356
(15054) F:
−0.0352




Roseburia



Eubacterium


Clostridiales






hallii


unclassified


uridine
(4714) S:
0.051311
(5045) S:
0.049398
(4261) G:
0.045529




Clostridium sp



Eubacterium



Blautia







ventriosum



ectoine
(15019) F:
0.043657
(4577) S:
0.030343
(15078) S:
−0.01206



Clostridiales


Coprococcus



Oscillibacter sp




unclassified


comes



X - 17653
(17244) S:
0.042806
(15266) G:
0.016781
(17237) S:
−0.01493




Bifidobacterium



Firmicutes



Bifidobacterium





adolescentis


unclassified


pseudocatenulatum



catechol
(14322) S:
0.070021
(4537) S:
−0.03782
(1877) S:
−0.02423


glucuronide

Eggerthella sp



Eubacterium



Bacteroides




CAG 209


hallii



caccae



X - 18887
(15318) S:
0.061995
(15315) G:
0.042437
(15132) S:
−0.02926




Faecalibacterium



Faecalibacterium



Flavonifractor





prausnitzii





plautii



eicosapentaenoylcholine
(9226) S:
0.139858
(4782) U:
−0.06037
(4771) G:
0.051517




Akkermansia


Unknown


Clostridium





muciniphila



oleate/vaccenate
(15073) G:
0.02365
(4804) S:
−0.01695
(13982) U:
0.015379


(18:1)

Oscillibacter



Blautia sp


Unknown


N-
(8007) S:
0.021658
(15318) S:
0.019103
(4804) S:
−0.0164


acetylneuraminate

Streptococcus



Faecalibacterium



Blautia sp





salivarius



prausnitzii



X - 16576
(4842) G:
0.027401
(1830) S:
0.020524
(14507) G:
0.01622




Blautia



Bacteroides



Collinsella







stercoris



X - 21839
(4953) S:
0.035652
(1812) S:
0.028987
(15369) S:
0.024946




Roseburia sp



Bacteroides



Faecalibacterium




CAG 182


massiliensis


sp







CAG 74


1-palmitoyl-2-
(15216) F:
−0.05724
(4422) S:
−0.03299
(1790) S:
−0.03035


gamma-
Clostridiales


Ruminococcus



Odoribacter



linolenoyl-GPC
unclassified


callidus



splanchnicus



(16:0/18:3n6)*


2-
(1965) S:
−0.02435
(5803) S:
0.017444
(5089) S:
0.01367


aminoheptanoate

Bacteroides



Dialister sp



Eubacterium




sp CAG 20

CAG 357

sp CAG







38


palmitoyl
(15395) U:
0.024214
(4670) S:
0.018061
(15154) F:
0.017628


sphingomyelin
Unknown


Coprococcus


Clostridiales


(d18:1/16:0)



catus


unclassified


nervonoylcarnitine
(4828) S:
0.076953
(6139) G:
0.063631
(15373) F:
−0.04745


(C24:1)*

Blautia sp



Intestinibacter


Ruminococcaceae


X - 24812
(15154) F:
0.060738
(15332) S:
0.046498
(15322) S:
0.040435



Clostridiales


Faecalibacterium



Faecalibacterium




unclassified


prausnitzii



prausnitzii



piperine
(4953) S:
0.04313
(4577) S:
0.022051
(1812) S:
0.02156




Roseburia sp



Coprococcus



Bacteroides




CAG 182


comes



massiliensis



chiro-inositol
(4960) G:
0.08841
(4961) G:
0.030103
(4714) S:
0.026816




Eubacterium



Eubacterium



Clostridium sp



X - 23974
(5082) S:
0.079081
(4882) S:
0.042061
(5045) S:
−0.03954




Eubacterium



Roseburia sp



Eubacterium





eligens


CAG 100


ventriosum



3-
(15154) F:
0.047145
(15028) G:
−0.02601
(14773) F:
−0.02444


methoxycatechol
Clostridiales


Firmicutes


Eggerthellaceae


sulfate (1)
unclassified

unclassified


N-trimethyl 5-
(1626) S:
−0.03739
(8002) S:
0.034481
(17278) S:
0.02913


aminovalerate

Prevotella



Streptococcus



Bifidobacterium





copri



thermophilus



animalis



glycochenodeoxycholate
(4829) S:
−0.03975
(4540) S:
−0.0345
(1867) S:
−0.03082


glucuronide (1)

Blautia sp



Anaerostipes



Bacteroides







hadrus



xylanisolvens



sphingomyelin
(14894) S:
0.037895
(5843) S:
−0.02739
(5082) S:
0.023923


(d18:1/20:1,

Anaeromassili



Allisonella



Eubacterium



d18:2/20:0)*

bacillus sp



histaminiformans



eligens




An250


X - 11470
(6750) S:
0.042303
(14894) S:
−0.03208
(17237) S:
−0.02299




Clostridium sp



Anaeromassili



Bifidobacterium







bacillus sp



pseudocatenulatum






An250


X - 21353
(4940) S:
0.027706
(14993) S:
0.016742
(15271) S:
−0.01657




Roseburia



Butyricicoccus



Ruthenibacterium





inulinivorans


sp


lactatiformans



X - 12472
(15073) G:
0.04229
(14992) G:
0.036848
(15089) S:
−0.02617




Oscillibacter



Butyricicoccus



Firmicutes









bacterium








CAG 83


X - 12456
(1782) G:
0.035023
(15265) S:
0.029642
(4447) S:
0.025897




Butyricimonas



Firmicutes



Eubacterium







bacterium


sp CAG





CAG 103

274


X - 13866
(17244) S:
−0.0256
(17256) S:
−0.0203
(17248) S:
−0.01956




Bifidobacterium



Bifidobacterium



Bifidobacterium





adolescentis



bifidum



longum



vanillactate
(15318) S:
0.116428
(4820) S:
−0.10834
(9283) S:
−0.0534




Faecalibacterium



Blautia sp



Sutterella





prausnitzii





wadsworthensis



X - 16580
(15236) G:
−0.04338
(14974) U:
0.035757
(14823) F:
0.032492




Firmicutes


Unknown

Eggerthellaceae



unclassified


X - 24329
(9226) S:
−0.03553
(8601) S:
−0.03325
(15342) S:
0.030059




Akkermansia



Candidatus



Faecalibacterium





muciniphila



Gastranaerophi-



prausnitzii







lalesbacterium






HUM 10


androsterone
(3964) U:
−0.02893
(4581) S:
0.026443
(4540) S:
−0.02591


glucuronide
Unknown


Dorea



Anaerostipes







longicatena



hadrus



hydroxyasparagine**
(15286) F:
−0.01919
(14894) S:
−0.0183
(4644) S:
−0.00988



Ruminococcaceae


Anaeromassili



Clostridium







bacillus sp


sp CAG





An250

62


X - 23680
(4816) S:
−0.05875
(15049) F:
0.037889
(4644) S:
−0.02805




Blautia sp


Clostridiales


Clostridium






unclassified

sp CAG







62


1-
(4871) S:
0.035893
(15216) F:
−0.03174
(1785) S:
0.028502


oleoylglycerol

Ruminococcus


Clostridiales


Butyricimonas



(18:1)
sp

unclassified

sp







An62


1-(1-enyl-
(5843) S:
−0.04398
(4782) U:
0.01852
(4540) S:
0.017006


palmitoyl)-2-

Allisonella


Unknown


Anaerostipes



palmitoleoyl-

histaminiformans





hadrus



GPC


(P-16:0/16:1)*


heneicosapentaenoate
(1862) S:
0.028959
(1830) S:
0.028546
(1934) S:
0.027349


(21:5n3)

Bacteroides



Bacteroides



Parabacteroides





finegoldii



stercoris



distasonis



N-palmitoyl-
(15267) G:
−0.07432
(4577) S:
0.043384
(15315) G:
−0.03035


heptadecasphingosine

Firmicutes



Coprococcus



Faecalibacterium



(d17:1/16:0)*
unclassified


comes



beta-alanine
(6179) G:
0.036483
(4303) S:
0.030644
(4868) S:
0.021474




Clostridium



Clostridium sp



Blautia sp






CAG 217


X - 21474
(4577) S:
0.071572
(1812) S:
0.070945
(4964) F:
0.06871




Coprococcus



Bacteroides


Eubacteriaceae




comes



massiliensis



2-
(3957) F:
−0.08473
(4782) U:
−0.07791
(15332) S:
0.065545


docosahexaenoylglycerol
Lachnospiraceae

Unknown


Faecalibacterium



(22:6)*





prausnitzii



margarate
(6174) S:
0.031011
(5111) S:
0.018587
(14823) F:
0.016009


(17:0)

Clostridium sp



Clostridium sp


Eggerthellaceae



CAG 265

CAG 127


1-ribosyl-
(4532) S:
0.033469
(10068) S:
−0.02988
(15299) G:
0.027021


imidazoleacetate*

Eubacterium



Escherichia



Gemmiger





hallii



coli



X - 21295
(15124) F:
−0.03467
(14963) S:
−0.03408
(15317) S:
−0.02242



Clostridiales


Anaerotruncus



Faecalibacterium




unclassified


colihominis


sp







CAG 82


cysteinylglycine
(4705) S:
0.050438
(4820) S:
−0.03788
(17256) S:
−0.02435


disulfide*

Clostridium sp



Blautia sp



Bifidobacterium




CAG 43




bifidum



tryptophan
(7044) S:
0.024669
(6148) F:
0.024094
(6179) G:
0.014877




Lactobacillus


Peptostrep-


Clostridium





acidophilus


tococcaceae


1-palmitoyl-2-
(4448) G:
0.024707
(4804) S:
−0.02467
(15385) U:
−0.02404


docosahexaenoyl-

Eubacterium



Blautia sp


Unknown


GPE


(16:0/22:6)*


S-
(4780) G:
−0.06198
(9226) S:
−0.06129
(5087) S:
0.049888


adenosylhomocysteine

Clostridium



Akkermansia



Eubacterium



(SAH)



muciniphila


sp CAG







86


X - 12206
(6754) S:
0.045905
(4804) S:
−0.04158
(14542) G:
−0.02963




Clostridium sp



Blautia sp



Collinsella



X - 18345
(6750) S:
0.04425
(4581) S:
0.0225
(6340) S:
0.021425




Clostridium sp



Dorea



Clostridium







longicatena


sp CAG







269


tauro-beta-
(4198) S:
0.059583
(6376) F:
0.044695
(4988) S:
0.037286


muricholate

Eubacterium


Clostridiaceae


Eisenbergiella





siraeum





tayi



phenylpyruvate
(14797) G:
−0.0131
(4829) S:
−0.00948
(14250) U:
−0.00898




Adlercreutzia



Blautia sp


Unknown


oleoyl
(1861) S:
0.025815
(17244) S:
−0.02307
(6174) S:
0.020522


ethanolamide

Bacteroides



Bifidobacterium



Clostridium





thetaiotaomicron



adolescentis


sp CAG







265


2,3-
(5121) S:
0.032593
(6179) G:
0.028257
(4940) S:
−0.0211


dihydroxyisovalerate

Clostridium sp



Clostridium



Roseburia




CAG 264




inulinivorans



X - 16964
(6367) F:
0.144376
(2318) S:
−0.08445
(15154) F:
0.067187



Clostridiaceae


Alistipes


Clostridiales






putredinis


unclassified


X - 12544
(14816) F:
0.070887
(14815) F:
0.028234
(1815) S:
−0.01229



Eggerthellaceae

Eggerthellaceae


Bacteroides









dorei



arachidate
(14974) U:
0.034997
(15073) G:
0.034994
(4826) S:
−0.02028


(20:0)
Unknown


Oscillibacter



Blautia sp



X - 17655
(14991) F:
0.028822
(1934) S:
−0.01445
(14853) S:
−0.01095



Clostridiaceae


Parabacteroides



Clostridium







distasonis



leptum



5alpha-
(15089) S:
−0.0453
(15216) F:
0.037816
(15106) S:
0.026238


pregnan-

Firmicutes


Clostridiales


Firmicutes



3beta,20alpha-

bacterium


unclassified


bacterium



diol disulfate
CAG 83



CAG 176


X - 15486
(4816) S:
−0.0387
(4540) S:
−0.03523
(4564) S:
0.022071




Blautia sp



Anaerostipes



Ruminococcus







hadrus



torques



3,7-
(14921) U:
0.072531
(4644) S:
−0.03999
(7044) S:
0.018543


dimethylurate
Unknown


Clostridium sp



Lactobacillus






CAG 62


acidophilus




















Top
Directional
Top
Directional






predictor
SHAP value
predictor
SHAP value
Microbiome
Microbiome



BIOCHEMICAL
#4
#4
#5
#5
Pearson R
p-value







X - 16124
(14807) S:
−0.02307
(1832) S:
−0.02073
0.797711
 5.83E−106





Gordonibacter



Bacteroides






pamelaeae



clarus




X - 11850
(15091) G:
0.074793
(15356) U:
0.050296
0.710316
3.80E−74





Oscillibacter


Unknown



X - 11843
(15356) U:
0.082472
(15091) G:
0.054271
0.666618
2.39E−62




Unknown


Oscillibacter




X - 12261
(14924) S:
0.040316
(15403) U:
0.022024
0.652153
7.18E−59





Firmicutes


Unknown





bacterium





CAG 137



X - 12013
(15356) U:
0.076366
(15090) S:
0.054881
0.648938
4.01E−58




Unknown


Oscillibacter







sp CAG






241



p-cresol-
(15216) F:
0.064128
(15236) G:
0.05707
0.634979
5.55E−55



glucuronide*
Clostridiales


Firmicutes





unclassified

unclassified



phenylacetylglutamine
(15271) S:
0.044504
(15236) G:
0.043223
0.605077
9.03E−49





Ruthenibacterium



Firmicutes






lactatiformans


unclassified



p-cresol sulfate
(15078) S:
0.050134
(15234) S:
0.048424
0.588586
1.28E−45





Oscillibacter



Firmicutes





sp


bacterium







CAG 124



phenylacetate
(15216) F:
0.051491
(15271) S:
0.03868
0.564933
2.12E−41




Clostridiales


Ruthenibacterium





unclassified


lactatiformans




X - 12816
(4648) G:
0.064364
(4933) S:
−0.06138
0.557555
3.75E−40





Roseburia



Eubacterium








rectale




quinate
(15295) G:
0.050549
(14921) U:
0.039571
0.550659
5.16E−39





Gemmiger


Unknown



1-methylurate
(14322) S:
0.079084
(1861) S:
−0.06844
0.543234
8.11E−38





Eggerthella sp



Bacteroides





CAG 209


thetaiotaomicron




X - 24811
(4537) S:
−0.08525
(4961) G:
0.072597
0.538398
4.70E−37





Eubacterium



Eubacterium






hallii




5-acetylamino-
(14322) S:
0.073067
(4714) S:
−0.05909
0.525784
4.03E−35



6-amino-3-

Eggerthella sp



Clostridium




methyluracil
CAG 209

sp



1-
(14322) S:
0.067591
(14993) S:
0.066044
0.522308
1.33E−34



methylxanthine

Eggerthella sp



Butyricicoccus





CAG 209

sp



1,7-
(4781) U:
0.059593
(4714) S:
−0.05708
0.516272
1.03E−33



dimethylurate
Unknown


Clostridium







sp



cinnamoylglycine
(15332) S:
−0.06417
(15234) S:
0.054896
0.507231
2.02E−32





Faecalibacterium



Firmicutes






prausnitzii



bacterium







CAG 124



X - 12126
(15031) S:
0.051916
(14306) S:
0.050913
0.506864
2.28E−32





Firmicutes



Clostridium






bacterium


sp CAG




CAG 110

138



1,3-
(15300) S:
−0.06312
(4960) G:
−0.06277
0.506154
2.87E−32



dimethylurate

Gemmiger



Eubacterium






formicilis




theophylline
(1861) S:
−0.06265
(4960) G:
−0.06141
0.500431
1.80E−31





Bacteroides



Eubacterium






thetaiotaomicron




paraxanthine
(4581) S:
0.118133
(4537) S:
−0.08627
0.494815
1.05E−30





Dorea



Eubacterium






longicatena



hallii




X - 21442
(15085) F:
0.072256
(4828) S:
0.072119
0.48591
1.63E−29




Clostridiales


Blautia sp





unclassified



1,3,7-
(15295) G:
0.081972
(1861) S:
−0.07762
0.481535
6.07E−29



trimethylurate

Gemmiger



Bacteroides








thetaiotaomicron




X - 12851
(6783) S:
−0.05044
(4659) S:
−0.04491
0.479291
1.18E−28





Catenibacterium



Clostridium





sp CAG

sp CAG




290

122



caffeine
(4781) U:
0.062834
(14921) U:
0.043182
0.479016
1.28E−28




Unknown

Unknown



X - 12216
(15356) U:
0.051318
(15271) S:
0.042737
0.47398
5.63E−28




Unknown


Ruthenibacterium








lactatiformans




N-acetyl-
(5090) S:
−0.0408
(2301) S:
0.035489
0.464233
9.20E−27



cadaverine

Clostridiales



Alistipes






bacterium



finegoldii





KLE1615



3-
(4782) U:
0.042376
(15234) S:
0.036809
0.463566
1.11E−26



phenylpropionate
Unknown


Firmicutes




(hydrocinnamate)



bacterium







CAG 124



glycolithocholate
(2318) S:
0.050941
(14807) S:
0.047899
0.45829
4.84E−26



sulfate*

Alistipes



Gordonibacter






putredinis



pamelaeae




phenylacetylcarnitine
(15244) F:
0.060642
(15385) U:
0.055794
0.452403
2.43E−25




Clostridiales

Unknown




unclassified



isoursodeoxycholate
(4749) S:
0.057406
(15054) F:
−0.0571
0.4503
4.28E−25





Clostridium sp


Clostridiales




CAG 7

unclassified



X - 12837
(15395) U:
0.080074
(5065) S:
0.055587
0.449837
4.85E−25




Unknown


Butyrivibrio








crossotus




X - 24410
(4882) S:
−0.05591
(14575) G:
0.04456
0.444238
2.16E−24





Roseburia sp



Collinsella





CAG 100



5alpha-
(15196) F:
0.05097
(1957) S:
0.049039
0.437404
1.28E−23



androstan-
Clostridiales


Bacteroides




3beta,17alpha-
unclassified

sp CAG



diol disulfate


144



X - 21821
(4608) S:
−0.05078
(4540) S:
0.050724
0.433422
3.56E−23





Ruminococcus



Anaerostipes






torques



hadrus




3-methyl
(14993) S:
0.044922
(15315) G:
−0.04294
0.430459
7.55E−23



catechol

Butyricicoccus



Faecalibacterium




sulfate (1)
sp



X - 17612
(15216) F:
0.057974
(3940) U:
0.057185
0.42642
2.08E−22




Clostridiales

Unknown




unclassified



3-
(15295) G:
0.052344
(4961) G:
0.047287
0.421956
6.25E−22



hydroxypyridine

Gemmiger



Eubacterium




sulfate



X - 23655
(4537) S:
−0.08553
(15295) G:
0.081629
0.419593
1.11E−21





Eubacterium



Gemmiger






hallii




X - 17351
(4608) S:
−0.04254
(4711) F:
0.041302
0.4165
2.35E−21





Ruminococcus


Clostridiaceae





torques




X - 23997
(3957) F:
0.079964
(15078) S:
0.063895
0.41358
4.74E−21




Lachnospiraceae


Oscillibacter







sp



4-
(15315) G:
−0.05002
(15295) G:
0.047266
0.413294
5.07E−21



ethylcatechol

Faecalibacterium



Gemmiger




sulfate



X - 13729
(14921) U:
0.037359
(5117) S:
−0.03645
0.412317
6.40E−21




Unknown


Coprococcus








eutactus




ursodeoxycholate
(6367) F:
−0.07313
(2325) S:
−0.06835
0.412223
6.54E−21




Clostridiaceae


Alistipes








indistinctus




taurolithocholate
(6148) F:
−0.03866
(4552) S:
0.0376
0.409121
1.36E−20



3-sulfate
Peptostrep-


Ruminococcus





tococcaceae

sp



X - 17469
(4705) S:
0.05358
(4938) S:
0.050476
0.405438
3.21E−20





Clostridium sp



Roseburia





CAG 43

sp



X - 23649
(15073) G:
0.122182
(4537) S:
−0.10713
0.405318
3.30E−20





Oscillibacter



Eubacterium








hallii




4-
(9226) S:
0.027671
(15271) S:
0.026973
0.403773
4.72E−20



methylcatechol

Akkermansia



Ruthenibacterium




sulfate

muciniphila



lactatiformans




indolepropionate
(4714) S:
0.046985
(4584) S:
−0.04353
0.402571
6.23E−20





Clostridium sp



Ruminococcus








gnavus




citraconate/
(4537) S:
−0.05218
(14322) S:
0.051828
0.397921
1.80E−19



glutaconate

Eubacterium



Eggerthella






hallii


sp CAG






209



X - 21752
(4782) U:
0.051235
(15467) S:
−0.03926
0.397715
1.88E−19




Unknown


Desulfovibrio








piger




X - 24243
(14624) G:
0.053135
(1867) S:
−0.05313
0.397632
1.92E−19





Collinsella



Bacteroides








xylanisolvens




1-(1-enyl-
(4782) U:
−0.05491
(15370) F:
−0.05439
0.390492
9.43E−19



palmitoyl)-2-
Unknown

Ruminococcaceae



arachidonoyl-



GPE



(P-16:0/20:4)*



5alpha-
(15350) U:
0.068515
(4940) S:
0.058214
0.388836
1.36E−18



androstan-
Unknown


Roseburia




3alpha,17beta-



inulinivorans




diol



monosulfate



(2)



hippurate
(15085) F:
0.037015
(4537) S:
−0.03406
0.388495
1.46E−18




Clostridiales


Eubacterium





unclassified


hallii




5-
(15403) U:
0.073587
(15236) G:
0.058161
0.383075
4.74E−18



hydroxyhexanoate
Unknown


Firmicutes







unclassified



indolin-2-one
(9283) S:
−0.03591
(14999) U:
0.033183
0.382394
5.49E−18





Sutterella


Unknown





wadsworthensis




X - 17145
(4960) G:
0.051903
(4933) S:
−0.0451
0.381408
6.77E−18





Eubacterium



Eubacterium








rectale




2,3-
(14921) U:
0.108246
(4960) G:
−0.10493
0.38057
8.10E−18



dihydroxypyridine
Unknown


Eubacterium




X - 17354
(4575) S:
−0.05936
(15236) G:
0.057047
0.376788
1.80E−17





Dorea



Firmicutes






formicigenerans


unclassified



glycodeoxycholate
(4659) S:
−0.08326
(15143) S:
0.083256
0.376238
2.03E−17





Clostridium sp



Flavonifractor





CAG 122

sp



X - 23639
(14322) S:
0.047223
(6962) S:
−0.04332
0.373791
3.38E−17





Eggerthella sp



Megamonas





CAG 209


funiformis




6-
(9283) S:
−0.03609
(14999) U:
0.035525
0.370164
7.15E−17



hydroxyindole

Sutterella


Unknown



sulfate

wadsworthensis




X - 12306
(6747) S:
−0.04692
(4581) S:
−0.04658
0.365101
2.01E−16





Clostridium



Dorea






spiroforme



longicatena




phenol sulfate
(15254) F:
−0.03453
(17244) S:
−0.02993
0.363893
2.56E−16




Clostridiales


Bifidobacterium





unclassified


adolescentis




5-acetylamino-
(4914) S:
−0.0518
(4537) S:
−0.04073
0.363687
2.67E−16



6-formylamino-

Clostridium sp



Eubacterium




3-methyluracil



hallii




1,5-
(5068) S:
−0.03729
(4924) G:
−0.03657
0.362851
3.15E−16



anhydroglucitol

Bacteroides



Roseburia




(1,5-AG)

pectinophilus





CAG 437



N-
(4779) S:
0.044408
(4540) S:
−0.04234
0.361999
3.74E−16



acetylcarnosine

Clostridium sp



Anaerostipes








hadrus




3-indoxyl
(14999) U:
0.031692
(14853) S:
0.029993
0.358283
7.82E−16



sulfate
Unknown


Clostridium








leptum




maleate
(14807) S:
−0.06106
(15295) G:
0.056944
0.355938
1.24E−15





Gordonibacter



Gemmiger






pamelaeae




L-urobilin
(14311) F:
0.047228
(14909) S:
0.043864
0.354595
1.61E−15




Clostridiaceae


Clostridium







sp CAG






169



X - 21286
(15234) S:
0.044237
(6140) S:
−0.0435
0.351181
3.11E−15





Firmicutes



Intestinibacter






bacterium



bartlettii





CAG 124



X - 12718
(15271) S:
0.050914
(5190) S:
0.049193
0.350751
3.38E−15





Ruthenibacterium



Firmicutes






lactatiformans



bacterium







CAG 102



carotene diol
(4705) S:
−0.06239
(4581) S:
−0.04134
0.350531
3.53E−15



(2)

Clostridium sp



Dorea





CAG 43


longicatena




X - 21310
(4581) S:
0.04046
(6754) S:
−0.03592
0.349667
4.16E−15





Dorea



Clostridium






longicatena


sp



X - 14662
(4862) S:
0.036385
(4925) S:
0.036061
0.346125
8.16E−15





Blautia sp



Roseburia





CAG 257


faecis




glycoursodeoxycholate
(4552) S:
−0.04884
(9226) S:
−0.0399
0.343447
1.35E−14





Ruminococcus



Akkermansia





sp


muciniphila




X - 12283
(4940) S:
−0.04039
(14861) U:
0.03973
0.342573
1.59E−14





Roseburia


Unknown





inulinivorans




X - 11315
(4651) S:
0.036928
(4964) F:
0.03536
0.339457
2.83E−14





Clostridium sp


Eubacteriaceae




CAG 230



trigonelline
(1861) S:
−0.0463
(14921) U:
0.034628
0.338307
3.50E−14



(N′-

Bacteroides


Unknown



methylnicotinate)

thetaiotaomicron




X - 16654
(9347) S:
0.037811
(15322) S:
−0.03683
0.338005
3.70E−14





Azospirillum



Faecalibacterium





sp CAG 260


prausnitzii




X - 22162
(15081) F:
0.046343
(15369) S:
0.045969
0.336432
4.93E−14




Clostridiales


Faecalibacterium





unclassified

sp






CAG 74



X - 12329
(4537) S:
−0.07682
(4961) G:
0.066374
0.336052
5.28E−14





Eubacterium



Eubacterium






hallii




ergothioneine
(4714) S:
0.04008
(4581) S:
−0.03351
0.333717
8.07E−14





Clostridium sp



Dorea








longicatena




anthranilate
(4706) F:
−0.05931
(1814) S:
−0.04385
0.331065
1.30E−13




Clostridiaceae


Bacteroides








vulgatus




cholate
(5190) S:
−0.03369
(6140) S:
0.026256
0.327602
2.40E−13





Firmicutes



Intestinibacter






bacterium



bartlettii





CAG 102



4-
(15229) F:
0.041976
(4909) G:
0.041059
0.327393
2.49E−13



hydroxycoumarin
Clostridiales


Clostridium





unclassified



X - 11880
(4581) S:
0.046825
(15271) S:
−0.03851
0.326318
3.01E−13





Dorea



Ruthenibacterium






longicatena



lactatiformans




X - 22509
(15369) S:
0.038586
(15054) F:
0.034081
0.320452
8.35E−13





Faecalibacterium


Clostridiales




sp CAG 74

unclassified



1-lignoceroyl-
(15332) S:
−0.0409
(14991) F:
0.040444
0.320154
8.79E−13



GPC (24:0)

Faecalibacterium


Clostridiaceae





prausnitzii




N2,N5-
(14501) S:
−0.04328
(4714) S:
0.041264
0.318295
1.21E−12



diacetylornithine

Collinsella



Clostridium






aerofaciens


sp



3-methyl
(4537) S:
−0.07471
(15154) F:
0.069279
0.314349
2.36E−12



catechol

Eubacterium


Clostridiales



sulfate (2)

hallii


unclassified



glutarate
(4564) S:
0.031254
(4782) U:
−0.03113
0.313428
2.75E−12



(pentanedioate)

Ruminococcus


Unknown





torques




X - 18249
(4834) G:
−0.04302
(4826) S:
0.042088
0.311953
3.52E−12





Blautia



Blautia sp




methyl
(1963) S:
−0.0403
(15132) S:
−0.03755
0.309776
5.05E−12



glucopyranoside

Coprobacter



Flavonifractor




(alpha +

fastidiosus



plautii




beta)



7-
(15342) S:
0.048362
(2295) S:
−0.04184
0.307995
6.77E−12



methylguanine

Faecalibacterium



Alistipes






prausnitzii



shahii




X - 11308
(17244) S:
0.05329
(9226) S:
−0.04105
0.307272
7.62E−12





Bifidobacterium



Akkermansia






adolescentis



muciniphila




X - 12738
(15154) F:
0.068911
(14861) U:
0.064852
0.302725
1.59E−11




Clostridiales

Unknown




unclassified



gentisate
(4714) S:
0.037631
(15132) S:
−0.03215
0.300645
2.22E−11





Clostridium sp



Flavonifractor








plautii




carotene diol
(4816) S:
0.047076
(4564) S:
−0.04206
0.295736
4.83E−11



(1)

Blautia sp



Ruminococcus








torques




5alpha-
(15332) S:
0.068124
(5736) S:
0.052653
0.291715
9.02E−11



androstan-

Faecalibacterium



Acidaminococcus




3alpha,17beta-

prausnitzii



intestini




diol disulfate



X - 11372
(3964) U:
−0.03458
(4581) S:
0.033513
0.290936
1.02E−10




Unknown


Dorea








longicatena




X - 17185
(4961) G:
0.057189
(14861) U:
0.046666
0.29084
1.03E−10





Eubacterium


Unknown



X - 23652
(4925) S:
0.028414
(2303) S:
−0.02823
0.290612
1.07E−10





Roseburia



Alistipes






faecis



finegoldii




X - 18240
(1798) S:
0.041467
(6140) S:
−0.04124
0.289972
1.18E−10





Paraprevotella



Intestinibacter






clara



bartlettii




X - 18914
(6139) G:
−0.04465
(5075) S:
0.043974
0.289125
1.34E−10





Intestinibacter



Lachnospira








pectinoschiza




X - 22520
(6962) S:
0.057831
(2295) S:
−0.05649
0.287183
1.80E−10





Megamonas



Alistipes






funiformis



shahii




3-(3-
(6359) F:
0.047664
(4771) G:
−0.0456
0.286363
2.04E−10



hydroxyphe-
Clostridiaceae


Clostridium




nyl)propionate



dimethyl
(4669) G:
0.043094
(8010) S:
−0.03642
0.286074
2.13E−10



sulfoxide

Coprococcus



Streptococcus




(DMSO)



salivarius




threonate
(6367) F:
0.042789
(4564) S:
−0.03099
0.283418
3.17E−10




Clostridiaceae


Ruminococcus








torques




X - 12730
(15073) G:
0.061366
(15154) F:
0.058999
0.283413
3.17E−10





Oscillibacter


Clostridiales






unclassified



X - 19434
(1845) S:
−0.02893
(6174) S:
0.025256
0.281736
4.07E−10





Bacteroides



Clostridium






intestinalis


sp CAG




CAG 315

265



X - 24948
(15317) S:
0.038143
(3964) U:
−0.03749
0.281466
4.24E−10





Faecalibacterium


Unknown




sp CAG 82



1-(1-enyl-
(4557) S:
0.057641
(4712) F:
−0.05646
0.280904
4.61E−10



stearoyl)-2-

Ruminococcus


Clostridiaceae



arachidonoyl-

lactaris




GPE



(P-18:0/20:4)*



X - 23659
(14992) G:
0.045353
(6367) F:
0.036691
0.280788
4.69E−10





Butyricicoccus


Clostridiaceae



5alpha-
(15315) G:
0.046046
(4581) S:
0.043609
0.280509
4.88E−10



androstan-

Faecalibacterium



Dorea




3alpha,17alpha-



longicatena




diol



monosulfate



X - 21339
(5736) S:
0.031775
(4581) S:
0.031682
0.280474
4.91E−10





Acidaminococcus



Dorea






intestini



longicatena




4-
(3940) U:
0.024509
(4964) F:
0.021158
0.277385
7.72E−10



ethylphenylsulfate
Unknown

Eubacteriaceae



gamma-
(6754) S:
−0.06004
(8002) S:
0.057386
0.27641
8.89E−10



glutamylvaline

Clostridium sp



Streptococcus








thermophilus




beta-
(4714) S:
0.033087
(4750) G:
−0.02983
0.276078
9.33E−10



cryptoxanthin

Clostridium sp



Clostridium




sphingomyelin
(4893) S:
−0.03112
(15154) F:
0.025029
0.274995
1.09E−09



(d18:1/14:0,

Clostridium sp


Clostridiales



d16:1/16:0)*


unclassified



X - 21736
(15132) S:
0.043581
(15452) S:
0.036154
0.274785
1.12E−09





Flavonifractor



Bilophila






plautii


sp 4 1 30



O-methylcatechol
(4957) F:
0.052341
(15315) G:
−0.03872
0.273918
1.27E−09



sulfate
Eubacteriaceae


Faecalibacterium




N-(2-
(4537) S:
−0.05892
(15073) G:
0.047175
0.272049
1.66E−09



furoyl)glycine

Eubacterium



Oscillibacter






hallii




sphingomyelin
(15154) F:
0.043901
(15271) S:
0.034396
0.270071
2.20E−09



(d17:2/16:0,
Clostridiales


Ruthenibacterium




d18:2/15:0)*
unclassified


lactatiformans




3-
(4925) S:
0.024555
(4643) S:
−0.02344
0.268147
2.89E−09



methylhistidine

Roseburia



Clostridium






faecis


sp CAG






167



X - 13835
(2303) S:
−0.03515
(4705) S:
0.031703
0.26789
2.99E−09





Alistipes



Clostridium






finegoldii


sp CAG






43



propionylcarnitine
(2303) S:
−0.0446
(1626) S:
0.041882
0.266513
3.63E−09



(C3)

Alistipes



Prevotella






finegoldii



copri




3-
(15028) G:
−0.04153
(14322) S:
0.038473
0.26643
3.67E−09



hydroxyhippurate

Firmicutes



Eggerthella





unclassified

sp CAG






209



X - 11640
(15196) F:
0.026176
(15369) S:
0.019358
0.264807
4.60E−09




Clostridiales


Faecalibacterium sp





unclassified

CAG 74



3-acetylphenol
(14807) S:
−0.08154
(15154) F:
0.069366
0.259657
9.30E−09



sulfate

Gordonibacter


Clostridiales





pamelaeae


unclassified



myo-inositol
(6367) F:
0.042731
(4810) S:
0.041682
0.257234
1.29E−08




Clostridiaceae


Blautia sp







CAG 237



sphingomyelin
(5089) S:
−0.03696
(5082) S:
0.035874
0.255615
1.60E−08



(d18:2/23:1)*

Eubacterium



Eubacterium





sp CAG 38


eligens




2-naphthol
(1949) S:
0.054633
(4581) S:
0.040863
0.255159
1.70E−08



sulfate

Parabacteroides



Dorea






merdae



longicatena




N-delta-
(15291) F:
0.024447
(4575) S:
−0.02209
0.254419
1.88E−08



acetylornithine
Ruminococcaceae


Dorea








formicigenerans




benzoylcarnitine*
(6376) F:
0.035481
(6334) F:
0.028441
0.254127
1.95E−08




Clostridiaceae

Clostridiaceae



X - 24473
(4964) F:
0.044069
(4826) S:
−0.04362
0.253631
2.08E−08




Eubacteriaceae


Blautia sp




X - 11381
(14861) U:
0.032022
(4959) S:
0.031907
0.253541
2.11E−08




Unknown


Eubacterium








ramulus




X - 22834
(15286) F:
−0.05354
(4749) S:
0.039812
0.252464
2.43E−08




Ruminococcaceae


Clostridium







sp CAG






7



oxalate
(6367) F:
0.044268
(10068) S:
−0.03791
0.252363
2.46E−08



(ethanedioate)
Clostridiaceae


Escherichia








coli




alpha-
(15373) F:
−0.03805
(4925) S:
0.033112
0.250964
2.95E−08



hydroxyisovalerate
Ruminococcaceae


Roseburia








faecis




X - 24693
(4987) S:
−0.04606
(1812) S:
0.043868
0.2507
3.06E−08





Clostridium sp



Bacteroides





KLE 1755


massiliensis




X - 24736
(4714) S:
0.079137
(4575) S:
−0.07629
0.246434
5.30E−08





Clostridium sp



Dorea








formicigenerans




1H-indole-7-
(15091) G:
0.056908
(4564) S:
0.030947
0.24595
5.64E−08



acetic acid

Oscillibacter



Ruminococcus








torques




urate
(1814) S:
0.034955
(1815) S:
−0.03475
0.244634
6.67E−08





Bacteroides



Bacteroides






vulgatus



dorei




taurodeoxycholate
(5121) S:
−0.05448
(15143) S:
0.043859
0.244395
6.87E−08





Clostridium sp



Flavonifractor





CAG 264

sp



sphingomyelin
(4581) S:
−0.03447
(4552) S:
0.034054
0.243856
7.36E−08



(d18:2/14:0,

Dorea



Ruminococcus




d18:1/14:)*

longicatena


sp



glycolithocholate
(6328) S:
0.027553
(6140) S:
−0.02364
0.242929
8.27E−08





Clostridium sp



Intestinibacter





CAG 492


bartlettii




X - 15728
(4828) S:
0.038362
(4782) U:
0.036873
0.240255
1.16E−07





Blautia sp


Unknown



creatinine
(5082) S:
−0.03098
(15216) F:
−0.02912
0.239951
1.20E−07





Eubacterium


Clostridiales





eligens


unclassified



X - 15461
(14823) F:
0.032212
(14999) U:
0.028796
0.239102
1.33E−07




Eggerthellaceae

Unknown



X - 12822
(15154) F:
0.032025
(4706) F:
0.031506
0.238793
1.39E−07




Clostridiales

Clostridiaceae




unclassified



4-allylphenol
(15342) S:
−0.04237
(4816) S:
0.039765
0.236489
1.84E−07



sulfate

Faecalibacterium



Blautia sp






prausnitzii




X - 23782
(15238) S:
−0.03371
(4905) F:
0.029554
0.23624
1.90E−07





Firmicutes


Clostridiaceae





bacterium





CAG 170



X - 12212
(1934) S:
−0.03851
(4826) S:
−0.03332
0.234166
2.44E−07





Parabacteroides



Blautia sp






distasonis




tryptophan
(15342) S:
0.034674
(4953) S:
0.033559
0.233846
2.54E−07



betaine

Faecalibacterium



Roseburia






prausnitzii


sp CAG






182



I-urobilinogen
(15369) S:
−0.02395
(4882) S:
−0.02222
0.232742
2.90E−07





Faecalibacterium



Roseburia





sp CAG 74

sp CAG






100



sphingomyelin
(15271) S:
0.025408
(4704) F:
−0.02446
0.232659
2.93E−07



(d18:1/19:0,

Ruthenibacterium


Clostridiaceae



d19:1/18:0)*

lactatiformans




3-carboxy-4-
(17256) S:
−0.02289
(4303) S:
0.02171
0.232549
2.97E−07



methyl-5-

Bifidobacterium



Clostridium




pentyl-2-

bifidum


sp CAG



furanpropionate


217



(3-CMPFP)**



X - 16935
(10130) S:
−0.04385
(5736) S:
0.043701
0.232166
3.11E−07





Enterobacter



Acidaminococcus






cloacae



intestini




sphingomyelin
(15154) F:
0.031681
(4670) S:
0.03152
0.231765
3.26E−07



(d17:1/16:0,
Clostridiales


Coprococcus




d18:1/15:0,
unclassified


catus




d16:1/17:0)*



X - 21829
(14992) G:
0.038018
(15236) G:
−0.03395
0.231762
3.26E−07





Butyricicoccus



Firmicutes







unclassified



cystine
(4810) S:
0.02337
(6783) S:
0.015823
0.231219
3.48E−07





Blautia sp



Catenibacterium





CAG 237

sp






CAG 290



X - 24475
(17244) S:
−0.0296
(4960) G:
0.026498
0.23117
3.50E−07





Bifidobacterium



Eubacterium






adolescentis




1-stearoyl-2-
(15225) F:
−0.02058
(15332) S:
0.019803
0.229344
4.35E−07



docosahexaenoyl-GPC
Clostridiales


Faecalibacterium




(18:0/22:6)
unclassified


prausnitzii




X - 24951
(4951) S:
0.03707
(4940) S:
0.028743
0.229246
4.41E−07





Roseburia



Roseburia






intestinalis



inulinivorans




X - 24949
(9226) S:
−0.05326
(14853) S:
−0.04316
0.228719
4.69E−07





Akkermansia



Clostridium






muciniphila



leptum




2-
(4951) S:
0.023966
(4834) G:
−0.02366
0.227499
5.41E−07



hydroxylaurate

Roseburia



Blautia






intestinalis




X - 12063
(14027) U:
−0.03582
(4938) S:
0.033338
0.226197
6.31E−07




Unknown


Roseburia







sp



2-hydroxy-3-
(4951) S:
0.024429
(15390) U:
−0.02315
0.225874
6.55E−07



methylvalerate

Roseburia


Unknown





intestinalis




argininate*
(4826) S:
−0.03779
(14454) G:
−0.02669
0.223051
9.09E−07





Blautia sp



Collinsella




indoleacetate
(14909) S:
0.021906
(15254) F:
0.021898
0.222408
9.78E−07





Clostridium sp


Clostridiales




CAG 169

unclassified



ceramide
(4670) S:
0.034903
(1862) S:
0.031833
0.222142
1.01E−06



(d18:1/14:0,

Coprococcus



Bacteroides




d16:1/16:0)*

catus



finegoldii




5alpha-
(4779) S:
0.039677
(4940) S:
0.03937
0.220249
1.25E−06



androstan-

Clostridium sp



Roseburia




3beta,17beta-



inulinivorans




diol disulfate



citrulline
(5083) G:
0.03285
(14899) U:
0.028835
0.220015
1.29E−06





Eubacterium


Unknown



1-methyl-5-
(6754) S:
−0.03983
(15324) G:
0.032531
0.219473
1.37E−06



imidazoleacetate

Clostridium sp



Faecalibacterium




X - 12263
(9333) S:
−0.04652
(15225) F:
−0.03552
0.218947
1.45E−06





Acetobacter


Clostridiales




sp CAG 267

unclassified



taurodeoxycholic
(5785) S:
0.034277
(15090) S:
0.033016
0.21761
1.69E−06



acid 3-

Phascolarctobacterium



Oscillibacter




sulfate
sp

sp CAG




CAG 266

241



X - 12543
(15031) S:
−0.03218
(6359) F:
0.031796
0.216865
1.83E−06





Firmicutes


Clostridiaceae





bacterium





CAG 110



sphingomyelin
(5736) S:
−0.04201
(15229) F:
−0.02633
0.215385
2.16E−06



(d18:2/21:0,

Acidaminococcus


Clostridiales



d16:2/23:0)*

intestini


unclassified



N-
(15317) S:
0.013762
(5843) S:
−0.00948
0.215264
2.19E−06



acetylmethionine

Faecalibacterium



Allisonella





sp CAG 82


histaminiformans




X - 18901
(15164) F:
0.018623
(14575) G:
−0.01604
0.213683
2.61E−06




Clostridiales


Collinsella





unclassified



1-
(1862) S:
0.034608
(14909) S:
0.028404
0.213441
2.68E−06



palmitoylglycerol

Bacteroides



Clostridium




(16:0)

finegoldii


sp CAG






169



X - 23587
(4581) S:
0.038574
(17248) S:
−0.03613
0.212559
2.96E−06





Dorea



Bifidobacterium






longicatena



longum




androstenediol
(15154) F:
−0.02695
(3964) U:
−0.02694
0.21083
3.57E−06



(3beta,17beta)
Clostridiales

Unknown



disulfate (2)
unclassified



tartronate
(4931) G:
0.03789
(14909) S:
−0.032
0.210444
3.72E−06



(hydroxymalonate)

Lachnospiraceae



Clostridium





unclassified

sp CAG






169



X - 24352
(5087) S:
0.026932
(1872) S:
−0.0223
0.210313
3.78E−06





Eubacterium



Bacteroides





sp CAG 86


ovatus




X - 23654
(1790) S:
−0.03973
(4705) S:
0.038681
0.20987
3.96E−06





Odoribacter



Clostridium






splanchnicus


sp CAG






43



dihydrocaffeate
(14322) S:
0.039202
(1872) S:
−0.03677
0.209085
4.31E−06



sulfate (2)

Eggerthella sp



Bacteroides





CAG 209


ovatus




sphingomyelin
(4670) S:
0.024397
(15271) S:
0.020911
0.207739
4.98E−06



(d18:1/17:0,

Coprococcus



Ruthenibacterium




d17:1/18:0,

catus



lactatiformans




d19:1/16:0)



3-carboxy-4-
(1798) S:
−0.03169
(6141) F:
0.029622
0.207713
5.00E−06



methyl-5-

Paraprevotella


Peptostrep-



propyl-2-

clara


tococcaceae



furanpropanoate



(CMPF)



X - 18606
(15078) S:
−0.02597
(14993) S:
0.017171
0.207705
5.00E−06





Oscillibacter



Butyricicoccus sp





sp



2,3-dihydroxy-
(1798) S:
0.033106
(15131) F:
−0.03174
0.207139
5.31E−06



2-methylbutyrate

Paraprevotella


Clostridiales





clara


unclassified



X - 12221
(5083) G:
0.027656
(4648) G:
0.026516
0.206925
5.44E−06





Eubacterium



Roseburia




X - 14082
(4957) F:
0.040458
(14921) U:
0.034511
0.206394
5.75E−06




Eubacteriaceae

Unknown



X - 13703
(15295) G:
0.032892
(1798) S:
0.03269
0.206145
5.91E−06





Gemmiger



Paraprevotella








clara




X - 17676
(4831) F:
0.042912
(14322) S:
0.030579
0.204984
6.68E−06




Lachnospiraceae


Eggerthella







sp CAG






209



X - 24801
(1862) S:
0.027108
(4957) F:
0.026568
0.204124
7.31E−06





Bacteroides


Eubacteriaceae





finegoldii




N-
(5089) S:
0.022055
(6367) F:
0.020723
0.203976
7.43E−06



methylproline

Eubacterium


Clostridiaceae




sp CAG 38



1-(1-enyl-
(6936) S:
0.039081
(6753) G:
−0.03142
0.202913
8.30E−06



palmitoyl)-2-

Veillonella



Clostridium




linoleoyl-GPE

atypica




(P-16:0/18:2)*



sphingomyelin
(4670) S:
0.04117
(15154) F:
0.040539
0.20203
9.11E−06



(d18:2/23:0,

Coprococcus


Clostridiales



d18:1/23:1,

catus


unclassified



d17:1/24:1)*



eicosenedioate
(7061) S:
0.028304
(4581) S:
0.028238
0.200614
1.05E−05



(C20:1-DC)*

Lactobacillus



Dorea






ruminis



longicatena




picolinoylglycine
(14861) U:
0.056804
(6939) S:
0.046771
0.200551
1.06E−05




Unknown


Veillonella








parvula




5alpha-
(4810) S:
−0.03418
(15233) G:
−0.03312
0.198992
1.25E−05



androstan-

Blautia sp



Firmicutes




3alpha,17beta-
CAG 237

unclassified



diol



monosulfate



(1)



S-
(15326) G:
0.027465
(5045) S:
−0.02684
0.198907
1.26E−05



methylmethionine

Faecalibacterium



Eubacterium








ventriosum




glycocholate
(1786) S:
0.047149
(15271) S:
0.042933
0.198808
1.27E−05



glucuronide (1)

Butyricimonas



Ruthenibacterium






synergistica



lactatiformans




1-
(1862) S:
0.048654
(17256) S:
−0.04802
0.198734
1.28E−05



docosahexaenoylglycerol

Bacteroides



Bifidobacterium




(22:6)

finegoldii



bifidum




dodecanedioate
(1957) S:
0.029169
(15154) F:
0.022323
0.198302
1.34E−05





Bacteroides


Clostridiales




sp CAG 144

unclassified



androstenediol
(5082) S:
−0.03177
(4581) S:
0.028058
0.19818
1.35E−05



(3beta,17beta)

Eubacterium



Dorea




monosulfate

eligens



longicatena




(1)



X - 16087
(17256) S:
−0.03623
(14823) F:
0.028631
0.19514
1.84E−05





Bifidobacterium


Eggerthellaceae





bifidum




S-
(5089) S:
0.023913
(1872) S:
−0.02383
0.195008
1.87E−05



methylcysteine

Eubacterium



Bacteroides




sulfoxide
sp CAG 38


ovatus




X - 23314
(15326) G:
0.017728
(4608) S:
−0.01673
0.194917
1.89E−05





Faecalibacterium



Ruminococcus








torques




N1-
(6579) S:
−0.02147
(1784) G:
0.020539
0.19484
1.90E−05



methylinosine

Firmicutes



Butyricimonas






bacterium





CAG 313



isobutyrylcarnitine
(15244) F:
0.032305
(14992) G:
−0.0305
0.194473
1.97E−05



(C4)
Clostridiales


Butyricicoccus





unclassified



X - 12830
(15049) F:
0.027834
(2311) F:
0.027446
0.194473
1.97E−05




Clostridiales

Rikenellaceae




unclassified



pyroglutamine *
(4581) S:
0.013744
(15333) S:
0.01361
0.193215
2.24E−05





Dorea



Faecalibacterium






longicatena



prausnitzii




X - 11491
(15154) F:
−0.02839
(4914) S:
−0.02491
0.192206
2.47E−05




Clostridiales


Clostridium sp





unclassified



N-palmitoyl-
(1903) S:
0.03977
(15132) S:
0.033267
0.192123
2.49E−05



sphingosine

Bacteroides



Flavonifractor




(d18:1/16:0)

plebeius CAG



plautii





211



alpha-
(4940) S:
0.023169
(14909) S:
0.023168
0.1913
2.70E−05



hydroxyisocaproate

Roseburia



Clostridium






inulinivorans


sp CAG






169



X - 21410
(6783) S:
0.057503
(4844) S:
0.045175
0.191223
2.72E−05





Catenibacterium



Blautia





sp CAG


obeum





290



nonadecanoate
(6750) S:
0.026632
(15154) F:
0.015604
0.191167
2.74E−05



(19:0)

Clostridium sp


Clostridiales






unclassified



X - 11478
(6340) S:
−0.03414
(4882) S:
−0.03191
0.190014
3.07E−05





Clostridium sp



Roseburia





CAG 269

sp CAG






100



formiminoglutamate
(4714) S:
−0.03624
(1877) S:
0.030694
0.189092
3.36E−05





Clostridium sp



Bacteroides








caccae




X - 11378
(4581) S:
0.024786
(6139) G:
−0.02167
0.188939
3.41E−05





Dorea



Intestinibacter






longicatena




erucate
(14924) S:
−0.03415
(14992) G:
0.033553
0.188356
3.61E−05



(22:1n9)

Firmicutes



Butyricicoccus






bacterium





CAG 137



7-
(1832) S:
0.046219
(15154) F:
0.032325
0.186213
4.44E−05



methylxanthine

Bacteroides


Clostridiales





clarus


unclassified



3-
(4532) S:
0.051178
(1832) S:
0.036553
0.185837
4.60E−05



methylxanthine

Eubacterium



Bacteroides






hallii



clarus




7-alpha-
(2325) S:
−0.03875
(4705) S:
0.030587
0.185307
4.84E−05



hydroxy-3-oxo-

Alistipes



Clostridium




4-cholestenoate

indistinctus


sp CAG



(7-Hoca)


43



2-
(4933) S:
−0.03975
(7985) S:
0.037651
0.185133
4.92E−05



aminoadipate

Eubacterium



Lactococcus






rectale



lactis




N-
(4553) S:
0.017304
(5736) S:
−0.01705
0.184771
5.09E−05



acetylaspartate

Clostridium sp



Acidaminococcus




(NAA)



intestini




3-
(14823) F:
0.025517
(4964) F:
0.023516
0.184771
5.09E−05



methyladipate
Eggerthellaceae

Eubacteriaceae



gamma-
(15286) F:
−0.02981
(8767) U:
−0.02653
0.184717
5.12E−05



glutamylleucine
Ruminococcaceae

Unknown



X - 12101
(2301) S:
0.015415
(14992) G:
0.01372
0.18465
5.15E−05





Alistipes



Butyricicoccus






finegoldii




theobromine
(14921) U:
0.044583
(1832) S:
0.044038
0.184276
5.34E−05




Unknown


Bacteroides








clarus




1-
(6750) S:
0.028075
(9226) S:
−0.0266
0.182811
6.13E−05



methylhistidine

Clostridium sp



Akkermansia








muciniphila




trimethylamine
(4577) S:
0.022201
(15350) U:
0.0202
0.182751
6.17E−05



N-oxide

Coprococcus


Unknown





comes




X - 17654
(9226) S:
−0.02736
(4262) S:
0.026172
0.181994
6.62E−05





Akkermansia



Ruminococcus






muciniphila


sp



ximenoylcarnitine
(4828) S:
0.026637
(6276) S:
−0.02367
0.181408
7.00E−05



(C26:1)*

Blautia sp



Clostridium







sp CAG






245



glycosyl
(4540) S:
0.023968
(15073) G:
0.017841
0.180199
7.84E−05



ceramide

Anaerostipes



Oscillibacter




(d18:2/24:1,

hadrus




d18:1/24:2)*



tiglylcarnitine
(14909) S:
0.039971
(15332) S:
0.031338
0.180062
7.94E−05



(C5:1-DC)

Clostridium sp



Faecalibacterium





CAG 169


prausnitzii




isovalerylglycine
(4705) S:
−0.05482
(4651) S:
0.025388
0.179713
8.20E−05





Clostridium sp



Clostridium





CAG 43

sp CAG






230



glutamate
(7985) S:
0.022629
(4940) S:
0.017824
0.179328
8.50E−05





Lactococcus



Roseburia






lactis



inulinivorans




7-methylurate
(1861) S:
−0.04538
(5082) S:
−0.02823
0.179307
8.51E−05





Bacteroides



Eubacterium






thetaiotaomicron



eligens




2-
(15090) S:
0.038815
(4644) S:
−0.03569
0.179151
8.64E−05



methylbutyrylcarnitine

Oscillibacter



Clostridium




(C5)
sp CAG 241

sp CAG






62



X - 13844
(14921) U:
0.042185
(6747) S:
−0.042
0.179028
8.73E−05




Unknown


Clostridium








spiroforme




X - 12739
(4781) U:
−0.01699
(14992) G:
0.015071
0.178857
8.87E−05




Unknown


Butyricicoccus




androstenediol
(4882) S:
−0.0296
(8076) S:
−0.02816
0.178705
9.00E−05



(3alpha,

Roseburia sp



Streptococcus




17alpha)
CAG 100


parasanguinis




monosulfate



(2)



palmitoylcarnitine
(1862) S:
0.034849
(4940) S:
0.033225
0.178654
9.04E−05



(C16)

Bacteroides



Roseburia






finegoldii



inulinivorans




gamma-
(4571) S:
0.035643
(15326) G:
−0.03152
0.178576
9.11E−05



glutamyl-2-

Dorea sp CAG



Faecalibacterium




aminobutyrate
105



acisoga
(4960) G:
0.046059
(1877) S:
0.036021
0.178429
9.23E−05





Eubacterium



Bacteroides








caccae




1-(1-enyl-
(15271) S:
0.013828
(4540) S:
0.012286
0.177804
9.78E−05



palmitoyl)-2-

Ruthenibacterium



Anaerostipes




oleoyl-GPC

lactatiformans



hadrus




(P-16:0/18:1)*



catechol
(14861) U:
0.038348
(4826) S:
−0.02748
0.176921
0.000106



sulfate
Unknown


Blautia sp




3-
(15369) S:
−0.01833
(4342) U:
−0.01715
0.176838
0.000107



methylcytidine

Faecalibacterium


Unknown




sp CAG 74



X - 14939
(9226) S:
−0.02471
(6148) F:
−0.02155
0.176721
0.000108





Akkermansia


Peptostrep-





muciniphila


tococcaceae



pregnenetriol
(4564) S:
0.026935
(4750) G:
0.020832
0.176393
0.000111



disulfate*

Ruminococcus



Clostridium






torques




1-(1-enyl-
(5803) S:
−0.03699
(15350) U:
0.036086
0.176365
0.000112



stearoyl)-GPE

Dialister sp


Unknown



(P-18:0)*
CAG 357



carnitine
(1830) S:
0.029298
(6347) S:
0.025743
0.176034
0.000115





Bacteroides



Clostridium






stercoris


sp CAG






356



X - 11261
(4644) S:
−0.02467
(4651) S:
−0.01978
0.175416
0.000122





Clostridium sp



Clostridium





CAG 62

sp CAG






230



gamma-
(4930) F:
0.032433
(15286) F:
0.029908
0.174417
0.000133



glutamylcitrulline*
Lachnospiraceae

Ruminococcaceae



N-acetyl-
(15132) S:
−0.02791
(4804) S:
−0.0258
0.173841
0.00014



isoputreanine*

Flavonifractor



Blautia sp






plautii




5alpha-
(1814) S:
−0.02443
(15216) F:
0.017697
0.170402
0.00019



pregnan-

Bacteroides


Clostridiales



3beta,20alpha-

vulgatus


unclassified



diol



monosulfate



(2)



o-cresol sulfate
(1786) S:
0.046263
(4914) S:
−0.03874
0.169442
0.000207





Butyricimonas



Clostridium sp






synergistica




phenol
(4749) S:
0.022088
(15317) S:
−0.01923
0.169413
0.000208



glucuronide

Clostridium sp



Faecalibacterium





CAG 7

sp






CAG 82



leucine
(4564) S:
0.027402
(6148) F:
0.026545
0.169312
0.00021





Ruminococcus


Peptostrep-





torques


tococcaceae



X - 24544
(4581) S:
0.033527
(15315) G:
0.026809
0.169132
0.000213





Dorea



Faecalibacterium






longicatena




deoxycholate
(4552) S:
0.047973
(4659) S:
−0.0432
0.168661
0.000222





Ruminococcus



Clostridium





sp

sp CAG






122



2-methylserine
(2296) G:
−0.05513
(4425) S:
−0.03964
0.167244
0.000251





Alistipes



Ruminococcus







sp CAG






254



N-stearoyl-
(4714) S:
−0.02344
(15315) G:
−0.02246
0.16624
0.000274



sphingosine

Clostridium sp



Faecalibacterium




(d18:1/18:0)*



2-
(4272) S:
−0.02307
(8010) S:
−0.02054
0.166116
0.000277



aminobutyrate

Eubacterium



Streptococcus





sp CAG 581


salivarius




imidazole
(5089) S:
0.02396
(7985) S:
0.023451
0.165961
0.00028



propionate

Eubacterium



Lactococcus





sp CAG 38


lactis




sphingomyelin
(15266) G:
−0.023
(14894) S:
0.022525
0.165136
0.000301



(d18:1/22:1,

Firmicutes



Anaeroma




d18:2/22:0,
unclassified


ssilibacillus




d16:1/24:1)*


sp An250



X - 16944
(17244) S:
0.024286
(4816) S:
−0.02382
0.165071
0.000303





Bifidobacterium



Blautia sp






adolescentis




X - 24947
(1812) S:
0.033326
(6750) S:
0.022116
0.165035
0.000304





Bacteroides



Clostridium sp






massiliensis




indole-3-
(3926) U:
0.021648
(4909) G:
0.02119
0.164723
0.000312



carboxylic acid
Unknown


Clostridium




perfluorooctanesulfonic
(17256) S:
−0.03882
(4557) S:
0.038422
0.164055
0.00033



acid

Bifidobacterium



Ruminococcus




(PFOS)

bifidum



lactaris




4-
(2318) S:
−0.04684
(15093) F:
−0.04421
0.162374
0.000381



imidazoleacetate

Alistipes


Clostridiales





putredinis


unclassified



androstenediol
(15120) S:
−0.0329
(15233) G:
−0.03049
0.162146
0.000388



(3alpha,17alpha)

Firmicutes



Firmicutes




monosulfate

bacterium


unclassified



(3)
CAG 114



X - 11444
(4564) S:
0.02505
(1786) S:
0.024484
0.161915
0.000396





Ruminococcus



Butyricimonas






torques



synergistica




N-
(4037) S:
−0.04166
(4564) S:
−0.03847
0.161896
0.000396



methyltaurine

Clostridium



Ruminococcus






innocuum



torques




adipoylcarnitine
(15132) S:
0.02224
(4940) S:
0.021147
0.161523
0.000409



(C6-DC)

Flavonifractor



Roseburia






plautii



inulinivorans




X - 18922
(4540) S:
−0.03347
(6750) S:
0.029384
0.161302
0.000417





Anaerostipes



Clostridium sp






hadrus




dehydroisoand
(3964) U:
−0.03037
(8002) S:
−0.03031
0.160191
0.000457



rosterone
Unknown


Streptococcus




sulfate (DHEA-S)



thermophilus




perfluorooctanoate
(6141) F:
−0.03107
(4933) S:
−0.02892
0.160113
0.00046



(PFOA)
Peptostrep-


Eubacterium





tococcaceae


rectale




pregn steroid
(4581) S:
0.035894
(4940) S:
0.035555
0.159783
0.000473



monosulfate

Dorea



Roseburia




C21H34O5S*

longicatena



inulinivorans




X - 12798
(15340) G:
−0.03508
(6141) F:
−0.03128
0.159687
0.000477





Faecalibacterium


Peptostrep-






tococcaceae



gamma-
(14993) S:
0.021478
(5075) S:
0.02064
0.159665
0.000477



glutamylglutamate

Butyricicoccus



Lachnospira





sp


pectinoschiza




X - 13431
(6148) F:
0.034411
(5121) S:
0.032508
0.159559
0.000482




Peptostrep-


Clostridium





tococcaceae

sp CAG






264



caffeic acid
(14861) U:
0.026993
(3957) F:
−0.02187
0.159463
0.000486



sulfate
Unknown

Lachnospiraceae



4-
(4121) U:
0.026234
(4933) S:
−0.02563
0.159245
0.000494



hydroxychlorothalonil
Unknown


Eubacterium








rectale




X - 17685
(4447) S:
−0.04234
(4705) S:
−0.03739
0.1588
0.000513





Eubacterium



Clostridium





sp CAG 274

sp CAG






43



thyroxine
(4811) S:
0.021084
(5792) S:
−0.01971
0.158642
0.00052





Blautia



Phascolarctobacterium






obeum


sp CAG






207



sphingomyelin
(15333) S:
−0.02757
(14909) S:
−0.02458
0.158003
0.000548



(d18:2/24:1,

Faecalibacterium



Clostridium




d18:1/24:2)*

prausnitzii


sp CAG






169



Fibrinopeptide
(1786) S:
−0.03762
(5045) S:
−0.03299
0.157893
0.000553



A (3-16)**

Butyricimonas



Eubacterium






synergistica



ventriosum




pregnanediol-
(4644) S:
0.027471
(4532) S:
−0.02173
0.157596
0.000566



3-glucuronide

Clostridium sp



Eubacterium





CAG 62


hallii




N-
(4933) S:
−0.02409
(4571) S:
0.022616
0.156582
0.000615



acetylarginine

Eubacterium



Dorea sp






rectale


CAG 105



pregnen-diol
(4940) S:
0.029751
(6328) S:
−0.02762
0.15617
0.000636



disulfate

Roseburia



Clostridium




C21H34O8S2*

inulinivorans


sp CAG






492



1-oleoyl-2-
(5736) S:
−0.0273
(4540) S:
0.024308
0.156064
0.000642



docosahexaenoyl-

Acidaminococcus



Anaerostipes




GPC

intestini



hadrus




(18:1/22:6)*



3-(4-
(4581) S:
0.03186
(14899) U:
0.030331
0.155544
0.000669



hydroxyphenyl)lactate

Dorea


Unknown





longicatena




N-acetylglycine
(8601) S:
0.037245
(4816) S:
0.036725
0.155199
0.000688





Candidatus



Blautia sp






Gastranaerophilales






bacterium





HUM 10



propionylglycine
(4447) S:
−0.02902
(1626) S:
0.028992
0.15484
0.000709





Eubacterium



Prevotellacopri





sp CAG 274



taurine
(14894) S:
0.017189
(6173) S:
0.014888
0.154013
0.000757





Anaeromassili



Clostridium






bacillus sp


sp CAG




An250

221



glycine
(15216) F:
−0.03834
(7061) S:
0.036169
0.153227
0.000807



conjugate of
Clostridiales


Lactobacillus




C10H14O2 (1)*
unclassified


ruminis




sphingomyelin
(15373) F:
0.027889
(1934) S:
0.026974
0.153218
0.000807



(d18:1/21:0,
Ruminococcaceae


Parabacteroides




d17:1/22:0,



distasonis




d16:1/23:0)*



acetylcarnitine
(1812) S:
0.019671
(6750) S:
0.019283
0.152854
0.000831



(C2)

Bacteroides



Clostridium sp






massiliensis




X - 18899
(14992) G:
0.015723
(14993) S:
0.015681
0.152617
0.000847





Butyricicoccus



Butyricicoccus sp




X - 12906
(4930) F:
0.039781
(6376) F:
0.037775
0.152538
0.000852




Lachnospiraceae

Clostridiaceae



3-sulfo-L-
(15385) U:
0.033842
(4670) S:
−0.03222
0.152176
0.000877



alanine
Unknown


Coprococcus








catus




biliverdin
(15286) F:
0.02333
(14844) S:
−0.01748
0.152148
0.000879




Ruminococcaceae


Firmicutes








bacterium







CAG 94



1-linoleoyl-
(1786) S:
0.023611
(14400) G:
−0.01513
0.151872
0.000898



GPA (18:2)*

Butyricimonas



Collinsella






synergistica




3-hydroxy-2-
(15452) S:
0.025741
(4532) S:
−0.02396
0.151481
0.000927



ethylpropionate

Bilophila sp 4



Eubacterium





1 30


hallii




carotene diol
(8002) S:
−0.0236
(4810) S:
0.019618
0.151433
0.00093



(3)

Streptococcus



Blautia sp






thermophilus


CAG 237



X - 17325
(15154) F:
0.019388
(4940) S:
−0.019
0.149107
0.001117




Clostridiales


Roseburia





unclassified


inulinivorans




docosahexaenoate
(15295) G:
0.017696
(3957) F:
−0.01692
0.148078
0.001209



(DHA;

Gemmiger


Lachnospiraceae



22:6n3)



N6,N6,N6-
(2318) S:
−0.02004
(15332) S:
0.019503
0.147817
0.001234



trimethyllysine

Alistipes



Faecalibacterium






putredinis



prausnitzii




deoxycarnitine
(15346) G:
0.030403
(5083) G:
0.028617
0.147739
0.001242





Faecalibacterium



Eubacterium




2,3-dihydroxy-
(15216) F:
−0.02283
(1877) S:
0.0228
0.147388
0.001276



5-methylthio-
Clostridiales


Bacteroides




4-pentenoate
unclassified


caccae




(DMTPA)*



arabonate/xylonate
(4961) G:
0.022231
(4608) S:
−0.02199
0.146798
0.001335





Eubacterium



Ruminococcus








torques




X - 11852
(4893) S:
0.017806
(4957) F:
0.01425
0.146358
0.001381





Clostridium sp


Eubacteriaceae



urea
(15078) S:
−0.03091
(5190) S:
0.02188
0.146356
0.001381





Oscillibacter



Firmicutes





sp


bacterium







CAG 102



indoleacetylglutamine
(4447) S:
−0.03378
(4749) S:
−0.031
0.145985
0.001421





Eubacterium



Clostridium





sp CAG 274

sp CAG






7



vanillylmandelate
(9262) S:
−0.01662
(15318) S:
0.013687
0.145053
0.001525



(VMA)

Burkholderiales



Faecalibacterium






bacterium



prausnitzii





1 1 47



X - 13255
(17239) S:
0.046643
(4961) G:
0.042712
0.144663
0.001571





Bifidobacterium



Eubacterium





sp N4G05



androstenediol
(4564) S:
0.021734
(4782) U:
−0.02155
0.1441
0.00164



(3beta,17beta)

Ruminococcus


Unknown



disulfate (1)

torques




valine
(6179) G:
0.031487
(7985) S:
0.030513
0.143921
0.001662





Clostridium



Lactococcus








lactis




X - 11485
(1786) S:
0.034559
(4553) S:
0.032995
0.143508
0.001715





Butyricimonas



Clostridium sp






synergistica




X - 24757
(15085) F:
0.020657
(4909) G:
0.019259
0.143247
0.001749




Clostridiales


Clostridium





unclassified



chenodeoxycholate
(4552) S:
−0.03176
(2301) S:
−0.02344
0.143007
0.00178





Ruminococcus



Alistipes





sp


finegoldii




17-
(15073) G:
0.0211
(4940) S:
0.020984
0.142649
0.001829



methylstearate

Oscillibacter



Roseburia








inulinivorans




3-
(14400) G:
−0.04178
(14974) U:
0.036425
0.142441
0.001857



hydroxybutyryl

Collinsella


Unknown



carnitine (1)



sphingomyelin
(15452) S:
−0.01411
(4648) G:
0.013313
0.1424
0.001863



(d18:2/24:2)*

Bilophila sp 4



Roseburia





1 30



5alpha-
(15346) G:
0.026787
(15120) S:
−0.02311
0.142374
0.001867



androstan-

Faecalibacterium



Firmicutes




3beta,17beta-



bacterium




diol


CAG 114



monosulfate



(2)



stearoyl
(15317) S:
−0.03088
(5082) S:
0.029658
0.142261
0.001883



sphingomyelin

Faecalibacterium



Eubacterium




(d18:1/18:0)
sp CAG 82


eligens




2-
(14963) S:
−0.02409
(4828) S:
0.020904
0.142222
0.001888



linoleoylglycerol

Anaerotruncus



Blautia sp




(18:2)

colihominis




xanthurenate
(17237) S:
−0.02659
(6179) G:
0.025405
0.142175
0.001895





Bifidobacterium



Clostridium






pseudocatenulatum




X - 12411
(14807) S:
−0.02183
(1836) S:
−0.02029
0.142173
0.001895





Gordonibacter



Bacteroides






pamelaeae



uniformis




5-oxoproline
(15081) F:
0.019373
(6179) G:
0.016099
0.142122
0.001902




Clostridiales


Clostridium





unclassified



1-(1-enyl-
(4721) S:
0.014673
(4705) S:
−0.01447
0.141822
0.001945



palmitoyl)-GPC

Clostridium sp



Clostridium




(P-16:0)*
CAG 58

sp CAG






43



N-
(4844) S:
−0.02196
(14974) U:
0.02064
0.14181
0.001947



acetylglutamate

Blautia


Unknown





obeum




tetradecanedioate
(4930) F:
−0.05114
(4914) S:
−0.0502
0.141803
0.001948




Lachnospiraceae


Clostridium sp




glutarylcarnitine
(4820) S:
−0.01929
(1949) S:
0.018906
0.141384
0.00201



(C5-DC)

Blautia sp



Parabacteroides








merdae




X - 24337
(15272) F:
−0.02787
(4816) S:
−0.02418
0.140613
0.002128




Ruminococcaceae


Blautia sp




gamma-
(15286) F:
−0.02942
(15332) S:
0.029158
0.140431
0.002157



glutamylisoleucine*
Ruminococcaceae


Faecalibacterium








prausnitzii




1-(1-enyl-
(6148) F:
0.03825
(4874) S:
0.029863
0.140159
0.0022



palmitoyl)-2-
Peptostrep-


Fusicatenibacter




arachidonoyl-
tococcaceae


saccharivorans




GPC (P-



16:0/20:4)*



1-(1-enyl-
(2311) F:
0.032348
(5190) S:
0.031149
0.140091
0.002211



stearoyl)-2-
Rikenellaceae


Firmicutes




oleoyl-GPE



bacterium




(P-18:0/18:1)


CAG 102



1-(1-enyl-
(4782) U:
−0.02249
(4721) S:
0.019978
0.13999
0.002228



palmitoyl)-GPE
Unknown


Clostridium




(P-16:0)*


sp CAG






58



epiandrosterone
(15260) G:
0.026216
(14470) G:
0.021722
0.139978
0.00223



sulfate

Firmicutes



Collinsella





unclassified



2-
(17241) S:
0.032773
(15143) S:
0.010676
0.139865
0.002249



acetamidophenol

Bifidobacterium



Flavonifractor sp




sulfate

catenulatum




1-myristoyl-2-
(1832) S:
−0.01363
(9226) S:
0.011531
0.139792
0.00226



arachidonoyl-

Bacteroides



Akkermansia




GPC

clarus



muciniphila




(14:0/20:4)*



N,N,N-
(6750) S:
0.030556
(1785) S:
0.025528
0.139762
0.002266



trimethyl-

Clostridium sp



Butyricimonas sp




alanylproline


An62



betaine



(TMAP)



X - 13684
(15390) U:
−0.01587
(15224) F:
−0.01533
0.139271
0.002349




Unknown

Clostridiales






unclassified



X - 24748
(6754) S:
0.017642
(15271) S:
−0.01679
0.138689
0.002451





Clostridium sp



Ruthenibacterium








lactatiformans




malate
(4938) S:
0.017703
(15073) G:
0.015187
0.138301
0.002521





Roseburia sp



Oscillibacter




isovalerylcarnitine
(4121) U:
0.03584
(15332) S:
0.034336
0.138116
0.002555



(C5)
Unknown


Faecalibacterium








prausnitzii




2-
(17249) S:
−0.03766
(14992) G:
0.035068
0.137906
0.002595



hydroxynervonate*

Bifidobacterium



Butyricicoccus






longum




X - 11858
(4582) S:
−0.01276
(6347) S:
0.01219
0.137828
0.002609





Dorea



Clostridium






longicatena


sp CAG






356



3-
(15085) F:
0.031154
(14992) G:
0.022437
0.136824
0.002806



hydroxyhippurate
Clostridiales


Butyricicoccus




sulfate
unclassified



lactosyl-N-
(5843) S:
−0.03117
(14322) S:
0.017928
0.136052
0.002966



nervonoyl-

Allisonella



Eggerthella




sphingosine

histaminiformans


sp CAG



(d18:1/24:1)*


209



1-(1-enyl-
(6936) S:
0.015436
(4659) S:
0.01529
0.135874
0.003005



palmitoyl)-2-

Veillonella



Clostridium




oleoyl-GPE

atypica


sp CAG



(P-16:0/18:1)*


122



X - 18886
(4810) S:
−0.02418
(14594) G:
0.02417
0.135841
0.003012





Blautia sp



Collinsella





CAG 237



Fibrinopeptide
(1949) S:
−0.01591
(15317) S:
−0.01575
0.135774
0.003026



B (1-13)**

Parabacteroides



Faecalibacterium sp






merdae


CAG 82



taurochenodeoxycholic
(4664) S:
0.007057
(4557) S:
0.006881
0.134882
0.003225



acid 3-

Roseburia sp



Ruminococcus




sulfate
CAG 303


lactaris




DSGEGDFXAEGGGVR*
(2303) S:
−0.0239
(9391) F:
−0.0223
0.134124
0.003404





Alistipes


Oxalobacteraceae





finegoldii




tauroursodeoxycholate
(14341) S:
−0.02604
(1867) S:
0.025111
0.133987
0.003437





Eggerthella sp



Bacteroides





CAG 298


xylanisolvens




X - 13723
(4261) G:
0.033265
(4868) S:
−0.02808
0.133722
0.003502





Blautia



Blautia sp




1-stearoyl-2-
(15385) U:
−0.0234
(4810) S:
0.021333
0.133381
0.003587



docosahexaenoyl-GPE
Unknown


Blautia sp




(18:0/22:6)*


CAG 237



14-HDoHE/17-
(15460) F:
0.026875
(1784) G:
0.02536
0.133132
0.003651



HDoHE
Desulfovibrionaceae


Butyricimonas




1-
(6962) S:
0.008273
(4871) S:
0.00802
0.13212
0.00392



linolenoylglycerol

Megamonas



Ruminococcus




(18:3)

funiformis


sp



X - 11299
(4553) S:
0.024483
(15385) U:
0.022957
0.131227
0.004172





Clostridium sp


Unknown



X - 21285
(9283) S:
0.037269
(15350) U:
0.032192
0.130566
0.004367





Sutterella


Unknown





wadsworthensis




Fibrinopeptide
(1786) S:
−0.03017
(5045) S:
−0.02522
0.129638
0.004656



A (5-16)*

Butyricimonas



Eubacterium






synergistica



ventriosum




X - 21661
(4811) S:
−0.01344
(14594) G:
−0.00963
0.129284
0.004771





Blautia



Collinsella






obeum




dodecenedioate
(14114) S:
0.031723
(6148) F:
−0.02984
0.128831
0.004921



(C12:1-DC)*

Subdoligranulum


Peptostrep-




sp CAG

tococcaceae




314



3-methyl-2-
(4706) F:
0.019187
(15390) U:
−0.01839
0.128595
0.005001



oxovalerate
Clostridiaceae

Unknown



X - 11847
(15271) S:
−0.0142
(4582) S:
−0.01128
0.128021
0.005201





Ruthenibacterium



Dorea






lactatiformans



longicatena




1-myristoyl-2-
(6338) F:
−0.01141
(1962) S:
0.011219
0.127609
0.005349



palmitoyl-GPC
Clostridiaceae


Coprobacter




(14:0/16:0)



secundus




3-aminoisobutyrate
(15124) F:
−0.024
(15271) S:
−0.02275
0.127528
0.005378




Clostridiales


Ruthenibacterium





unclassified


lactatiformans




stachydrine
(4961) G:
0.022511
(14999) U:
−0.01805
0.127415
0.00542





Eubacterium


Unknown



eicosenoate
(3957) F:
−0.01721
(5075) S:
0.016961
0.127302
0.005461



(20:1)
Lachnospiraceae


Lachnospira








pectinoschiza




isocitrate
(4938) S:
−0.02327
(15326) G:
0.017973
0.1267
0.005688





Roseburia sp



Faecalibacterium




X - 21364
(8076) S:
−0.01727
(4951) S:
0.015285
0.126682
0.005695





Streptococcus



Roseburia






parasanguinis



intestinalis




X - 12007
(15254) F:
0.021132
(9333) S:
−0.01973
0.126616
0.00572




Clostridiales


Acetobacter





unclassified

sp CAG






267



N1-Methyl-2-
(8002) S:
0.030264
(5803) S:
−0.02372
0.126496
0.005767



pyridone-5-

Streptococcus



Dialister sp




carboxamide

thermophilus


CAG 357



X - 21659
(4939) G:
0.036695
(4953) S:
0.03646
0.126145
0.005905





Roseburia



Roseburia







sp CAG






182



gamma-
(4716) S:
0.019939
(1934) S:
−0.01591
0.126038
0.005947



tocopherol/beta-

Clostridium sp



Parabacteroides




tocopherol



distasonis




X - 12117
(1836) S:
−0.02601
(4644) S:
−0.02354
0.125916
0.005996





Bacteroides



Clostridium






uniformis


sp CAG






62



1-
(1790) S:
−0.02251
(1862) S:
0.021676
0.125693
0.006086



myristoylglycerol

Odoribacter



Bacteroides




(14:0)

splanchnicus



finegoldii




X - 21845
(15265) S:
0.028019
(14797) G:
0.023629
0.125549
0.006145





Firmicutes



Adlercreutzia






bacterium





CAG 103



N-
(14992) G:
0.024679
(4582) S:
−0.02289
0.125506
0.006163



methylhydroxy

Butyricicoccus



Dorea




proline**



longicatena




stearoylcarnitine
(17249) S:
−0.02445
(1812) S:
0.022237
0.125349
0.006228



(C18)

Bifidobacterium



Bacteroides





longum


massiliensis




X - 24546
(4940) S:
0.035016
(4750) G:
0.032653
0.125194
0.006293





Roseburia



Clostridium






inulinivorans




2-
(15154) F:
0.014856
(3989) F:
0.012342
0.124995
0.006377



hydroxyglutarate
Clostridiales

Firmicutes




unclassified

unclassified



X - 23787
(15317) S:
0.019888
(1836) S:
0.019399
0.124908
0.006414





Faecalibacterium



Bacteroides





sp CAG 82


uniformis




4-
(14322) S:
0.027768
(5803) S:
0.026381
0.124668
0.006518



hydroxyhippurate

Eggerthella sp



Dialister sp





CAG 209

CAG 357



glycylvaline
(1963) S:
0.022131
(14894) S:
0.020056
0.124352
0.006656





Coprobacter



Anaeroma






fastidiosus



ssilibacillus







sp An250



cerotoylcarnitine
(15346) G:
0.019902
(17237) S:
−0.01903
0.124253
0.0067



(C26)*

Faecalibacterium



Bifidobacterium








pseudocatenulatum




methylsuccinoylcarnitine
(1965) S:
0.015991
(4261) G:
0.012935
0.123073
0.007243



(1)

Bacteroides



Blautia





sp CAG 20



X - 15492
(6367) F:
−0.03864
(4940) S:
0.024465
0.123061
0.007248




Clostridiaceae


Roseburia








inulinivorans




X - 23585
(9262) S:
0.031296
(14861) U:
0.021237
0.122612
0.007465





Burkholderiales


Unknown





bacterium





1 1 47



X - 24556
(5082) S:
0.02246
(15318) S:
0.021364
0.120816
0.008393





Eubacterium



Faecalibacterium






eligens



prausnitzii




N1-
(1790) S:
−0.01772
(4705) S:
0.012148
0.120422
0.008609



methyladenosine

Odoribacter



Clostridium






splanchnicus


sp CAG






43



1,2,3-
(17244) S:
−0.02127
(1830) S:
−0.0201
0.120351
0.008649



benzenetriol

Bifidobacterium



Bacteroides




sulfate (2)

adolescentis



stercoris




21-
(6359) F:
−0.03473
(4564) S:
0.032184
0.119965
0.008867



hydroxypregnenolone
Clostridiaceae


Ruminococcus




disulfate



torques




hexanoylglutamine
(14992) G:
0.036528
(4874) S:
−0.03028
0.119813
0.008954





Butyricicoccus



Fusicatenibacter








saccharivorans




X - 17367
(15154) F:
0.012108
(4537) S:
−0.01195
0.119767
0.008981




Clostridiales


Eubacterium





unclassified


hallii




tridecenedioate
(15132) S:
0.045078
(6174) S:
0.044543
0.119127
0.009357



(C13:1-DC)*

Flavonifractor



Clostridium






plautii


sp CAG






265



phytanate
(15073) G:
0.017338
(14823) F:
0.017013
0.118948
0.009464





Oscillibacter


Eggerthellaceae



hydroxy-
(14263) U:
−0.03089
(15295) G:
0.027677
0.11774
0.010221



CMPF*
Unknown


Gemmiger




N-palmitoyl-
(15146) F:
0.0221
(15216) F:
−0.02184
0.117704
0.010244



sphinganine
Clostridiales

Clostridiales



(d18:0/16:0)
unclassified

unclassified



4-methyl-2-
(6148) F:
0.02125
(4648) G:
−0.01851
0.11718
0.01059



oxopentanoate
Peptostrep-


Roseburia





tococcaceae



cys-gly,
(4303) S:
0.02136
(4820) S:
−0.02018
0.117156
0.010606



oxidized

Clostridium sp



Blautia sp





CAG 217



glycerate
(14313) S:
−0.02306
(4834) G:
0.019943
0.117141
0.010616





Clostridium sp



Blautia





CAG 226



bradykinin,
(4959) S:
0.009207
(4811) S:
0.007451
0.116402
0.011121



des-arg(9)

Eubacterium



Blautia






ramulus



obeum




15-
(4714) S:
−0.01907
(15350) U:
0.018079
0.116125
0.011316



methylpalmitate

Clostridium sp


Unknown



X - 11795
(15124) F:
−0.0347
(5803) S:
0.025284
0.116105
0.01133




Clostridiales


Dialister sp





unclassified

CAG 357



16a-hydroxy
(4782) U:
−0.0193
(4564) S:
0.018405
0.115506
0.011762



DHEA 3-sulfate
Unknown


Ruminococcus








torques




arachidoylcarnitine
(4933) S:
−0.05449
(15451) G:
−0.03232
0.115399
0.011841



(C20)*

Eubacterium



Bilophila






rectale




choline
(15081) F:
0.013512
(5087) S:
0.013325
0.115075
0.012082




Clostridiales


Eubacterium





unclassified

sp CAG






86



palmitoyl
(4540) S:
0.021119
(4670) S:
0.019749
0.114709
0.01236



dihydrosphingomyelin

Anaerostipes



Coprococcus




(d18:0/16:0)*

hadrus



catus




glycosyl-N-
(5843) S:
−0.02223
(15073) G:
0.013519
0.114454
0.012557



behenoyl-

Allisonella



Oscillibacter




sphingadienine

histaminiformans




(d18:2/22:0)*



hydroxy-
(4564) S:
0.016937
(15346) G:
0.014591
0.11419
0.012763



N6,N6,N6-

Ruminococcus



Faecalibacterium




trimethyllysine *

torques




lysine
(8002) S:
0.028247
(1830) S:
0.027797
0.114182
0.012769





Streptococcus



Bacteroides






thermophilus



stercoris




tyrosine
(9298) F:
−0.02194
(7044) S:
0.021725
0.114134
0.012808




Sutterellaceae


Lactobacillus








acidophilus




androsterone
(15233) G:
−0.02419
(8002) S:
−0.02177
0.113555
0.013273



sulfate

Firmicutes



Streptococcus





unclassified


thermophilus




glycodeoxycholate
(5121) S:
−0.02394
(15078) S:
0.021689
0.113258
0.013517



sulfate

Clostridium sp



Oscillibacter sp





CAG 264



alpha-
(17244) S:
−0.02156
(15452) S:
0.018676
0.113166
0.013593



tocopherol

Bifidobacterium



Bilophila






adolescentis


sp 4 1 30



3-(3-
(14823) F:
0.016505
(1872) S:
−0.01511
0.112805
0.013898



hydroxyphenyl)propionate
Eggerthellaceae


Bacteroides




sulfate



ovatus




linoleate
(4936) S:
0.016353
(5111) S:
0.015685
0.112626
0.01405



(18:2n6)

Roseburia



Clostridium






hominis


sp CAG






127



17alpha-
(5190) S:
−0.02901
(4781) U:
−0.0244
0.111788
0.014786



hydroxypregnenolone 3-

Firmicutes


Unknown



sulfate

bacterium





CAG 102



xanthosine
(6939) S:
0.015029
(4571) S:
0.013364
0.111532
0.015017





Veillonella



Dorea sp






parvula


CAG 105



4-
(4868) S:
0.024994
(4844) S:
−0.02202
0.111379
0.015156



hydroxyphenyl

Blautia sp



Blautia




pyruvate



obeum




S-
(4957) F:
0.018829
(8002) S:
−0.01823
0.110711
0.01578



methylcysteine
Eubacteriaceae


Streptococcus








thermophilus




dodecadienoate
(4936) S:
0.007497
(5792) S:
0.006512
0.110622
0.015865



(12:2)*

Roseburia



Phascolarctobacterium






hominis


sp CAG






207



1-palmitoyl-2-
(5190) S:
−0.01815
(1962) S:
0.011785
0.110232
0.016241



palmitoleoyl-

Firmicutes



Coprobacter




GPC

bacterium



secundus




(16:0/16:1)*
CAG 102



2-
(1862) S:
0.024847
(6962) S:
0.021436
0.109731
0.016736



arachidonoylglycerol

Bacteroides



Megamonas




(20:4)

finegoldii



funiformis




sphingomyelin
(4782) U:
−0.02675
(14921) U:
0.021965
0.109634
0.016833



(d18:1/25:0,
Unknown

Unknown



d19:0/24:1,



d20:1/23:0,



d19:1/24:0)*



1-palmitoyl-2-
(15124) F:
0.017688
(15225) F:
−0.0144
0.10905
0.017429



docosahexaenoyl-
Clostridiales

Clostridiales



GPC
unclassified

unclassified



(16:0/22:6)



Fibrinopeptide
(9391) F:
−0.02671
(4782) U:
−0.02297
0.108842
0.017646



A (7-16)*
Oxalobacteraceae

Unknown



N6-
(15342) S:
0.00907
(15216) F:
−0.00651
0.108627
0.017873



carbamoylthre-

Faecalibacterium


Clostridiales



onyladenosine

prausnitzii


unclassified



glycohyocholate
(15265) S:
−0.04384
(15342) S:
0.03827
0.108537
0.017968





Firmicutes



Faecalibacterium






bacterium



prausnitzii





CAG 103



N-
(1867) S:
0.029494
(17249) S:
−0.02421
0.108424
0.018088



oleoyltaurine

Bacteroides



Bifidobacterium






xylanisolvens



longum




X - 11593
(4886) S:
0.012074
(4658) S:
0.009798
0.108193
0.018337





Firmicutes



Clostridium






bacterium


sp CAG




CAG 194

253



phenyllactate
(4925) S:
0.022219
(4575) S:
0.022171
0.107793
0.018776



(PLA)

Roseburia



Dorea






faecis



formicigenerans




beta-
(2301) S:
0.022147
(6179) G:
0.020411
0.107633
0.018953



citrylglutamate

Alistipes



Clostridium






finegoldii




X - 14314
(17241) S:
0.014687
(15154) F:
0.013906
0.107403
0.019211





Bifidobacterium


Clostridiales





catenulatum


unclassified



creatine
(5803) S:
−0.01668
(4953) S:
−0.01582
0.107388
0.019228





Dialister sp



Roseburia





CAG 357

sp CAG






182



arabitol/xylitol
(1934) S:
0.031652
(4828) S:
0.029975
0.106438
0.020327





Parabacteroides



Blautia sp






distasonis




uridine
(4547) S:
−0.03528
(1790) S:
0.026747
0.106231
0.020575





Anaerostipes



Odoribacter






hadrus



splanchnicus




ectoine
(5062) G:
0.010402
(15326) G:
0.008021
0.106182
0.020634





Firmicutes



Faecalibacterium





unclassified



X - 17653
(4767) U:
−0.01285
(4581) S:
0.01176
0.10604
0.020805




Unknown


Dorea








longicatena




catechol
(6747) S:
−0.0224
(15081) F:
0.022163
0.105927
0.020941



glucuronide

Clostridium


Clostridiales





spiroforme


unclassified



X - 18887
(15299) G:
0.02692
(15316) S:
0.021941
0.104673
0.022516





Gemmiger



Faecalibacterium








prausnitzii




eicosapentaenoylcholine
(6141) F:
0.048926
(4303) S:
0.030017
0.104352
0.022934




Peptostrep-


Clostridium





tococcaceae

sp CAG






217



oleate/vaccenate
(5111) S:
0.013939
(14993) S:
0.012976
0.104015
0.023382



(18:1)

Clostridium sp



Butyricicoccus





CAG 127

sp



N-
(4829) S:
−0.01515
(5087) S:
0.012105
0.103957
0.02346



acetylneuraminate

Blautia sp



Eubacterium







sp CAG






86



X - 16576
(13981) U:
0.013445
(15460) F:
0.008498
0.10394
0.023483




Unknown

Desulfovibrionaceae



X - 21839
(15265) S:
0.023227
(4826) S:
−0.0224
0.103797
0.023675





Firmicutes



Blautia sp






bacterium





CAG 103



1-palmitoyl-2-
(4938) S:
−0.02856
(14991) F:
0.023705
0.103762
0.023723



gamma-

Roseburia sp


Clostridiaceae



linolenoyl-GPC



(16:0/18:3n6)*



2-
(17278) S:
−0.00852
(14992) G:
0.008154
0.103757
0.02373



aminoheptanoate

Bifidobacterium



Butyricicoccus






animalis




palmitoyl
(4705) S:
−0.01695
(4540) S:
0.016293
0.103605
0.023936



sphingomyelin

Clostridium sp



Anaerostipes




(d18:1/16:0)
CAG 43


hadrus




nervonoylcarnitine
(15216) F:
−0.04038
(4868) S:
−0.03403
0.103484
0.024102



(C24:1)*
Clostridiales


Blautia sp





unclassified



X - 24812
(6750) S:
0.039472
(4608) S:
0.033314
0.103171
0.024536





Clostridium sp



Ruminococcus








torques




piperine
(6369) S:
−0.02014
(15073) G:
−0.01911
0.102993
0.024785





Clostridium sp



Oscillibacter





CAG 389



chiro-inositol
(14334) S:
−0.01845
(4706) F:
0.012575
0.101795
0.026521





Cryptobacterium


Clostridiaceae




sp CAG




338



X - 23974
(713) G:
−0.03698
(15154) F:
0.030957
0.101544
0.026898





Methanobrevibacter


Clostridiales






unclassified



3-
(17244) S:
−0.01941
(4537) S:
−0.01776
0.101505
0.026957



methoxycatechol

Bifidobacterium



Eubacterium hallii




sulfate (1)

adolescentis




N-trimethyl 5-
(15271) S:
0.026124
(6141) F:
−0.02273
0.101107
0.027565



aminovalerate

Ruthenibacterium


Peptostrep-





lactatiformans


tococcaceae



glycochenodeoxycholate
(15291) F:
−0.02158
(4914) S:
−0.02153
0.100996
0.027737



glucuronide (1)
Ruminococcaceae


Clostridium sp




sphingomyelin
(4704) F:
−0.02206
(15317) S:
−0.02017
0.100893
0.027897



(d18:1/20:1,
Clostridiaceae


Faecalibacterium




d18:2/20:0)*


sp






CAG 82



X - 11470
(14937) U:
−0.02188
(4581) S:
0.016799
0.100798
0.028046




Unknown


Dorea








longicatena




X - 21353
(15256) F:
0.0146
(4936) S:
0.014299
0.100654
0.028272




Clostridiales


Roseburia





unclassified


hominis




X - 12472
(14999) U:
0.026062
(14823) F:
0.023754
0.100186
0.029017




Unknown

Eggerthellaceae



X - 12456
(4705) S:
0.015677
(6962) S:
0.015445
0.099379
0.030344





Clostridium sp



Megamonas





CAG 43


funiformis




X - 13866
(15452) S:
0.019139
(6174) S:
0.016247
0.098839
0.031261





Bilophila sp 4



Clostridium





1 30

sp CAG






265



vanillactate
(4831) F:
0.051625
(4824) G:
0.041918
0.098677
0.031539




Lachnospiraceae


Blautia




X - 16580
(1934) S:
0.024707
(15124) F:
0.024448
0.098546
0.031768





Parabacteroides


Clostridiales





distasonis


unclassified



X - 24329
(2303) S:
−0.02538
(1836) S:
−0.02536
0.09853
0.031795





Alistipes



Bacteroides






finegoldii



uniformis




androsterone
(8076) S:
−0.02058
(4839) G:
0.018667
0.098384
0.03205



glucuronide

Streptococcus



Blautia






parasanguinis




hydroxyasparagine**
(17248) S:
−0.00929
(6141) F:
−0.00872
0.098378
0.032062





Bifidobacterium


Peptostrep-





longum


tococcaceae



X - 23680
(15374) F:
−0.02656
(17241) S:
0.025397
0.09835
0.032111




Ruminococcaceae


Bifidobacterium








catenulatum




1-
(1903) S:
0.028354
(5075) S:
0.028138
0.098016
0.032702



oleoylglycerol

Bacteroides



Lachnospira




(18:1)

plebeius CAG



pectinoschiza





211



1-(1-enyl-
(4780) G:
0.014535
(1790) S:
0.011529
0.09774
0.033198



palmitoyl)-2-

Clostridium



Odoribacter




palmitoleoyl-



splanchnicus




GPC



(P-16:0/16:1)*



heneicosapentaenoate
(14400) G:
−0.0271
(6141) F:
0.01887
0.096856
0.03483



(21:5n3)

Collinsella


Peptostrep-






tococcaceae



N-palmitoyl-
(15342) S:
−0.02804
(1957) S:
0.027896
0.096756
0.035019



heptadecasphingosine

Faecalibacterium



Bacteroides




(d17:1/16:0)*

prausnitzii


sp CAG






144



beta-alanine
(6148) F:
0.020157
(4925) S:
0.020075
0.096348
0.035799




Peptostrep-


Roseburia





tococcaceae


faecis




X - 21474
(15318) S:
−0.04014
(4659) S:
0.039439
0.096222
0.036041





Faecalibacterium



Clostridium






prausnitzii


sp CAG






122



2-
(15350) U:
0.051887
(15124) F:
0.035101
0.095939
0.036596



docosahexaenoylglycerol
Unknown

Clostridiales



(22:6)*


unclassified



margarate
(14974) U:
0.013311
(4940) S:
0.012762
0.095892
0.036687



(17:0)
Unknown


Roseburia








inulinivorans




1-ribosyl-
(15342) S:
0.023475
(4957) F:
0.022928
0.095809
0.03685



imidazoleacetate*

Faecalibacterium


Eubacteriaceae





prausnitzii




X - 21295
(4669) G:
−0.02087
(14861) U:
0.020517
0.095321
0.037827





Coprococcus


Unknown



cysteinylglycine
(14020) U:
−0.02178
(15286) F:
−0.02115
0.09521
0.038051



disulfide*
Unknown

Ruminococcaceae



tryptophan
(15054) F:
−0.01383
(8002) S:
0.01105
0.094892
0.038701




Clostridiales


Streptococcus





unclassified


thermophilus




1-palmitoyl-2-
(15229) F:
−0.01867
(4121) U:
−0.01846
0.094768
0.038959



docosahexaenoyl-
Clostridiales

Unknown



GPE
unclassified



(16:0/22:6)*



S-
(15332) S:
0.043284
(4882) S:
0.042659
0.094733
0.039031



adenosylhomocysteine

Faecalibacterium



Roseburia




(SAH)

prausnitzii


sp CAG






100



X - 12206
(4959) S:
−0.02691
(4546) S:
0.019168
0.094575
0.03936





Eubacterium



Eubacterium






ramulus


sp



X - 18345
(4394) U:
0.012098
(9701) S:
0.010524
0.094256
0.040032




Unknown


Haemophilus







sp






HMSC061E01



tauro-beta-
(4831) F:
−0.03274
(4130) U:
−0.03214
0.094251
0.040043



muricholate
Lachnospiraceae

Unknown



phenylpyruvate
(14932) U:
−0.0089
(9226) S:
−0.00696
0.09316
0.042412




Unknown


Akkermansia








muciniphila




oleoyl
(1814) S:
0.017731
(13982) U:
0.01504
0.092823
0.043169



ethanolamide

Bacteroides


Unknown





vulgatus




2,3-
(14993) S:
0.01931
(14416) G:
−0.01704
0.092506
0.04389



dihydroxyisovalerate

Butyricicoccus



Collinsella





sp



X - 16964
(4537) S:
−0.0594
(4914) S:
−0.05497
0.092354
0.044241





Eubacterium



Clostridium sp






hallii




X - 12544
(4564) S:
0.005718
(14252) U:
0.005618
0.092332
0.04429





Ruminococcus


Unknown





torques




arachidate
(15346) G:
0.019826
(15154) F:
0.018477
0.092187
0.044628



(20:0)

Faecalibacterium


Clostridiales






unclassified



X - 17655
(6472) F:
0.01049
(4782) U:
0.007802
0.091978
0.045114




Clostridiaceae

Unknown



5alpha-
(8002) S:
−0.02357
(15091) G:
0.022201
0.091942
0.045199



pregnan-

Streptococcus



Oscillibacter




3beta,20alpha-

thermophilus




diol disulfate



X - 15486
(4644) S:
−0.01694
(4826) S:
0.016926
0.091313
0.046698





Clostridium sp



Blautia sp





CAG 62



3,7-
(1832) S:
0.018158
(4537) S:
−0.01529
0.091072
0.047282



dimethylurate

Bacteroides



Eubacterium






clarus



hallii











According to a particular embodiment, the metabolite which is predicted is set forth in Table 4.















TABLE 4








Top
Directional
Top
Directional
Top
Directional



predictor
SHAP value
predictor
SHAP value
predictor
SHAP value


BIOCHEMICAL
#1
#1
#2
#2
#3
#3





1-methylxanthine
Coffee Freq
0.521955
SF_Coffee_wt
0.453195
SF_Cappuccino_wt
0.078874


3-carboxy-4-
Fish Cooked,
0.382587
Canned Tuna
0.149771
Fish (not
0.107626


methyl-5-
Baked or

or Tuna Salad

Tuna) Pickled,


propyl-2-
Grilled Freq

Freq

Dried, Smoked,


furanpropanoate




Canned Freq


(CMPF)


hydroxy-CMPF*
Fish Cooked,
0.373131
Canned Tuna
0.165863
Fish (not
0.139629



Baked or

or Tuna Salad

Tuna) Pickled,



Grilled Freq

Freq

Dried, Smoked,







Canned Freq


quinate
SF_Coffee_wt
0.366101
Coffee Freq
0.301928
SF_Cappuccino_wt
0.073144


X - 21442
SF_Coffee_wt
0.507797
Coffee Freq
0.391595
SF_Cappuccino_wt
0.142793


1-methylurate
SF_Coffee_wt
0.449174
Coffee Freq
0.385187
SF_Cappuccino_wt
0.101257


1,3-dimethylurate
Coffee Freq
0.508676
SF_Coffee_wt
0.439991
SF_Cappuccino_wt
0.125518


1,3,7-trimethylurate
Coffee Freq
0.52283
SF_Coffee_wt
0.425254
SF_Cappuccino_wt
0.086449


X - 24811
SF_Coffee_wt
0.528661
Coffee Freq
0.442288
SF_Cappuccino_wt
0.094478


theophylline
Coffee Freq
0.428521
SF_Coffee_wt
0.399509
SF_Cappuccino_wt
0.088292


5-acetylamino-
SF_Coffee_wt
0.469622
Coffee Freq
0.403792
3% Milk Freq
0.061279


6-amino-3-


methyluracil


1,7-dimethylurate
Coffee Freq
0.472547
SF_Coffee_wt
0.460378
SF_Cappuccino_wt
0.06662


caffeine
Coffee Freq
0.419314
SF_Coffee_wt
0.350417
SF_Wine_wt
0.0539


paraxanthine
Coffee Freq
0.541851
SF_Coffee_wt
0.467303
SF_Cappuccino_wt
0.097286


X - 23655
SF_Coffee_wt
0.435476
Coffee Freq
0.303309
SF_Cappuccino_wt
0.083376


X - 13835
Pastrami or
0.188407
Beef, Veal,
0.187234
SF_WhiteWheat_g_wt
0.113279



Smoked Turkey

Lamb, Pork,



Breast Freq

Steak, Golash





Freq


saccharin
Artificial
0.312888
SF_Sugar
0.111067
Oil as an
−0.0301



Sweeteners

substitute_wt

addition for



Freq



Salads or







Stews Freq


3-methyl catechol
SF_Coffee_wt
0.276915
Coffee Freq
0.268574
SF_Wine_wt
0.051132


sulfate (1)


3-hydroxypyridine
SF_Coffee_wt
0.295696
Coffee Freq
0.21339
Ice Cream or
−0.04483


sulfate




Popsicle which







contains







Dairy Freq


X - 23652
Beef, Veal,
0.143448
Pastrami or
0.115295
SF_WhiteWheat_g_wt
0.076963



Lamb, Pork,

Smoked Turkey



Steak, Golash

Breast Freq



Freq


trigonelline (N′-
SF_Coffee_wt
0.263854
Coffee Freq
0.215773
SF_Cappuccino_wt
0.060521


methylnicotinate)


X - 11315
SF_Almonds_wt
0.206196
Nuts,
0.138389
SF_Milk_wt
−0.12129





almonds,





pistachios





Freq


1-methyl-5-
Beef, Veal,
0.123294
Pastrami or
0.095776
SF_WhiteWheat_g_wt
0.091505


imidazoleacetate
Lamb, Pork,

Smoked Turkey



Steak, Golash

Breast Freq



Freq


1-(1-enyl-palmitoyl)-
Chicken or
0.131388
Turkey
0.104297
Beef, Veal,
0.103265


2-arachidonoyl-GPE
Turkey

Meatballs,

Lamb, Pork,


(P-16:0/20:4)*
Without Skin

Beef, Chicken

Steak, Golash



Freq

Freq

Freq


X - 11858
SF_Tahini_wt
0.326823
Tahini Salad
0.171167
SF_Hummus
0.068006





Freq

Salad_wt


1-(1-enyl-stearoyl)-
Egg, Hard
0.1218
Beef, Veal,
0.108988
Turkey
0.103305


2-arachidonoyl-GPE
Boiled or Soft

Lamb, Pork,

Meatballs,


(P-18:0/20:4)*
Freq

Steak, Golash

Beef, Chicken





Freq

Freq


X - 21339
Fries Freq
0.212512
Falafel in Pita
0.093116
SF_Apple_wt
−0.08103





Bread Freq


3-methylhistidine
Beef, Veal,
0.106555
Pastrami or
0.102308
Chicken or
0.09838



Lamb, Pork,

Smoked Turkey

Turkey



Steak, Golash

Breast Freq

Without Skin



Freq



Freq


X - 23649
SF_Coffee_wt
0.445723
Coffee Freq
0.321779
Mixed
0.090503







Chicken or







Turkey Dishes







Freq


4-ethylcatechol
SF_Coffee_wt
0.331396
Coffee Freq
0.238634
SF_WhiteWheat_g_wt
−0.03928


sulfate


X - 11880
Fries Freq
0.206379
Falafel in Pita
0.087521
SF_Natural
−0.07837





Bread Freq

Yogurt_wt


X - 11308
Fries Freq
0.138526
Alcoholic
0.106923
SF_Hummus
0.080083





Drinks Freq

Salad_wt


2,3-dihydroxypyridine
Coffee Freq
0.453341
SF_Coffee_wt
0.418166
SF_Bread_wt
−0.06984


beta-cryptoxanthin
Mandarin or
0.187788
Red Pepper
0.147568
Persimmon
0.11856



Clementine

Freq

Freq



Freq


X - 13844
SF_Coffee_wt
0.3579
Coffee Freq
0.274482
Regular Sodas
−0.11742







with Sugar







Freq


X - 11372
Fries Freq
0.159375
Salty Snacks
0.10569
Alcoholic
0.073839





Freq

Drinks Freq


1-palmitoyl-2-
Fish Cooked,
0.252315
Canned Tuna
0.100372
Fish (not
0.064741


docosahexaenoyl-GPC
Baked or

or Tuna Salad

Tuna) Pickled,


(16:0/22:6)
Grilled Freq

Freq

Dried, Smoked,







Canned Freq


X - 24949
SF_Tahini_wt
0.19913
Tahini Salad
0.151
SF_Olive
0.061803





Freq

oil_wt


X - 18914
3% Milk Freq
0.125681
Cooked
−0.10398
SF_Milk_wt
0.097464





Legumes Freq


X - 21661
SF_Tahini_wt
0.327191
Tahini Salad
0.141354
Hummus
0.092048





Freq

Salad Freq


sphingomyelin
>=16% Yellow
0.094716
3% Milk Freq
0.081685
Cooked
−0.07917


(d17:1/16:0,
Cheese Freq



Legumes Freq


d18:1/15:0,


d16:1/17:0)*


X - 21752
Cooked
0.27247
Granola or
0.189121
SF_Granola_wt
0.100119



Cereal such as

Bernflaks



Oatmeal

Freq



Porridge Freq


X - 12816
SF_Coffee_wt
0.50891
Coffee Freq
0.271773
SF_Cappuccino_wt
0.155256


5alpha-androstan-
Beer Freq
0.165139
SF_Beer_wt
0.130197
SF_WhiteWheat_g_wt
0.102007


3alpha,17beta-diol


monosulfate (2)


stachydrine
SF_Orange_wt
0.156365
Mandarin or
0.093164
SF_Vegetable
0.060348





Clementine

Salad_wt





Freq


X - 23639
SF_Coffee_wt
0.129872
Coffee Freq
0.080549
SF_Omelette_wt
−0.06285


sphingomyelin
>=16% Yellow
0.095505
SF_Milk_wt
0.077198
Beef or
0.072712


(d18:1/17:0,
Cheese Freq



Chicken Soup


d17:1/18:0,




Freq


d19:1/16:0)


X - 11381
3% Milk Freq
0.185143
SF_Coffee_wt
0.128715
SF_Milk_wt
0.069382


X - 24637
SF_Soymilk_wt
0.20839
SF_Tofu_wt
0.051064
Beef, Veal,
−0.02708







Lamb, Pork,







Steak, Golash







Freq


X - 17185
SF_Coffee_wt
0.39039
Coffee Freq
0.19712
SF_Salmon_wt
−0.07847


5-acetylamino-6-
SF_Coffee_wt
0.33866
Coffee Freq
0.238393
SF_Tomatoes_wt
−0.04626


formylamino-


3-methyluracil


X - 17145
SF_Apple_wt
0.194117
SF_Orange_wt
0.112769
Apple Freq
0.092335


X - 11847
SF_Tahini_wt
0.295026
Tahini Salad
0.136155
Hummus
0.082698





Freq

Salad Freq


1,5-anhydroglucitol
Regular Sodas
0.138944
SF_WhiteWheat_g_wt
0.112928
Ordinary
0.082267


(1,5-AG)
with Sugar



Bread or



Freq



Challah Freq


X - 18249
SF_Olive
−0.11992
Cooked
−0.10672
3% Milk Freq
0.101731



oil_wt

Legumes Freq


citraconate/
Coffee Freq
0.232123
SF_Coffee_wt
0.199446
SF_Rice
0.047645


glutaconate




crackers_wt


X - 12329
SF_Coffee_wt
0.319652
Coffee Freq
0.227085
SF_Bread_wt
−0.07622


sphingomyelin
SF_Milk_wt
0.102712
Cooked
−0.08776
Hummus
−0.07391


(d18:1/19:0,


Legumes Freq

Salad Freq


d19:1/18:0)*


X - 14939
SF_Tahini_wt
0.115425
SF_Hummus
0.08575
Falafel in Pita
0.062322





Salad_wt

Bread Freq


acesulfame
Diet Soda
0.247531
Artificial
0.154245
SF_Sugar Free
0.084721



Freq

Sweeteners

Gum_wt





Freq


1-stearoyl-2-
Fish Cooked,
0.224374
Canned Tuna
0.098494
Fish (not
0.065521


docosahexaenoyl-GPC
Baked or

or Tuna Salad

Tuna) Pickled,


(18:0/22:6)
Grilled Freq

Freq

Dried, Smoked,







Canned Freq


5alpha-androstan-
Beer Freq
0.193374
SF_WhiteWheat_g_wt
0.128321
SF_Beer_wt
0.118443


3alpha,17beta-


diol disulfate


tryptophan
Cooked
0.194321
SF_Tahini_wt
0.090885
Beef or
−0.05859


betaine
Legumes Freq



Chicken Soup







Freq


gamma-
Cooked
−0.08704
SF_Parsley_wt
−0.07333
SF_WhiteWheat_g_wt
0.065157


glutamylvaline
Legumes Freq


daidzein
SF_Soymilk_wt
0.150796
SF_Tofu_wt
0.03136
Cooked
0.020687


sulfate (2)




Legumes Freq


sphingomyelin
3% Milk Freq
0.109429
3-5% Natural
0.108154
>=16% Yellow
0.095027


(d18:1/25:0,


Yogurt Freq

Cheese Freq


d19:0/24:1,


d20:1/23:0,


d19:1/24:0)*


sphingomyelin
Cooked
−0.09994
SF_Milk_wt
0.074219
0.5-3% White
0.063754


(d18:1/14:0,
Legumes Freq



Cheese,


d16:1/16:0)*




Cottage Freq


X - 24475
SF_Almonds_wt
0.180157
Nuts,
0.135553
Apple Freq
0.101342





almonds,





pistachios





Freq


methyl
SF_Butter_wt
−0.09535
Orange or
0.093033
SF_Banana_wt
0.086389


glucopyranoside


Grapefruit


(alpha + beta)


Freq


X - 11795
SF_WhiteWheat_g_wt
0.127225
Pasta or
0.125764
SF_WholeWheat_g_wt
0.108236





Flakes Freq


docosahexaenoate
Fish Cooked,
0.183304
Fish (not
0.098234
Canned Tuna
0.085462


(DHA; 22:6n3)
Baked or

Tuna) Pickled,

or Tuna Salad



Grilled Freq

Dried, Smoked,

Freq





Canned Freq


X - 11849
SF_Tahini_wt
0.26333
Tahini Salad
0.122309
Hummus
0.089613





Freq

Salad Freq


X - 18922
SF_Tahini_wt
0.1229
SF_Olive
0.088716
Peach,
−0.06299





oil_wt

Nectarine,







Plum Freq


S-methylcysteine
Brussels
0.120063
SF_Cooked
0.05419
SF_Kohlrabi_wt
0.050796


sulfoxide
Sprouts,

cauliflower_wt



Green or Red



Cabbage Freq


perfluorooctane-
Fish Cooked,
0.122487
Fish (not
0.093453
Simple
−0.0496


sulfonic acid
Baked or

Tuna) Pickled,

Cookies or


(PFOS)
Grilled Freq

Dried, Smoked,

Biscuits Freq





Canned Freq


3-hydroxystachydrine*
SF_Orange_wt
0.173077
Mandarin or
0.134784
SF_Plum_wt
−0.07661





Clementine





Freq


sphingomyelin
SF_Milk_wt
0.111512
Hummus
−0.0925
Beer Freq
−0.06966


(d18:2/23:1)*


Salad Freq


maleate
Coffee Freq
0.211948
SF_Coffee_wt
0.149481
SF_Rice
0.05272







crackers_wt


eicosenedioate
SF_WhiteWheat_g_wt
0.102584
SF_Apple_wt
−0.08961
Fries Freq
0.0863


(C20:1-DC)*


homostachydrine*
SF_Coffee_wt
0.226189
SF_Wholemeal
0.083208
SF_WholeWheat_g_wt
0.080145





Bread_wt


creatine
Turkey
0.099401
Chicken or
0.090823
Artificial
0.056639



Meatballs,

Turkey

Sweeteners



Beef, Chicken

Without Skin

Freq



Freq

Freq


X - 17653
Falafel in Pita
0.121756
Fries Freq
0.07962
SF_WhiteWheat_g_wt
0.069756



Bread Freq


catechol
SF_Coffee_wt
0.26583
Coffee Freq
0.161844
Herbal Tea
0.070285


sulfate




Freq


X - 16935
Fries Freq
0.22235
SF_Tahini_wt
−0.11794
Small Burekas
0.093917







Freq


sphingomyelin
Beer Freq
−0.10449
Hummus
−0.08009
SF_Coffee_wt
0.065897


(d18:2/21:0,


Salad Freq


d16:2/23:0)*


sphingomyelin
Cooked
−0.10394
Beer Freq
−0.06772
0.5-3% White
0.062997


(d17:2/16:0,
Legumes Freq



Cheese,


d18:2/15:0)*




Cottage Freq


S-methylcysteine
Brussels
0.094394
SF_Lentils_wt
0.052955
SF_Vegetable
0.041488



Sprouts,



Soup_wt



Green or Red



Cabbage Freq


N-(2-furoyl)glycine
SF_Coffee_wt
0.232673
Coffee Freq
0.140282
SF_Wine_wt
0.03347


2,6-dihydroxybenzoic
Cooked
0.09138
Couscous,
0.060169
Granola or
0.057334


acid
Cereal such as

Burgul,

Bernflaks



Oatmeal

Mamaliga,

Freq



Porridge Freq

Groats Freq


X - 12837
Coffee Freq
0.280958
SF_Coffee_wt
0.218618
SF_Cappuccino_wt
0.069369


pyroglutamine*
Beer Freq
0.107215
Mayonnaise
−0.08141
Falafel in Pita
0.066716





Including

Bread Freq





Light Freq


N-delta-
Red Pepper
0.12734
Cooked
0.10344
SF_Apple_wt
0.087097


acetylornithine
Freq

Legumes Freq


X - 21736
SF_Butter_wt
0.126458
SF_Carrots_wt
−0.08728
SF_Tomatoes_wt
−0.07812


tridecenedioate
Tahini Salad
−0.16699
SF_Tahini_wt
−0.12043
SF_Soymilk_wt
−0.10931


(C13:1-DC)*
Freq


heneicosa-
Fish Cooked,
0.144003
Fish (not
0.122323
SF_Rice_wt
−0.07452


pentaenoate
Baked or

Tuna) Pickled,


(21:5n3)
Grilled Freq

Dried, Smoked,





Canned Freq


2-aminobutyrate
Simple
−0.06513
Chicken or
0.06163
Beef or
0.051808



Cookies or

Turkey With

Chicken Soup



Biscuits Freq

Skin Freq

Freq


X - 11378
Alcoholic
0.103051
Beer Freq
0.087346
SF_WhiteWheat_g_wt
0.075742



Drinks Freq


2-hydroxylaurate
Fries Freq
0.097427
Alcoholic
0.089771
SF_Apple_wt
−0.07034





Drinks Freq


17-methylstearate
Butter Freq
0.101184
Simple
−0.08125
Beef, Veal,
0.057793





Cookies or

Lamb, Pork,





Biscuits Freq

Steak, Golash







Freq


15-methylpalmitate
Butter Freq
0.079326
SF_Butter_wt
0.059867
3% Milk Freq
0.057259


sphingomyelin
Beer Freq
−0.09521
Honey, Jam,
0.086719
Cooked
−0.07236


(d18:2/14:0,


fruit syrup,

Legumes Freq


d18:1/14:l)*


Maple syrup





Freq


hippurate
SF_Coffee_wt
0.288796
Coffee Freq
0.049863
Fried Fish
−0.04174







Freq


X - 12730
SF_Coffee_wt
0.251511
Coffee Freq
0.177172
SF_Bread_wt
−0.07314


1-(1-enyl-palmitoyl)-
Beef, Veal,
0.143527
Egg Recipes
0.072606
Turkey
0.05528


2-arachidonoyl-GPC
Lamb, Pork,

Freq

Meatballs,


(P-16:0/20:4)*
Steak, Golash



Beef, Chicken



Freq



Freq


caffeic acid
SF_Coffee_wt
0.179171
Coffee Freq
0.138653
Regular Sodas
−0.04717


sulfate




with Sugar







Freq


1-(1-enyl-
Beef or
0.110716
Egg, Hard
0.085947
Beef, Veal,
0.065351


stearoyl)-GPE
Chicken Soup

Boiled or Soft

Lamb, Pork,


(P-18:0)*
Freq

Freq

Steak, Golash







Freq


3-methyl catechol
Coffee Freq
0.227497
SF_Coffee_wt
0.223543
SF_Wine_wt
0.071815


sulfate (2)


oxalate
Red Pepper
0.171087
SF_Butter_wt
−0.06363
SF_Cucumber_wt
0.057747


(ethanedioate)
Freq


eicosapentaenoate
Fish (not
0.087437
Fish Cooked,
0.083989
SF_Tahini_wt
−0.07324


(EPA; 20:5n3)
Tuna) Pickled,

Baked or



Dried, Smoked,

Grilled Freq



Canned Freq


X - 12738
SF_Coffee_wt
0.292468
Coffee Freq
0.264584
SF_Wine_wt
0.083477


X - 21383
SF_Hummus
0.056309
5-9% Yellow
0.054893
5-9% White
0.051581



Salad_wt

Cheese Freq

Cheese,







Cottage Freq


creatinine
Beer Freq
0.091432
SF_Beef_wt
0.061359
SF_WhiteWheat_g_wt
0.058713


gentisate
Cooked
0.10068
SF_Almonds_wt
0.077111
Wholemeal or
0.063621



Legumes Freq



Rye Bread







Freq


X - 24951
Fries Freq
0.101159
SF_WhiteWheat_g_wt
0.07231
Salty Snacks
0.061788







Freq


X - 17654
SF_WhiteWheat_g_wt
0.085536
Falafel in Pita
0.085105
Fries Freq
0.075289





Bread Freq


tiglylcarnitine
Cooked
−0.07801
SF_Omelette_wt
0.075921
Mango Freq
−0.06379


(C5:1-DC)
Cereal such as



Oatmeal



Porridge Freq


2-aminoheptanoate
SF_Milk_wt
−0.08734
SF_Tahini_wt
0.061512
Chicken or
−0.05331







Turkey







Without Skin







Freq


phytanate
Butter Freq
0.080496
Beef, Veal,
0.06686
Corn Freq
−0.06446





Lamb, Pork,





Steak, Golash





Freq


androsterone
Beer Freq
0.133229
SF_Coffee_wt
−0.06105
Hummus
0.046412


glucuronide




Salad Freq


4-vinylguaiacol
SF_Coffee_wt
0.272866
Coffee Freq
0.151908
SF_Bread_wt
−0.10835


sulfate


1-docosahexaenoyl-
Fish Cooked,
0.272759
Fish (not
0.079088
Canned Tuna
0.064288


glycerol (22:6)
Baked or

Tuna) Pickled,

or Tuna Salad



Grilled Freq

Dried, Smoked,

Freq





Canned Freq


2-aminophenol
SF_WholeWheat _g_wt
0.117974
SF_Wholemeal
0.109317
Pasta or
0.076604


sulfate


Bread_wt

Flakes Freq


N2,N5-diacetylornithine
SF_Apple_wt
0.105153
Red Pepper
0.095432
Cooked
0.077642





Freq

Legumes Freq


X - 17676
SF_Coffee_wt
0.200781
Coffee Freq
0.193388
SF_Rice
0.073746







crackers_wt


carotene diol (2)
SF_WhiteWheat_g_wt
−0.05751
Yeast Cakes
−0.05427
SF_Chicken
−0.05335





and Cookies

breast_wt





as Rogallach,





Croissant or





Donut Freq


4-ethylphenylsulfate
SF_Soymilk_wt
0.146566
SF_Tofu_wt
0.059703
Beef, Veal,
−0.05809







Lamb, Pork,







Steak, Golash







Freq


2-aminoadipate
Pastrami or
0.074629
SF_Sugar Free
−0.04829
White or
−0.04431



Smoked Turkey

Gum_wt

Brown Sugar



Breast Freq



Freq


O-methylcatechol
SF_Coffee_wt
0.252455
Coffee Freq
0.110436
SF_Wine_wt
0.060985


sulfate


X - 24655
SF_Soymilk_wt
0.164445
SF_Tofu_wt
0.024294
SF_Rice_wt
−0.02072


ceramide
Artificial
0.12836
Cooked
−0.12107
Coffee Freq
0.090017


(d18:1/14:0,
Sweeteners

Legumes Freq


d16:1/16:0)*
Freq


X - 17325
SF_Coffee_wt
0.347227
Coffee Freq
0.068552
Peach,
0.044107







Nectarine,







Plum Freq


N1-Methyl-2-pyridone-
Pastrami or
0.090985
0-1.5%
0.061739
Roll or
−0.05568


5-carboxamide
Smoked Turkey

Natural

Bageles Freq



Breast Freq

Yogurt Freq


urate
SF_WhiteWheat_g_wt
0.11539
Chicken or
0.058241
Beer Freq
0.057116





Turkey With





Skin Freq


carotene diol (3)
Red Pepper
0.245336
SF_Orange_wt
0.035475
Wholemeal or
−0.03217



Freq



Rye Bread







Freq


1-methylhistidine
Beef, Veal,
0.096089
Chicken or
0.056173
SF_WhiteWheat_g_wt
0.054076



Lamb, Pork,

Turkey With



Steak, Golash

Skin Freq



Freq


3-acetylphenol
SF_Coffee_wt
0.273419
Coffee Freq
0.212696
SF_Salmon_wt
−0.03895


sulfate


theobromine
Milk or Dark
0.17203
Coffee Freq
0.127556
SF_Coffee_wt
0.084332



Chocolate



Freq


N-methylproline
SF_Orange_wt
0.165026
Mandarin or
0.082633
Orange or
0.055373





Clementine

Grapefruit





Freq

Freq


dihydrocaffeate
SF_Coffee_wt
0.27251
Coffee Freq
0.133393
Pita Freq
−0.06401


sulfate (2)


threonate
Red Pepper
0.13263
SF_WhiteWheat_g_wt
−0.06314
SF_Apple_wt
0.059448



Freq


X - 12221
SF_Coffee_wt
0.29291
SF_Tahini_wt
−0.06887
SF_Peas_wt
−0.06465


myristoyl
Butter Freq
0.058086
3-5% Natural
0.050942
Coffee Freq
0.050482


dihydrosphingo-


Yogurt Freq


myelin


(d18:0/14:0)*


X - 17367
SF_Coffee_wt
0.335257
Pasta or
−0.04922
Peach,
0.045612





Flakes Freq

Nectarine,







Plum Freq


4-methyl-2-
Egg Recipes
0.073025
SF_Beef_wt
0.057631
Beef, Veal,
0.052266


oxopentanoate
Freq



Lamb, Pork,







Steak, Golash







Freq


1-myristoyl-2-
Cooked
−0.11559
Tahini Salad
−0.07746
SF_White
0.067513


palmitoyl-GPC
Legumes Freq

Freq

Cheese_wt


(14:0/16:0)


arabonate/xylonate
SF_Coffee_wt
0.150348
Mandarin or
0.065405
Wholemeal or
0.043615





Clementine

Rye Bread





Freq

Freq


leucine
Cooked
−0.085
SF_Beef_wt
0.043223
SF_Omelette_wt
0.040266



Cereal such as



Oatmeal



Porridge Freq


5alpha-androstan-
Beer Freq
0.178786
Fries Freq
0.075916
SF_Milk_wt
−0.07192


3beta,17beta-


diol disulfate


3-methylxanthine
Milk or Dark
0.179884
SF_Coffee_wt
0.123982
Coffee Freq
0.107916



Chocolate



Freq


X - 16087
Fish Cooked,
0.081994
SF_Dark
0.070058
SF_Hummus
0.064971



Baked or

Chocolate_wt

Salad_wt



Grilled Freq


3-methyl-2-
Egg Recipes
0.071551
Beef, Veal,
0.05501
White or
−0.05454


oxovalerate
Freq

Lamb, Pork,

Brown Sugar





Steak, Golash

Freq





Freq


2-hydroxybutyrate/
Fish Cooked,
0.083833
Simple
−0.06585
Olives Freq
0.063047


2-hydroxyisobutyrate
Baked or

Cookies or



Grilled Freq

Biscuits Freq


ergothioneine
SF_Mushrooms_wt
0.054552
Yeast Cakes
−0.04754
White or
−0.04292





and Cookies

Brown Sugar





as Rogallach,

Freq





Croissant or





Donut Freq


1-lignoceroyl-GPC
Fries Freq
−0.09709
SF_Tahini_wt
0.084528
SF_Banana_wt
0.073216


(24:0)


linoleoylcarnitine
SF_Tahini_wt
0.124663
SF_WhiteWheat_g_wt
0.088672
Nuts,
0.0619


(C18:2)*




almonds,







pistachios







Freq


N-acetylcarnosine
Beer Freq
0.138963
SF_WhiteWheat_g_wt
0.098821
SF_Hummus
0.064194







Salad_wt


N-trimethyl 5-
SF_Milk_wt
0.158341
SF_Natural
0.108177
Salty Cheese,
0.058578


aminovalerate


Yogurt_wt

Tzfatit,







Bulgarian,







Brinza,







Medium Slice







Freq


sphingomyelin
SF_Milk_wt
0.093966
3% Milk Freq
0.061361
SF_Dark
−0.05679


(d18:1/22:2,




Chocolate_wt


d18:2/22:1,


d16:1/24:2)*


urea
0-1.5%
0.052525
Pastrami or
0.049891
5-9% Yellow
0.049752



Natural

Smoked Turkey

Cheese Freq



Yogurt Freq

Breast Freq


3-carboxy-4-
Fish Cooked,
0.097277
Roll or
−0.07205
SF_Couscous_wt
−0.05875


methyl-5-
Baked or

Bageles Freq


pentyl-2-
Grilled Freq


furanpropionate


(3-CMPFP)**


Fibrinopeptide
SF_Bread_wt
−0.10601
Beer Freq
−0.03725
3% Milk Freq
0.01296


A(7-16)*


3-(4-hydroxy-
SF_WhiteWheat_g_wt
0.072752
Kiwi or
−0.05595
SF_Sugar Free
−0.05294


phenyl)lactate


Strawberries

Gum_wt





Freq


1-(1-enyl-
Chicken or
0.068906
Beef, Veal,
0.058324
Chicken or
0.056297


palmitoyl)-2-
Turkey

Lamb, Pork,

Turkey With


linoleoyl-GPE
Without Skin

Steak, Golash

Skin Freq


(P-16:0/18:2)*
Freq

Freq


X - 24948
Beer Freq
0.136619
SF_Coffee_wt
−0.08636
Orange or
0.047517







Grapefruit







Juice Freq


1-(1-enyl-stearoyl)-
Egg, Hard
0.070487
Beef, Veal,
0.06215
Processed
−0.05125


2-oleoyl-GPE
Boiled or Soft

Lamb, Pork,

Meat Free


(P-18:0/18:1)
Freq

Steak, Golash

Products Freq





Freq


3-hydroxybutyryl-
Cauliflower or
0.062891
SF_Whipped
0.056602
SF_Olives_wt
0.056434


carnitine (1)
Broccoli Freq

cream_wt


X - 19183
SF_Orange_wt
0.172544
Mandarin or
0.0745
SF_Mandarin_wt
0.042371





Clementine





Freq


X - 23659
Small Burekas
−0.0857
SF_Tomatoes_wt
0.068558
SF_Vegetable
0.065828



Freq



Salad_wt


7-methylurate
SF_Coffee_wt
0.259783
Coffee Freq
0.156831
Milk or Dark
0.082805







Chocolate







Freq


X - 24757
SF_Coffee_wt
0.31171
Peach,
0.055613
Fried Fish
−0.05359





Nectarine,

Freq





Plum Freq


X - 24328
Yeast Cakes
0.086134
Watermelon
−0.05613
Egg Recipes
0.055837



and Cookies

Freq

Freq



as Rogallach,



Croissant or



Donut Freq


pregn steroid
Beer Freq
0.119691
SF_Coffee_wt
−0.0608
Shish Kebab
0.040348


monosulfate




in Pita Bread


C21H34O5S*




Freq


ethyl
SF_Wine_wt
0.120814
Alcoholic
0.035542
SF_Beer_wt
0.02615


glucuronide


Drinks Freq


3-hydroxyhippurate
SF_Coffee_wt
0.254046
SF_WholeWheat_g_wt
0.108662
Coffee Freq
0.061144


sulfate


7-methylxanthine
Milk or Dark
0.137426
Coffee Freq
0.117867
SF_Dark
0.093571



Chocolate



Chocolate_wt



Freq


X - 18886
Fries Freq
0.171409
Olives Freq
0.088129
SF_Wine_wt
0.058571


glycine
Falafel in Pita
0.12458
SF_Tomatoes_wt
−0.09125
SF_WhiteWheat_g_wt
0.067141


conjugate of
Bread Freq


C10H14O2 (1)*


caprate (10:0)
SF_Coffee_wt
0.074579
SF_Butter_wt
0.063468
Butter Freq
0.056425


dihydroferulic
SF_Coffee_wt
0.290151
Coffee Freq
0.148282
3-5% Natural
−0.0903


acid




Yogurt Freq


X - 12306
SF_Tomatoes_wt
0.105789
Dried Fruits
0.089391
Herbal Tea
0.060606





Freq

Freq


leucylalanine
SF_Bread_wt
−0.0722
SF_Omelette_wt
−0.041
SF_Beef_wt
−0.03317


N1-methylinosine
SF_Orange_wt
−0.13759
Orange or
−0.04785
SF_Yellow
0.041202





Grapefruit

Cheese_wt





Freq


X - 12544
SF_WholeWheat_g_wt
0.168178
Wholemeal or
0.151852
Pasta or
0.07402





Rye Bread

Flakes Freq





Freq


androstenediol
Beer Freq
0.180346
SF_Coffee_wt
−0.06751
SF_WhiteWheat_g_wt
0.055027


(3alpha,17alpha)


monosulfate (3)


argininate*
Cooked
0.12675
Carrots, Fresh
0.040944
SF_Almonds_wt
0.039395



Legumes Freq

or Cooked,





Carrot Juice





Freq


ferulic acid 4-
SF_Coffee_wt
0.178886
SF_Wholemeal
0.08723
Coffee Freq
0.068412


sulfate


Bread_wt


pregnen-diol
Beer Freq
0.135676
SF_Coffee_wt
−0.09444
Fries Freq
0.030136


disulfate


C21H34O8S2*


N-acetyl-3-
Chicken or
0.092063
Chicken or
0.084964
SF_Omelette_wt
0.067281


methylhistidine*
Turkey

Turkey With



Without Skin

Skin Freq



Freq


X - 17655
SF_Tahini_wt
0.202332
Tahini Salad
0.070704
SF_Hummus
0.06714





Freq

Salad_wt


X - 24693
White or
−0.0901
Yeast Cakes
−0.08164
SF_Tahini_wt
0.071629



Brown Sugar

and Cookies



Freq

as Rogallach,





Croissant or





Donut Freq


S-methylmethionine
Lettuce Freq
0.098783
SF_Vegetable
0.089156
Red Pepper
0.068482





Salad_wt

Freq


X - 23314
SF_Orange_wt
0.084577
Mandarin or
0.059914
SF_Banana_wt
0.045285





Clementine





Freq


sphingomyelin
SF_Dark
−0.09798
3% Milk Freq
0.073143
SF_Milk_wt
0.054922


(d18:1/20:2,
Chocolate_wt


d18:2/20:1,


d16:1/22:2)*


androstenediol
SF_Coffee_wt
−0.09061
Beer Freq
0.081526
Sugar
0.064238


(3alpha,17alpha)




Sweetened


monosulfate (2)




Chocolate







Milk Freq


alpha-hydroxy-
Beer Freq
0.039992
Beef, Veal,
0.028714
SF_Beef_wt
0.026511


isocaproate


Lamb, Pork,





Steak, Golash





Freq


X - 24473
Nuts,
0.106187
SF_Almonds_wt
0.076986
SF_Dried
0.060379



almonds,



dates_wt



pistachios



Freq


X - 24337
SF_Potatoes_wt
0.091924
SF_Salmon_wt
−0.08841
SF_Water_wt
−0.08513


X - 21829
SF_Butter_wt
0.068232
SF_Wine_wt
0.066805
SF_Tomatoes
−0.06357







wt


X - 23780
Red Pepper
0.214012
Kiwi or
−0.03662
SF_Vegetable
0.034627



Freq

Strawberries

Salad_wt





Freq


deoxycarnitine
Beer Freq
0.081061
SF_Vegetable
0.069293
SF_WhiteWheat_g_wt
0.061974





Salad_wt


N,N,N-trimethyl-
SF_WhiteWheat_g_wt
0.076917
SF_Beer_wt
0.050797
Hummus
0.049043


alanylproline




Salad Freq


betaine (TMAP)


Fibrinopeptide
Beer Freq
−0.05044
SF_Bread_wt
−0.04958
Cooked
−0.02234


B (1-13)**




Legumes Freq


stearoylcarnitine
SF_Butter_wt
0.076214
SF_Dark
0.066223
SF_Beef_wt
0.047197


(C18)


Chocolate_wt


myristate (14:0)
Artificial
0.047372
SF_Tahini_wt
−0.04426
SF_Butter_wt
0.041539



Sweeteners



Freq


histidine
SF_Milk_wt
0.079817
Cooked
0.071422
SF_WhiteWheat_g_wt
−0.07029





Tomatoes,





Tomato





Sauce,





Tomato Soup





Freq


isovaleryl-
SF_WhiteWheat_g_wt
0.073234
Cooked
−0.06223
Chicken or
0.051086


carnitine (C5)


Cereal such as

Turkey With





Oatmeal

Skin Freq





Porridge Freq


X - 13431
SF_Butter_wt
0.076001
Alcoholic
0.066183
Butter Freq
0.05745





Drinks Freq


X - 13255
Coffee Freq
0.224197
SF_Coffee_wt
0.191833
SF_Wholemeal
0.063629







Crackers_wt


X - 21319
Fries Freq
0.083015
Cucumber
−0.05797
Falafel in Pita
0.054902





Freq

Bread Freq


X - 13866
Fish Cooked,
0.07941
Canned Tuna
0.072571
SF_Tahini_wt
−0.06274



Baked or

or Tuna Salad



Grilled Freq

Freq


3-methyl-2-
Beef, Veal,
0.035937
Olives Freq
0.032186
SF_Soda
0.029835


oxobutyrate
Lamb, Pork,



water_wt



Steak, Golash



Freq


X - 07765
Pasta or
0.094759
SF_Olive
−0.09441
SF_WhiteWheat_g_wt
0.060015



Flakes Freq

oil_wt


X - 22509
SF_Tahini_wt
0.220874
SF_Water_wt
0.042218
SF_Mayonnaise_wt
−0.03097


2,3-dihydroxy-
Regular Sodas
−0.07983
SF_Butter_wt
−0.06396
Mandarin or
0.061099


2-methylbutyrate
with Sugar



Clementine



Freq



Freq


ADpSGEGDFX
Beer Freq
−0.09051
SF_Bread_wt
−0.07817
Salty Cheese,
0.0402


AEGGGVR*




Tzfatit,







Bulgarian,







Brinza, Thin







Slice Freq


5alpha-androstan-
Beer Freq
0.173493
SF_Vegetable
0.05951
SF_Rice
−0.05417


3alpha,17alpha-


Salad_wt

crackers_wt


diol monosulfate


X - 24832
Cooked
−0.08267
SF_Omelette_wt
0.066657
SF_Carrots_w
−0.06113



Cereal such as



t



Oatmeal



Porridge Freq


carotene diol
Red Pepper
0.086142
SF_Vegetable
0.047378
Yeast Cakes
−0.04061


(1)
Freq

Salad_wt

and Cookies







as Rogallach,







Croissant or







Donut Freq


2-methylserine
Apple Freq
0.225169
SF_Apple_wt
0.172245
SF_Schnitzel_wt
−0.0719


N-methylhydroxy-
SF_Orange_wt
0.160394
Mandarin or
0.097522
Orange or
0.060004


proline**


Clementine

Grapefruit





Freq

Freq


catechol
SF_Coffee_wt
0.215832
Coffee Freq
0.093628
SF_Rice
0.032019


glucuronide




crackers_wt


3-hydroxyhippurate
SF_Coffee_wt
0.19393
Thousand
−0.07451
Coffee Freq
0.07307





Island





Dressing,





Garlic





Dressing Freq


X - 18899
SF_Tahini_wt
0.125705
Tahini Salad
0.100376
White or
−0.06859





Freq

Brown Sugar







Freq


pregnenetriol
Beer Freq
0.121398
SF_Coffee_wt
−0.08837
Honey, Jam,
−0.03605


disulfate*




fruit syrup,







Maple syrup







Freq


N-stearoyl-
3% Milk Freq
0.074516
SF_Tahini_wt
−0.06365
Artificial
0.060883


sphingosine




Sweeteners


(d18:1/18:0)*




Freq


10-undecenoate
SF_Tahini_wt
0.109543
Tahini Salad
0.089383
SF_Wine_wt
0.064351


(11:1n1)


Freq


X - 15503
SF_Carrots_w−t
−0.07267
Apple Freq
0.063306
Schnitzel
0.060649







Turkey or







Chicken Freq


1-palmitoyl-2-
SF_Tahini_wt
−0.10304
SF_White
0.057898
Beer Freq
−0.04463


palmitoleoyl-GPC


Cheese_wt


(16:0/16:1)*


X - 15486
Falafel in Pita
0.073077
SF_WhiteWheat_g_wt
0.068423
Coated or
0.050947



Bread Freq



Stuffed







Cookies,







Waffles or







Biscuits Freq


gamma-tocopherol/
Chicken or
−0.08596
SF_Tahini_wt
0.082135
Cooked
0.079452


beta-tocopherol
Turkey



Legumes Freq



Without Skin



Freq


sphingomyelin
Cooked
−0.07581
SF_Milk_wt
0.073206
Sour Cream
0.049569


(d18:1/21:0,
Legumes Freq



Freq


d17:1/22:0,


d16:1/23:0)*


1-(1-enyl-
SF_Bread_wt
0.069892
SF_Wholemeal
−0.05993
Beef or
0.057894


palmitoyl)-GPE


Bread_wt

Chicken Soup


(P-16:0)*




Freq


isobutyryl-
SF_Natural
0.063163
5-9% Yellow
0.05372
SF_Cereals_wt
0.053375


carnitine (C4)
Yogurt_wt

Cheese Freq


X - 18901
SF_Banana_wt
0.06399
Diet Soda
−0.05372
SF_Mayonnaise_wt
−0.04222





Freq


gamma-
SF_Tomatoes_wt
−0.09994
SF_Bread_wt
0.052591
SF_Sugar Free
−0.04414


glutamylglutamate




Gum_wt


X - 15492
SF_WhiteWheat_g_wt
0.076599
Fried Fish
0.074998
Peanuts Freq
0.069423





Freq


X - 16580
SF_Tahini_wt
−0.08956
Lettuce Freq
0.086593
Olives Freq
0.063551


sphingomyelin
SF_Dark
−0.06768
Wholemeal or
0.050004
Beer Freq
−0.04815


(d18:2/24:2)*
Chocolate_wt

Rye Bread





Freq


stearoyl
SF_Milk_wt
0.067077
3% Milk Freq
0.047581
>=16% Yellow
0.039688


sphingomyelin




Cheese Freq


(d18:1/18:0)


N-methyltaurine
SF_Watermelon_wt
−0.17449
Onion Freq
0.147793
Falafel in Pita
0.122295







Bread Freq


lysine
Chicken or
0.098944
Artificial
0.056876
Beef or
0.052718



Turkey

Sweeteners

Chicken Soup



Without Skin

Freq

Freq



Freq


X - 17340
SF_Hummus
0.116257
Peanuts Freq
0.097322
Fried Fish
0.07388



Salad_wt



Freq


X - 13703
Coffee Freq
0.188466
SF_Coffee_wt
0.152114
SF_Rice
0.046852







crackers_wt


X - 24706
SF_Soymilk_wt
0.06487
Cooked
0.017659
Zucchini or
0.016865





Legumes Freq

Eggplant Freq


X - 22716
3% Milk Freq
−0.10833
Cooked
0.08906
0.5-3% White
−0.08144





Legumes Freq

Cheese,







Cottage Freq


X - 14082
SF_Coffee_wt
0.156468
Coffee Freq
0.152021
Fresh
0.042167







Vegetable







Salad With







Dressing or







Oil Freq


4-allylphenol
Apple Freq
0.116885
SF_Apple_wt
0.076744
SF_Milk_wt
−0.06441


sulfate


1-oleoyl-2-
Fish Cooked,
0.084036
SF_WhiteWheat_g_wt
−0.05803
Jachnun,
−0.03538


docosahexaenoyl-
Baked or



Mlawah,


GPC (18:1/22:6)*
Grilled Freq



Kubana,







Cigars Freq


X - 17354
SF_Tahini_wt
0.160742
SF_Natural
0.039212
SF_Apple_wt
0.034765





Yogurt_wt


6-oxopiperidine-
SF_Egg_wt
0.06615
Artificial
0.062186
Sugar
−0.05349


2-carboxylate


Sweeteners

Sweetened





Freq

Chocolate







Milk Freq


X - 18240
SF_Coffee_wt
0.187494
Coffee Freq
0.0935
SF_Wine_wt
0.046175


theanine
Green Tea
0.096144
SF_Green
0.095442
Regular Tea
0.077232



Freq

Tea_wt

Freq


X - 24760
SF_Coffee_wt
0.280824
SF_WholeWheat_g_wt
0.101318
SF_Wholemeal
0.057419







Crackers_wt


beta-hydroxyiso-
Cooked
−0.06808
Egg Recipes
0.059491
Olives Freq
0.04804


valerate
Cereal such as

Freq



Oatmeal



Porridge Freq


dodecenedioate
Nuts,
0.117334
3% Milk Freq
−0.10753
SF_Walnuts_wt
0.102202


(C12:1-DC)*
almonds,



pistachios



Freq


X - 11478
Fries Freq
0.09509
Carrots, Fresh
−0.06526
Falafel in Pita
0.060008





or Cooked,

Bread Freq





Carrot Juice





Freq


X - 24736
SF_Tahini_wt
0.112295
SF_WhiteWheat_g_wt
−0.07968
SF_Brown
0.075141







Rice_wt


lactose
3% Milk Freq
0.225955
SF_Coffee_wt
0.199653
Cooked
−0.06794







Legumes Freq


2-hydroxyoctanoate
3% Milk Freq
−0.09954
SF_Tahini_wt
0.071947
Chicken or
−0.06708







Turkey







Without Skin







Freq


trans-4-
Sausages Freq
0.0654
SF_Beef_wt
0.054309
Beef, Veal,
0.052938


hydroxyproline




Lamb, Pork,







Steak, Golash







Freq


X - 17351
Mandarin or
0.058162
SF_Brown
−0.04934
Zucchini or
0.046388



Clementine

Sugar_wt

Eggplant Freq



Freq


1-methylnicotin-
SF_Water_wt
0.091722
SF_Salmon_wt
0.055713
Beef or
0.055467


amide




Chicken Soup







Freq


acetoacetate
Fish Cooked,
0.073927
Pasta or
−0.06951
Ordinary
−0.05612



Baked or

Flakes Freq

Bread or



Grilled Freq



Challah Freq


X - 23782
Regular Sodas
−0.10444
Fish Cooked,
0.10004
Coated or
−0.04626



with Sugar

Baked or

Stuffed



Freq

Grilled Freq

Cookies,







Waffles or







Biscuits Freq


X - 12818
SF_Wholemeal
0.184703
SF_Cereals_wt
0.104268
Lemon Freq
−0.09019



Bread_wt


10- nonadecenoate
SF_Soymilk_wt
−0.03908
Regular Sodas
−0.03743
Butter Freq
0.035973


(19:1n9)


with Sugar





Freq


X - 14314
SF_Coffee_wt
0.054253
SF_Bread_wt
0.041986
SF_Butter_wt
0.036913


X - 24544
Beer Freq
0.085933
SF_Coffee_wt
−0.0784
Fries Freq
0.04965


gamma-glutamyl-
Cooked
−0.06413
SF_WhiteWheat_g_wt
0.054748
White or
−0.04477


leucine
Cereal such as



Brown Sugar



Oatmeal



Freq



Porridge Freq


glutaryl-
Beer Freq
0.13809
SF_Beer_wt
0.055295
SF_Potatoes_wt
0.051997


carnitine (C5-DC)


hydantoin-5-
SF_Wholemeal
0.080184
Processed
−0.0621
SF_Cottage
0.053608


propionic acid
Bread_wt

Meat Free

cheese_wt





Products Freq


X - 12543
SF_Coffee_wt
0.289918
Regular Tea
−0.08174
Thousand
−0.05793





Freq

Island







Dressing,







Garlic







Dressing Freq


X - 17337
SF_Cottage
0.064122
Fish (not
0.060858
SF_Tomatoes
−0.05977



cheese_wt

Tuna) Pickled,

_wt





Dried, Smoked,





Canned Freq


dodecanedioate
SF_Tahini_wt
−0.15098
Tahini Salad
−0.0647
Coffee Freq
0.062105





Freq


androstenediol
Beer Freq
0.109059
SF_Coffee_wt
−0.06242
SF_WhiteWheat_g_wt
0.048352


(3beta,17beta)


monosulfate (1)


adipoylcarnitine
SF_Tahini_wt
−0.09092
SF_Carrots_wt
−0.04623
SF_Olives_wt
0.04375


(C6-DC)


pristanate
Butter Freq
0.171721
Simple
−0.0926
Beef, Veal,
0.082812





Cookies or

Lamb, Pork,





Biscuits Freq

Steak, Golash







Freq


sphingomyelin
Hummus
−0.06595
SF_Potatoes_wt
−0.05092
SF_Milk_wt
0.05023


(d18:2/23:0,
Salad Freq


d18:1/23:1,


d17:1/24:1)*


X - 24542
SF_Coffee_wt
0.14031
Regular Tea
−0.08879
Herbal Tea
0.06994





Freq

Freq


X - 22475
SF_Coffee_wt
0.18452
SF_WholeWheat_g_wt
0.096449
3% Milk Freq
0.068639


alpha-hydroxyiso-
SF_Coffee_wt
−0.05921
SF_WhiteWheat_g_wt
0.049964
Beer Freq
0.040813


valerate


myristoylcarnitine
Butter Freq
0.0533
Cooked
−0.05196
Beef, Veal,
0.0485


(C14)


Legumes Freq

Lamb, Pork,







Steak, Golash







Freq


X - 21411
SF_Tahini_wt
0.128825
3% Milk Freq
−0.07513
Chicken or
−0.06842







Turkey







Without Skin







Freq


1-(1-enyl-
SF_Bread_wt
0.059334
Beef or
0.052217
SF_Wholemeal
−0.05039


oleoyl)-GPE


Chicken Soup

Bread_wt


(P-18:1)*


Freq


Fibrinopeptide
SF_Bread_wt
−0.04915
Hummus
−0.0239
Avocado Freq
0.015385


A (4-15)**


Salad Freq


X - 11640
SF_Tahini_wt
0.247584
SF_Water_wt
0.059533
SF_Red
−0.05334







pepper_wt


2-hydroxy-3-
Beer Freq
0.049638
SF_Milk_wt
−0.04903
Herbal Tea
−0.04318


methylvalerate




Freq


dehydroiso-
Beer Freq
0.14187
SF_Coffee_wt
−0.08914
Shish Kebab
0.052195


androsterone




in Pita Bread


sulfate (DHEA-S)




Freq


X - 12726
SF_Coffee_wt
0.092904
SF_Vegetable
0.072989
SF_Olives_wt
0.06468





Salad_wt


X - 13728
Milk or Dark
0.153607
SF_Dark
0.087974
Beef or
−0.04863



Chocolate

Chocolate_wt

Chicken Soup



Freq



Freq


cinnamoylglycine
SF_Coffee_wt
0.126319
Regular Sodas
−0.06715
SF_Mayonnaise_wt
−0.06438





with Sugar





Freq


X - 17685
SF_Coffee_wt
0.138281
SF_WholeWheat_g_wt
0.121406
SF_Wine_wt
0.065703


X - 12101
Brussels
0.051094
Cooked
0.042104
Falafel in Pita
0.028582



Sprouts,

Legumes Freq

Bread Freq



Green or Red



Cabbage Freq


glycocholenate
SF_Coffee_wt
−0.06995
Coffee Freq
−0.0618
SF_WhiteWheat_g_wt
0.056011


sulfate*


4-hydroxyphenyl
SF_Cappuccino_wt
0.049382
SF_Fried
−0.04463
SF_Bread_wt
−0.0354


pyruvate


eggplant_wt


1-(1-enyl-palmitoyl)-
SF_WhiteWheat_g_wt
−0.10134
SF_Hummus
−0.09715
SF_Potatoes_wt
−0.04524


2-oleoyl-GPC


Salad_wt


(P-16:0/18:1)*


picolinoylglycine
White or
−0.09267
Processed
−0.05389
SF_Tea_wt
−0.04419



Brown Sugar

Meat Free



Freq

Products Freq


isocitrate
Red Pepper
0.076783
Pastrami or
−0.06361
SF_Beef_wt
−0.05482



Freq

Smoked Turkey





Breast Freq


X - 24243
SF_Cooked
−0.06315
Pastrami or
0.061746
Turkey
0.039993



beets_wt

Smoked Turkey

Meatballs,





Breast Freq

Beef, Chicken







Freq


androstenediol
Beer Freq
0.134934
SF_Coffee_wt
−0.08313
Egg Recipes
0.068449


(3beta,17beta)




Freq


disulfate (2)


X - 11261
Falafel in Pita
0.068496
SF_Water_wt
−0.0405
SF_Tomatoes_wt
−0.03592



Bread Freq


X - 22162
Orange or
0.077606
SF_Rice_wt
0.052965
SF_Hummus_wt
0.052656



Grapefruit



Freq


X - 11470
Hummus
0.100684
SF_Rice
−0.08934
Cucumber
−0.0614



Salad Freq

crackers_wt

Freq


2-methylbutyryl
SF_WhiteWheat_g_wt
0.065268
Cooked
−0.0465
Dried Fruits
−0.03871


carnitine (C5)


Cereal such as

Freq





Oatmeal





Porridge Freq


X - 12798
3% Milk Freq
0.091414
SF_Milk_wt
0.074018
SF_Tahini_wt
−0.04342


dimethyl sulfoxide
SF_Tomatoes_wt
0.05062
SF_Potatoes_wt
−0.04519
Red Pepper
0.044749


(DMSO)




Freq


2-aminooctanoate
SF_Tahini_wt
0.105905
3% Milk Freq
−0.0914
Beer Freq
0.058881


pentadecanoate
Butter Freq
0.053376
Olives Freq
0.039644
Cooked
−0.03932


(15:0)




Legumes Freq


1,2-dilinoleoyl-
SF_Tahini_wt
0.096569
SF_Potatoes_wt
−0.06019
Cooked
0.055795


GPC (18:2/18:2)




Legumes Freq


X - 18921
Fries Freq
0.05387
Coated or
0.039743
SF_WhiteWheat_g_wt
0.03824





Stuffed





Cookies,





Waffles or





Biscuits Freq


1,2,3-benzenetriol
SF_Coffee_wt
0.134102
Coffee Freq
0.052842
SF_WholeWheat_g_wt
0.043487


sulfate (2)


nonadecanoate
Simple
−0.06058
Butter Freq
0.047339
Coated or
−0.02794


(19:0)
Cookies or



Stuffed



Biscuits Freq



Cookies,







Waffles or







Biscuits Freq


gentisic acid-
3% Milk Freq
−0.05801
SF_Wholemeal
0.047284
Cauliflower or
0.038263


5-glucoside


Bread_wt

Broccoli Freq


X - 18606
SF_Tahini_wt
0.142344
SF_Hummus
0.072401
Beer Freq
0.058927





Salad_wt


hydroxy-N6,N6,N6-
SF_Sugar Free
−0.07963
SF_Milk_wt
−0.07081
SF_Vegetable
0.064225


trimethyllysine*
Gum_wt



Salad_wt


3-(3-hydroxy-
SF_Coffee_wt
0.227788
Coffee Freq
0.05958
SF_WholeWheat_g_wt
0.053186


phenyl)propionate


sulfate


cytosine
SF_Wholemeal
0.159775
SF_Fried
−0.0547
SF_WholeWheat_g_wt
0.040952



Bread_wt

onions_wt


2-hydroxynervonate*
Yeast Cakes
−0.0553
SF_Noodles_wt
−0.04438
SF_WhiteWheat_g_wt
−0.04422



and Cookies



as Rogallach,



Croissant or



Donut Freq


1-(1-enyl-stearoyl)-
Egg, Hard
0.07593
Beef or
0.065637
SF_Tahini_wt
0.063931


2-linoleoyl-GPE
Boiled or Soft

Chicken Soup


(P-18:0/18:2)*
Freq

Freq


1-palmitoyl-2-
Fish Cooked,
0.057094
SF_Wholemeal
0.055869
SF_Tahini_wt
−0.03623


docosahexaenoyl-GPE
Baked or

Light


(16:0/22:6)*
Grilled Freq

Bread_wt


ADSGEGDFXAE
Orange or
−0.10373
Salty Snacks
−0.08455
Alcoholic
−0.07739


GGGVR*
Grapefruit

Freq

Drinks Freq



Juice Freq


3-(3-hydroxyphenyl)
SF_Coffee_wt
0.201776
Coffee Freq
0.052656
SF_WholeWheat_g_wt
0.038157


propionate


N-stearoyltaurine
Beef, Veal,
0.110496
SF_Tomatoes_wt
−0.07775
SF_Olives_wt
0.042842



Lamb, Pork,



Steak, Golash



Freq


4-vinylphenol
Roll or
−0.1048
SF_Coffee_wt
0.10402
Granola or
0.065599


sulfate
Bageles Freq



Bernflaks







Freq


N-acetyltaurine
SF_WhiteWheat_g_wt
0.077176
SF_Potatoes_wt
0.065368
Falafel in Pita
0.036458







Bread Freq


X - 24293
Beer Freq
0.091094
SF_Wine_wt
0.08129
SF_WhiteWheat_g_wt
0.07415


tartronate
Red Pepper
0.07617
Turkey
−0.04034
Vegetable
0.037986


(hydroxymalonate)
Freq

Meatballs,

Soup Freq





Beef, Chicken





Freq


X - 22143
Shish Kebab
0.053932
Sweet Dry
0.044043
Herbal Tea
−0.03614



in Pita Bread

Wine,

Freq



Freq

Cocktails Freq


pyrraline
SF_WholeWheat_g_wt
0.061848
Simple
0.060612
SF_Salmon_wt
−0.04986





Cookies or





Biscuits Freq


5-oxoproline
SF_Bread_wt
0.036501
Beer Freq
0.02624
SF_White
0.025292







beans_wt


margarate (17:0)
Simple
−0.03928
Regular Sodas
−0.02758
SF_Butter_wt
0.025446



Cookies or

with Sugar



Biscuits Freq

Freq


aconitate [cis
SF_Carrots_wt
−0.05062
Potatoes
−0.04769
Salty Snacks
−0.04748


or trans]


Boiled,

Freq





Baked,





Mashed,





Potatoes





Salad Freq


3,7-dimethylurate
Milk or Dark
0.189726
SF_Dark
0.074185
Beef or
−0.06911



Chocolate

Chocolate_wt

Chicken Soup



Freq



Freq


1-stearoyl-2-
Fish Cooked,
0.091596
SF_Wholemeal
0.054854
SF_Tahini_wt
−0.04813


docosahexaenoyl-GPE
Baked or

Light


(18:0/22:6)*
Grilled Freq

Bread_wt


X - 24801
SF_WholeWheat_g_wt
0.06358
SF_Sugar Free
−0.05639
Peanuts Freq
0.049639





Gum_wt


chiro-inositol
SF_Orange_wt
0.107262
Mandarin or
0.051525
Orange or
0.048499





Clementine

Grapefruit





Freq

Freq


trimethylamine
Roll or
−0.07952
SF_Coffee_wt
0.077516
Processed
−0.05468


N-oxide
Bageles Freq



Meat Free







Products Freq


3-phenylpropionate
SF_Coffee_wt
0.104958
SF_Mayonnaise_wt
−0.1009
SF_Apple_wt
0.055215


(hydrocinnamate)


X - 12283
Egg Recipes
−0.05075
SF_Hummus_wt
0.050204
Mandarin or
0.050203



Freq



Clementine







Freq


X - 21410
SF_Tahini_wt
−0.19852
SF_Egg_wt
0.191018
SF_Beef_wt
0.106045


vanillyl-
Apple Freq
0.077743
Onion Freq
−0.06802
SF_Banana_wt
0.054575


mandelate (VMA)


N-acetylglycine
SF_WhiteWheat_g_wt
−0.09448
Herbal Tea
0.059217
Nuts,
0.048257





Freq

almonds,







pistachios







Freq


X - 12812
Mandarin or
0.074454
Orange or
0.072369
SF_Tomatoes_wt
0.052836



Clementine

Grapefruit



Freq

Freq


glycohyocholate
3% Milk Freq
−0.09652
SF_Beef_wt
−0.05554
0.5-3% White
−0.04343







Cheese,







Cottage Freq


palmitoyl
Nuts,
0.10047
SF_WhiteWheat_g_wt
−0.06178
SF_Potatoes_wt
−0.05827


dihydrosphingo-
almonds,


myelin
pistachios


(d18:0/16:0)*
Freq


gamma-CEHC
Pasta or
0.107936
Tahini Salad
−0.0595
SF_Tahini_wt
−0.05082



Flakes Freq

Freq


X - 12472
SF_Coffee_wt
0.094319
Falafel in Pita
0.090484
SF_Carrots_wt
−0.05648





Bread Freq


4-hydroxychloro-
SF_Cottage
0.055377
SF_Milk_wt
0.048346
Red Pepper
0.045907


thalonil
cheese_wt



Freq


10-heptadecenoate
Regular Sodas
−0.04974
Simple
−0.04505
Artificial
0.021249


(17:1n7)
with Sugar

Cookies or

Sweeteners



Freq

Biscuits Freq

Freq


X - 23644
Red Pepper
0.093291
SF_Vegetable
0.039215
SF_Red
0.033965



Freq

Salad_wt

pepper_wt


X - 21821
Mandarin or
0.051696
Apple Freq
0.050414
Zucchini or
0.03914



Clementine



Eggplant Freq



Freq


X - 11444
SF_Vegetable
0.092755
SF_Hummus
0.058934
SF_Carrots_wt
−0.05091



Salad_wt

Salad_wt


docosahexaenoyl-
Fish Cooked,
0.109538
SF_Salmon_wt
0.076422
SF_Bread_wt
0.03848


choline
Baked or



Grilled Freq


gamma-glutamyl-
Beer Freq
0.061011
SF_Tomatoes_wt
−0.05921
0.5-3% White
−0.04567


glutamine




Cheese,







Cottage Freq


valine
White or
−0.05934
Fish (not
0.054359
SF_Omelette_wt
0.049183



Brown Sugar

Tuna) Pickled,



Freq

Dried, Smoked,





Canned Freq


X - 13723
SF_Coffee_wt
0.193624
Coffee Freq
0.127054
Vegetable
0.03529







Soup Freq


indolepropionate
Cooked
0.046646
Dried Fruits
0.045609
Wholemeal or
0.043607



Legumes Freq

Freq

Rye Bread







Freq


arabitol/xylitol
SF_Coffee_wt
0.139771
SF_Rice
0.076099
SF_Wholemeal
0.066292





crackers_wt

Bread_wt


carnitine
Shish Kebab
0.097013
Chicken or
0.061211
SF_Vegetable
0.046594



in Pita Bread

Turkey With

Salad_wt



Freq

Skin Freq


benzoylcarnitine*
SF_Coffee_wt
0.157067
SF_Apple_wt
0.072915
Coffee Freq
0.071059


X - 13729
Onion Freq
−0.09022
SF_Coffee_wt
0.073443
>=16% Yellow
0.065813







Cheese Freq


X - 12739
Falafel in Pita
0.071968
Hummus
0.069679
SF_Hummus
0.059622



Bread Freq

Salad Freq

Salad_wt


9-hydroxystearate
SF_Milk_wt
0.095003
Butter Freq
0.068312
Regular Sodas
−0.0617







with Sugar







Freq


X - 21851
SF_Apple_wt
−0.06377
Sausages Freq
0.049895
Regular Sodas
0.042147







with Sugar







Freq


13-methylmyristate
Sour Cream
0.084894
SF_Butter_wt
0.083964
SF_Milk_wt
0.068971



Freq


7-ethylguanine
SF_Wine_wt
0.066846
Chicken or
−0.06106
SF_WhiteWheat_g_wt
0.05459





Turkey





Without Skin





Freq


margaroylcarnitine*
Butter Freq
0.105975
>=16% Yellow
0.097941
Mixed Meat
0.042884





Cheese Freq

Dishes as







Moussaka,







Hamin, Cuba







Freq


docosapentaenoate
Simple
−0.12007
Apricot Fresh
0.034649
0.5-3% White
0.030771


(n3 DPA; 22:5n3)
Cookies or

or Dry, or

Cheese,



Biscuits Freq

Loquat Freq

Cottage Freq


X - 24546
SF_Tahini_wt
−0.11829
SF_Coffee_wt
−0.10119
Tahini Salad
−0.07446







Freq


X - 11787
White or
−0.04505
SF_Tomatoes_wt
−0.0379
SF_Vegetable
0.035632



Brown Sugar



Salad_wt



Freq


X - 24527
SF_Hummus
0.070502
Falafel in Pita
0.06244
Hummus
0.05344



Salad_wt

Bread Freq

Salad Freq


4-acetylphenol
SF_Coffee_wt
0.156791
3% Milk Freq
−0.05685
SF_Soymilk_wt
0.049785


sulfate


sphingomyelin
SF_Hummus
−0.06839
Fresh
0.053578
SF_Milk_wt
0.032785


(d18:2/24:1,
Salad_wt

Vegetable


d18:1/24:2)*


Salad Without





Dressing or





Oil Freq


cys-gly, oxidized
Pastrami or
0.036794
SF_Lettuce_wt
−0.03083
Sausages Freq
0.030657



Smoked Turkey



Breast Freq


isoleucine
Cooked
−0.03656
Herbal Tea
−0.03344
SF_Tea_wt
−0.03212



Cereal such as

Freq



Oatmeal



Porridge Freq


cysteinylglycine
Pastrami or
0.056683
SF_Yellow
0.054024
SF_Sugar Free
−0.05318


disulfide*
Smoked Turkey

Cheese_wt

Gum_wt



Breast Freq


1-myristoyl-2-
Cooked
−0.07118
SF_White
0.070052
Onion Freq
0.064567


arachidonoyl-GPC
Legumes Freq

Cheese_wt


(14:0/20:4)*


1-myristoyl-
Cooked
−0.11965
Tahini Salad
−0.05657
3-5% Natural
0.053361


glycerol (14:0)
Legumes Freq

Freq

Yogurt Freq


alpha-ketoglutarate
Artificial
0.063637
SF_Tomatoes_wt
−0.05738
SF_Bread_wt
0.047728



Sweeteners



Freq


X - 24748
SF_Tahini_wt
0.17305
5-9% White
−0.06025
Peanuts Freq
0.060099





Cheese,





Cottage Freq


eicosanodioate
SF_Hummus
0.061637
Alcoholic
0.043798
SF_Tahini_wt
0.043589



Salad_wt

Drinks Freq


X - 24556
SF_Tahini_wt
−0.15025
Tahini Salad
−0.06057
Cooked
−0.05647





Freq

Legumes Freq


X - 23680
Falafel in Pita
0.087917
SF_WhiteWheat g_wt
0.054224
SF_Tomatoes_wt
−0.03333



Bread Freq


acetylcarnitine
Chicken or
0.064778
Olives Freq
0.054727
Cauliflower or
0.048316


(C2)
Turkey With



Broccoli Freq



Skin Freq


hexanoylglutamine
SF_Olives_wt
0.071153
SF_Carrots_wt
−0.05522
SF_Butter_wt
0.040206


sphingomyelin
SF_Hummus
−0.04922
Beer Freq
−0.04036
SF_Milk_wt
0.037815


(d18:1/18:1,
Salad_wt


d18:2/18:0)


sphingomyelin
SF_Milk_wt
0.061398
Coffee Freq
0.054795
Apple Freq
−0.05461


(d18:1/20:0,


d16:1/22:0)*


X - 23974
Pasta or
−0.09086
Hummus
−0.05679
Lettuce Freq
0.046852



Flakes Freq

Salad Freq


X - 12212
Corn Freq
0.071692
SF_Milk_wt
−0.0674
SF_White
0.064989







Cheese_wt


myristoleate
Regular Sodas
−0.0642
SF_Soymilk_wt
−0.03688
SF_Milk_wt
0.036841


(14:1n5)
with Sugar



Freq


X - 13846
Coffee Freq
0.167835
SF_Coffee_wt
0.13385
SF_Avocado_wt
−0.03013


X - 21657
SF_Milk_wt
−0.07147
SF_Onion_wt
0.068077
Ice Cream or
−0.05106







Popsicle which







contains







Dairy Freq


X - 24352
Nuts,
0.091291
SF_Almonds_wt
0.049197
SF_Milk_wt
−0.03754



almonds,



pistachios



Freq


beta-
SF_Bread_wt
0.053222
SF_Halva_wt
0.044486
SF_Hummus
−0.03712


citrylglutamate




Salad_wt


gluconate
Vegetable
0.064582
Mandarin or
0.043157
SF_Rice
0.039038



Soup Freq

Clementine

crackers_wt





Freq


lignoceroyl-
SF_Dark
0.052863
Light Bread
−0.05073
SF_Couscous_wt
−0.0402


carnitine (C24)*
Chocolate_wt

Freq


X - 24831
Beef, Veal,
0.037107
SF_Carrots_wt
−0.03136
Herbal Tea
−0.0304



Lamb, Pork,



Freq



Steak, Golash



Freq


Fibrinopeptide
SF_Bread_wt
−0.04056
3% Milk Freq
0.027349
Cauliflower or
0.023617


A (2-15)**




Broccoli Freq


gamma-glutamyl-
Cooked
−0.05156
SF_Sugar Free
−0.04448
SF_Vegetable
0.039899


isoleucine*
Cereal such as

Gum_wt

Salad_wt



Oatmeal



Porridge Freq


X - 12846
Hummus
0.080235
Peanuts Freq
0.077533
SF_Vegetable
0.055132



Salad Freq



Salad_wt


S-allylcysteine
SF_Hummus
0.089282
SF_Lettuce_wt
−0.05902
SF_Cucumber_wt
−0.05122



Salad_wt


tartarate
SF_Grapes_wt
0.082038
Turkey
−0.05606
SF_Raisins_wt
0.053596





Meatballs,





Beef, Chicken





Freq


ceramide
Beef or
0.091016
SF_Tahini_wt
−0.07115
3% Milk Freq
0.043787


(d18:2/24:1,
Chicken Soup


d18:1/24:2)*
Freq


X - 12714
SF_Coffee_wt
0.154378
SF_Salmon_wt
−0.06742
Coffee Freq
0.057035


1-stearoyl-2-
Beef, Veal,
−0.0542
SF_WhiteWheat_g_wt
−0.02915
5-9% White
−0.02794


linoleoyl-GPI
Lamb, Pork,



Cheese,


(18:0/18:2)
Steak, Golash



Cottage Freq



Freq


1-linoleoyl-
Alcoholic
0.134912
SF_Potatoes_wt
−0.05422
SF_Tahini_wt
0.050325


GPC (18:2)
Drinks Freq


gamma-glutamyl-
SF_Vegetable
0.047001
SF_Wholemeal
0.032299
SF_Coffee_wt
0.032297


tyrosine
Salad_wt

Bread_wt


N-acetyl-
Coffee Freq
−0.05887
3% Milk Freq
−0.0416
SF_Vegetable
0.024152


isoputreanine*




Salad_wt


hexanoyl-
Chicken or
0.047782
Olives Freq
0.045283
Fresh
0.038541


carnitine (C6)
Turkey With



Vegetable



Skin Freq



Salad With







Dressing or







Oil Freq


X - 16944
Coated or
0.05482
SF_Tomatoes_wt
−0.03995
Falafel in Pita
0.038149



Stuffed



Bread Freq



Cookies,



Waffles or



Biscuits Freq


sucrose
SF_Cooked
−0.03833
SF_Sugar
−0.03463
SF_Water_wt
−0.0324



mushrooms_wt

substitute_wt


formimino-
Wholemeal or
−0.05219
Dried Fruits
−0.05004
Fish Cooked,
0.043564


glutamate
Rye Bread

Freq

Baked or



Freq



Grilled Freq


arachidoyl-
Light Bread
−0.1099
SF_Tomatoes_wt
−0.07916
SF_Couscous_wt
−0.07128


carnitine (C20)*
Freq


ximenoyl-carnitine
SF_Vegetable
0.102459
Lettuce Freq
0.045823
Avocado Freq
0.044495


(C26:1)*
Salad_wt


hydroquinone
SF_Coffee_wt
0.095988
SF_Wholemeal
0.0807
SF_Cereals_wt
0.048285


sulfate


Bread_wt


caprylate (8:0)
SF_Coffee_wt
0.079323
Carrots, Fresh
−0.06543
SF_Yellow
0.061268





or Cooked,

Cheese_wt





Carrot Juice





Freq


3-methylcytidine
SF_WhiteWheat_g_wt
0.090598
SF_Coffee_wt
−0.07365
Beer Freq
0.069208


riboflavin
SF_Natural
0.090506
0.5-3% White
0.070039
SF_Coffee_wt
0.04713


(Vitamin B2)
Yogurt_wt

Cheese,





Cottage Freq


X - 14662
SF_Apple_wt
−0.09769
SF_Coffee_wt
−0.09098
White or
0.053462







Brown Sugar







Freq


Fibrinopeptide
SF_Bread_wt
−0.04739
Beer Freq
−0.02094
Processed
−0.01091


A(5-16)*




Meat Free







Products Freq


X - 17335
Pear Fresh,
−0.07045
Nuts,
0.06263
Parsley,
0.062528



Cooked or

almonds,

Celery,



Canned Freq

pistachios

Fennel, Dill,





Freq

Cilantro,







Green Onion







Freq


3-hydroxy-3-
Apple Freq
0.058912
SF_Wholemeal
0.057302
Artificial
0.039903


methylglutarate


Bread_wt

Sweeteners







Freq


N-palmitoyl-
SF_Cucumber_wt
−0.11084
>=16% Yellow
0.10569
Coffee Freq
0.095998


heptadeca-


Cheese Freq


sphingosine


(d17:1/16:0)*


methyl-4-
SF_Potatoes_wt
−0.12041
SF_Water_wt
0.076849
SF_WhiteWheat_g_wt
−0.03501


hydroxybenzoate


sulfate


N-acetyl-
Pastrami or
0.074605
SF_Schnitzel_wt
0.049129
3% Milk Freq
0.03658


cadaverine
Smoked Turkey



Breast Freq


kynurenine
SF_Rice_wt
0.051933
3-5% Natural
0.041535
SF_Coffee_wt
0.036335





Yogurt Freq


5alpha-androstan-
Beer Freq
0.089175
Fries Freq
0.066337
SF_Beef_wt
0.050897


3alpha,17beta-diol


monosulfate (1)


X - 21807
SF_Wholemeal
0.054191
SF_Cucumber_wt
0.049252
SF_Granola_wt
0.049025



Bread_wt


X - 16946
Red Pepper
−0.08129
Beer Freq
0.051737
SF_Beer_wt
0.047456



Freq


X - 11485
SF_Pickled
0.109611
Beer Freq
0.060967
Parsley,
0.057116



cucumber_wt



Celery,







Fennel, Dill,







Cilantro,







Green Onion







Freq


methionine
Sugar
−0.04551
SF_WhiteWheat_g_wt
−0.04156
SF_Diet
−0.0375


sulfone
Sweetened



Coke_wt



Chocolate



Milk Freq


3-methoxycatechol
SF_Coffee_wt
0.104167
SF_WholeWheat_g_wt
0.048877
Coffee Freq
0.0302


sulfate (1)


N1-methyladenosine
SF_Cooked
−0.06155
SF_Yellow
0.045843
Falafel in Pita
0.045711



Sweet

Cheese_wt

Bread Freq



potato_wt


andro steroid
SF_Tahini_wt
−0.1439
5-9% White
−0.06178
SF_Coffee_wt
−0.05481


monosulfate


Cheese,


C19H28O6S (1)*


Cottage Freq


X - 12712
SF_Coffee_wt
0.140458
Banana Freq
−0.03517
SF_Tahini_wt
0.02072


X - 21470
SF_Coffee_wt
−0.11582
Beer Freq
0.096722
Egg Recipes
0.039388







Freq


1-oleoyl-2-
SF_Salmon_wt
0.054117
Couscous,
0.046698
SF_Onion_wt
−0.03554


docosahexaenoyl-


Burgul,


GPE (18:1/22:6)*


Mamaliga,





Groats Freq


gamma-CEHC
SF_Tahini_wt
−0.12423
Beer Freq
−0.06859
SF_Schnitzel_wt
0.033138


glucuronide*


glycocholate
SF_Milk_wt
−0.04726
Pastrami or
−0.04259
1% Milk Freq
−0.03616





Smoked Turkey





Breast Freq


carboxyethyl-GABA
Pastrami or
−0.0866
Sausages
−0.06704
Cooked
0.031391



Smoked Turkey

such as

Legumes Freq



Breast Freq

Salami Freq


N2,N2-dimethyl-
SF_Yellow
0.098234
Fried Fish
0.066074
SF_Sugar Free
−0.06334


guanosine
Cheese_wt

Freq

Gum_wt


X - 21310
SF_Coffee_wt
0.071409
SF_Carrots_wt
−0.06521
5-9% White
0.05211







Cheese,







Cottage Freq


glycocheno-
SF_Coffee_wt
−0.0613
Regular Tea
−0.04606
3% Milk Freq
−0.04532


deoxycholate


Freq


sulfate


N-acetyl-2-
SF_Tahini_wt
0.137033
Peanuts Freq
0.059463
SF_Milk_wt
−0.04204


aminooctanoate*


X - 24410
Coffee Freq
0.087269
SF_Water_wt
−0.05474
Schnitzel
0.039184







Turkey or







Chicken Freq


1-linoleoyl-2-
Beef, Veal,
−0.06829
Nuts,
0.032334
SF_Omelette_wt
−0.02916


linolenoyl-GPC
Lamb, Pork,

almonds,


(18:2/18:3)*
Steak, Golash

pistachios



Freq

Freq


glycerophospho-
SF_Onion_wt
−0.07733
Egg, Hard
0.064763
Hummus
−0.04904


ethanolamine


Boiled or Soft

Salad Freq





Freq


X - 21792
SF_Tahini_wt
−0.19733
Tahini Salad
−0.10689
Butter Freq
0.061936





Freq


5-hydroxymethyl-
SF_Coffee_wt
0.177999
Coffee Freq
0.077824
SF_Tahini_wt
−0.04553


2-furoic acid


pipecolate
Brussels
0.085255
Butter Freq
−0.04196
SF_Lentils_wt
0.038667



Sprouts,



Green or Red



Cabbage Freq


linoleoyl-
Nuts,
0.058086
SF_Hummus
0.048527
Butter Freq
−0.03714


linoleoyl-glycerol
almonds,

Salad_wt


(18:2/18:2) [1]*
pistachios



Freq


3-hydroxy-2-
Simple
−0.05275
Beef, Veal,
0.045623
SF_Yellow
0.042843


ethylpropionate
Cookies or

Lamb, Pork,

Cheese_wt



Biscuits Freq

Steak, Golash





Freq


6-hydroxyindole
SF_Coffee_wt
0.076349
5-9% White
0.06381
SF_Carrots_wt
−0.05916


sulfate


Cheese,





Cottage Freq


ectoine
Pastrami or
0.084927
Schnitzel
0.044951
SF_Chicken
0.043943



Smoked Turkey

Turkey or

legs_wt



Breast Freq

Chicken Freq


3-methyladipate
SF_WhiteWheat_g_wt
−0.09169
White or
−0.07128
SF_Apple_wt
0.071033





Brown Sugar





Freq


3-hydroxyiso-
Dried Fruits
−0.05896
SF_Cappuccino_wt
0.050394
SF_Natural
0.049106


butyrate
Freq



Yogurt_wt


1-palmitoyl-
SF_Tahini_wt
−0.05885
Pita Freq
−0.04177
SF_Ice
0.037925


GPE (16:0)




cream_wt


1-palmitoyl-2-
SF_Tahini_wt
−0.10439
SF_Hummus
−0.04759
SF_Ice
0.032992


oleoyl-GPC


Salad_wt

cream_wt


(16:0/18:1)


laurate (12:0)
SF_Tahini_wt
−0.04977
SF_Butter_wt
0.035766
Butter Freq
0.033592


X - 21441
SF_Coffee_wt
−0.10118
Green Tea
0.05392
Beer Freq
0.040751





Freq


X - 15674
SF_Beef_wt
−0.08944
Red Pepper
0.069277
SF_WhiteWheat_g_wt
−0.06332





Freq


X - 21258
SF_Wine_wt
0.063455
Alcoholic
0.040641
SF_Almonds_wt
0.023999





Drinks Freq


sulfate*
SF_Natural
0.042297
Pasta or
−0.04072
SF_Coffee_wt
0.028779



Yogurt_wt

Flakes Freq


docosahexaenoyl-
Fish Cooked,
0.164689
Fish (not
0.056762
SF_Beer_wt
0.037362


carnitine
Baked or

Tuna) Pickled,


(C22:6)*
Grilled Freq

Dried, Smoked,





Canned Freq


fumarate
SF_Bread_wt
0.033833
SF_Roll_wt
−0.02981
Schnitzel
−0.02939







Turkey or







Chicken Freq


propionylglycine
SF_Coffee_wt
0.076691
SF_Water_wt
0.06895
Egg, Hard
0.040405







Boiled or Soft







Freq


1-ribosyl-
SF_Milk_wt
−0.05071
Tahini Salad
0.027727
SF_Hummus_wt
0.02567


imidazoleacetate*


Freq


16a-hydroxy
SF_Tahini_wt
−0.07884
SF_Coffee_wt
−0.07576
Canned Tuna
0.04132


DHEA 3-sulfate




or Tuna Salad







Freq


androstenediol
Beer Freq
0.121029
SF_WhiteWheat_g_wt
0.079168
SF_Coffee_wt
−0.04547


(3beta,17beta)


disulfate (1)


pantothenate
Artificial
0.072037
SF_Tomatoes_wt
0.032786
Avocado Freq
0.031684



Sweeteners



Freq


X - 15461
Chicken or
0.044132
Cooked
−0.03696
SF_Coffee_wt
0.031195



Turkey With

Cereal such as



Skin Freq

Oatmeal





Porridge Freq


linoleoylcholine*
SF_Bread_wt
0.050505
Artificial
−0.04062
SF_Tahini_wt
0.038565





Sweeteners





Freq


1-linoleoyl-
Alcoholic
0.061122
Pastrami or
−0.05285
SF_Walnuts_wt
0.03184


GPE (18:2)*
Drinks Freq

Smoked Turkey





Breast Freq


nisinate
SF_Tahini_wt
−0.09478
Beer Freq
−0.06611
0.5-3% White
0.062821


(24:6n3)




Cheese,







Cottage Freq


arachidate
Chicken or
−0.06088
3% Milk Freq
−0.05322
Ordinary
−0.04074


(20:0)
Turkey



Bread or



Without Skin



Challah Freq



Freq


octadecenedioate
Regular Sodas
−0.05403
Couscous,
0.036199
3% Milk Freq
−0.0336


(C18:1-DC)*
with Sugar

Burgul,



Freq

Mamaliga,





Groats Freq


1,2-dilinoleoyl-GPE
Cooked
0.070297
3% Milk Freq
−0.05618
SF_Coffee_wt
0.049561


(18:2/18:2)*
Legumes Freq


acisoga
Coffee Freq
−0.0863
Falafel in Pita
0.059705
SF_Tahini_wt
0.030911





Bread Freq


propionylcarnitine
Shish Kebab
0.061404
SF_Coffee_wt
0.048186
SF_Sugar Free
−0.04686


(C3)
in Pita Bread



Gum_wt



Freq


1-linoleoyl-GPG
SF_Water_wt
−0.04467
SF_Natural
−0.03807
SF_Soymilk_wt
0.037041


(18:2)*


Yogurt_wt


X - 12263
SF_Coffee_wt
0.162606
SF_Tomatoes_wt
−0.06167
Coffee Freq
0.053381


X - 13553
SF_Vegetable
0.084191
Cooked
−0.05454
SF_Almonds_wt
0.039301



Salad_wt

Cereal such as





Oatmeal





Porridge Freq


5-hydroxyindole
Roll or
−0.04765
SF_Almonds_wt
0.046704
Mandarin or
0.04397


acetate
Bageles Freq



Clementine







Freq


X - 21295
SF_Coffee_wt
0.140807
SF_Wholemeal
0.077468
Banana Freq
−0.07549





Bread_wt


Fibrinopeptide
SF_Bread_wt
−0.02982
Beer Freq
−0.01324
3% Milk Freq
0.00634


A (3-16)**


N-palmitoyl-
SF_Coffee_wt
0.051767
SF_Tahini_wt
−0.04766
SF_Pretzels_wt
−0.04221


sphingosine


(d18:1/16:0)


X - 17677
SF_Coffee_wt
0.118219
Coffee Freq
0.065901
SF_Wholemeal
0.053262







Bread_wt


3-hydroxyhexanoate
SF_Carrots_wt
−0.0549
Nuts,
0.040265
Olives Freq
0.036866





almonds,





pistachios





Freq


sphingomyelin
SF_Hummus
−0.06111
Fresh
0.049177
Hummus
−0.04743


(d18:1/24:1,
Salad_wt

Vegetable

Salad Freq


d18:2/24:0)*


Salad Without





Dressing or





Oil Freq


1-carboxyethyl-
SF_Watermelon_wt
0.043546
SF_Burekas_wt
0.042299
5-9% Yellow
0.037741


phenylalanine




Cheese Freq


3-hydroxy-
Wholemeal or
−0.03254
Olives Freq
0.031156
Pear Fresh,
−0.02901


butyrate (BHBA)
Rye Bread



Cooked or



Freq



Canned Freq


X - 15469
SF_Chocolate
−0.02756
Olives Freq
0.027483
SF_Coffee_wt
−0.0258



cake_wt


leucylglycine
SF_Chicken
−0.05293
SF_Vegetable
−0.04372
Processed
0.040161



breast_wt

Salad_wt

Meat Free







Products Freq


X - 23587
Chicken or
0.068007
Fish (not
0.066831
Tomato Freq
−0.05204



Turkey With

Tuna) Pickled,



Skin Freq

Dried, Smoked,





Canned Freq


gamma-glutamyl-
Banana Freq
−0.02702
SF_Vegetable
0.023917
SF_Wholemeal
0.021364


phenylalanine


Salad_wt

Bread_wt


sphingomyelin
Sour Cream
0.064972
SF_Milk_wt
0.056258
Apple Freq
−0.05404


(d18:1/22:1,
Freq


d18:2/22:0,


d16:1/24:1)*


X - 24849
Ordinary
0.053709
SF_Beer_wt
0.042293
Red Pepper
−0.03267



Bread or



Freq



Challah Freq


1-stearoyl-2-
SF_Wholemeal
0.064931
SF_Tahini_wt
−0.02729
SF_Onion_wt
−0.02352


arachidonoyl-GPE
Light


(18:0/20:4)
Bread_wt


17alpha-hydroxy-
SF_Coffee_wt
−0.07834
SF_Lemon
0.06481
Beer Freq
0.054433


pregnenolone


juice_wt


3-sulfate


myo-inositol
Zucchini or
0.056557
Pasta or
−0.04226
SF_Wine_wt
0.034561



Eggplant Freq

Flakes Freq


17alpha-hydroxy-
SF_Hummus
0.106195
SF_Beer_wt
0.086303
Artificial
−0.07952


pregnanolone
Salad_wt



Sweeteners


glucuronide




Freq


arachidonoyl-
SF_WhiteWheat_g_wt
0.052902
Hummus
0.034309
SF_Bread_wt
0.033221


carnitine


Salad Freq


(C20:4)


stearidonate
Fish (not
0.045552
Mandarin or
0.040018
Canned Tuna
0.034287


(18:4n3)
Tuna) Pickled,

Clementine

or Tuna Salad



Dried, Smoked,

Freq

Freq



Canned Freq


gamma-glutamyl-
Green Pepper
0.039247
SF_Cappuccino_wt
0.030677
Chicken or
0.029409


alpha-lysine
Freq



Turkey







Without Skin







Freq


3-indoxyl sulfate
SF_Coffee_wt
0.07973
SF_Carrots_wt
−0.07335
5-9% White
0.06247







Cheese,







Cottage Freq


1-stearoyl-2-
Nuts,
0.05006
SF_Tahini_wt
0.043015
SF_Potatoes_wt
−0.02857


linoleoyl-GPC
almonds,


(18:0/18:2)*
pistachios



Freq


X - 17327
SF_Yellow
0.130344
SF_Wholemeal
−0.06456
Milk or Dark
−0.04598



Cheese_wt

Bread_wt

Chocolate







Freq


1-stearoyl-2-
SF_Dark
0.050532
Thousand
−0.0405
SF_Tahini_wt
−0.02715


oleoyl-GPC
Chocolate_wt

Island


(18:0/18:1)


Dressing,





Garlic





Dressing Freq


1-stearoyl-GPC
Nuts,
0.048795
SF_Tomatoes_wt
−0.03172
Thousand
−0.01745


(18:0)
almonds,



Island



pistachios



Dressing,



Freq



Garlic







Dressing Freq


X - 23593
SF_Rice
0.047886
SF_Tomatoes_wt
0.030574
SF_Vegetable
0.030164



crackers_wt



Salad_wt


1-linoleoyl-GPI
Chicken or
−0.07118
SF_Rice
0.052388
>=16% Yellow
−0.02918


(18:2)*
Turkey

crackers_wt

Cheese Freq



Without Skin



Freq


linolenate
Nuts,
0.082233
Chicken or
−0.03234
Regular Sodas
−0.03105


[alpha or gamma;
almonds,

Turkey

with Sugar


(18:3n3 or 6)]
pistachios

Without Skin

Freq



Freq

Freq


glucuronate
Cooked
0.053612
Olives Freq
0.048299
SF_Tea_wt
−0.04478



Vegetable



Salads Freq


cerotoylcarnitine
SF_Dark
0.065789
SF_Vegetable
0.05387
Beef, Veal,
0.048883


(C26)*
Chocolate_wt

Salad_wt

Lamb, Pork,







Steak, Golash







Freq


alpha-tocopherol
Regular Sodas
−0.0752
Zucchini or
0.044517
Pita Freq
−0.03676



with Sugar

Eggplant Freq



Freq


cystine
SF_White
0.06269
SF_Milk_wt
−0.05379
Processed
−0.03521



Cheese_wt



Meat Free







Products Freq


vanillic alcohol
3% Milk Freq
−0.06089
Regular Tea
−0.05546
Zucchini or
0.05366


sulfate


Freq

Eggplant Freq


palmitoleate
Regular Sodas
−0.05418
Apricot Fresh
0.022006
Artificial
0.018981


(16:1n7)
with Sugar

or Dry, or

Sweeteners



Freq

Loquat Freq

Freq


o-cresol sulfate
Coffee Freq
0.095003
Sugar
−0.0362
Lemon Freq
0.027052





Sweetened





Chocolate





Milk Freq


1-palmitoyl-2-
SF_Wholemeal
0.046446
SF_Dried
−0.04394
SF_Tahini_wt
−0.04326


arachidonoyl-GPC
Light

dates_wt


(16:0/20:4n6)
Bread_wt


methylsuccinoyl-
SF_Hummus
−0.0525
Cooked
−0.0439
SF_Natural
0.043251


carnitine (1)
Salad_wt

Tomatoes,

Yogurt_wt





Tomato





Sauce,





Tomato Soup





Freq


X - 24972
SF_Egg_wt
−0.08948
SF_Yellow
−0.05579
SF_Butter_wt
−0.03895





Cheese_wt


X - 23666
SF_WhiteWheat_g_wt
0.068366
Sausages Freq
0.041272
Salty Snacks
0.030829







Freq


decanoylcarnitine
Olives Freq
0.054851
SF_Watermel on_wt
−0.03923
1% Milk Freq
−0.02785


(C10)


X - 21353
Nuts,
0.059715
Falafel in Pita
0.05262
SF_Tahini_wt
0.041466



almonds,

Bread Freq



pistachios



Freq


etiocholanolone
Beer Freq
0.060124
SF_Onion_wt
0.044929
Sugar
0.035631


glucuronide




Sweetened







Chocolate







Milk Freq


X - 17353
SF_Sugar Free
0.079919
5-9% White
0.032881
Cooked
0.026736



Gum_wt

Cheese,

Cereal such as





Cottage Freq

Oatmeal







Porridge Freq


X - 24329
Falafel in Pita
0.052792
1% Milk Freq
−0.03275
SF_Potatoes_wt
0.026598



Bread Freq


2-arachidonoyl-
Regular Sodas
0.090073
SF_Rice_wt
0.072147
SF_WhiteWheat_g_wt
0.052247


glycerol (20:4)
with Sugar



Freq


sarcosine
Egg, Hard
0.061378
SF_Omelette_wt
0.043441
SF_WhiteWheat_g_wt
0.037801



Boiled or Soft



Freq


alpha-ketobutyrate
Fish Cooked,
0.089386
SF_Tofu_wt
−0.05264
Granola or
−0.04186



Baked or



Bernflaks



Grilled Freq



Freq


citrate
SF_Lettuce_wt
−0.05888
Light Bread
−0.05104
SF_Carrots_wt
−0.0482





Freq


pregnenolone
Beer Freq
0.065808
SF_Coffee_wt
−0.05694
SF_Lemon
0.036754


sulfate




juice_wt


eicosenoate
Yeast Cakes
−0.0319
SF_Noodles_wt
−0.02962
Simple
−0.0269


(20:1)
and Cookies



Cookies or



as Rogallach,



Biscuits Freq



Croissant or



Donut Freq


5alpha-androstan-
Beer Freq
0.089884
Fries Freq
0.070706
SF_Pita_wt
0.049846


3beta,17beta-diol


monosulfate (2)


hypotaurine
Cooked
0.043805
Processed
0.039617
SF_Cappuccino_wt
−0.03939



Legumes Freq

Meat Free





Products Freq


tauro-beta-
SF_Sugar Free
0.073393
Shish Kebab
−0.05382
3% Milk Freq
−0.04577


muricholate
Gum_wt

in Pita Bread





Freq


eicosapentaenoyl-
SF_Tahini_wt
−0.12604
Fish Cooked,
0.106876
SF_Salmon_wt
0.088145


choline


Baked or





Grilled Freq


1-oleoyl-GPE
3% Milk Freq
−0.05434
Pastrami or
−0.04671
SF_Yellow
−0.02447


(18:1)


Smoked Turkey

Cheese_wt





Breast Freq


1-palmitoyl-2-
SF_Wholemeal
0.067457
SF_Tahini_wt
−0.04766
Onion Freq
0.037292


arachidonoyl-GPE
Light


(16:0/20:4)*
Bread_wt


androsterone
Beer Freq
0.089625
Fries Freq
0.027494
SF_Coffee_wt
−0.02314


sulfate


2-acetamidophenol
SF_Wholemeal
0.090403
Granola or
0.067783
Cooked
0.056602


sulfate
Bread_wt

Bernflaks

Cereal such as





Freq

Oatmeal







Porridge Freq


X - 01911
SF_Milk_wt
−0.0681
Kiwi or
−0.05011
Apricot Fresh
−0.04798





Strawberries

or Dry, or





Freq

Loquat Freq


nicotinamide
SF_Bread_wt
0.071635
SF_Coffee_wt
−0.03908
SF_Water_wt
0.026042


X - 11522
Ordinary
0.044847
SF_Beer_wt
0.031155
SF_Rice_wt
0.023121



Bread or



Challah Freq


X - 12753
SF_Onion_wt
0.09065
Milk or Dark
−0.05508
SF_Bread_wt
−0.02556





Chocolate





Freq


N-palmitoyl-
Coffee Freq
0.096446
Tomato Freq
−0.08704
SF_Coffee_wt
0.058111


sphinganine


(d18:0/16:0)


X - 12844
Fried Fish
0.04782
SF_Carrots_wt
−0.04441
Milk or Dark
−0.03873



Freq



Chocolate







Freq


X - 12410
SF_Banana_wt
0.056995
Orange or
−0.02864
SF_Avocado_wt
0.027351





Grapefruit





Juice Freq


erucate
Fish (not
0.107709
Cauliflower or
0.032695
White or
−0.02819


(22:1n9)
Tuna) Pickled,

Broccoli Freq

Brown Sugar



Dried, Smoked,



Freq



Canned Freq


X - 16964
SF_Cranberries_wt
0.101215
SF_Vegetable
0.075652
SF_Yellow
−0.0591





Salad_wt

Cheese_wt


palmitoyl-
SF_Beef_wt
0.046691
Beef, Veal,
0.044311
SF_WhiteWheat_g_wt
0.03838


carnitine (C16)


Lamb, Pork,





Steak, Golash





Freq


glyco-beta-
SF_Beef_wt
−0.06478
Peas, Green
0.063065
0.5-3% White
−0.04681


muricholate**


Beans or Okra

Cheese,





Cooked Freq

Cottage Freq


X - 21628
Beer Freq
−0.06377
SF_WhiteWheat_g_wt
−0.02921
White or
−0.0239







Brown Sugar







Freq


gamma-
SF_Tomatoes_wt
−0.05188
SF_Tahini_wt
0.034775
Orange or
0.030931


glutamylglycine




Grapefruit







Freq


kynurenate
SF_Vegetable
0.051277
0-1.5%
0.038151
SF_Lentils_wt
−0.03395



Salad_wt

Natural





Yogurt Freq


proline
SF_WhiteWheat_g_wt
0.071788
5-9% White
0.039607
SF_Lentils_wt
−0.03648





Cheese,





Cottage Freq


X - 21285
Beer Freq
0.071763
SF_Coffee_wt
−0.06569
SF_Rice
−0.04881







crackers_wt


3-hydroxyoctanoate
Butter Freq
0.099174
Nuts,
0.049921
Carrots, Fresh
−0.04729





almonds,

or Cooked,





pistachios

Carrot Juice





Freq

Freq


N6,N6,N6-
SF_Vegetable
0.067066
Beer Freq
0.031592
SF_Omelette_wt
0.030373


trimethyllysine
Salad_wt


phenylacetate
SF_WhiteWheat_g_wt
−0.07144
SF_Mayonnaise_wt
−0.04729
Onion Freq
−0.04418


glutamine
Hummus
0.033603
Tahini Salad
0.027003
Beer Freq
0.023909



Salad Freq

Freq


homocitrulline
SF_WhiteWheat_g_wt
−0.06447
SF_Egg_wt
0.055245
SF_Natural
0.048659







Yogurt_wt


X - 21659
SF_Milk_wt
−0.09211
Onion Freq
0.063348
SF_Soda
0.057046







water_wt


N-acetyltyrosine
SF_Cappuccino_wt
0.094836
SF_Coffee_wt
0.058616
SF_Hummus_wt
−0.03856


X - 21474
SF_Milk_wt
−0.07991
SF_Beer_wt
0.0649
SF_Pickled
0.05981







cucumber_wt


X - 12026
Processed
−0.08968
SF_Yellow
0.076298
SF_Carrots_wt
−0.03611



Meat Free

Cheese_wt



Products Freq


xylose
Nuts,
0.098204
3% Milk Freq
−0.05523
Beef, Veal,
−0.04884



almonds,



Lamb, Pork,



pistachios



Steak, Golash



Freq



Freq


dihomo-linolenoyl-
SF_WhiteWheat_g_wt
0.041331
SF_Bread_wt
0.037511
Lettuce Freq
−0.0354


choline


X - 24106
SF_Schnitzel_wt
−0.04488
5-9% Yellow
−0.03897
SF_WholeWheat_g_wt
−0.03771





Cheese Freq


X - 14095
SF_Bread_wt
0.077635
SF_Hummus
−0.03217
SF_Butter_wt
0.025451





Salad_wt


tyrosine
5-9% Yellow
0.027014
5-9% White
0.022504
SF_Wholemeal
0.021459



Cheese Freq

Cheese,

Bread_wt





Cottage Freq


dihomo-linoleoyl-
SF_Tahini_wt
0.168036
Turkey
−0.07754
SF_Tomatoes_wt
−0.04487


carnitine


Meatballs,


(C20:2)*


Beef, Chicken





Freq


asparagine
Cooked
0.039672
SF_Noodles_wt
0.036839
SF_Rice
0.026258



Legumes Freq



crackers_wt


N-acetylmethionine
SF_Bread_wt
0.011027
SF_Roll_wt
−0.00322
SF_Butter_wt
0.002863


X - 21364
Beer Freq
0.075149
SF_Coffee_wt
−0.03726
SF_Beer_wt
0.033377


X - 25116
SF_Burekas_wt
0.036163
SF_Natural
−0.03369
SF_Coffee_wt
−0.02773





Yogurt_wt


3beta-
Alcoholic
0.077874
SF_White
−0.03951
SF_Salmon_wt
−0.03235


hydroxy-5-
Drinks Freq

Cheese_wt


cholestenoate


dopamine 4-
SF_Banana_wt
0.070655
Sugar
−0.06142
SF_Wholemeal
0.050857


sulfate


Sweetened

Bread_wt





Chocolate





Milk Freq


pyridoxate
Roll or
−0.07028
Green Pepper
0.056616
Lettuce Freq
0.051359



Bageles Freq

Freq


N-acetyl-1-
Beef, Veal,
0.078307
Beef or
0.045135
SF_Chicken
0.04307


methylhistidine*
Lamb, Pork,

Chicken Soup

legs_wt



Steak, Golash

Freq



Freq


guanidinoacetate
SF_Vegetable
0.074438
Tahini Salad
0.040045
Garlic Freq
−0.03967



Salad_wt

Freq


21-hydroxy-
SF_Vegetable
−0.07337
Fries Freq
0.049259
SF_Coffee_wt
−0.04457


pregnenolone
Salad_wt


disulfate


malate
SF_Bread_wt
0.032741
Light Bread
−0.02165
SF_Butter_wt
0.014048





Freq


oleoylcarnitine
Olives Freq
0.077644
SF_Couscous_ wt
−0.03024
SF_Ketchup_wt
−0.02392


(C18:1)


X - 12206
Red Pepper
0.046815
SF_Mandarin_wt
0.043388
Turkey
−0.03816



Freq



Meatballs,







Beef, Chicken







Freq


X - 12063
SF_Sugar Free
−0.0584
SF_WhiteWheat_g_wt
0.054733
Pastrami or
0.033261



Gum_wt



Smoked Turkey







Breast Freq


oleoyl
White or
−0.03498
Small Burekas
−0.03307
Yeast Cakes
−0.0258


ethanolamide
Brown Sugar

Freq

and Cookies



Freq



as Rogallach,







Croissant or







Donut Freq


glutamate
SF_Bread_wt
0.036395
Orange or
−0.01802
SF_WhiteWheat_g_wt
0.017001





Grapefruit





Freq


phenylacetyl-
SF_Natural
0.048783
SF_WhiteWheat_g_wt
−0.04844
SF_Coffee_wt
0.03918


glutamine
Yogurt_wt


X - 12096
SF_WholeWheat_g_wt
0.066136
SF_Baguette_wt
0.059752
SF_WhiteWheat_g_wt
0.0588


1-linoleoyl-
SF_Cake_wt
−0.0673
SF_Schnitzel_wt
−0.05655
3% Milk Freq
−0.04898


GPA (18:2)*


X - 23654
SF_WhiteWheat_g_wt
0.077858
3-5% Natural
0.044109
SF_Omelette_wt
0.034925





Yogurt Freq


glycosyl-N-
SF_Milk_wt
0.0557
SF_Omelette_wt
−0.04808
SF_Hummus
−0.04643


stearoyl-




Salad_wt


sphingosine


(d18:1/18:0)


X - 12906
Pita Freq
−0.05466
SF_Milk_wt
−0.04795
Sugar
−0.04737







Sweetened







Chocolate







Milk Freq


3-sulfo-L-alanine
SF_Bread_wt
0.061042
Salty Snacks
0.028345
SF_Pretzels_wt
0.022106





Freq


X - 24498
SF_Coffee_wt
0.138837
Coffee Freq
0.055923
SF_Rice
0.047868







crackers_wt


phosphate
SF_Pita_wt
−0.03662
SF_WhiteWheat_g_wt
−0.03078
Pasta or
−0.0207







Flakes Freq


S-carboxymethyl-
SF_Orange_wt
−0.1069
SF_Watermelon_wt
0.051148
SF_Mandarin_wt
−0.04797


L-cysteine


N-oleoyltaurine
Olives Freq
0.050767
Lemon Freq
0.046478
Cauliflower or
0.046371







Broccoli Freq


cysteinylglycine
SF_Apple_wt
−0.0625
Potatoes
0.060617
Shish Kebab
0.025836





Boiled,

in Pita Bread





Baked,

Freq





Mashed,





Potatoes





Salad Freq


X - 24699
Falafel in Pita
0.05733
Beer Freq
0.046028
Coffee Freq
−0.04054



Bread Freq


N6-succinyl-
Falafel in Pita
0.098688
Coffee Freq
−0.06662
SF_Banana_wt
0.037984


adenosine
Bread Freq


sphingomyelin
SF_Wholemeal
0.023853
SF_Banana_wt
−0.01897
SF_Butter_wt
0.018366


(d18:0/18:0,
Light


d19:0/17:0)*
Bread_wt


azelate
Nuts,
0.057165
White or
−0.05126
SF_Bread_wt
−0.0466


(nonanedioate)
almonds,

Brown Sugar



pistachios

Freq



Freq


X - 24813
SF_Bread_wt
−0.04071
SF_Cottage
0.035005
SF_Red
0.033898





cheese_wt

pepper_wt


gamma-glutamyl-2-
Beef or
0.048252
Green Pepper
0.046289
Canned Tuna
0.022489


aminobutyrate
Chicken Soup

Freq

or Tuna Salad



Freq



Freq


2-docosahexaenoyl-
Fish Cooked,
0.224924
Canned Tuna
0.109362
Tahini Salad
−0.06066


glycerol
Baked or

or Tuna Salad

Freq


(22:6)*
Grilled Freq

Freq


indoleacetate
SF_Peach_wt
0.037143
Carrots, Fresh
−0.03442
Schnitzel
0.029018





or Cooked,

Turkey or





Carrot Juice

Chicken Freq





Freq


cis-4-decenoyl-
Artificial
−0.03686
SF_Tahini_wt
0.035194
Falafel in Pita
0.034064


carnitine (C10:1)
Sweeteners



Bread Freq



Freq


glycerol
SF_Hummus
−0.046
Regular Sodas
−0.04527
Tomato Freq
−0.04509



Salad_wt

with Sugar





Freq


2′-deoxyuridine
SF_Beef_wt
0.046898
SF_Tahini_wt
0.044832
SF_Bread_wt
0.042087


laurylcarnitine
Olives Freq
0.048493
SF_Coffee_wt
−0.03528
SF_Yellow
0.030481


(C12)




Cheese_wt


X - 12015
Shish Kebab
0.09333
Green Pepper
0.087069
SF_Milk_wt
−0.07985



in Pita Bread

Freq



Freq


pro-hydroxy-pro
Orange or
0.05136
SF_WholeWheat_g_wt
−0.03896
Diet Soda
−0.0292



Grapefruit



Freq



Juice Freq


adipate
SF_Vegetable
−0.06926
SF_Coffee_wt
0.064768
SF_Potatoes_wt
−0.04173



Soup_wt


malonate
SF_WhiteWheat_g_wt
−0.04652
SF_Potatoes_wt
−0.03324
SF_Lettuce_w t
−0.0315


cystathionine
SF_Peas_wt
−0.06647
SF_Sushi_wt
−0.03407
SF_Cappuccino_wt
0.026946


4-hydroxy-
SF_Tomatoes_wt
0.043924
SF_Wholemeal
0.041546
SF_WholeWheat_g_wt
0.029764


hippurate


Bread_wt


eugenol sulfate
SF_Bread_wt
−0.03555
SF_Lettuce_wt
0.023125
SF_Tahini_wt
0.020809


X - 24812
Alcoholic
0.044176
Peach,
−0.04414
Parsley,
0.035591



Drinks Freq

Nectarine,

Celery,





Plum Freq

Fennel, Dill,







Cilantro,







Green Onion







Freq


4-guanidino-
Cooked
0.052793
SF_Yellow
−0.04886
SF_Wholemeal
0.045254


butanoate
Legumes Freq

Cheese_wt

Bread_wt


X - 12718
SF_Natural
0.066011
Processed
−0.04088
SF_Coffee_wt
0.039037



Yogurt_wt

Meat Free





Products Freq


X - 24519
SF_Olives_wt
0.060406
Beer Freq
0.048529
SF_Olive
0.039632







oil_wt


3-amino-2-
Apple Freq
0.029171
Peanuts Freq
0.027707
SF_Vegetable
0.019886


piperidone




Salad_wt


N6-carbamoyl-
Falafel in Pita
0.080872
SF_Yellow
0.041434
SF_WhiteWheat_g_wt
0.023162


threonyladenosine
Bread Freq

Cheese_wt


4-imidazoleacetate
SF_Wholemeal
0.04959
3% Milk Freq
−0.04394
Lemon Freq
0.038844



Bread_wt


corticosterone
SF_Rice_wt
0.04424
SF_Ketchup_wt
0.035671
SF_Hummus_wt
0.032285


DSGEGDFXAE
SF_Bread_wt
−0.03161
Processed
−0.01426
Beer Freq
−0.01299


GGGVR*


Meat Free





Products Freq


5alpha-pregnan-
SF_Rice
−0.02416
Pasta or
0.022412
Egg Recipes
0.020874


3beta,20beta-diol
crackers_wt

Flakes Freq

Freq


monosulfate (1)


N-acetylalliin
SF_Cucumber_wt
−0.05811
Garlic Freq
0.048409
SF_Onion_wt
0.047219


salicylate
SF_Potatoes_wt
−0.03208
Lemon Freq
0.015662
5-9% Yellow
0.014349







Cheese Freq


X - 16570
Falafel in Pita
0.123415
SF_Tomatoes_wt
−0.0664
SF_Brown
−0.02451



Bread Freq



Rice_wt


2-hydroxydecanoate
Nuts,
0.073362
3% Milk Freq
−0.043
Cooked
0.037346



almonds,



Legumes Freq



pistachios



Freq


isovalerylglycine
SF_Coffee_wt
0.05993
Egg, Hard
0.046294
Artificial
0.044144





Boiled or Soft

Sweeteners





Freq

Freq


sphingomyelin
Coffee Freq
0.058736
SF_Wholemeal
0.039402
SF_Dark
0.026623


(d18:0/20:0,


Light

Chocolate_wt


d16:0/22:0)*


Bread_wt


alliin
Garlic Freq
0.07817
SF_Onion_wt
0.066297
Diet Yogurt
−0.0454







Freq


docosapentaenoate
SF_Vegetable
−0.04399
SF_Cookies_wt
−0.03842
SF_Egg_wt
0.038342


(n6 DPA; 22:5n6)
Salad_wt


dodecadienoate
Nuts,
0.055041
SF_Tahini_wt
0.05432
Tahini Salad
0.033912


(12:2)*
almonds,



Freq



pistachios



Freq


2-methoxyresorcinol
SF_Coffee_wt
0.062075
SF_WholeWheat_g_wt
0.041962
Coffee Freq
0.03172


sulfate


biliverdin
Alcoholic
0.044794
Brussels
−0.03934
Beer Freq
0.037637



Drinks Freq

Sprouts,





Green or Red





Cabbage Freq


oleate/vaccenate
Regular Sodas
−0.02705
SF_Noodles_wt
−0.02665
Olives Freq
0.025082


(18:1)
with Sugar



Freq


1,2-dipalmitoyl-
SF_Tahini_wt
−0.05504
Peach,
0.021556
Artificial
0.017402


GPC


Nectarine,

Sweeteners


(16:0/16:0)


Plum Freq

Freq


X - 23787
SF_Peas_wt
0.041056
SF_Coffee_wt
−0.03616
SF_Dark
0.033285







Chocolate_wt


5alpha-androstan-
Beer Freq
0.071782
SF_Ice
0.026726
SF_Brown
−0.02326


3beta,17alpha-


cream_wt

Rice_wt


diol disulfate


N-acetylleucine
Processed
−0.04816
SF_Carrots_wt
−0.04546
Banana Freq
−0.04531



Meat Free



Products Freq


X - 16397
SF_Tahini_wt
−0.11933
SF_WhiteWheat_g_wt
−0.03252
Granola or
−0.02613







Bernflaks







Freq


hypoxanthine
>=16% Yellow
0.030625
SF_Bread_wt
0.019789
SF_Hummus
−0.01735



Cheese Freq



Salad_wt


guanidinosuccinate
SF_Cottage
0.027991
Beef or
0.027637
SF_Vegetable
0.024513



cheese_wt

Chicken Soup

Salad_wt





Freq


oleoylcholine
SF_Bread_wt
0.036108
Sugar
0.030004
Apricot Fresh
0.02974





Sweetened

or Dry, or





Chocolate

Loquat Freq





Milk Freq


X - 11530
Ordinary
0.038735
SF_Beer_wt
0.03738
Red Pepper
−0.01961



Bread or



Freq



Challah Freq


sphingomyelin
Beer Freq
−0.05029
SF_Hummus
−0.03659
SF_WhiteWheat_g_wt
−0.03544


(d18:2/16:0,


Salad_wt


d18:1/16:1)*


1-stearoyl-2-
Beef, Veal,
−0.05587
SF_Rice
0.038722
SF_Coffee_wt
0.027619


linoleoyl-GPE
Lamb, Pork,

crackers_wt


(18:0/18:2)*
Steak, Golash



Freq


phenyllactate
SF_White
0.027312
Beer Freq
0.024407
Kiwi or
−0.01453


(PLA)
beans_wt



Strawberries







Freq


methylsuccinate
Coffee Freq
0.089331
SF_Coffee_wt
0.082275
SF_Tzfatit
0.030701







Cheese_wt


X - 18887
Artificial
−0.04104
Tahini Salad
0.03989
SF_Potatoes_wt
0.024166



Sweeteners

Freq



Freq


X - 21286
SF_Natural
0.041114
Parsley,
−0.03748
SF_White
0.035784



Yogurt_wt

Celery,

Cheese_wt





Fennel, Dill,





Cilantro,





Green Onion





Freq


gamma-glutamyl-
SF_Tomatoes_wt
−0.05988
SF_Vegetable
0.053782
Coffee Freq
−0.04005


citrulline*


Salad_wt


glycodeoxy-
SF_Tahini_wt
−0.04515
Fresh
−0.03848
Green Tea
−0.03742


cholate sulfate


Vegetable

Freq





Salad Without





Dressing or





Oil Freq


3-hydroxylaurate
SF_Yellow
0.05357
Olives Freq
0.030034
SF_WhiteWheat_g_wt
−0.01863



Cheese_wt


sulfate of
SF_Pickled
0.083888
Parsley,
0.059971
SF_Milk_wt
−0.04173


piperine
cucumber_wt

Celery,


metabolite


Fennel, Dill,


C16H19NO3


Cilantro,


(2)*


Green Onion





Freq


1-carboxyethyl-
5-9% Yellow
0.041844
Wholemeal or
−0.04121
SF_Fried
−0.03209


leucine
Cheese Freq

Rye Bread

eggplant_wt





Freq


sebacate
Sausages
0.037883
SF_Yellow
0.036507
Carrots, Fresh
−0.03597


(decanedioate)
such as

Cheese_wt

or Cooked,



Salami Freq



Carrot Juice







Freq


N-acetylneuraminate
SF_Hummus
−0.00926
SF_Bread_wt
0.009013
Olives Freq
0.003914



Salad_wt


N-formylanthranilic
Processed
−0.09354
SF_Natural
0.066743
Onion Freq
−0.04453


acid
Meat Free

Yogurt_wt



Products Freq


picolinate
SF_Coffee_wt
0.071362
Coffee Freq
0.059671
SF_WholeWheat_g_wt
−0.04863


4-hydroxybenzoate
SF_Cranberries_wt
−0.03406
SF_Tea_wt
0.029731
SF_Yellow
0.027116







Cheese_wt


2- hydroxybehenate
SF_WhiteWheat_g_wt
−0.04678
SF_Noodles_wt
−0.03738
Tomato Freq
−0.03107


5-dodecenoate
Regular Sodas
−0.06199
SF_Yellow
0.035471
SF_Milk_wt
0.021621


(12:1n7)
with Sugar

Cheese_wt



Freq


X - 12831
SF_Wholemeal
0.023572
SF_Soymilk_wt
0.022402
SF_WhiteWheat_g_wt
0.017332



Bread_wt


glycerol 3-phosphate
SF_Pita_wt
−0.0328
SF_Bread_wt
0.016143
SF_Cottage
−0.01372







cheese_wt


N-palmitoyltaurine
SF_Olives_wt
0.032981
SF_Butter_wt
0.028811
Butter Freq
0.027231


octadecadiene
SF_Cottage
0.053773
SF_Rice_wt
0.051693
Red Pepper
0.042027


dioate (C18:2-
cheese_wt



Freq


DC)*


1-stearoyl-GPE
SF_Coffee_wt
0.027216
Salty Cheese,
0.026333
SF_Diet
−0.02553


(18:0)


Tzfatit,

Coke_wt





Bulgarian,





Brinza, Thick





Slice Freq


bilirubin (E, E)*
Alcoholic
0.050502
Beer Freq
0.032377
SF_Rice_wt
0.026276



Drinks Freq


N-acetylthreonine
SF_WhiteWheat_g_wt
0.052422
Orange or
0.042283
3% Milk Freq
−0.02683





Grapefruit





Freq


homoarginine
SF_Potatoes_wt
0.070383
SF_Water_wt
−0.04607
SF_Vegetable
0.033306







Salad_wt


tetradecanedioate
Tahini Salad
−0.11566
SF_Tahini_wt
−0.08221
Fish Cooked,
0.048859



Freq



Baked or







Grilled Freq


12-HETE
SF_Bread_wt
0.026539
SF_Cottage
−0.02202
SF_Cake_wt
−0.01692





cheese_wt


X - 11843
Parsley,
−0.02759
Oil as an
−0.02729
SF_Soda
−0.02582



Celery,

addition for

water_wt



Fennel, Dill,

Salads or



Cilantro,

Stews Freq



Green Onion



Freq


X - 22771
Carrots, Fresh
0.063908
SF_Vegetable
0.042727
SF_Cranberries_wt
0.042558



or Cooked,

Salad_wt



Carrot Juice



Freq


2,3-dihydroxy-
Cooked
−0.05082
SF_Vegetable
0.044911
SF_Sugar Free
−0.02946


5-methylthio-
Cereal such as

Salad_wt

Gum_wt


4-pentenoate
Oatmeal


(DMTPA)*
Porridge Freq


myristoleoyl-
Olives Freq
0.064021
SF_Coffee_wt
−0.04737
1% Milk Freq
−0.02303


carnitine


(C14:1)*


orotidine
Falafel in Pita
0.044403
Pastrami or
0.033915
SF_Tomatoes_wt
−0.0332



Bread Freq

Smoked Turkey





Breast Freq


X - 18345
Wholemeal or
−0.08058
SF_Water_wt
0.037649
Ordinary
−0.03263



Rye Bread



Bread or



Freq



Challah Freq


N-palmitoyl-
SF_Hummus
−0.046
SF_Potatoes_wt
−0.02982
SF_WhiteWheat_g_wt
−0.0291


sphingadienine
Salad_wt


(d18:2/16:0)*


glutarate
SF_Chicken
0.039986
Beef, Veal,
0.031258
Coated or
0.02802


(pentanedioate)
breast_wt

Lamb, Pork,

Stuffed





Steak, Golash

Cookies,





Freq

Waffles or







Biscuits Freq


ornithine
SF_Vegetable
0.068277
White or
−0.03168
Apple Freq
0.023569



Salad_wt

Brown Sugar





Freq


1-palmitoyl-2-
SF_Rice
0.051376
Beef, Veal,
−0.04192
Turkey
−0.02903


linoleoyl-GPE
crackers_wt

Lamb, Pork,

Meatballs,


(16:0/18:2)


Steak, Golash

Beef, Chicken





Freq

Freq


X - 24512
SF_Coffee_wt
0.042437
SF_White
0.034453
Mandarin or
0.032431





beans_wt

Clementine







Freq


dopamine 3-
SF_Banana_wt
0.026065
SF_Wholemeal
0.024085
SF_Tomatoes_wt
0.02404


O-sulfate


Bread_wt


isovalerate
SF_Carrots_wt
−0.0503
SF_Schnitzel_wt
0.020979
White or
−0.01881







Brown Sugar







Freq


1-palmitoyl-
SF_Onion_wt
−0.02934
Peanuts Freq
−0.02909
SF_Carrots_wt
−0.02579


GPG (16:0)*


14-HDoHE/17-
SF_Bread_wt
0.022108
Fish Cooked,
0.007253
SF_Mandarin_wt
0.00551


HDoHE


Baked or





Grilled Freq


1-palmitoyl-
SF_Tahini_wt
−0.02778
SF_Ice
0.021235
SF_Almonds_wt
−0.02079


GPI (16:0)


cream_wt


trans-
SF_Pizza_wt
0.019236
Fresh
0.018702
SF_Ice
0.01836


urocanate


Vegetable

cream_wt





Salad Without





Dressing or





Oil Freq


X - 21842
SF_Tahini_wt
0.028064
Egg, Hard
0.027219
SF_Hummus_wt
0.020722





Boiled or Soft





Freq


xanthurenate
SF_Omelette_wt
0.112054
SF_Natural
0.093045
SF_Sugar_wt
−0.07047





Yogurt_wt


N-acetylglutamate
SF_Couscous_wt
−0.02509
SF_Coffee_wt
0.020418
SF_Tomatoes_wt
−0.01222


phospho-
SF_Cottage
−0.03097
Schnitzel
−0.01953
SF_Water_wt
0.019053


ethanolamine
cheese_wt

Turkey or





Chicken Freq


1-(1-enyl-
Hummus
−0.06382
Beef or
0.043133
Orange or
0.042737


palmitoyl)-2-
Salad Freq

Chicken Soup

Grapefruit


palmitoyl-GPC


Freq

Freq


(P-16:0/16:0)*


hexadecene-
SF_Tahini_wt
−0.05817
Carrots, Fresh
−0.03807
Tahini Salad
−0.03629


dioate (C16:1-


or Cooked,

Freq


DC)*


Carrot Juice





Freq


X - 12822
SF_Coffee_wt
−0.03808
SF_Apple_wt
−0.03269
Wholemeal or
−0.02946







Rye Bread







Freq


X - 21607
Tahini Salad
0.089491
SF_Tahini_wt
0.074356
Nuts,
0.054303



Freq



almonds,







pistachios







Freq


epiandrosterone
Beer Freq
0.086832
SF_Pita_wt
0.025957
Salty Cheese,
−0.0197


sulfate




Tzfatit,







Bulgarian,







Brinza, Thin







Slice Freq


2-keto-3-deoxy-
SF_Almonds_wt
0.062034
Falafel in Pita
0.052251
SF_Cappuccino_wt
−0.02988


gluconate


Bread Freq


hydroxy-
SF_Sugar Free
−0.03736
SF_Carrots_wt
−0.03496
SF_Yellow
0.022331


asparagine**
Gum_wt



Cheese_wt


uridine
SF_Bread_wt
0.03592
Onion Freq
0.009274
SF_Rice_wt
0.00823


5-(galactosyl-
SF_Sugar Free
−0.08282
Pastrami or
0.026033
SF_Carrots_wt
−0.01667


hydroxy)-L-lysine
Gum_wt

Smoked Turkey





Breast Freq


ceramide
Cooked
−0.07797
SF_Jam_wt
0.052299
SF_Natural
0.04184


(d16:1/24:1,
Legumes Freq



Yogurt_wt


d18:1/22:1)*


glycosyl
SF_Milk_wt
0.073216
Butter Freq
0.050512
Fresh
0.037208


ceramide




Vegetable


(d18:1/20:0,




Salad With


d16:1/22:0)*




Dressing or







Oil Freq


1-stearoyl-2-
SF_WhiteWheat_g_wt
−0.07191
SF_Bread_wt
−0.02015
SF_Mayonnaise_wt
−0.01374


oleoyl-GPI


(18:0/18:1)*


X - 12013
SF_Schnitzel_wt
0.037638
Oil as an
−0.03406
SF_Water_wt
0.033615





addition for





Salads or





Stews Freq


3-hydroxydecanoate
Butter Freq
0.063398
SF_Yellow
0.03525
Nuts,
0.034922





Cheese_wt

almonds,







pistachios







Freq


anthranilate
SF_Natural
0.064806
Parsley,
−0.04542
5-9% Yellow
0.038353



Yogurt_wt

Celery,

Cheese Freq





Fennel, Dill,





Cilantro,





Green Onion





Freq


5-methyluridine
Chicken or
−0.03894
Olives Freq
0.024302
SF_Hummus
0.022257


(ribothymidine)
Turkey



Salad_wt



Without Skin



Freq


5-bromotryptophan
SF_Coffee_wt
−0.04578
Fries Freq
0.030686
SF_Diet
−0.02692







Coke_wt


1-(1-enyl-
Alcoholic
0.09033
SF_Potatoes_wt
−0.035
5-9% Yellow
−0.03055


palmitoyl)-2-
Drinks Freq



Cheese Freq


linoleoyl-GPC


(P-16:0/18:2)*


3-hydroxybutyryl-
Falafel in Pita
0.054557
Peach,
−0.04312
Herbal Tea
−0.0317


carnitine (2)
Bread Freq

Nectarine,

Freq





Plum Freq


pregnanolone/
SF_Pizza_wt
0.038135
Peanuts Freq
−0.03626
Tahini Salad
−0.03566


allopregnanolone




Freq


sulfate


X - 24728
Falafel in Pita
0.110368
Chicken or
−0.06747
SF_Olives_wt
0.055402



Bread Freq

Turkey





Without Skin





Freq


1-oleoyl-GPI
Sweet Potato
0.032519
SF_Cooked
−0.03121
SF_Hummus
−0.03033


(18:1)*
Freq

mushrooms_wt

Salad_wt


glycine
SF_Cold
−0.02109
SF_Potatoes_wt
−0.01852
Cooked
0.017126



cut_wt



Legumes Freq


dihomo-
Regular Sodas
−0.03101
Simple
−0.02365
5-9% White
−0.01606


linoleate
with Sugar

Cookies or

Cheese,


(20:2n6)
Freq

Biscuits Freq

Cottage Freq


2-linoleoyl-
SF_WhiteWheat_g_wt
0.028344
Coffee Freq
−0.01592
SF_Egg_wt
−0.01307


glycerol (18:2)


citrulline
SF_Vegetable
0.057484
Apple Freq
0.041661
Garlic Freq
−0.02262



Salad_wt


lactosyl-N-
SF_WholeWheat_g_wt
0.06849
Light Bread
−0.03841
SF_Raisins_wt
0.03672


behenoyl-


Freq


sphingosine


(d18:1/22:0)*


1-palmitoleoyl-
Beef, Veal,
−0.05869
SF_Olives_wt
−0.04186
Egg Recipes
−0.03806


2-linolenoyl-
Lamb, Pork,



Freq


GPC
Steak, Golash


(16:1/18:3)*
Freq


bilirubin (Z, Z)
Ordinary
0.060268
SF_Rice_wt
0.03322
Beer Freq
0.013835



Bread or



Challah Freq


4-acetamido-
SF_Cucumber_wt
0.028783
SF_Red
0.025129
Tahini Salad
0.022158


benzoate


pepper_wt

Freq


docosadienoate
Regular Sodas
−0.03938
Simple
−0.02318
Nuts,
0.018016


(22:2n6)
with Sugar

Cookies or

almonds,



Freq

Biscuits Freq

pistachios







Freq


vanillactate
3% Milk Freq
−0.08107
SF_Coffee_wt
0.049414
SF_Olives_wt
0.042424


taurodeoxy-
SF_Tahini_wt
−0.07236
SF_Hummus
−0.05778
Falafel in Pita
−0.05085


cholic acid 3-


Salad_wt

Bread Freq


sulfate


X - 12126
SF_Natural
0.108942
SF_Coffee_wt
0.087501
Mandarin or
0.050183



Yogurt_wt



Clementine







Freq


stearate (18:0)
Simple
−0.01505
Wholemeal or
−0.01393
Juice Freq
−0.00952



Cookies or

Rye Bread



Biscuits Freq

Freq


indolelactate
Sausages Freq
0.033497
Beer Freq
0.032095
SF_Omelette_wt
0.01488


X - 13684
SF_Coffee_wt
−0.07093
SF_Apple_wt
−0.04044
SF_WhiteWheat_g_wt
0.037778


sulfate of
Parsley,
0.064539
SF_Pickled
0.055137
Beer Freq
0.035846


piperine
Celery,

cucumber_wt


metabolite
Fennel, Dill,


C16H19NO3
Cilantro,


(3)*
Green Onion



Freq


X - 24309
Butter Freq
0.081048
SF_Butter_wt
0.037678
Fresh
−0.03729







Vegetable







Salad Without







Dressing or







Oil Freq


1-(1-enyl-
SF_Hummus
−0.05849
Orange or
0.041467
Hummus
−0.0208


palmitoyl)-2-
Salad_wt

Grapefruit

Salad Freq


palmitoleoyl-GPC


Freq


(P-16:0/16:1)*


N-acetyl-S-
SF_Pizza_wt
0.04455
SF_Pita_wt
0.024971
SF_Tabbouleh
0.01793


allyl-L-cysteine




Salad_wt


2-oxoarginine*
SF_Apple_wt
0.032075
Baguette Freq
−0.02751
Cooked
0.025905







Legumes Freq


dihomo-
Egg, Hard
−0.02306
0.5-3% White
0.02025
Light Bread
0.017183


linolenate
Boiled or Soft

Cheese,

Freq


(20:3n3 or n6)
Freq

Cottage Freq


glycochenode
SF_Water_wt
−0.04156
SF_Rice_wt
0.033314
3% Milk Freq
−0.03251


oxycholate


glucuronide


(1)


N,N-dimethyl-5-
>=16% Yellow
−0.0339
Fries Freq
−0.0291
SF_Omelette_wt
−0.01767


aminovalerate
Cheese Freq


taurocholate
SF_Cereals_wt
0.034716
SF_Peas_wt
−0.03336
SF_Milk_wt
−0.03277


2-hydroxyadipate
SF_Cappuccino_wt
0.089041
White or
−0.03949
Coffee Freq
0.032804





Brown Sugar





Freq


mannose
Simple
−0.0374
Onion Freq
0.022124
SF_Couscous_wt
−0.01827



Cookies or



Biscuits Freq


X - 19561
5-9% Yellow
0.068141
Green Tea
−0.04406
SF_White
0.039535



Cheese Freq

Freq

Cheese_wt


N-acetylalanine
SF_Yellow
0.039334
SF_Cooked
−0.01135
SF_Tomatoes_wt
−0.01106



Cheese_wt

Sweet





potato_wt


phenylpyruvate
Egg Recipes
0.050362
SF_Wholemeal
0.009452
5-9% Yellow
0.006684



Freq

Bread_wt

Cheese Freq


stearoylcholine*
SF_Bread_wt
0.04418
Apricot Fresh
0.035031
SF_Salty
0.0263





or Dry, or

Cheese_wt





Loquat Freq


palmitoleoyl-
Olives Freq
0.090714
SF_Coffee_wt
−0.03917
Simple
−0.03007


carnitine




Cookies or


(C16:1)*




Biscuits Freq


2-palmitoleoyl-
SF_Tahini_wt
−0.0444
SF_Water_wt
−0.04329
SF_White
0.043042


GPC (16:1)*




Cheese_wt


phenol sulfate
Artificial
0.066369
Cake, Torte
−0.062
SF_Cookies_wt
−0.03456



Sweeteners

Cakes,



Freq

Chocolate





Cake Freq


X - 23739
3% Milk Freq
−0.02238
5-9% White
−0.00982
SF_Yellow
−0.009





Cheese,

Cheese_wt





Cottage Freq


2-stearoyl-GPE
Pita Freq
−0.0259
SF_Coffee_wt
0.024649
Salty Cheese,
0.020803


(18:0)*




Tzfatit,







Bulgarian,







Brinza, Thick







Slice Freq


glycerate
Red Pepper
0.034476
Green Pepper
0.031018
SF_WhiteWheat_g_wt
−0.02396



Freq

Freq


X - 12100
SF_Rice_wt
0.026018
SF_Tomatoes_wt
0.010053
3-5% Natural
0.00783







Yogurt Freq


5alpha-pregnan-
Mandarin or
−0.03349
Egg Recipes
0.027443
SF_Water_wt
0.024725


3beta,20alpha-
Clementine

Freq


diol disulfate
Freq


phenylalanyl-
SF_Cake_wt
−0.06233
SF_Hummus
−0.04755
SF_Wholemeal
−0.03926


glycine


Salad_wt

Bread_wt


heptanoate
SF_Tomatoes_wt
−0.04937
SF_Tahini_wt
0.043777
Sugar
−0.0332


(7:0)




Sweetened







Chocolate







Milk Freq


4-acetamido-
Apple Freq
0.042723
SF_Hummus
−0.03426
SF_Sweet
−0.02447


butanoate


Salad_wt

potato_wt


thyroxine
SF_Vegetable
−0.05101
SF_Banana_wt
−0.04419
SF_Hummus
−0.04165



Salad_wt



Salad_wt


1-oleoyl-GPC
Light Bread
−0.02775
Chicken or
−0.02671
5-9% Yellow
−0.01823


(18:1)
Freq

Turkey

Cheese Freq





Without Skin





Freq


linoleate
Nuts,
0.054444
Chicken or
−0.03123
Regular Sodas
−0.02419


(18:2n6)
almonds,

Turkey

with Sugar



pistachios

Without Skin

Freq



Freq

Freq


galactonate
SF_Coffee_wt
0.085652
3% Milk Freq
0.054521
SF_Bread_wt
−0.0472


octanoyl-
Olives Freq
0.046119
SF_Watermelon_wt
−0.0244
1% Milk Freq
−0.02394


carnitine (C8)


piperine
Parsley,
0.050012
SF_Pickled
0.037475
Onion Freq
0.023818



Celery,

cucumber_wt



Fennel, Dill,



Cilantro,



Green Onion



Freq


N-acetylproline
SF_Olive
0.062883
SF_Bread_wt
−0.0477
0-1.5%
−0.03521



oil_wt



Lebbem,







Eshel Freq


X - 12216
SF_Coffee_wt
0.052934
SF_Natural
0.044457
5-9% White
0.039397





Yogurt_wt

Cheese,







Cottage Freq


2-hydroxyglutarate
SF_Coffee_wt
0.044363
SF_Wine_wt
0.039629
SF_Cooked
−0.02253







beets_wt


choline
SF_Bread_wt
0.015375
Orange or
−0.00538
SF_Chocolate
0.004498





Grapefruit

_wt





Freq


2,2′-Methylene-
SF_Yellow
−0.10353
SF_Tea_wt
−0.07441
SF_Rice_wt
−0.06332


bis(6-tert-
Cheese_wt


butyl-p-cresol)


5,6-dihydrouridine
Chicken or
−0.05223
Falafel in Pita
0.032329
Egg, Hard
−0.03073



Turkey

Bread Freq

Boiled or Soft



Without Skin



Freq



Freq


cis-4-decenoate
SF_Tahini_wt
0.040137
Nuts,
0.03645
Tahini Salad
0.019534


(10:1n6)*


almonds,

Freq





pistachios





Freq



















Top
Directional
Top
Directional
Diet





predictor
SHAP value
predictor
SHAP value
Pearson
Diet



BIOCHEMICAL
#4
#4
#5
#5
R
p-value







1-methylxanthine
3% Milk Freq
0.056886
Alcoholic
0.044545
0.739589
2.31E−83






Drinks Freq



3-carboxy-4-
Simple
−0.06085
SF_Dark
0.053774
0.736143
3.25E−82



methyl-5-
Cookies or

Chocolate_wt



propyl-2-
Biscuits Freq



furanpropanoate



(CMPF)



hydroxy-CMPF*
Tahini Salad
−0.05219
SF_Tahini_wt
−0.04784
0.71885
1.03E−76




Freq



quinate
Apricot Fresh
0.039115
SF_Rice
0.032074
0.716823
4.29E−76




or Dry, or

crackers_wt




Loquat Freq



X - 21442
SF_Wine_wt
0.064685
Beer Freq
0.036059
0.715901
8.16E−76



1-methylurate
3% Milk Freq
0.035725
SF_Tomatoes_wt
−0.03072
0.695027
8.90E−70



1,3-dimethylurate
SF_Onion_wt
−0.06041
3% Milk Freq
0.058214
0.694824
1.01E−69



1,3,7-trimethylurate
SF_Wine_wt
0.071726
SF_Fried
−0.04764
0.684333
7.01E−67






onions_wt



X - 24811
SF_Rice
0.08607
SF_Carrots_wt
−0.04638
0.684028
8.45E−67




crackers_wt



theophylline
SF_Wine_wt
0.073244
Regular Sodas
−0.05714
0.681862
3.15E−66






with Sugar






Freq



5-acetylamino-
SF_Cappuccino_wt
0.053248
>=16% Yellow
0.036118
0.680865
5.73E−66



6-amino-3-


Cheese Freq



methyluracil



1,7-dimethylurate
Cooked
−0.04896
SF_Wine_wt
0.048168
0.675881
1.12E−64




Legumes Freq



caffeine
SF_Cappuccino_wt
0.035141
Cooked
−0.03506
0.666618
2.39E−62






Legumes Freq



paraxanthine
SF_Noodles_wt
−0.0856
SF_Wine_wt
0.075814
0.647124
1.05E−57



X - 23655
SF_Natural
0.057576
Mixed
0.041744
0.628911
1.15E−53




Yogurt_wt

Chicken or






Turkey Dishes






Freq



X - 13835
Chicken or
0.103375
Processed
−0.09108
0.625356
6.56E−53




Turkey

Meat Free




Without Skin

Products Freq




Freq



saccharin
Diet Soda
0.01876
SF_Beer_wt
−0.01812
0.613653
1.75E−50




Freq



3-methyl catechol
Butter Freq
0.050491
SF_Fried
−0.03913
0.611563
4.62E−50



sulfate (1)


onions_wt



3-hydroxypyridine
SF_Cappuccino_wt
0.034677
SF_Natural
0.03045
0.610799
6.58E−50



sulfate


Yogurt_wt



X - 23652
Chicken or
0.073229
Processed
−0.06307
0.602815
2.51E−48




Turkey

Meat Free




Without Skin

Products Freq




Freq



trigonelline (N′-
SF_Rice
0.053792
Regular Sodas
−0.04124
0.59323
1.74E−46



methylnicotinate)
crackers_wt

with Sugar






Freq



X - 11315
SF_Rice
0.061804
White or
−0.05896
0.590039
6.89E−46




crackers_wt

Brown Sugar






Freq



1-methyl-5-
Chicken or
0.083141
Processed
−0.0737
0.587075
2.45E−45



imidazoleacetate
Turkey

Meat Free




Without Skin

Products Freq




Freq



1-(1-enyl-palmitoyl)-
Egg, Hard
0.087188
Cooked
−0.07198
0.582208
1.91E−44



2-arachidonoyl-GPE
Boiled or Soft

Legumes Freq



(P-16:0/20:4)*
Freq



X - 11858
Hummus
0.064557
SF_Vegetable
0.042072
0.577807
1.18E−43




Salad Freq

Salad_wt



1-(1-enyl-stearoyl)-
Beef or
0.093112
Egg Recipes
0.063881
0.572323
1.11E−42



2-arachidonoyl-GPE
Chicken Soup

Freq



(P-18:0/20:4)*
Freq



X - 21339
SF_Pita_wt
0.062503
SF_Hummus
0.046357
0.56864
4.88E−42






Salad_wt



3-methylhistidine
SF_Salmon_wt
0.054075
Turkey
0.046941
0.566964
9.51E−42






Meatballs,






Beef, Chicken






Freq



X - 23649
Ice Cream or
−0.0848
Fresh
0.055651
0.564258
2.77E−41




Popsicle which

Vegetable




contains

Salad With




Dairy Freq

Dressing or






Oil Freq



4-ethylcatechol
Ice Cream or
−0.03467
SF_Wine_wt
0.031844
0.564161
2.88E−41



sulfate
Popsicle which




contains




Dairy Freq



X - 11880
Salty Snacks
0.073951
SF_Coffee_wt
−0.06127
0.560703
1.11E−40




Freq



X - 11308
Beer Freq
0.076051
SF_Water_wt
−0.06578
0.560464
1.22E−40



2,3-dihydroxypyridine
SF_Cappuccino_wt
0.047721
Beef or
0.042644
0.559514
1.76E−40






Chicken Soup






Freq



beta-cryptoxanthin
SF_Orange_wt
0.098657
SF_Almonds_wt
0.058808
0.557779
3.45E−40



X - 13844
Carrots, Fresh
0.106691
SF_Cappuccino_wt
0.075613
0.557547
3.77E−40




or Cooked,




Carrot Juice




Freq



X - 11372
Oil as an
−0.07006
SF_WhiteWheat_g_wt
0.058058
0.556573
5.47E−40




addition for




Salads or




Stews Freq



1-palmitoyl-2-
SF_Tahini_wt
−0.05173
Tahini Salad
−0.0373
0.540962
1.86E−37



docosahexaenoyl-GPC


Freq



(16:0/22:6)



X - 24949
Beer Freq
0.055873
SF_Tzfatit
−0.0452
0.536216
1.03E−36






Cheese_wt



X - 18914
SF_Cottage
0.065682
SF_Olive
−0.05659
0.534199
2.11E−36




cheese_wt

oil_wt



X - 21661
SF_Hummus
0.059876
Beer Freq
0.057561
0.529844
9.82E−36




Salad_wt



sphingomyelin
5-9% White
0.071071
SF_Milk_wt
0.069379
0.528447
1.60E−35



(d17:1/16:0,
Cheese,



d18:1/15:0,
Cottage Freq



d16:1/17:0)*



X - 21752
Internal
−0.06466
SF_Natural
0.056562
0.525177
4.97E−35




Organs Freq

Yogurt_wt



X - 12816
Fries Freq
−0.09704
Fresh
0.059619
0.521149
1.98E−34






Vegetable






Salad With






Dressing or






Oil Freq



5alpha-androstan-
SF_Vegetable
0.08957
SF_Potatoes_wt
0.069328
0.519896
3.03E−34



3alpha,17beta-diol
Salad_wt



monosulfate (2)



stachydrine
SF_Mandarin_wt
0.054964
Orange or
0.046129
0.518796
4.39E−34






Grapefruit






Freq



X - 23639
SF_Wine_wt
0.047004
SF_Rice
0.045695
0.517285
7.30E−34






crackers_wt



sphingomyelin
Falafel in Pita
−0.06567
Hummus
−0.06423
0.513521
2.57E−33



(d18:1/17:0,
Bread Freq

Salad Freq



d17:1/18:0,



d19:1/16:0)



X - 11381
Pastrami or
0.050351
Beef, Veal,
0.047009
0.510043
8.08E−33




Smoked Turkey

Lamb, Pork,




Breast Freq

Steak, Golash






Freq



X - 24637
SF_Pullet_wt
0.01826
Popsicle
0.01729
0.509643
9.21E−33






Without Dairy






Freq



X - 17185
SF_WhiteWheat_g_wt
−0.05965
SF_Bread_wt
−0.0539
0.508287
1.44E−32



5-acetylamino-6-
SF_Wine_wt
0.041202
SF_Walnuts_wt
−0.03496
0.507583
1.80E−32



formylamino-



3-methyluracil



X - 17145
Dried Fruits
0.071214
White or
−0.05247
0.503748
6.24E−32




Freq

Brown Sugar






Freq



X - 11847
SF_Hummus
0.068976
SF_Vegetable
0.054953
0.502148
1.04E−31




Salad_wt

Salad_wt



1,5-anhydroglucitol
SF_Apple_wt
−0.07966
SF_Potatoes_wt
0.058481
0.500762
1.62E−31



(1,5-AG)



X - 18249
Pastrami or
0.067435
SF_Milk_wt
0.063078
0.49921
2.65E−31




Smoked Turkey




Breast Freq



citraconate/
0.5-3% White
0.046264
SF_Cappuccino_wt
0.039676
0.497666
4.31E−31



glutaconate
Cheese,




Cottage Freq



X - 12329
Ice Cream or
−0.05105
SF_Chicken
0.032979
0.497287
4.86E−31




Popsicle which

soup_wt




contains




Dairy Freq



sphingomyelin
3% Milk Freq
0.065105
Salty Cheese,
0.062947
0.492709
2.03E−30



(d18:1/19:0,


Tzfatit,



d19:1/18:0)*


Bulgarian,






Brinza, Thick






Slice Freq



X - 14939
SF_Cappuccino_wt
−0.05836
Processed
0.048595
0.487672
9.54E−30






Meat Free






Products Freq



acesulfame
SF_Diet
0.074192
SF_Diet Fruit
0.062933
0.483786
3.09E−29




Coke_wt

Drink_wt



1-stearoyl-2-
Jachnun,
−0.04281
SF_Dark
0.034822
0.483211
3.68E−29



docosahexaenoyl-GPC
Mlawah,

Chocolate_wt



(18:0/22:6)
Kubana,




Cigars Freq



5alpha-androstan-
SF_Milk_wt
−0.0609
SF_Vegetable
0.05559
0.482126
5.09E−29



3alpha,17beta-


Salad_wt



diol disulfate



tryptophan
5-9% White
−0.05
Peanuts Freq
0.036135
0.478678
1.42E−28



betaine
Cheese,




Cottage Freq



gamma-
Pastrami or
0.061609
Tahini Salad
−0.04992
0.478459
1.51E−28



glutamylvaline
Smoked Turkey

Freq




Breast Freq



daidzein
SF_Rice_wt
−0.01795
Zucchini or
0.014287
0.475213
3.93E−28



sulfate (2)


Eggplant Freq



sphingomyelin
Butter Freq
0.081809
SF_Dried
−0.06003
0.473984
5.63E−28



(d18:1/25:0,


dates_wt



d19:0/24:1,



d20:1/23:0,



d19:1/24:0)*



sphingomyelin
5-9% White
0.061768
3% Milk Freq
0.06142
0.472036
9.90E−28



(d18:1/14:0,
Cheese,



d16:1/16:0)*
Cottage Freq



X - 24475
SF_Grapes_wt
0.058532
SF_WhiteWheat_g_wt
−0.05048
0.47104
1.32E−27



methyl
Mandarin or
0.075145
Apple Freq
0.068622
0.469282
2.19E−27



glucopyranoside
Clementine



(alpha + beta)
Freq



X - 11795
Turkey
−0.09559
SF_Apple_wt
0.051731
0.468553
2.70E−27




Meatballs,




Beef, Chicken




Freq



docosahexaenoate
Simple
−0.06249
SF_Salmon_wt
0.048854
0.463115
1.26E−26



(DHA; 22:6n3)
Cookies or




Biscuits Freq



X - 11849
SF_Wine_wt
0.04672
Grapes or
0.044163
0.460034
2.98E−26






Raisins Freq



X - 18922
Artificial
−0.06254
Tahini Salad
0.054076
0.45954
3.42E−26




Sweeteners

Freq




Freq



S-methylcysteine
SF_Potatoes_wt
−0.04241
SF_Lentils_wt
0.032798
0.459207
3.75E−26



sulfoxide



perfluorooctane-
Chicken or
0.048935
Herbal Tea
−0.044
0.453276
1.91E−25



sulfonic acid
Turkey With

Freq



(PFOS)
Skin Freq



3-hydroxystachydrine*
Orange or
0.075756
Orange or
0.068873
0.452535
2.34E−25




Grapefruit

Grapefruit




Freq

Juice Freq



sphingomyelin
SF_Tahini_wt
−0.06725
Cooked
−0.06432
0.451541
3.06E−25



(d18:2/23:1)*


Legumes Freq



maleate
0.5-3% White
0.031706
Milk or Dark
0.027896
0.4509
3.64E−25




Cheese,

Chocolate




Cottage Freq

Freq



eicosenedioate
SF_Dark
−0.06387
SF_Butter_wt
−0.05514
0.442637
3.29E−24



(C20:1-DC)*
Chocolate_wt



homostachydrine*
Potatoes
−0.06012
SF_Cucumber_wt
0.0464
0.440766
5.37E−24




Boiled,




Baked,




Mashed,




Potatoes




Salad Freq



creatine
SF_Onion_wt
−0.05296
SF_Vegetable
−0.04866
0.440324
6.02E−24






Salad_wt



X - 17653
Cooked
0.055492
SF_Egg_wt
−0.0525
0.434164
2.95E−23




Legumes Freq



catechol
Wholemeal or
0.052213
Red Pepper
0.045469
0.431796
5.39E−23



sulfate
Rye Bread

Freq




Freq



X - 16935
Artificial
−0.08278
SF_WholeWheat_g_wt
−0.06553
0.431754
5.44E−23




Sweeteners




Freq



sphingomyelin
SF_Milk_wt
0.062056
SF_Tomatoes_wt
−0.05112
0.429145
1.05E−22



(d18:2/21:0,



d16:2/23:0)*



sphingomyelin
Hummus
−0.05922
5-9% White
0.057783
0.428361
1.28E−22



(d17:2/16:0,
Salad Freq

Cheese,



d18:2/15:0)*


Cottage Freq



S-methylcysteine
Fresh
0.04016
SF_Cooked
0.038905
0.427534
1.57E−22




Vegetable

cauliflower_wt




Salad With




Dressing or




Oil Freq



N-(2-furoyl)glycine
SF_Fried
−0.03011
Ice Cream or
−0.02755
0.425786
2.43E−22




onions_wt

Popsicle which






contains






Dairy Freq



2,6-dihydroxybenzoic
Pastrami or
−0.05537
Sweet Dry
0.054464
0.425667
2.50E−22



acid
Smoked Turkey

Wine,




Breast Freq

Cocktails Freq



X - 12837
SF_Olive
0.057798
Pear Fresh,
−0.04673
0.423939
3.84E−22




oil_wt

Cooked or






Canned Freq



pyroglutamine*
Turkey
−0.04632
Regular Sodas
0.045205
0.422804
5.08E−22




Meatballs,

with Sugar




Beef, Chicken

Freq




Freq



N-delta-
SF_Avocado_wt
0.059246
SF_Vegetable
0.044284
0.422436
5.56E−22



acetylornithine


Salad_wt



X - 21736
Carrots, Fresh
−0.05267
SF_Olives_wt
0.052412
0.422216
5.87E−22




or Cooked,




Carrot Juice




Freq



tridecenedioate
SF_Milk_wt
0.079938
Butter Freq
0.064098
0.421426
7.12E−22



(C13:1-DC)*



heneicosa-
Simple
−0.06039
0.5-3% White
0.059638
0.420245
9.50E−22



pentaenoate
Cookies or

Cheese,



(21:5n3)
Biscuits Freq

Cottage Freq



2-aminobutyrate
Olives Freq
0.046964
Canned Tuna
0.043994
0.420111
9.82E−22






or Tuna Salad






Freq



X - 11378
Oil as an
−0.07381
Chicken or
−0.06575
0.419887
1.04E−21




addition for

Turkey




Salads or

Without Skin




Stews Freq

Freq



2-hydroxylaurate
SF_Coffee_wt
−0.05685
SF_WhiteWheat_g_wt
0.041425
0.418576
1.43E−21



17-methylstearate
SF_Butter_wt
0.042047
Coated or
−0.03047
0.418485
1.46E−21






Stuffed






Cookies,






Waffles or






Biscuits Freq



15-methylpalmitate
SF_Tahini_wt
−0.05704
Cooked
−0.05242
0.417042
2.07E−21






Legumes Freq



sphingomyelin
Egg Recipes
−0.06736
Sour Cream
0.064164
0.415691
2.86E−21



(d18:2/14:0,
Freq

Freq



d18:1/14:l)*



hippurate
SF_Potatoes_wt
−0.03792
Regular Sodas
−0.03789
0.415062
3.32E−21






with Sugar






Freq



X - 12730
Ice Cream or
−0.03589
SF_Salmon_wt
−0.03151
0.413674
4.63E−21




Popsicle which




contains




Dairy Freq



1-(1-enyl-palmitoyl)-
Beef or
0.049868
Chicken or
0.047927
0.411153
8.43E−21



2-arachidonoyl-GPC
Chicken Soup

Turkey



(P-16:0/20:4)*
Freq

Without Skin






Freq



caffeic acid
Ice Cream or
−0.04549
SF_Wholemeal
0.041568
0.408155
1.71E−20



sulfate
Popsicle which

Bread_wt




contains




Dairy Freq



1-(1-enyl-
>=16% Yellow
0.05373
SF_Dark
0.048545
0.406098
2.76E−20



stearoyl)-GPE
Cheese Freq

Chocolate_wt



(P-18:0)*



3-methyl catechol
SF_Natural
0.063031
SF_Bread_wt
−0.04462
0.405559
3.12E−20



sulfate (2)
Yogurt_wt



oxalate
SF_WhiteWheat_g_wt
−0.05553
SF_Meatballs_wt
−0.05017
0.405418
3.23E−20



(ethanedioate)



eicosapentaenoate
Simple
−0.07017
0.5-3% White
0.043958
0.40463
3.87E−20



(EPA; 20:5n3)
Cookies or

Cheese,




Biscuits Freq

Cottage Freq



X - 12738
SF_Natural
0.070084
SF_Bread_wt
−0.04886
0.404165
4.31E−20




Yogurt_wt



X - 21383
SF_Olive
−0.04927
Butter Freq
−0.04848
0.403785
4.71E−20




oil_wt



creatinine
Alcoholic
0.052069
SF_Beer_wt
0.045235
0.403706
4.80E−20




Drinks Freq



gentisate
SF_Butter_wt
−0.05224
Peas, Green
0.045827
0.403106
5.51E−20






Beans or Okra






Cooked Freq



X - 24951
Alcoholic
0.06119
SF_Brown
−0.04641
0.402968
5.68E−20




Drinks Freq

Rice_wt



X - 17654
Alcoholic
0.067916
SF_WholeWheat_g_wt
0.052957
0.402542
6.27E−20




Drinks Freq



tiglylcarnitine
SF_Natural
0.057641
Chicken or
0.055828
0.40231
6.61E−20



(C5:1-DC)
Yogurt_wt

Turkey With






Skin Freq



2-aminoheptanoate
3% Milk Freq
−0.05284
SF_Cottage
−0.04291
0.398862
1.45E−19






cheese_wt



phytanate
SF_Butter_wt
0.053456
5-9% White
0.050306
0.397034
2.19E−19






Cheese,






Cottage Freq



androsterone
Beef, Veal,
0.045773
SF_Beer_wt
0.043302
0.396289
2.60E−19



glucuronide
Lamb, Pork,




Steak, Golash




Freq



4-vinylguaiacol
SF_Salmon_wt
−0.08545
SF_Wholemeal
0.0801
0.395545
3.07E−19



sulfate


Bread_wt



1-docosahexaenoyl-
Pita Freq
−0.05528
SF_Salmon_wt
0.044281
0.395373
3.19E−19



glycerol (22:6)



2-aminophenol
SF_Cereals_wt
0.074577
Wholemeal or
0.049861
0.394949
3.51E−19



sulfate


Rye Bread






Freq



N2,N5-diacetylornithine
SF_Brown
0.051766
SF_Quinoa_wt
0.051267
0.394696
3.71E−19




Rice_wt



X - 17676
Regular Tea
−0.06549
SF_WhiteWheat_g_wt
−0.04848
0.393674
4.66E−19




Freq



carotene diol (2)
SF_Potatoes_wt
−0.04741
Fresh
0.044641
0.392248
6.40E−19






Vegetable






Salad With






Dressing or






Oil Freq



4-ethylphenylsulfate
SF_Wine_wt
0.03036
Roll or
−0.02981
0.391656
7.30E−19






Bageles Freq



2-aminoadipate
Artificial
0.04248
SF_Tea_wt
−0.04163
0.390848
8.72E−19




Sweeteners




Freq



O-methylcatechol
Avocado Freq
0.03663
SF_WholeWheat_g_wt
0.035324
0.390244
9.96E−19



sulfate



X - 24655
SF_Sushi_wt
0.014172
Cooked
0.012424
0.388101
1.59E−18






Legumes Freq



ceramide
5-9% White
0.071636
>=16% Yellow
0.069378
0.387214
1.94E−18



(d18:1/14:0,
Cheese,

Cheese Freq



d16:1/16:0)*
Cottage Freq



X - 17325
Fried Fish
−0.03827
Egg Recipes
−0.03532
0.383891
3.98E−18




Freq

Freq



N1-Methyl-2-pyridone-
Chicken or
0.04899
SF_Salmon_wt
0.048479
0.383476
4.35E−18



5-carboxamide
Turkey




Without Skin




Freq



urate
SF_Milk_wt
−0.05192
SF_Potatoes_wt
0.044827
0.382399
5.48E−18



carotene diol (3)
SF_WhiteWheat_g_wt
−0.02943
SF_Vegetable
0.027763
0.379593
9.97E−18






Salad_wt



1-methylhistidine
Processed
−0.05225
Pastrami or
0.051223
0.377947
1.41E−17




Meat Free

Smoked Turkey




Products Freq

Breast Freq



3-acetylphenol
SF_Cappuccino_wt
0.031901
SF_Wine_wt
0.023843
0.37676
1.81E−17



sulfate



theobromine
SF_Dark
0.074842
Beef or
−0.0264
0.375799
2.22E−17




Chocolate_wt

Chicken Soup






Freq



N-methylproline
SF_Mandarin
0.039602
SF_Vegetable
0.029372
0.375553
2.34E−17




_wt

Salad_wt



dihydrocaffeate
Green Pepper
0.038352
Lettuce Freq
0.03572
0.370926
6.11E−17



sulfate (2)
Freq



threonate
SF_Butter_wt
−0.05228
Turkey
−0.0474
0.370249
7.03E−17






Meatballs,






Beef, Chicken






Freq



X - 12221
SF_Bread_wt
−0.06191
Coffee Freq
0.060087
0.369124
8.85E−17



myristoyl
Beer Freq
−0.04834
0.5-3% White
0.047404
0.367845
1.15E−16



dihydrosphingo-


Cheese,



myelin


Cottage Freq



(d18:0/14:0)*



X - 17367
Potatoes
−0.04261
Egg Recipes
−0.04036
0.367768
1.17E−16




Boiled,

Freq




Baked,




Mashed,




Potatoes




Salad Freq



4-methyl-2-
White or
−0.04939
Olives Freq
0.04369
0.366956
1.38E−16



oxopentanoate
Brown Sugar




Freq



1-myristoyl-2-
SF_Tahini_wt
−0.06294
SF_WhiteWheat_g_wt
0.05446
0.365079
2.01E−16



palmitoyl-GPC



(14:0/16:0)



arabonate/xylonate
SF_Rice
0.041739
Beef, Veal,
−0.03616
0.364071
2.47E−16




crackers_wt

Lamb, Pork,






Steak, Golash






Freq



leucine
Beef, Veal,
0.039325
Dried Fruits
−0.03856
0.363323
2.87E−16




Lamb, Pork,

Freq




Steak, Golash




Freq



5alpha-androstan-
SF_Beer_wt
0.059412
SF_Pita_wt
0.038293
0.3628
3.19E−16



3beta,17beta-



diol disulfate



3-methylxanthine
SF_Dark
0.103324
Beef or
−0.05476
0.360778
4.77E−16




Chocolate_wt

Chicken Soup






Freq



X - 16087
White or
−0.06196
Simple
−0.05461
0.360488
5.05E−16




Brown Sugar

Cookies or




Freq

Biscuits Freq



3-methyl-2-
SF_Beef_wt
0.052248
Olives Freq
0.039103
0.359631
5.99E−16



oxovalerate



2-hydroxybutyrate/
SF_Cereals_wt
−0.04741
Fish (not
0.043758
0.358057
8.17E−16



2-hydroxyisobutyrate


Tuna) Pickled,






Dried, Smoked,






Canned Freq



ergothioneine
SF_Schnitzel_wt
−0.04274
Fresh
0.042489
0.357018
1.00E−15






Vegetable






Salad With






Dressing or






Oil Freq



1-lignoceroyl-GPC
Roll or
−0.06077
Peanuts Freq
0.056537
0.356222
1.17E−15



(24:0)
Bageles Freq



linoleoylcarnitine
Beer Freq
0.059653
Hummus
0.053653
0.355664
1.31E−15



(C18:2)*


Salad Freq



N-acetylcarnosine
Wholemeal or
−0.05137
SF_Beef_wt
0.048939
0.355399
1.38E−15




Rye Bread




Freq



N-trimethyl 5-
SF_Coffee_wt
0.041994
Salty Cheese,
0.041497
0.354891
1.52E−15



aminovalerate


Tzfatit,






Bulgarian,






Brinza, Thick






Slice Freq



sphingomyelin
Salty Cheese,
0.051802
Beer Freq
−0.04486
0.354618
1.60E−15



(d18:1/22:2,
Tzfatit,



d18:2/22:1,
Bulgarian,



d16:1/24:2)*
Brinza,




Medium Slice




Freq



urea
Cooked
−0.04419
SF_Natural
0.043918
0.354161
1.75E−15




Cereal such as

Yogurt_wt




Oatmeal




Porridge Freq



3-carboxy-4-
Fresh
0.050826
Sausages
0.048362
0.352926
2.23E−15



methyl-5-
Vegetable

such as



pentyl-2-
Salad With

Salami Freq



furanpropionate
Dressing or



(3-CMPFP)**
Oil Freq



Fibrinopeptide
Processed
−0.01278
SF_Tahini_wt
−0.01213
0.352507
2.41E−15



A(7-16)*
Meat Free




Products Freq



3-(4-hydroxy-
5-9% Yellow
0.052535
Cooked
−0.04648
0.351439
2.96E−15



phenyl)lactate
Cheese Freq

Cereal such as






Oatmeal






Porridge Freq



1-(1-enyl-
Egg, Hard
0.055643
Processed
−0.04832
0.351396
2.99E−15



palmitoyl)-2-
Boiled or Soft

Meat Free



linoleoyl-GPE
Freq

Products Freq



(P-16:0/18:2)*



X - 24948
Canned Tuna
0.043396
SF_WhiteWheat_g_wt
0.043345
0.351043
3.20E−15




or Tuna Salad




Freq



1-(1-enyl-stearoyl)-
SF_WhiteWheat_g_wt
−0.04951
SF_Onion_wt
−0.04387
0.350153
3.79E−15



2-oleoyl-GPE



(P-18:0/18:1)



3-hydroxybutyryl-
Olives Freq
0.053049
Wholemeal or
−0.04305
0.349047
4.69E−15



carnitine (1)


Rye Bread






Freq



X - 19183
Avocado Freq
0.036242
Coffee Freq
−0.03184
0.348713
5.00E−15



X - 23659
Cooked
0.039292
3% Milk Freq
−0.03427
0.34782
5.92E−15




Legumes Freq



7-methylurate
SF_Dark
0.048154
SF_Lentils_wt
−0.03192
0.347816
5.93E−15




Chocolate_wt



X - 24757
Carrots, Fresh
0.051412
Coffee Freq
0.046139
0.347733
6.02E−15




or Cooked,




Carrot Juice




Freq



X - 24328
Beer Freq
0.053836
SF_Hummus
0.052723
0.347635
6.13E−15






Salad_wt



pregn steroid
SF_Rice
−0.04032
SF_Beer_wt
0.039884
0.346265
7.95E−15



monosulfate
crackers_wt



C21H34O5S*



ethyl
Parsley,
0.016401
SF_Pita_wt
0.015055
0.34588
8.55E−15



glucuronide
Celery,




Fennel, Dill,




Cilantro,




Green Onion




Freq



3-hydroxyhippurate
SF_Wholemeal
0.041614
SF_Jam_wt
0.041016
0.345164
9.78E−15



sulfate
Crackers_wt



7-methylxanthine
SF_Coffee_wt
0.075186
Beef or
−0.05062
0.34498
1.01E−14






Chicken Soup






Freq



X - 18886
Peach,
−0.05565
SF_Olives_wt
0.05243
0.344884
1.03E−14




Nectarine,




Plum Freq



glycine
SF_Diet
−0.05595
Cucumber
−0.04961
0.344431
1.12E−14



conjugate of
Coke_wt

Freq



C10H14O2 (1)*



caprate (10:0)
3% Milk Freq
0.052666
SF_Tahini_wt
−0.04831
0.343847
1.25E−14



dihydroferulic
SF_Wholemeal
0.078961
Sugar
−0.06382
0.342386
1.65E−14



acid
Bread_wt

Sweetened






Chocolate






Milk Freq



X - 12306
SF_Hummus_wt
0.05638
Apple Freq
0.05467
0.342141
1.72E−14



leucylalanine
Sausages Freq
−0.02017
SF_WholeWheat_g_wt
−0.00951
0.339579
2.77E−14



N1-methylinosine
SF_Soymilk_wt
−0.03325
Orange or
−0.02788
0.339464
2.83E−14






Grapefruit






Juice Freq



X - 12544
SF_WhiteWheat_g_wt
0.052027
SF_Tea_wt
0.047978
0.339085
3.03E−14



androstenediol
Lemon Freq
−0.04738
SF_Pita_wt
0.040231
0.337347
4.17E−14



(3alpha,17alpha)



monosulfate (3)



argininate*
SF_Apple_wt
0.036457
SF_Lentils_wt
0.033548
0.337039
4.41E−14



ferulic acid 4-
SF_Bread_wt
−0.05366
Jachnun,
−0.02485
0.336545
4.83E−14



sulfate


Mlawah,






Kubana,






Cigars Freq



pregnen-diol
Lemon Freq
−0.02386
Coffee Freq
−0.02354
0.334663
6.80E−14



disulfate



C21H34O8S2*



N-acetyl-3-
Pastrami or
0.064586
0.5-3% White
0.055006
0.334575
6.91E−14



methylhistidine*
Smoked Turkey

Cheese,




Breast Freq

Cottage Freq



X - 17655
SF_Vegetable
0.054329
SF_Milk_wt
−0.04166
0.334257
7.32E−14




Salad_wt



X - 24693
Zucchini or
0.051715
Vegetable
0.046437
0.334182
7.42E−14




Eggplant Freq

Soup Freq



S-methylmethionine
SF_Apple_wt
0.064711
SF_Milk_wt
−0.06431
0.332853
9.43E−14



X - 23314
SF_Wine_wt
0.041034
Orange or
0.037983
0.331446
1.21E−13






Grapefruit






Freq



sphingomyelin
White or
0.039429
Beef, Veal,
−0.03463
0.330379
1.47E−13



(d18:1/20:2,
Brown Sugar

Lamb, Pork,



d18:2/20:1,
Freq

Steak, Golash



d16:1/22:2)*


Freq



androstenediol
SF_Carrots_wt
0.052597
SF_Rice
−0.05118
0.329787
1.63E−13



(3alpha,17alpha)


crackers_wt



monosulfate (2)



alpha-hydroxy-
Sausages Freq
0.026157
SF_WhiteWheat_g_wt
0.026134
0.329164
1.82E−13



isocaproate



X - 24473
3% Milk Freq
−0.04528
SF_Grapes_wt
0.042605
0.329097
1.84E−13



X - 24337
Regular Sodas
0.05234
Fresh
−0.05186
0.328477
2.06E−13




with Sugar

Vegetable




Freq

Salad Without






Dressing or






Oil Freq



X - 21829
SF_WhiteWheat_g_wt
−0.06322
Olives Freq
0.063048
0.327598
2.41E−13



X - 23780
Grapes or
−0.03421
SF_Rice
0.033074
0.327324
2.52E−13




Raisins Freq

crackers_wt



deoxycarnitine
Chicken or
0.050117
Shish Kebab
0.045183
0.325373
3.56E−13




Turkey With

in Pita Bread




Skin Freq

Freq



N,N,N-trimethyl-
Falafel in Pita
0.047549
Beer Freq
0.046313
0.325337
3.58E−13



alanylproline
Bread Freq



betaine (TMAP)



Fibrinopeptide
SF_Roasted
−0.01936
Cauliflower or
0.018019
0.325192
3.67E−13



B (1-13)**
eggplant_wt

Broccoli Freq



stearoylcarnitine
Couscous,
−0.04283
Sausages
0.033821
0.324693
4.01E−13



(C18)
Burgul,

such as




Mamaliga,

Salami Freq




Groats Freq



myristate (14:0)
Butter Freq
0.039914
Regular Sodas
−0.03953
0.324623
4.06E−13






with Sugar






Freq



histidine
SF_Cereals_wt
0.052599
SF_Hummus
−0.04732
0.323506
4.93E−13






Salad_wt



isovaleryl-
Egg Recipes
0.048097
Processed
−0.03721
0.322882
5.49E−13



carnitine (C5)
Freq

Meat Free






Products Freq



X - 13431
Fish (not
0.049331
Fish Cooked,
0.047978
0.32243
5.94E−13




Tuna) Pickled,

Baked or




Dried, Smoked,

Grilled Freq




Canned Freq



X - 13255
SF_Rice
0.059722
SF_Yellow
0.053973
0.320938
7.68E−13




crackers_wt

Cheese_wt



X - 21319
Coated or
0.04195
SF_Cappuccino_wt
−0.03998
0.320446
8.36E−13




Stuffed




Cookies,




Waffles or




Biscuits Freq



X - 13866
Fish (not
0.050089
Beef or
0.041531
0.320354
8.49E−13




Tuna) Pickled,

Chicken Soup




Dried, Smoked,

Freq




Canned Freq



3-methyl-2-
SF_Apple_wt
−0.02619
SF_Coffee_wt
−0.02532
0.319895
9.19E−13



oxobutyrate



X - 07765
Coated or
0.057179
3-4.5%
0.037393
0.316208
1.72E−12




Stuffed

Pudding,




Cookies,

Cheese With




Waffles or

Additions




Biscuits Freq

Freq



X - 22509
SF_Apple_wt
0.021902
3-4.5%
0.0217
0.315541
1.93E−12






Lebben, Eshel






Freq



2,3-dihydroxy-
Cooked
0.054212
Pasta or
−0.04029
0.315044
2.10E−12



2-methylbutyrate
Vegetable

Flakes Freq




Salads Freq



ADpSGEGDFX
Vegetable
0.031872
SF_WhiteWheat_g_wt
−0.02536
0.314514
2.29E−12



AEGGGVR*
Soup Freq



5alpha-androstan-
SF_Coffee_wt
−0.04871
Shish Kebab
0.043108
0.313926
2.53E−12



3alpha,17alpha-


in Pita Bread



diol monosulfate


Freq



X - 24832
Beef, Veal,
0.053751
Dried Fruits
−0.04756
0.313391
2.77E−12




Lamb, Pork,

Freq




Steak, Golash




Freq



carotene diol
SF_Carrots_wt
0.039772
SF_Chicken
−0.03954
0.313221
2.85E−12



(1)


breast_wt



2-methylserine
SF_WhiteWheat_g_wt
−0.0551
Pear Fresh,
0.046295
0.312658
3.13E−12






Cooked or






Canned Freq



N-methylhydroxy-
SF_Mandarin_wt
0.047633
SF_Banana_wt
0.026113
0.312648
3.13E−12



proline**



catechol
SF_WhiteWheat_g_wt
−0.03101
SF_Bread_wt
−0.02845
0.3126
3.16E−12



glucuronide



3-hydroxyhippurate
SF_WholeWheat_g_wt
0.066147
SF_Wholemeal
0.043477
0.311264
3.95E−12






Bread_wt



X - 18899
5-9% White
−0.06269
SF_Olives_wt
−0.04944
0.310712
4.33E−12




Cheese,




Cottage Freq



pregnenetriol
Coffee Freq
−0.02994
SF_Apple_wt
−0.02991
0.310417
4.54E−12



disulfate*



N-stearoyl-
SF_Avocado_wt
−0.05429
Cooked
−0.04721
0.310022
4.85E−12



sphingosine


Legumes Freq



(d18:1/18:0)*



10-undecenoate
SF_Milk_wt
0.061107
3% Milk Freq
0.052872
0.308837
5.90E−12



(11:1n1)



X - 15503
SF_Tomatoes_wt
−0.06039
Alcoholic
−0.05866
0.308375
6.36E−12






Drinks Freq



1-palmitoyl-2-
Tahini Salad
−0.041
Wholemeal
0.036322
0.307733
7.07E−12



palmitoleoyl-GPC
Freq

Crackers Freq



(16:0/16:1)*



X - 15486
SF_Tomatoes_wt
−0.03777
Herbal Tea
−0.03149
0.307631
7.19E−12






Freq



gamma-tocopherol/
SF_Hummus
0.042454
SF_Sugar Free
−0.04028
0.30664
8.45E−12



beta-tocopherol
Salad_wt

Gum_wt



sphingomyelin
Salty Cheese,
0.046175
0.5-3% White
0.039202
0.305718
9.82E−12



(d18:1/21:0,
Tzfatit,

Cheese,



d17:1/22:0,
Bulgarian,

Cottage Freq



d16:1/23:0)*
Brinza, Thick




Slice Freq



1-(1-enyl-
>=16% Yellow
0.049138
Beef, Veal,
0.039788
0.305649
9.93E−12



palmitoyl)-GPE
Cheese Freq

Lamb, Pork,



(P-16:0)*


Steak, Golash






Freq



isobutyryl-
SF_Coffee_wt
0.050446
SF_Apple_wt
0.03832
0.304365
1.22E−11



carnitine (C4)



X - 18901
SF_WhiteWheat_g_wt
−0.04052
SF_Tea_wt
0.037512
0.304305
1.24E−11



gamma-
SF_Vegetable
0.043006
Banana Freq
−0.04033
0.304253
1.25E−11



glutamylglutamate
Salad_wt



X - 15492
Falafel in Pita
0.060056
SF_Hummus
0.05209
0.304004
1.30E−11




Bread Freq

Salad_wt



X - 16580
SF_WhiteWheat_g_wt
−0.06138
SF_Cooked
−0.04311
0.303593
1.39E−11






Sweet






potato_wt



sphingomyelin
White or
0.042974
SF_Olive
−0.04157
0.303253
1.46E−11



(d18:2/24:2)*
Brown Sugar

oil_wt




Freq



stearoyl
Falafel in Pita
−0.03796
5-9% White
0.036949
0.303065
1.51E−11



sphingomyelin
Bread Freq

Cheese,



(d18:1/18:0)


Cottage Freq



N-methyltaurine
Egg, Hard
−0.08128
Red Pepper
0.053969
0.302497
1.65E−11




Boiled or Soft

Freq




Freq



lysine
Chicken or
0.045408
SF_Olives_wt
−0.0418
0.302457
1.66E−11




Turkey With




Skin Freq



X - 17340
SF_WhiteWheat_g_wt
0.073187
Fresh
0.038033
0.300823
2.16E−11






Vegetable






Salad With






Dressing or






Oil Freq



X - 13703
SF_Yellow
0.046598
SF_Wholemeal
0.041295
0.300461
2.29E−11




Cheese_wt

Crackers_wt



X - 24706
SF_Brown
0.015152
SF_Tofu_wt
0.013519
0.298699
3.03E−11




Rice_wt



X - 22716
SF_Cake_wt
−0.0602
SF_Chocolate_wt
0.058223
0.298683
3.04E−11



X - 14082
SF_Salmon_wt
−0.0267
SF_Cappuccino_wt
0.026149
0.298477
3.14E−11



4-allylphenol
SF_Rice_wt
−0.03687
Lettuce Freq
0.035869
0.298175
3.29E−11



sulfate



1-oleoyl-2-
SF_Yellow
−0.03448
SF_Apple_wt
0.031487
0.297782
3.50E−11



docosahexaenoyl-
Cheese_wt



GPC (18:1/22:6)*



X - 17354
SF_Potatoes_wt
−0.03035
SF_WhiteWheat_g_wt
−0.02666
0.296334
4.40E−11



6-oxopiperidine-
Ordinary
−0.03672
SF_Omelette_wt
0.036708
0.296239
4.46E−11



2-carboxylate
Bread or




Challah Freq



X - 18240
SF_Yellow
0.040042
Salty Snacks
−0.03397
0.296175
4.51E−11




Cheese_wt

Freq



theanine
SF_Tea_wt
0.072302
SF_Coffee_wt
−0.05017
0.296096
4.56E−11



X - 24760
Coffee Freq
0.055548
Thousand
−0.05301
0.296008
4.63E−11






Island






Dressing,






Garlic






Dressing Freq



beta-hydroxyiso-
Beef, Veal,
0.047254
SF_Sugar Free
−0.04141
0.295258
5.20E−11



valerate
Lamb, Pork,

Gum_wt




Steak, Golash




Freq



dodecenedioate
Salty Snacks
−0.06009
SF_Wholemeal
0.058701
0.293925
6.41E−11



(C12:1-DC)*
Freq

Bread_wt



X - 11478
Coated or
0.056785
Apricot Fresh
−0.05304
0.293803
6.53E−11




Stuffed

or Dry, or




Cookies,

Loquat Freq




Waffles or




Biscuits Freq



X - 24736
SF_Vegetable
0.070155
5-9% White
−0.06725
0.293213
7.15E−11




Salad_wt

Cheese,






Cottage Freq



lactose
Sweet Dry
−0.06695
SF_Carrots_wt
−0.06585
0.292312
8.22E−11




Wine,




Cocktails Freq



2-hydroxyoctanoate
0-1.5%
−0.05124
SF_Tomatoes_wt
−0.0447
0.291151
9.84E−11




Natural




Yogurt Freq



trans-4-
Turkey
0.039291
Sausages
0.037699
0.290927
1.02E−10



hydroxyproline
Meatballs,

such as




Beef, Chicken

Salami Freq




Freq



X - 17351
Turkey
−0.04116
SF_Kohlrabi_wt
0.037389
0.290839
1.03E−10




Meatballs,




Beef, Chicken




Freq



1-methylnicotin-
Cooked
−0.04225
Mandarin or
0.038825
0.290374
1.11E−10



amide
Legumes Freq

Clementine






Freq



acetoacetate
SF_Olives_wt
0.051623
SF_WholeWheat_g_wt
−0.04807
0.290273
1.13E−10



X - 23782
Simple
−0.04588
Vegetable
0.041358
0.290001
1.17E−10




Cookies or

Soup Freq




Biscuits Freq



X - 12818
Pear Fresh,
0.07774
SF_WholeWheat_g_wt
0.062202
0.288993
1.37E−10




Cooked or




Canned Freq



10- nonadecenoate
Simple
−0.0351
SF_Yellow
0.031683
0.288467
1.48E−10



(19:1n9)
Cookies or

Cheese_wt




Biscuits Freq



X - 14314
Coffee Freq
0.02945
SF_Cooked
−0.02384
0.287334
1.76E−10






Pumpkin_wt



X - 24544
Egg Recipes
0.037427
Alcoholic
0.033114
0.287082
1.83E−10




Freq

Drinks Freq



gamma-glutamyl-
SF_Sugar Free
−0.03903
Green Pepper
0.035201
0.286693
1.94E−10



leucine
Gum_wt

Freq



glutaryl-
Cooked
−0.04474
Turkey
0.025266
0.286566
1.98E−10



carnitine (C5-DC)
Cereal such as

Meatballs,




Oatmeal

Beef, Chicken




Porridge Freq

Freq



hydantoin-5-
White or
−0.04693
SF_Wine_wt
−0.0362
0.286558
1.98E−10



propionic acid
Brown Sugar




Freq



X - 12543
Coffee Freq
0.055644
SF_WholeWheat_g_wt
0.053565
0.284627
2.65E−10



X - 17337
Beer Freq
0.051865
SF_Tahini_wt
0.051393
0.283435
3.16E−10



dodecanedioate
SF_Coffee_wt
0.056886
SF_Butter_wt
0.056491
0.283101
3.33E−10



androstenediol
Shish Kebab
0.047282
Canned Tuna
0.047157
0.283069
3.34E−10



(3beta,17beta)
in Pita Bread

or Tuna Salad



monosulfate (1)
Freq

Freq



adipoylcarnitine
Fries Freq
0.042836
Beef, Veal,
0.042155
0.282545
3.61E−10



(C6-DC)


Lamb, Pork,






Steak, Golash






Freq



pristanate
SF_Yellow
0.057613
SF_Butter_wt
0.047975
0.282078
3.87E−10




Cheese_wt



sphingomyelin
Beer Freq
−0.0458
Pita Freq
−0.04203
0.280476
4.91E−10



(d18:2/23:0,



d18:1/23:1,



d17:1/24:1)*



X - 24542
Coffee Freq
0.051751
SF_Wholemeal
0.04465
0.279864
5.37E−10






Bread_wt



X - 22475
SF_Tahini_wt
−0.05405
Yeast Cakes
0.041372
0.278663
6.40E−10






and Cookies






as Rogallach,






Croissant or






Donut Freq



alpha-hydroxyiso-
Herbal Tea
−0.04036
Sausages Freq
0.031039
0.278512
6.55E−10



valerate
Freq



myristoylcarnitine
Couscous,
−0.0438
SF_Butter_wt
0.037691
0.278311
6.74E−10



(C14)
Burgul,




Mamaliga,




Groats Freq



X - 21411
SF_Tomatoes_wt
−0.06179
0-1.5%
−0.04959
0.278127
6.93E−10






Natural






Yogurt Freq



1-(1-enyl-
SF_Tomatoes_wt
−0.03398
Fish (not
0.032764
0.277637
7.44E−10



oleoyl)-GPE


Tuna) Pickled,



(P-18:1)*


Dried, Smoked,






Canned Freq



Fibrinopeptide
Cauliflower or
0.015203
SF_Rice_wt
−0.0111
0.277102
8.04E−10



A (4-15)**
Broccoli Freq



X - 11640
Peanuts Freq
0.047496
Tahini Salad
0.044656
0.276828
8.37E−10






Freq



2-hydroxy-3-
SF_WhiteWheat_g_wt
0.034001
Beef, Veal,
0.030092
0.276598
8.65E−10



methylvalerate


Lamb, Pork,






Steak, Golash






Freq



dehydroiso-
Lemon Freq
−0.03975
Canned Tuna
0.037251
0.276405
8.90E−10



androsterone


or Tuna Salad



sulfate (DHEA-S)


Freq



X - 12726
Roll or
−0.05627
3% Milk Freq
−0.05352
0.276225
9.13E−10




Bageles Freq



X - 13728
SF_Chocolate_wt
0.029507
SF_Cottage
−0.02487
0.276
9.44E−10






cheese_wt



cinnamoylglycine
SF_Water_wt
0.041743
SF_Dried
0.0395
0.275153
1.07E−09






dates_wt



X - 17685
Coffee Freq
0.061144
SF_Soymilk_wt
0.024588
0.274701
1.14E−09



X - 12101
SF_Whipped
0.026953
SF_WhiteWheat_g_wt
−0.0269
0.274215
1.22E−09




cream_wt



glycocholenate
Falafel in Pita
0.04998
0-1.5%
−0.02057
0.273996
1.26E−09



sulfate*
Bread Freq

Natural






Yogurt Freq



4-hydroxyphenyl
SF_Coffee_wt
0.034855
5-9% Yellow
0.033834
0.273101
1.43E−09



pyruvate


Cheese Freq



1-(1-enyl-palmitoyl)-
SF_WholeWheat_g_wt
−0.04336
Alcoholic
0.034819
0.271544
1.79E−09



2-oleoyl-GPC


Drinks Freq



(P-16:0/18:1)*



picolinoylglycine
SF_Cottage
0.043259
SF_Sugar Free
−0.03989
0.271367
1.83E−09




cheese_wt

Gum_wt



isocitrate
SF_Butter_wt
−0.05339
Zucchini or
0.050786
0.270843
1.98E−09






Eggplant Freq



X - 24243
Beef, Veal,
0.039141
Tahini Salad
−0.03466
0.270696
2.02E−09




Lamb, Pork,

Freq




Steak, Golash




Freq



androstenediol
SF_Beer_wt
0.032141
Fries Freq
0.028093
0.270439
2.09E−09



(3beta,17beta)



disulfate (2)



X - 11261
Coated or
0.033748
SF_Mayonnaise_wt
0.032668
0.269962
2.24E−09




Stuffed




Cookies,




Waffles or




Biscuits Freq



X - 22162
SF_Natural
0.049682
Dried Fruits
0.044638
0.269887
2.26E−09




Yogurt_wt

Freq



X - 11470
SF_Lettuce
0.042756
Beer Freq
0.03851
0.268709
2.67E−09




Salad_wt



2-methylbutyryl
Processed
−0.02757
SF_Apple_wt
0.025362
0.268206
2.86E−09



carnitine (C5)
Meat Free




Products Freq



X - 12798
SF_Potatoes_wt
−0.03424
Green Tea
−0.03234
0.267623
3.11E−09






Freq



dimethyl sulfoxide
SF_Onion_wt
0.036787
SF_Rice_wt
0.034199
0.267466
3.18E−09



(DMSO)



2-aminooctanoate
SF_Beer_wt
0.043264
Peanuts Freq
0.040677
0.266761
3.51E−09



pentadecanoate
Regular Sodas
−0.03722
Simple
−0.03633
0.26669
3.54E−09



(15:0)
with Sugar

Cookies or




Freq

Biscuits Freq



1,2-dilinoleoyl-
Simple
0.053441
Alcoholic
0.04957
0.266101
3.84E−09



GPC (18:2/18:2)
Cookies or

Drinks Freq




Biscuits Freq



X - 18921
SF_Dark
−0.03524
Processed
0.034302
0.26597
3.91E−09




Chocolate_wt

Meat Free






Products Freq



1,2,3-benzenetriol
SF_Soymilk_wt
0.016992
SF_Hummus
0.014111
0.26592
3.94E−09



sulfate (2)


Salad_wt



nonadecanoate
Yeast Cakes
−0.0177
Potatoes
−0.01756
0.265878
3.96E−09



(19:0)
and Cookies

Boiled,




as Rogallach,

Baked,




Croissant or

Mashed,




Donut Freq

Potatoes






Salad Freq



gentisic acid-
Popsicle
−0.03124
Cheese Cakes
−0.0283
0.265548
4.15E−09



5-glucoside
Without Dairy

or Cream




Freq

Cakes Freq



X - 18606
SF_Vegetable
0.056105
SF_Avocado_wt
0.048188
0.26523
4.34E−09




Salad_wt



hydroxy-N6,N6,N6-
Cooked
−0.04566
SF_Tomatoes_wt
−0.03842
0.264635
4.71E−09



trimethyllysine*
Cereal such as




Oatmeal




Porridge Freq



3-(3-hydroxy-
Mango Freq
−0.05152
SF_Potatoes_wt
−0.04955
0.264207
5.00E−09



phenyl)propionate



sulfate



cytosine
SF_Peanuts_wt
−0.03469
SF_Rice
0.032333
0.263535
5.48E−09






crackers_wt



2-hydroxynervonate*
Olives Freq
0.043652
Sugar
−0.03948
0.260982
7.77E−09






Sweetened






Chocolate






Milk Freq



1-(1-enyl-stearoyl)-
SF_Potatoes_wt
−0.0568
Beef, Veal,
0.056067
0.259863
9.05E−09



2-linoleoyl-GPE


Lamb, Pork,



(P-18:0/18:2)*


Steak, Golash






Freq



1-palmitoyl-2-
SF_Smoked
0.028026
SF_Salmon_wt
0.026445
0.259077
1.01E−08



docosahexaenoyl-GPE
Salmon_wt



(16:0/22:6)*



ADSGEGDFXAE
5-9% White
0.07299
Artificial
0.049585
0.259072
1.01E−08



GGGVR*
Cheese,

Sweeteners




Cottage Freq

Freq



3-(3-hydroxyphenyl)
Regular Tea
−0.03674
SF_Banana_wt
−0.03626
0.258787
1.05E−08



propionate
Freq



N-stearoyltaurine
SF_Carrots_wt
−0.03829
SF_Butter_wt
0.035164
0.258464
1.09E−08



4-vinylphenol
SF_Tahini_wt
0.052734
SF_Wine_wt
0.035526
0.258277
1.12E−08



sulfate



N-acetyltaurine
Yeast Cakes
0.032979
Beer Freq
0.032928
0.258121
1.14E−08




and Cookies




as Rogallach,




Croissant or




Donut Freq



X - 24293
SF_Beer_wt
0.070061
SF_Water_wt
−0.01923
0.257891
1.18E−08



tartronate
Fish (not
−0.03298
SF_White
−0.02409
0.257375
1.27E−08



(hydroxymalonate)
Tuna) Pickled,

Cheese_wt




Dried, Smoked,




Canned Freq



X - 22143
SF_Vinaigrette_wt
−0.03471
SF_WhiteWheat_g_wt
0.034056
0.256825
1.36E−08



pyrraline
SF_WhiteWheat_g_wt
0.041669
Garlic Freq
−0.03848
0.256457
1.43E−08



5-oxoproline
SF_Tomatoes_wt
−0.02449
Granola or
0.018581
0.256075
1.51E−08






Bernflaks






Freq



margarate (17:0)
Olives Freq
0.020651
Butter Freq
0.019122
0.255334
1.66E−08



aconitate [cis
SF_WhiteWheat_g_wt
−0.04403
SF_Lettuce_wt
−0.04111
0.254946
1.75E−08



or trans]



3,7-dimethylurate
Coffee Freq
0.046929
SF_Chocolate
0.043673
0.253519
2.11E−08






wt



1-stearoyl-2-
SF_Salmon_wt
0.032658
SF_Onion_wt
−0.0273
0.252798
2.32E−08



docosahexaenoyl-GPE



(18:0/22:6)*



X - 24801
SF_WhiteWheat_g_wt
0.039468
SF_Vegetable
0.035047
0.25267
2.36E−08






Salad_wt



chiro-inositol
SF_Tomatoes_wt
0.043455
SF_Vegetable
0.028689
0.251939
2.60E−08






Salad_wt



trimethylamine
White or
−0.05219
SF_Salmon_wt
0.048754
0.251836
2.63E−08



N-oxide
Brown Sugar




Freq



3-phenylpropionate
SF_Tahini_wt
0.046797
Coffee Freq
0.035535
0.251731
2.67E−08



(hydrocinnamate)



X - 12283
Zucchini or
0.05001
SF_Kohlrabi_wt
0.048317
0.251451
2.77E−08




Eggplant Freq



X - 21410
SF_Butter_wt
0.102359
SF_WholeWheat_g_wt
−0.09586
0.251284
2.83E−08



vanillyl-
SF_Almonds_wt
0.054517
5-9% White
0.053657
0.250452
3.16E−08



mandelate (VMA)


Cheese,






Cottage Freq



N-acetylglycine
SF_Tomatoes_wt
−0.04563
5-9% Yellow
−0.04523
0.250257
3.24E−08






Cheese Freq



X - 12812
Apple Freq
0.051147
SF_Water_wt
0.045874
0.250133
3.29E−08



glycohyocholate
Regular Tea
−0.04174
Cooked
0.034447
0.24914
3.74E−08




Freq

Legumes Freq



palmitoyl
SF_Tahini_wt
0.045093
Lettuce Freq
0.032665
0.248572
4.03E−08



dihydrosphingo-



myelin



(d18:0/16:0)*



gamma-CEHC
Lemon Freq
−0.03876
Simple
0.033175
0.248418
4.11E−08






Cookies or






Biscuits Freq



X - 12472
Fried Fish
0.051858
SF_Yellow
0.044072
0.247897
4.39E−08




Freq

Cheese_wt



4-hydroxychloro-
Carrots, Fresh
0.042961
SF_Natural
0.041852
0.247819
4.44E−08



thalonil
or Cooked,

Yogurt_wt




Carrot Juice




Freq



10-heptadecenoate
Butter Freq
0.02122
Apricot Fresh
0.018248
0.247254
4.77E−08



(17:1n7)


or Dry, or






Loquat Freq



X - 23644
Cooked
0.033389
SF_Tahini_wt
0.031206
0.246648
5.16E−08




Legumes Freq



X - 21821
SF_Kohlrabi_wt
0.035144
Wholemeal or
0.032936
0.246008
5.60E−08






Rye Bread






Freq



X - 11444
SF_Sugar Free
−0.04453
Hummus
0.04443
0.24496
6.40E−08




Gum_wt

Salad Freq



docosahexaenoyl-
Apricot Fresh
0.036055
Canned Tuna
0.034324
0.244758
6.56E−08



choline
or Dry, or

or Tuna Salad




Loquat Freq

Freq



gamma-glutamyl-
Vegetable
−0.03889
Hummus
0.036507
0.244708
6.61E−08



glutamine
Soup Freq

Salad Freq



valine
Cooked
−0.04865
SF_Egg_wt
0.04686
0.244693
6.62E−08




Cereal such as




Oatmeal




Porridge Freq



X - 13723
SF_Wholemeal
0.034737
Green Pepper
0.030349
0.243279
7.92E−08




Bread_wt

Freq



indolepropionate
Beef, Veal,
−0.04225
Beef or
−0.04146
0.242867
8.34E−08




Lamb, Pork,

Chicken Soup




Steak, Golash

Freq




Freq



arabitol/xylitol
Mandarin or
0.030668
SF_WholeWheat_g_wt
0.025042
0.24261
8.61E−08




Clementine




Freq



carnitine
Green Tea
0.044347
SF_Sugar Free
−0.03366
0.241914
9.40E−08




Freq

Gum_wt



benzoylcarnitine*
Cooked
−0.05612
SF_Banana_wt
−0.04617
0.24114
1.04E−07




Tomatoes,




Tomato




Sauce,




Tomato Soup




Freq



X - 13729
SF_Cucumber_wt
−0.05566
5-9% White
0.054652
0.241117
1.04E−07






Cheese,






Cottage Freq



X - 12739
SF_Wholemeal
−0.0529
Fried Fish
0.049353
0.240909
1.07E−07




Bread_wt

Freq



9-hydroxystearate
Hummus
−0.04738
SF_Cucumber_wt
−0.04334
0.240733
1.09E−07




Salad Freq



X - 21851
SF_Peas_wt
0.03663
SF_Sugar_wt
0.036351
0.239542
1.26E−07



13-methylmyristate
Butter Freq
0.066217
Sweet Dry
−0.05784
0.239418
1.28E−07






Wine,






Cocktails Freq



7-ethylguanine
SF_Apple_wt
−0.0402
Beer Freq
0.034817
0.238455
1.45E−07



margaroylcarnitine*
Beef, Veal,
0.038457
SF_Heavy
0.031674
0.238355
1.46E−07




Lamb, Pork,

cream_wt




Steak, Golash




Freq



docosapentaenoate
Mandarin or
0.030573
SF_Tahini_wt
−0.02998
0.238166
1.50E−07



(n3 DPA; 22:5n3)
Clementine




Freq



X - 24546
SF_WholeWheat_g_wt
−0.06035
Fries Freq
0.0458
0.237124
1.70E−07



X - 11787
Fried Fish
0.03232
SF_Egg_wt
0.028669
0.237089
1.71E−07




Freq



X - 24527
Fried Fish
0.051738
Schnitzel
−0.04649
0.236778
1.78E−07




Freq

Turkey or






Chicken Freq



4-acetylphenol
SF_Cucumber_wt
0.041261
SF_Cereals_wt
0.039656
0.235938
1.97E−07



sulfate



sphingomyelin
Hummus
−0.03272
Wholemeal or
0.025919
0.235772
2.01E−07



(d18:2/24:1,
Salad Freq

Rye Bread



d18:1/24:2)*


Freq



cys-gly, oxidized
SF_Beef_wt
0.029274
SF_WhiteWheat_g_wt
0.02397
0.235329
2.12E−07



isoleucine
SF_Omelette_wt
0.031634
SF_Carrots_wt
−0.03141
0.23425
2.42E−07



cysteinylglycine
SF_Beef_wt
0.047552
SF_WhiteWheat_g_wt
0.045782
0.234121
2.46E−07



disulfide*



1-myristoyl-2-
Tahini Salad
−0.0497
Wholemeal
0.04605
0.234075
2.47E−07



arachidonoyl-GPC
Freq

Crackers Freq



(14:0/20:4)*



1-myristoyl-
SF_Coffee_wt
0.052861
Artificial
0.051773
0.233586
2.62E−07



glycerol (14:0)


Sweeteners






Freq



alpha-ketoglutarate
SF_Omelette_wt
0.035189
SF_Cooked
−0.02958
0.233302
2.71E−07






beets_wt



X - 24748
Tahini Salad
0.045675
Sweet Dry
0.03442
0.232703
2.92E−07




Freq

Wine,






Cocktails Freq



eicosanodioate
SF_Vegetable
0.03333
SF_Apple_wt
−0.03209
0.232681
2.92E−07




Salad_wt



X - 24556
Pita Freq
−0.05578
SF_Beef_wt
0.050743
0.232389
3.03E−07



X - 23680
SF_Tilapia_wt
−0.02589
Cucumber
−0.02351
0.231176
3.50E−07






Freq



acetylcarnitine
Nuts,
0.042983
Light Bread
−0.03972
0.231018
3.57E−07



(C2)
almonds,

Freq




pistachios




Freq



hexanoylglutamine
SF_Cereals_wt
−0.03829
1% Milk Freq
−0.03708
0.230275
3.90E−07



sphingomyelin
Pita Freq
−0.03438
Rice Freq
−0.03337
0.229759
4.15E−07



(d18:1/18:1,



d18:2/18:0)



sphingomyelin
3% Milk Freq
0.041461
SF_Tomatoes_wt
−0.03591
0.229461
4.29E−07



(d18:1/20:0,



d16:1/22:0)*



X - 23974
White or
−0.04637
SF_WholeWheat_g_wt
−0.03761
0.229335
4.36E−07




Brown Sugar




Freq



X - 12212
SF_Hummus
0.063667
SF_Tahini_wt
0.047155
0.228975
4.55E−07




Salad_wt



myristoleate
Butter Freq
0.030639
Artificial
0.026067
0.228876
4.60E−07



(14:1n5)


Sweeteners






Freq



X - 13846
SF_Wholemeal
0.027088
White or
−0.02225
0.22827
4.94E−07




Bread_wt

Brown Sugar






Freq



X - 21657
SF_Water_wt
−0.0489
Fried Fish
0.04514
0.227519
5.40E−07






Freq



X - 24352
Cooked
0.034955
SF_Wine_wt
0.024234
0.227239
5.58E−07




Legumes Freq



beta-
SF_Cottage
−0.03389
SF_Cooked
−0.02842
0.226628
6.00E−07



citrylglutamate
cheese_wt

beets_wt



gluconate
SF_Hummus
−0.03687
Wholemeal or
0.03011
0.225883
6.54E−07




Salad_wt

Rye Bread






Freq



lignoceroyl-
SF_Olive
0.035509
SF_Chicken
−0.03551
0.225696
6.69E−07



carnitine (C24)*
oil_wt

breast_wt



X - 24831
SF_Burekas_wt
0.024968
Wholemeal or
−0.02427
0.225544
6.81E−07






Rye Bread






Freq



Fibrinopeptide
Salty Snacks
−0.02003
Lettuce Freq
0.017207
0.224888
7.35E−07



A (2-15)**
Freq



gamma-glutamyl-
SF_WhiteWheat_g_wt
0.029247
White or
−0.02917
0.224408
7.77E−07



isoleucine*


Brown Sugar






Freq



X - 12846
SF_Onion_wt
0.049906
SF_Pita_wt
0.048261
0.223263
8.87E−07



S-allylcysteine
SF_Pita_wt
0.042506
SF_Onion_wt
0.042127
0.223104
9.03E−07



tartarate
SF_Wine_wt
0.043476
SF_Coffee_wt
0.029139
0.222895
9.25E−07



ceramide
SF_Coffee_wt
0.042692
Coated or
−0.03819
0.222682
9.48E−07



(d18:2/24:1,


Stuffed



d18:1/24:2)*


Cookies,






Waffles or






Biscuits Freq



X - 12714
SF_Bread_wt
−0.05319
Peach,
0.030081
0.222567
9.61E−07






Nectarine,






Plum Freq



1-stearoyl-2-
SF_Wholemeal
0.023354
SF_Meatballs_wt
−0.02324
0.222212
1.00E−06



linoleoyl-GPI
Light



(18:0/18:2)
Bread_wt



1-linoleoyl-
5-9% Yellow
−0.03418
Light Bread
−0.0282
0.222057
1.02E−06



GPC (18:2)
Cheese Freq

Freq



gamma-glutamyl-
5-9% Yellow
0.031077
SF_Fried
−0.02981
0.221981
1.03E−06



tyrosine
Cheese Freq

eggplant_wt



N-acetyl-
SF_Tahini_wt
0.020461
SF_WholeWheat_g_wt
−0.0182
0.221341
1.11E−06



isoputreanine*



hexanoyl-
1% Milk Freq
−0.03642
SF_Wine_wt
0.027807
0.21931
1.39E−06



carnitine (C6)



X - 16944
Egg, Hard
−0.03398
SF_WhiteWheat_g_wt
0.032391
0.2191
1.43E−06




Boiled or Soft




Freq



sucrose
SF_Milk_wt
−0.03044
SF_Whipped
−0.02593
0.218142
1.59E−06






cream_wt



formimino-
SF_Egg_wt
0.036909
5-9% Yellow
0.03563
0.217446
1.72E−06



glutamate


Cheese Freq



arachidoyl-
SF_Egg_wt
0.068078
SF_Vegetable
0.064361
0.217162
1.77E−06



carnitine (C20)*


Salad_wt



ximenoyl-carnitine
Roll or
−0.02959
Coffee Freq
0.026603
0.216738
1.86E−06



(C26:1)*
Bageles Freq



hydroquinone
White or
−0.03713
Wholemeal or
0.026508
0.216453
1.92E−06



sulfate
Brown Sugar

Rye Bread




Freq

Freq



caprylate (8:0)
SF_Butter_wt
0.057074
SF_Chocolate_wt
0.042709
0.216
2.02E−06



3-methylcytidine
SF_Dark
−0.06036
SF_Tahini_wt
−0.04877
0.215928
2.04E−06




Chocolate_wt



riboflavin
0-1.5%
0.046853
Orange or
0.045733
0.215777
2.07E−06



(Vitamin B2)
Natural

Grapefruit




Yogurt Freq

Freq



X - 14662
SF_Water_wt
−0.05161
Vegetable
−0.04097
0.215721
2.08E−06






Soup Freq



Fibrinopeptide
3% Milk Freq
0.010231
SF_Cottage
0.005469
0.215719
2.08E−06



A(5-16)*


cheese_wt



X - 17335
Olives Freq
0.055813
SF_Tahini_wt
0.052579
0.215692
2.09E−06



3-hydroxy-3-
White or
−0.0366
Mayonnaise
−0.03014
0.214105
2.49E−06



methylglutarate
Brown Sugar

Including




Freq

Light Freq



N-palmitoyl-
Artificial
0.073831
Pear Fresh,
−0.06499
0.213887
2.55E−06



heptadeca-
Sweeteners

Cooked or



sphingosine
Freq

Canned Freq



(d17:1/16:0)*



methyl-4-
SF_Omelette_wt
−0.0289
SF_Coffee_wt
0.027893
0.21387
2.56E−06



hydroxybenzoate



sulfate



N-acetyl-
SF_Olive
−0.03452
SF_WhiteWheat_g_wt
0.031265
0.213562
2.65E−06



cadaverine
oil_wt



kynurenine
SF_Vegetable
0.034849
Apple Freq
0.03172
0.212924
2.84E−06




Salad_wt



5alpha-androstan-
SF_WhiteWheat_g_wt
0.044035
SF_Coffee_wt
−0.04269
0.212505
2.97E−06



3alpha,17beta-diol



monosulfate (1)



X - 21807
SF_Tea_wt
0.045968
SF_WhiteWheat_g_wt
−0.04431
0.211198
3.43E−06



X - 16946
Yeast Cakes
0.041822
Mandarin or
−0.0417
0.210387
3.74E−06




and Cookies

Clementine




as Rogallach,

Freq




Croissant or




Donut Freq



X - 11485
Red Pepper
0.052431
Light Bread
−0.05116
0.210384
3.75E−06




Freq

Freq



methionine
Avocado Freq
0.037449
Pasta or
−0.03732
0.210184
3.83E−06



sulfone


Flakes Freq



3-methoxycatechol
SF_Soymilk_wt
0.015205
SF_Hummus
0.011009
0.209983
3.91E−06



sulfate (1)


Salad_wt



N1-methyladenosine
Olives Freq
0.033459
Cooked
−0.02976
0.209787
4.00E−06






Legumes Freq



andro steroid
SF_Rice
−0.05382
Tahini Salad
−0.05136
0.209095
4.31E−06



monosulfate
crackers_wt

Freq



C19H28O6S (1)*



X - 12712
SF_Wholemeal
0.012731
SF_Potatoes_wt
0.012558
0.208113
4.79E−06




Bread_wt



X - 21470
Fries Freq
0.035121
5-9% White
−0.03463
0.208048
4.82E−06






Cheese,






Cottage Freq



1-oleoyl-2-
SF_Diet
−0.03429
Butter Freq
−0.03057
0.208
4.84E−06



docosahexaenoyl-
Coke_wt



GPE (18:1/22:6)*



gamma-CEHC
SF_Roll_wt
0.030995
Simple
0.024969
0.207064
5.36E−06



glucuronide*


Cookies or






Biscuits Freq



glycocholate
SF_Olive
0.031883
Sausages Freq
−0.03058
0.207005
5.39E−06




oil_wt



carboxyethyl-GABA
SF_Date
−0.0288
Sausages Freq
−0.02853
0.206737
5.55E−06




honey_wt



N2,N2-dimethyl-
Couscous,
−0.05847
Falafel in Pita
0.051005
0.206381
5.76E−06



guanosine
Burgul,

Bread Freq




Mamaliga,




Groats Freq



X - 21310
SF_Canned
−0.03237
3% Milk Freq
0.029754
0.206366
5.77E−06




Tuna Fish_wt



glycocheno-
Coffee Freq
−0.04221
SF_Schnitzel_wt
−0.02378
0.206165
5.89E−06



deoxycholate



sulfate



N-acetyl-2-
White or
−0.02893
SF_Cereals_wt
−0.0287
0.204614
6.95E−06



aminooctanoate*
Brown Sugar




Freq



X - 24410
SF_Olives_wt
0.034043
Internal
0.030694
0.20429
7.19E−06






Organs Freq



1-linoleoyl-2-
Couscous,
0.027012
Chicken or
−0.02318
0.204266
7.21E−06



linolenoyl-GPC
Burgul,

Turkey



(18:2/18:3)*
Mamaliga,

Without Skin




Groats Freq

Freq



glycerophospho-
Roll or
−0.03703
SF_Wholemeal
−0.0367
0.204048
7.37E−06



ethanolamine
Bageles Freq

Bread_wt



X - 21792
SF_Hummus
−0.05434
Olives Freq
0.046019
0.203958
7.44E−06




Salad_wt



5-hydroxymethyl-
5-9% Yellow
0.034617
SF_Carrots_wt
−0.03409
0.203854
7.52E−06



2-furoic acid
Cheese Freq



pipecolate
SF_Brown
0.035863
SF_Tomatoes_wt
0.032794
0.203201
8.06E−06




Rice_wt



linoleoyl-
SF_Vegetable
0.019081
Cooked
0.016292
0.203137
8.11E−06



linoleoyl-glycerol
Salad_wt

Legumes Freq



(18:2/18:2) [1]*



3-hydroxy-2-
SF_Beef_wt
0.039663
SF_Wine_wt
0.036226
0.202718
8.48E−06



ethylpropionate



6-hydroxyindole
SF_Tomatoes_wt
−0.04018
SF_Natural
0.032374
0.20208
9.06E−06



sulfate


Yogurt_wt



ectoine
Sausages Freq
0.035185
SF_Potatoes_wt
0.030595
0.201936
9.20E−06



3-methyladipate
SF_Tahini_wt
−0.0571
SF_Coffee_wt
0.04709
0.201769
9.36E−06



3-hydroxyiso-
White or
−0.04669
Mandarin or
0.04492
0.201677
9.45E−06



butyrate
Brown Sugar

Clementine




Freq

Freq



1-palmitoyl-
SF_Rice
0.034712
SF_Chocolate_wt
0.03144
0.201646
9.48E−06



GPE (16:0)
crackers_wt



1-palmitoyl-2-
Lettuce Freq
0.026417
Tahini Salad
−0.0251
0.201385
9.74E−06



oleoyl-GPC


Freq



(16:0/18:1)



laurate (12:0)
Regular Sodas
−0.03317
SF_Chocolate_wt
0.031227
0.201362
9.76E−06




with Sugar




Freq



X - 21441
SF_Apple_wt
−0.0393
SF_Red
0.038817
0.201256
9.87E−06






pepper_wt



X - 15674
SF_Potatoes_wt
−0.05877
Artificial
0.057227
0.201037
1.01E−05






Sweeteners






Freq



X - 21258
Dried Fruits
0.023898
SF_Lettuce_wt
0.020678
0.20092
1.02E−05




Freq



sulfate*
SF_Hummus
−0.02733
SF_Tahini_wt
−0.02677
0.199886
1.14E−05




Salad_wt



docosahexaenoyl-
SF_Schnitzel_wt
−0.03707
Canned Tuna
0.03318
0.199601
1.17E−05



carnitine


or Tuna Salad



(C22:6)*


Freq



fumarate
Granola or
0.028395
>=16% Yellow
0.018041
0.199402
1.20E−05




Bernflaks

Cheese Freq




Freq



propionylglycine
SF_Rice_wt
−0.03042
Herbal Tea
0.026809
0.199252
1.21E−05






Freq



1-ribosyl-
SF_Cooked
0.025185
SF_Vegetable
0.025109
0.198938
1.25E−05



imidazoleacetate*
cauliflower_wt

Salad_wt



16a-hydroxy
Tahini Salad
−0.04126
5-9% White
−0.03793
0.198708
1.28E−05



DHEA 3-sulfate
Freq

Cheese,






Cottage Freq



androstenediol
SF_Tahini_wt
−0.03316
Fries Freq
0.033153
0.198299
1.34E−05



(3beta,17beta)



disulfate (1)



pantothenate
White or
−0.03044
Lettuce Freq
0.026934
0.198254
1.34E−05




Brown Sugar




Freq



X - 15461
SF_Cooked
−0.02838
Schnitzel
0.02601
0.198187
1.35E−05




Sweet

Turkey or




potato_wt

Chicken Freq



linoleoylcholine*
Sugar
0.03653
Sweet Potato
0.03109
0.197571
1.44E−05




Sweetened

Freq




Chocolate




Milk Freq



1-linoleoyl-
SF_Rice
0.03124
SF_Coffee_wt
0.028794
0.197503
1.45E−05



GPE (18:2)*
crackers_wt



nisinate
SF_Sushi_wt
0.061065
Fish Cooked,
0.045237
0.197461
1.46E−05



(24:6n3)


Baked or






Grilled Freq



arachidate
SF_Raisins_wt
0.037987
SF_WhiteWheat_g_wt
−0.02837
0.197399
1.47E−05



(20:0)



octadecenedioate
SF_Onion_wt
−0.03005
SF_Wholemeal
0.024611
0.196535
1.60E−05



(C18:1-DC)*


Bread_wt



1,2-dilinoleoyl-GPE
SF_Tahini_wt
0.043381
SF_Banana_wt
−0.03691
0.19616
1.66E−05



(18:2/18:2)*



acisoga
1% Milk Freq
−0.02684
Fries Freq
0.023845
0.19604
1.68E−05



propionylcarnitine
SF_WhiteWheat_g_wt
0.043198
Processed
−0.04207
0.195829
1.72E−05



(C3)


Meat Free






Products Freq



1-linoleoyl-GPG
SF_Milk_wt
−0.03395
Cooked
0.033922
0.194581
1.95E−05



(18:2)*


Legumes Freq



X - 12263
SF_Wholemeal
0.043779
Green Pepper
0.04186
0.194366
1.99E−05




Bread_wt

Freq



X - 13553
Cooked
−0.03527
SF_Tomatoes_wt
−0.03475
0.194158
2.03E−05




Tomatoes,




Tomato




Sauce,




Tomato Soup




Freq



5-hydroxyindole
Apple Freq
0.03995
SF_Apple_wt
0.03013
0.193696
2.13E−05



acetate



X - 21295
SF_WhiteWheat_g_wt
0.038392
Canned Tuna
0.030332
0.1934
2.19E−05






or Tuna Salad






Freq



Fibrinopeptide
SF_Meatballs_wt
0.003791
Processed
−0.00339
0.192825
2.32E−05



A (3-16)**


Meat Free






Products Freq



N-palmitoyl-
Coffee Freq
0.030033
Artificial
0.02767
0.192811
2.33E−05



sphingosine


Sweeteners



(d18:1/16:0)


Freq



X - 17677
SF_Chicken
0.04053
Granola or
0.029364
0.192639
2.37E−05




soup_wt

Bernflaks






Freq



3-hydroxyhexanoate
Butter Freq
0.035739
SF_Yellow
0.031216
0.191465
2.66E−05






Cheese_wt



sphingomyelin
SF_Chocolate
−0.03649
SF_Tahini_wt
−0.03128
0.190812
2.84E−05



(d18:1/24:1,
spread_wt



d18:2/24:0)*



1-carboxyethyl-
Tahini Salad
−0.02825
SF_White
0.022235
0.190617
2.89E−05



phenylalanine
Freq

Cheese_wt



3-hydroxy-
SF_WhiteWheat_g_wt
−0.02869
SF_WholeWheat_g_wt
−0.02762
0.190569
2.91E−05



butyrate (BHBA)



X - 15469
Artificial
−0.01778
SF_Wine_wt
0.014844
0.189997
3.07E−05




Sweeteners




Freq



leucylglycine
5-9% White
−0.03481
Pastrami or
−0.02909
0.189282
3.30E−05




Cheese,

Smoked Turkey




Cottage Freq

Breast Freq



X - 23587
SF_Onion_wt
−0.03805
SF_Milk_wt
−0.03623
0.189237
3.31E−05



gamma-glutamyl-
SF_Tomatoes_wt
−0.01742
5-9% Yellow
0.015729
0.188976
3.40E−05



phenylalanine


Cheese Freq



sphingomyelin
Fish Cooked,
0.049286
Hummus
−0.04367
0.188841
3.44E−05



(d18:1/22:1,
Baked or

Salad Freq



d18:2/22:0,
Grilled Freq



d16:1/24:1)*



X - 24849
SF_Potatoes_wt
0.030353
SF_Tomatoes_wt
0.029985
0.18881
3.45E−05



1-stearoyl-2-
Onion Freq
0.020547
Beef, Veal,
−0.01732
0.188755
3.47E−05



arachidonoyl-GPE


Lamb, Pork,



(18:0/20:4)


Steak, Golash






Freq



17alpha-hydroxy-
Fries Freq
0.053104
Sugar
0.050486
0.188227
3.65E−05



pregnenolone


Sweetened



3-sulfate


Chocolate






Milk Freq



myo-inositol
Orange or
0.033163
SF_Hummus
−0.02811
0.188037
3.72E−05




Grapefruit

Salad_wt




Freq



17alpha-hydroxy-
SF_White
−0.06329
Fresh
−0.05937
0.187966
3.75E−05



pregnanolone
Cheese_wt

Vegetable



glucuronide


Salad Without






Dressing or






Oil Freq



arachidonoyl-
Cauliflower or
−0.02408
SF_Burekas_wt
−0.01572
0.187792
3.81E−05



carnitine
Broccoli Freq



(C20:4)



stearidonate
White or
−0.03285
Simple
−0.03197
0.187772
3.82E−05



(18:4n3)
Brown Sugar

Cookies or




Freq

Biscuits Freq



gamma-glutamyl-
>=16% Yellow
0.029051
Beef or
0.027522
0.187561
3.90E−05



alpha-lysine
Cheese Freq

Chicken Soup






Freq



3-indoxyl sulfate
SF_Tomatoes_wt
−0.03727
3% Milk Freq
0.035598
0.187501
3.92E−05



1-stearoyl-2-
SF_Onion_wt
−0.02766
SF_Rice
0.024402
0.187394
3.96E−05



linoleoyl-GPC


crackers_wt



(18:0/18:2)*



X - 17327
5-9% White
0.045741
Falafel in Pita
0.045124
0.187095
4.07E−05




Cheese,

Bread Freq




Cottage Freq



1-stearoyl-2-
SF_Chicken
−0.02485
SF_Peach_wt
0.024598
0.187092
4.08E−05



oleoyl-GPC
breast_wt



(18:0/18:1)



1-stearoyl-GPC
SF_Meatballs_wt
−0.01497
SF_Chocolate_wt
0.013615
0.185969
4.54E−05



(18:0)



X - 23593
Parsley,
0.02961
Potatoes
−0.0296
0.18592
4.56E−05




Celery,

Boiled,




Fennel, Dill,

Baked,




Cilantro,

Mashed,




Green Onion

Potatoes




Freq

Salad Freq



1-linoleoyl-GPI
Vegetable
0.028036
Sweet Potato
0.024532
0.185749
4.64E−05



(18:2)*
Soup Freq

Freq



linolenate
Juice Freq
−0.01804
1% Milk Freq
−0.0058
0.185322
4.83E−05



[alpha or gamma;



(18:3n3 or 6)]



glucuronate
Coffee Freq
0.041991
White or
−0.04054
0.185166
4.90E−05






Brown Sugar






Freq



cerotoylcarnitine
Roll or
−0.04024
SF_Carrots_wt
−0.03469
0.184952
5.01E−05



(C26)*
Bageles Freq



alpha-tocopherol
Roll or
−0.03205
White or
−0.01876
0.184772
5.09E−05




Bageles Freq

Brown Sugar






Freq



cystine
SF_Wholemeal
0.034485
SF_Potatoes_wt
0.031358
0.184703
5.13E−05




Bread_wt



vanillic alcohol
SF_Coffee_wt
0.035805
SF_Soymilk_wt
0.029788
0.184282
5.34E−05



sulfate



palmitoleate
SF_Tahini_wt
−0.01717
SF_Red
0.015473
0.18346
5.77E−05



(16:1n7)


pepper_wt



o-cresol sulfate
Regular Tea
−0.02633
Butter Freq
0.023206
0.182833
6.12E−05




Freq



1-palmitoyl-2-
Onion Freq
0.041663
Apple Freq
−0.04109
0.1823
6.44E−05



arachidonoyl-GPC



(16:0/20:4n6)



methylsuccinoyl-
Peach,
0.042892
SF_Vegetable
0.040529
0.18002
7.97E−05



carnitine (1)
Nectarine,

Salad_wt




Plum Freq



X - 24972
SF_Boiled
−0.02669
Avocado Freq
−0.0243
0.179942
8.03E−05




corn_wt



X - 23666
Shish Kebab
0.026392
SF_Beef_wt
0.021242
0.179797
8.13E−05




in Pita Bread




Freq



decanoylcarnitine
Cornflakes
−0.02509
Artificial
−0.02091
0.178951
8.80E−05



(C10)
Freq

Sweeteners






Freq



X - 21353
Tahini Salad
0.040996
Hummus
0.032797
0.177955
9.64E−05




Freq

Salad Freq



etiocholanolone
SF_Wine_wt
0.032826
Artificial
−0.03212
0.177909
9.68E−05



glucuronide


Sweeteners






Freq



X - 17353
SF_Lentils_wt
0.016303
SF_Falafel_wt
0.015272
0.177635
9.93E−05



X - 24329
SF_WhiteWheat_g_wt
0.022406
Couscous,
−0.02069
0.177373
0.000102






Burgul,






Mamaliga,






Groats Freq



2-arachidonoyl-
Fresh
−0.04959
Green Tea
−0.04484
0.177237
0.000103



glycerol (20:4)
Vegetable

Freq




Salad With




Dressing or




Oil Freq



sarcosine
SF_Apple_wt
0.036839
SF_Vegetable
0.036783
0.176765
0.000108






Salad_wt



alpha-ketobutyrate
SF_Orange_wt
−0.03408
SF_Cooked
−0.03106
0.176716
0.000108






Sweet






potato_wt



citrate
SF_WhiteWheat_g_wt
−0.04212
Schnitzel
−0.03685
0.176704
0.000108






Turkey or






Chicken Freq



pregnenolone
Lettuce Freq
−0.0326
SF_Pita_wt
0.028233
0.17657
0.000109



sulfate



eicosenoate
Regular Sodas
−0.02684
Jachnun,
−0.01683
0.176179
0.000113



(20:1)
with Sugar

Mlawah,




Freq

Kubana,






Cigars Freq



5alpha-androstan-
SF_Tahini_wt
−0.03626
SF_Beef_wt
0.033247
0.175586
0.00012



3beta,17beta-diol



monosulfate (2)



hypotaurine
SF_Cookies_wt
0.028012
3% Milk Freq
−0.0267
0.175581
0.00012



tauro-beta-
Peas, Green
0.042853
SF_Beef_wt
−0.0424
0.17546
0.000121



muricholate
Beans or Okra




Cooked Freq



eicosapentaenoyl-
SF_Dark
0.051286
Salty Cheese,
0.040596
0.17522
0.000124



choline
Chocolate_wt

Tzfatit,






Bulgarian,






Brinza, Thick






Slice Freq



1-oleoyl-GPE
SF_Olive
0.023964
SF_Rice
0.023958
0.174709
0.00013



(18:1)
oil_wt

crackers_wt



1-palmitoyl-2-
SF_Rice
0.030801
SF_Onion_wt
−0.02794
0.174458
0.000133



arachidonoyl-GPE
crackers_wt



(16:0/20:4)*



androsterone
SF_Pita_wt
0.021753
Lemon Freq
−0.02021
0.173636
0.000143



sulfate



2-acetamidophenol
SF_Natural
0.05103
Brussels
−0.03924
0.172249
0.000162



sulfate
Yogurt_wt

Sprouts,






Green or Red






Cabbage Freq



X - 01911
Sausages Freq
0.04778
Onion Freq
0.046101
0.172198
0.000162



nicotinamide
Pasta or
0.022404
SF_Cappuccino_wt
−0.02196
0.172061
0.000164




Flakes Freq



X - 11522
SF_Tomatoes_wt
−0.02166
SF_Potatoes_wt
0.020857
0.171532
0.000172



X - 12753
SF_Coleslaw_wt
0.018072
SF_Majadra_wt
0.013166
0.171179
0.000178



N-palmitoyl-
SF_Sugar Free
−0.05475
SF_Carrots_wt
−0.04871
0.170927
0.000182



sphinganine
Gum_wt



(d18:0/16:0)



X - 12844
SF_Parsley_wt
−0.03563
SF_Hummus
0.031822
0.170888
0.000182






Salad_wt



X - 12410
SF_Beet_wt
0.026455
SF_Coffee_wt
0.023122
0.170403
0.00019



erucate
Fish Cooked,
0.027024
SF_Butter_wt
0.022244
0.169009
0.000215



(22:1n9)
Baked or




Grilled Freq



X - 16964
SF_Tea_wt
−0.05898
SF_White
−0.05305
0.168603
0.000223






Cheese_wt



palmitoyl-
Couscous,
−0.03679
Fried Fish
0.033518
0.167495
0.000246



carnitine (C16)
Burgul,

Freq




Mamaliga,




Groats Freq



glyco-beta-
Mayonnaise
−0.04312
Artificial
−0.03835
0.167404
0.000248



muricholate**
Including

Sweeteners




Light Freq

Freq



X - 21628
SF_Coke_wt
−0.01938
Fries Freq
−0.01753
0.167041
0.000255



gamma-
Cooked
0.026177
Cooked
0.025754
0.166456
0.000269



glutamylglycine
Vegetable

Legumes Freq




Salads Freq



kynurenate
SF_Omelette_wt
0.033652
Apple Freq
0.033305
0.166433
0.000269



proline
SF_Sugar Free
−0.03186
Carrots, Fresh
−0.02655
0.166004
0.000279




Gum_wt

or Cooked,






Carrot Juice






Freq



X - 21285
SF_Beer_wt
0.044204
Fries Freq
0.036011
0.165774
0.000285



3-hydroxyoctanoate
SF_Tomatoes_wt
−0.03953
SF_Carrots_wt
−0.03756
0.165517
0.000291



N6,N6,N6-
SF_Yellow
−0.02767
Chicken or
0.022466
0.16522
0.000299



trimethyllysine
Cheese_wt

Turkey With






Skin Freq



phenylacetate
SF_Apple_wt
0.039486
SF_Potatoes_wt
−0.03667
0.165022
0.000304



glutamine
0.5-3% White
−0.02333
1% Milk Freq
−0.02017
0.164013
0.000331




Cheese,




Cottage Freq



homocitrulline
SF_Ice
0.037791
SF_Cereals_wt
0.035405
0.163593
0.000343




cream_wt



X - 21659
SF_Avocado_wt
0.054468
SF_Pickled
0.053846
0.163379
0.00035






cucumber_wt



N-acetyltyrosine
Banana Freq
−0.03468
SF_Watermelon_wt
0.029821
0.16333
0.000351



X - 21474
Onion Freq
0.056572
SF_Avocado_wt
0.054782
0.163136
0.000357



X - 12026
SF_Brown
−0.03309
SF_Almonds_wt
0.028343
0.163007
0.000361




Rice_wt



xylose
SF_Pita_wt
−0.03725
Shish Kebab
−0.03658
0.162979
0.000362






in Pita Bread






Freq



dihomo-linolenoyl-
Sugar
0.034004
Peach,
0.033119
0.162667
0.000371



choline
Sweetened

Nectarine,




Chocolate

Plum Freq




Milk Freq



X - 24106
SF_Potatoes_wt
−0.03575
Rice Freq
0.027367
0.162598
0.000374



X - 14095
Processed
0.023087
SF_Wine_wt
0.016406
0.162554
0.000375




Meat Free




Products Freq



tyrosine
SF_Cappuccino_wt
0.019225
SF_Banana_wt
−0.01726
0.161408
0.000413



dihomo-linoleoyl-
SF_WhiteWheat_g_wt
0.043029
Hummus
0.042381
0.161336
0.000415



carnitine


Salad Freq



(C20:2)*



asparagine
SF_Apple_wt
0.025085
Fish Cooked,
−0.01962
0.161115
0.000423






Baked or






Grilled Freq



N-acetylmethionine
>=16% Yellow
0.002655
Light Bread
−0.00164
0.160831
0.000433




Cheese Freq

Freq



X - 21364
Egg Recipes
0.029407
SF_Pizza_wt
0.028524
0.16065
0.00044




Freq



X - 25116
SF_Fried
−0.02065
SF_Wholemeal
0.020403
0.16014
0.000459




onions_wt

Bread_wt



3beta-
SF_Red
0.026768
SF_Beer_wt
0.026049
0.160076
0.000461



hydroxy-5-
pepper_wt



cholestenoate



dopamine 4-
SF_Bread_wt
−0.03894
Pastrami or
−0.03467
0.159893
0.000469



sulfate


Smoked Turkey






Breast Freq



pyridoxate
SF_Cucumber_wt
0.040288
SF_Sugar Free
0.038202
0.159679
0.000477






Gum_wt



N-acetyl-1-
SF_Omelette_wt
0.040531
SF_Tahini_wt
−0.03737
0.159006
0.000504



methylhistidine*



guanidinoacetate
Cooked
0.038237
SF_Salmon_wt
−0.03398
0.158661
0.000519




Legumes Freq



21-hydroxy-
Tahini Salad
−0.0262
Lemon Freq
−0.02491
0.158595
0.000522



pregnenolone
Freq



disulfate



malate
SF_Roll_wt
−0.01369
Canned Tuna
−0.01304
0.158508
0.000525






or Tuna Salad






Freq



oleoylcarnitine
1% Milk Freq
−0.01911
Artificial
−0.01744
0.158465
0.000527



(C18:1)


Sweeteners






Freq



X - 12206
SF_Vegetable
0.033866
White or
−0.03028
0.15836
0.000532




Salad_wt

Brown Sugar






Freq



X - 12063
Tahini Salad
−0.02703
Cheese Cakes
0.017972
0.158256
0.000536




Freq

or Cream






Cakes Freq



oleoyl
5-9% White
−0.02099
Olives Freq
0.020749
0.158101
0.000543



ethanolamide
Cheese,




Cottage Freq



glutamate
SF_Butter_wt
0.012596
SF_Sugar Free
−0.01167
0.15775
0.000559






Gum_wt



phenylacetyl-
Onion Freq
−0.0358
SF_Apple_wt
0.030598
0.15732
0.000579



glutamine



X - 12096
SF_Sugar Free
−0.05257
SF_Wholemeal
0.042001
0.156575
0.000616




Gum_wt

Bread_wt



1-linoleoyl-
Chicken or
−0.04173
Pastrami or
−0.03293
0.155799
0.000656



GPA (18:2)*
Turkey

Smoked Turkey




Without Skin

Breast Freq




Freq



X - 23654
SF_White
0.03125
SF_Potatoes_wt
0.029627
0.155531
0.00067




Cheese_wt



glycosyl-N-
Hummus
−0.04128
Milk or Dark
0.040666
0.155084
0.000695



stearoyl-
Salad Freq

Chocolate



sphingosine


Freq



(d18:1/18:0)



X - 12906
Watermelon
0.043948
White or
−0.04039
0.154102
0.000752




Freq

Brown Sugar






Freq



3-sulfo-L-alanine
SF_Milk_wt
0.019177
Lettuce Freq
−0.01653
0.153753
0.000773



X - 24498
3% Milk Freq
−0.03907
SF_Wine_wt
0.034558
0.153726
0.000775



phosphate
Pita Freq
−0.02025
SF_Rice
−0.01902
0.153716
0.000776






crackers_wt



S-carboxymethyl-
Mandarin or
−0.04016
Milk or Dark
−0.03917
0.153566
0.000785



L-cysteine
Clementine

Chocolate




Freq

Freq



N-oleoyltaurine
Fresh
0.042512
Parsley,
0.04102
0.151729
0.000909




Vegetable

Celery,




Salad With

Fennel, Dill,




Dressing or

Cilantro,




Oil Freq

Green Onion






Freq



cysteinylglycine
Carrots, Fresh
−0.02377
Wholemeal
−0.02257
0.150761
0.000981




or Cooked,

Crackers Freq




Carrot Juice




Freq



X - 24699
SF_WhiteWheat_g_wt
0.038762
Couscous,
−0.03427
0.149932
0.001047






Burgul,






Mamaliga,






Groats Freq



N6-succinyl-
SF_Rice
0.024343
SF_Hummus_wt
0.024016
0.149726
0.001064



adenosine
crackers_wt



sphingomyelin
>=16% Yellow
0.016074
Fresh
0.015044
0.149555
0.001078



(d18:0/18:0,
Cheese Freq

Vegetable



d19:0/17:0)*


Salad Without






Dressing or






Oil Freq



azelate
Orange or
−0.02521
Regular Tea
−0.02091
0.149205
0.001108



(nonanedioate)
Grapefruit

Freq




Freq



X - 24813
SF_Fried
−0.03042
Egg Recipes
0.028449
0.149165
0.001111




eggplant_wt

Freq



gamma-glutamyl-2-
Green Tea
0.02143
SF_WhiteWheat_g_wt
−0.02096
0.148814
0.001142



aminobutyrate
Freq



2-docosahexaenoyl-
SF_Pear_wt
−0.0529
SF_Tahini_wt
−0.04006
0.148349
0.001184



glycerol



(22:6)*



indoleacetate
SF_Beer_wt
0.027872
SF_Tomatoes_wt
−0.02612
0.147068
0.001308



cis-4-decenoyl-
SF_Watermelon_wt
−0.03164
Olives Freq
0.026059
0.146705
0.001345



carnitine (C10:1)



glycerol
Juice Freq
−0.02829
Olives Freq
0.027705
0.146434
0.001373



2′-deoxyuridine
SF_Mandarin_wt
0.037435
SF_Butter_wt
0.036808
0.14643
0.001373



laurylcarnitine
1% Milk Freq
−0.0278
Beef, Veal,
0.025018
0.146188
0.001399



(C12)


Lamb, Pork,






Steak, Golash






Freq



X - 12015
Sweet Dry
0.066731
Ordinary
0.03887
0.145373
0.001489




Wine,

Bread or




Cocktails Freq

Challah Freq



pro-hydroxy-pro
SF_Potatoes_wt
0.021689
Artificial
−0.02117
0.145074
0.001523






Sweeteners






Freq



adipate
SF_Onion_wt
−0.02415
Coffee Freq
0.022951
0.144738
0.001562



malonate
SF_Carrots_wt
−0.02997
Nuts,
0.028427
0.144528
0.001587






almonds,






pistachios






Freq



cystathionine
SF_Bread_wt
−0.02561
SF_Wholemeal
0.021596
0.144282
0.001617






Bread_wt



4-hydroxy-
SF_Coffee_wt
0.02973
White or
−0.02389
0.144212
0.001626



hippurate


Brown Sugar






Freq



eugenol sulfate
White or
−0.01905
Fries Freq
−0.01801
0.143947
0.001659




Brown Sugar




Freq



X - 24812
SF_Cooked
−0.02807
Milk or Dark
−0.02795
0.143929
0.001661




Sweet

Chocolate




potato_wt

Freq



4-guanidino-
SF_Tomatoes_wt
0.039862
Garlic Freq
−0.02602
0.14386
0.00167



butanoate



X - 12718
SF_Carrots_wt
−0.03717
Mandarin or
0.033544
0.143481
0.001718






Clementine






Freq



X - 24519
SF_Apple_wt
−0.03448
Wholemeal or
−0.03432
0.142763
0.001813






Rye Bread






Freq



3-amino-2-
SF_Tomatoes_wt
−0.01139
SF_Parsley_wt
−0.00927
0.142527
0.001846



piperidone



N6-carbamoyl-
Salty Snacks
0.022739
SF_Lentils_wt
−0.02149
0.141974
0.001923



threonyladenosine
Freq



4-imidazoleacetate
Butter Freq
−0.0354
Ice Cream or
−0.03056
0.141514
0.00199






Popsicle which






contains






Dairy Freq



corticosterone
Lemon Freq
−0.0317
Popsicle
0.023153
0.141213
0.002035






Without Dairy






Freq



DSGEGDFXAE
3% Milk Freq
0.009434
Beef, Veal,
0.007823
0.140729
0.00211



GGGVR*


Lamb, Pork,






Steak, Golash






Freq



5alpha-pregnan-
SF_Pancake_wt
0.014378
Mandarin or
−0.01387
0.140105
0.002209



3beta,20beta-diol


Clementine



monosulfate (1)


Freq



N-acetylalliin
Diet Yogurt
−0.04313
SF_Milk_wt
−0.03666
0.139872
0.002247




Freq



salicylate
SF_Cucumber_wt
0.011543
Decaffeinated
0.008387
0.138867
0.002419






Coffee Freq



X - 16570
SF_Noodles_wt
−0.02171
SF_Apple_wt
−0.02108
0.137998
0.002577



2-hydroxydecanoate
SF_Wine_wt
0.021025
0.5-3% White
−0.01768
0.137633
0.002647






Cheese,






Cottage Freq



isovalerylglycine
SF_White
0.03198
Chicken or
0.029919
0.137305
0.00271




Cheese_wt

Turkey






Without Skin






Freq



sphingomyelin
Onion Freq
0.022353
SF_Hummus_wt
−0.01848
0.137192
0.002733



(d18:0/20:0,



d16:0/22:0)*



alliin
SF_Lettuce_wt
−0.0251
Red Pepper
0.024565
0.137142
0.002742






Freq



docosapentaenoate
Wholemeal or
−0.02936
SF_Tahini_wt
−0.02817
0.136995
0.002772



(n6 DPA; 22:5n6)
Rye Bread




Freq



dodecadienoate
Fresh
0.020045
1% Milk Freq
−0.01923
0.136
0.002978



(12:2)*
Vegetable




Salad With




Dressing or




Oil Freq



2-methoxyresorcinol
SF_Granola_wt
0.025113
Saltine
0.02198
0.135924
0.002994



sulfate


Crackers or






Matzah Freq



biliverdin
SF_Rice_wt
0.037086
SF_Coffee_wt
−0.02569
0.135857
0.003008



oleate/vaccenate
Juice Freq
−0.02202
SF_Chocolate
−0.01927
0.135441
0.003099



(18:1)


cake_wt



1,2-dipalmitoyl-
SF_Dark
−0.01535
SF_Cereals_wt
0.010979
0.135357
0.003118



GPC
Chocolate_wt



(16:0/16:0)



X - 23787
SF_Sugar_wt
0.031617
SF_Avocado_wt
0.027549
0.135264
0.003139



5alpha-androstan-
Fresh
−0.02279
Artificial
−0.01932
0.133775
0.003489



3beta,17alpha-
Vegetable

Sweeteners



diol disulfate
Salad Without

Freq




Dressing or




Oil Freq



N-acetylleucine
SF_Cereals_wt
−0.04485
SF_Ice
0.032503
0.133641
0.003522






cream_wt



X - 16397
SF_Egg_wt
0.025108
Beef or
0.022294
0.132394
0.003845






Chicken Soup






Freq



hypoxanthine
SF_Eggplant
−0.0122
SF_Melon_wt
−0.01089
0.131461
0.004104




Salad_wt



guanidinosuccinate
SF_Olive
−0.02439
Fish Cooked,
0.023118
0.131417
0.004117




oil_wt

Baked or






Grilled Freq



oleoylcholine
SF_Chocolate_wt
0.023667
SF_Salty
0.021243
0.130381
0.004423






Cheese_wt



X - 11530
Garlic Freq
−0.0183
Lemon Freq
−0.01823
0.130312
0.004445



sphingomyelin
SF_Potatoes_wt
−0.02832
Fresh
0.024218
0.130187
0.004483



(d18:2/16:0,


Vegetable



d18:1/16:1)*


Salad With






Dressing or






Oil Freq



1-stearoyl-2-
SF_Schnitzel_wt
0.013675
Tomato Freq
−0.0135
0.128763
0.004944



linoleoyl-GPE



(18:0/18:2)*



phenyllactate
5-9% Yellow
0.010507
SF_Beer_wt
0.00983
0.128661
0.004979



(PLA)
Cheese Freq



methylsuccinate
SF_Potatoes_wt
−0.02378
SF_Cake_wt
−0.02196
0.128601
0.004999



X - 18887
SF_Onion_wt
0.022219
Peanuts Freq
0.016693
0.128585
0.005005



X - 21286
Processed
−0.03438
SF_Garlic_wt
−0.03224
0.128465
0.005046




Meat Free




Products Freq



gamma-glutamyl-
SF_Tahini_wt
0.03179
Apple Freq
0.021253
0.128462
0.005047



citrulline*



glycodeoxy-
Oil as an
−0.03584
SF_Red
−0.03326
0.128237
0.005125



cholate sulfate
addition for

pepper_wt




Salads or




Stews Freq



3-hydroxylaurate
Butter Freq
0.016163
Light Bread
−0.015
0.12761
0.005348






Freq



sulfate of
3-4.5%
−0.04114
SF_Soda
0.040143
0.12742
0.005418



piperine
Pudding,

water_wt



metabolite
Cheese With



C16H19NO3
Additions



(2)*
Freq



1-carboxyethyl-
SF_Hummus_wt
−0.01639
SF_Alfalfa
−0.01565
0.127404
0.005424



leucine


sprouts_wt



sebacate
SF_Beef_wt
0.019127
Granola or
0.017914
0.126624
0.005717



(decanedioate)


Bernflaks






Freq



N-acetylneuraminate
SF_Halva_wt
0.003387
SF_Cottage
−0.0025
0.126605
0.005725






cheese_wt



N-formylanthranilic
SF_Omelette_wt
0.042702
SF_Tahini_wt
−0.03925
0.126161
0.005898



acid



picolinate
SF_Tea_wt
−0.04566
SF_Water_wt
−0.03433
0.125907
0.006



4-hydroxybenzoate
SF_Cake_wt
0.025295
SF_Bread_wt
0.02429
0.125867
0.006016



2- hydroxybehenate
Ordinary
−0.02983
Popsicle
−0.02733
0.12552
0.006157




Bread or

Without Dairy




Challah Freq

Freq



5-dodecenoate
SF_Wholemeal
−0.01578
3% Milk Freq
0.011973
0.125442
0.00619



(12:1n7)
Bread_wt



X - 12831
SF_Dried
−0.0172
SF_Rice_wt
−0.01653
0.124968
0.006389




dates_wt



glycerol 3-phosphate
SF_Egg_wt
0.009172
Corn Freq
−0.0061
0.124939
0.006401



N-palmitoyltaurine
SF_WhiteWheat_g_wt
0.023787
SF_Jam_wt
0.020896
0.124466
0.006606



octadecadiene
Cooked
0.034248
SF_Cookies_wt
0.034219
0.123141
0.007211



dioate (C18:2-
Legumes Freq



DC)*



1-stearoyl-GPE
SF_Tahini_wt
−0.01952
SF_Rice
0.019314
0.122848
0.007351



(18:0)


crackers_wt



bilirubin (E, E)*
SF_Coffee_wt
−0.02599
SF_Tomatoes_wt
−0.02077
0.122492
0.007525



N-acetylthreonine
SF_Vegetable
0.024584
SF_Coffee_wt
−0.02401
0.12246
0.007541




Salad_wt



homoarginine
SF_Chicken
0.031504
SF_Beef_wt
0.03141
0.122367
0.007587




breast_wt



tetradecanedioate
Pear Fresh,
−0.03466
Butter Freq
0.033617
0.122101
0.00772




Cooked or




Canned Freq



12-HETE
SF_Butter_wt
0.016857
SF_Mandarin_wt
0.015466
0.122054
0.007743



X - 11843
SF_Schnitzel_wt
0.0157
SF_Rice_wt
0.014923
0.122053
0.007744



X - 22771
SF_Cucumber_wt
−0.03911
SF_Beer_wt
0.017638
0.121558
0.007998



2,3-dihydroxy-
SF_Milk_wt
−0.02794
SF_WhiteWheat_g_wt
0.027391
0.121075
0.008253



5-methylthio-



4-pentenoate



(DMTPA)*



myristoleoyl-
SF_Cooked
0.022025
SF_White
−0.01884
0.120905
0.008345



carnitine
mushrooms_wt

Cheese_wt



(C14:1)*



orotidine
SF_Beer_wt
0.028445
0-1.5%
−0.02404
0.120458
0.008589






Natural






Yogurt Freq



X - 18345
SF_Egg_wt
0.030911
SF_Bread_wt
−0.03079
0.120368
0.008639



N-palmitoyl-
SF_Rice
0.027654
SF_Coffee_wt
0.024178
0.119525
0.009121



sphingadienine
crackers_wt



(d18:2/16:0)*



glutarate
Coffee Freq
0.025756
Artificial
0.023379
0.119351
0.009224



(pentanedioate)


Sweeteners






Freq



ornithine
SF_Tahini_wt
0.022321
Beer Freq
0.020484
0.118976
0.009448



1-palmitoyl-2-
SF_Onion_wt
−0.02585
Pita Freq
−0.01849
0.118899
0.009494



linoleoyl-GPE



(16:0/18:2)



X - 24512
SF_Water_wt
−0.02674
Granola or
0.026242
0.118854
0.009522






Bernflaks






Freq



dopamine 3-
Sugar
−0.01984
Pastrami or
−0.01335
0.118245
0.009899



O-sulfate
Sweetened

Smoked Turkey




Chocolate

Breast Freq




Milk Freq



isovalerate
SF_Egg_wt
0.01826
Shish Kebab
0.017714
0.117447
0.010412






in Pita Bread






Freq



1-palmitoyl-
SF_Tahini_wt
−0.01407
Tahini Salad
−0.01099
0.116895
0.010782



GPG (16:0)*


Freq



14-HDoHE/17-
Banana Freq
−0.00468
Apple Freq
−0.00412
0.116778
0.010861



HDoHE



1-palmitoyl-
SF_Vegetable
−0.01871
Peanuts Freq
−0.0177
0.116689
0.010922



GPI (16:0)
Salad_wt



trans-
SF_WholeWheat_g_wt
−0.01835
Fruit Salad
−0.01808
0.115519
0.011752



urocanate


Freq



X - 21842
SF_Cooked
0.017668
SF_Tomatoes_wt
−0.01658
0.115074
0.012083




beets_wt



xanthurenate
SF_Tahini_wt
−0.06647
Pasta or
−0.05233
0.114922
0.012198






Flakes Freq



N-acetylglutamate
Orange or
−0.01167
Popsicle
−0.01136
0.114108
0.012828




Grapefruit

Without Dairy




Freq

Freq



phospho-
SF_Vegetable
−0.01884
Sweet Dry
0.018577
0.113243
0.013529



ethanolamine
Salad_wt

Wine,






Cocktails Freq



1-(1-enyl-
Alcoholic
0.038358
SF_Chocolate_wt
0.029272
0.113202
0.013563



palmitoyl)-2-
Drinks Freq



palmitoyl-GPC



(P-16:0/16:0)*



hexadecene-
Regular Tea
−0.03191
5-9% White
0.031756
0.112974
0.013755



dioate (C16:1-
Freq

Cheese,



DC)*


Cottage Freq



X - 12822
Onion Freq
−0.02084
SF_Vegetable
0.02052
0.112564
0.014103






Salad_wt



X - 21607
1% Milk Freq
−0.03116
SF_Schnitzel_wt
−0.02665
0.112114
0.014496



epiandrosterone
SF_Rice
−0.0166
SF_Coffee_wt
−0.01594
0.111052
0.015459



sulfate
crackers_wt



2-keto-3-deoxy-
Granola or
0.02985
SF_Persimmon_wt
0.026952
0.110806
0.01569



gluconate
Bernflaks




Freq



hydroxy-
Fried Fish
0.016469
Falafel in Pita
0.014964
0.110359
0.016118



asparagine**
Freq

Bread Freq



uridine
Wholemeal or
0.005349
Simple
−0.00523
0.110043
0.016426




Rye Bread

Cookies or




Freq

Biscuits Freq



5-(galactosyl-
Parsley,
0.015888
Chicken or
0.015293
0.109914
0.016554



hydroxy)-L-lysine
Celery,

Turkey With




Fennel, Dill,

Skin Freq




Cilantro,




Green Onion




Freq



ceramide
SF_Cottage
0.031752
SF_WholeWheat_g_wt
0.03106
0.109815
0.016652



(d16:1/24:1,
cheese_wt



d18:1/22:1)*



glycosyl
Light Bread
−0.03698
SF_Dark
0.036105
0.108989
0.017493



ceramide
Freq

Chocolate_wt



(d18:1/20:0,



d16:1/22:0)*



1-stearoyl-2-
SF_Potatoes_wt
−0.01349
SF_Tahini_wt
−0.01262
0.108819
0.01767



oleoyl-GPI



(18:0/18:1)*



X - 12013
Parsley,
−0.02619
>=16% Yellow
0.017607
0.10825
0.018276




Celery,

Cheese Freq




Fennel, Dill,




Cilantro,




Green Onion




Freq



3-hydroxydecanoate
Olives Freq
0.034271
Fried Fish
0.029653
0.108189
0.018342






Freq



anthranilate
Herbal Tea
−0.02746
SF_White
0.025736
0.106492
0.020264




Freq

Cheese_wt



5-methyluridine
SF_Tahini_wt
0.021722
SF_Vegetable
0.019528
0.106348
0.020434



(ribothymidine)


Salad_wt



5-bromotryptophan
SF_Chocolate_wt
0.023321
0-1.5%
−0.02139
0.106233
0.020572






Natural






Yogurt Freq



1-(1-enyl-
Orange or
0.027062
SF_WhiteWheat_g_wt
−0.02363
0.106053
0.020788



palmitoyl)-2-
Grapefruit



linoleoyl-GPC
Freq



(P-16:0/18:2)*



3-hydroxybutyryl-
Parsley,
0.031457
Fried Fish
0.028827
0.105791
0.021107



carnitine (2)
Celery,

Freq




Fennel, Dill,




Cilantro,




Green Onion




Freq



pregnanolone/
Chicken or
−0.03249
SF_Wholemeal
0.028136
0.10566
0.021268



allopregnanolone
Turkey With

Roll_wt



sulfate
Skin Freq



X - 24728
3% Milk Freq
−0.04381
SF_Potatoes_wt
0.034071
0.10566
0.021268



1-oleoyl-GPI
Apricot Fresh
0.029801
SF_Yellow
−0.02767
0.105514
0.021449



(18:1)*
or Dry, or

Cheese_wt




Loquat Freq



glycine
SF_Schnitzel_wt
−0.01648
Canned Tuna
−0.01561
0.105187
0.021858






or Tuna Salad






Freq



dihomo-
Nuts,
0.010126
Yeast Cakes
−0.00969
0.103924
0.023504



linoleate
almonds,

and Cookies



(20:2n6)
pistachios

as Rogallach,




Freq

Croissant or






Donut Freq



2-linoleoyl-
Pita Freq
0.012823
SF_Potatoes_wt
0.012306
0.103746
0.023745



glycerol (18:2)



citrulline
0-1.5%
0.021639
SF_Tomatoes_wt
−0.02144
0.103745
0.023746




Natural




Yogurt Freq



lactosyl-N-
SF_Peanuts_wt
0.034836
SF_Cooked
−0.03181
0.103546
0.024017



behenoyl-


beets_wt



sphingosine



(d18:1/22:0)*



1-palmitoleoyl-
Olives Freq
−0.02966
SF_Jam_wt
0.024678
0.103434
0.024171



2-linolenoyl-



GPC



(16:1/18:3)*



bilirubin (Z, Z)
SF_Beer_wt
0.013136
SF_Coffee_wt
−0.01181
0.10337
0.024259



4-acetamido-
Coated or
−0.02198
Yeast Cakes
−0.01416
0.10241
0.025617



benzoate
Stuffed

and Cookies




Cookies,

as Rogallach,




Waffles or

Croissant or




Biscuits Freq

Donut Freq



docosadienoate
Apricot Fresh
0.015876
Yeast Cakes
−0.01526
0.102118
0.026043



(22:2n6)
or Dry, or

and Cookies




Loquat Freq

as Rogallach,






Croissant or






Donut Freq



vanillactate
SF_Wholemeal
0.036466
Green Tea
−0.03533
0.101992
0.026229




Bread_wt

Freq



taurodeoxy-
SF_WhiteWheat_g_wt
−0.04848
Peanuts Freq
−0.04794
0.101769
0.02656



cholic acid 3-



sulfate



X - 12126
Ordinary
−0.04479
Parsley,
−0.03788
0.101316
0.027245




Bread or

Celery,




Challah Freq

Fennel, Dill,






Cilantro,






Green Onion






Freq



stearate (18:0)
SF_Noodles_wt
−0.00834
SF_Butter_wt
0.008276
0.101288
0.027287



indolelactate
SF_WhiteWheat_g_wt
0.012924
SF_French
−0.01089
0.10121
0.027407






fries_wt



X - 13684
SF_Wholemeal
0.033256
Fried Fish
0.01912
0.100529
0.028469




Bread_wt

Freq



sulfate of
Red Pepper
0.033295
0.5-3% White
−0.02573
0.100095
0.029165



piperine
Freq

Cheese,



metabolite


Cottage Freq



C16H19NO3



(3)*



X - 24309
SF_Almonds_wt
−0.03293
5-9% White
0.027594
0.099928
0.029436






Cheese,






Cottage Freq



1-(1-enyl-
SF_Milk_wt
0.018166
Falafel in Pita
−0.01552
0.099434
0.030253



palmitoyl)-2-


Bread Freq



palmitoleoyl-GPC



(P-16:0/16:1)*



N-acetyl-S-
Avocado Freq
−0.01643
SF_Bamba_wt
0.016076
0.099093
0.030825



allyl-L-cysteine



2-oxoarginine*
White or
−0.02507
SF_Olives_wt
−0.01742
0.09899
0.031002




Brown Sugar




Freq



dihomo-
Chicken or
−0.01601
SF_Wholemeal
0.010357
0.098964
0.031045



linolenate
Turkey

Light



(20:3n3 or n6)
Without Skin

Bread_wt




Freq



glycochenode
0.5-3% White
−0.02931
Simple
0.022725
0.098913
0.031134



oxycholate
Cheese,

Cookies or



glucuronide
Cottage Freq

Biscuits Freq



(1)



N,N-dimethyl-5-
Wholemeal or
0.015529
SF_Milk_wt
−0.01415
0.098818
0.031297



aminovalerate
Rye Bread




Freq



taurocholate
Sausages Freq
−0.0284
SF_Cucumber_wt
0.027816
0.09862
0.031639



2-hydroxyadipate
SF_Hamburger_wt
0.031487
SF_Cold
0.031274
0.097762
0.033158






cut_wt



mannose
Cornflakes
−0.01579
SF_Danish_wt
−0.01488
0.097214
0.034161




Freq



X - 19561
SF_Tahini_wt
−0.0368
Salty Cheese,
0.033886
0.097147
0.034286






Tzfatit,






Bulgarian,






Brinza, Thick






Slice Freq



N-acetylalanine
Apple Freq
0.01048
SF_Whipped
0.009811
0.096869
0.034806






cream_wt



phenylpyruvate
SF_Fried
−0.00521
Simple
0.003618
0.096291
0.035909




eggplant_wt

Cookies or






Biscuits Freq



stearoylcholine*
SF_Hummus
0.026213
SF_Chocolate_wt
0.024884
0.096042
0.036393




Salad_wt



palmitoleoyl-
Lettuce Freq
0.021993
SF_Yellow
0.021945
0.095522
0.037422



carnitine


Cheese_wt



(C16:1)*



2-palmitoleoyl-
SF_Onion_wt
−0.02989
SF_Lettuce_wt
0.027198
0.095476
0.037514



GPC (16:1)*



phenol sulfate
SF_Potatoes_wt
−0.03138
SF_Tea_wt
−0.02332
0.095336
0.037796



X - 23739
Beer Freq
0.007641
SF_Rice
0.006021
0.095281
0.037908






crackers_wt



2-stearoyl-GPE
SF_Rice
0.017055
Vegetable
0.016613
0.095078
0.03832



(18:0)*
crackers_wt

Soup Freq



glycerate
Cooked
0.018335
SF_Apple_wt
0.016299
0.094938
0.038608




Vegetable




Salads Freq



X - 12100
0-1.5%
0.007183
SF_Natural
0.005165
0.094616
0.039274




Natural

Yogurt_wt




Yogurt Freq



5alpha-pregnan-
Brussels
−0.02388
SF_Vegetable
−0.02263
0.094124
0.040313



3beta,20alpha-
Sprouts,

Salad_wt



diol disulfate
Green or Red




Cabbage Freq



phenylalanyl-
SF_Tofu_wt
0.039139
Onion Freq
0.031693
0.093617
0.041406



glycine



heptanoate
SF_WhiteWheat_g_wt
−0.02279
SF_Sushi_wt
−0.02068
0.093589
0.041468



(7:0)



4-acetamido-
SF_Chicken
−0.02032
SF_Apple_wt
0.019891
0.093556
0.041539



butanoate
breast_wt



thyroxine
SF_Wholemeal
0.027614
Beef, Veal,
−0.02723
0.093455
0.041761




Light

Lamb, Pork,




Bread_wt

Steak, Golash






Freq



1-oleoyl-GPC
Thousand
−0.01683
Alcoholic
0.016764
0.093184
0.042361



(18:1)
Island

Drinks Freq




Dressing,




Garlic




Dressing Freq



linoleate
Juice Freq
−0.01873
SF_Cereals_wt
−0.01404
0.092187
0.044627



(18:2n6)



galactonate
SF_Natural
0.035565
SF_Cucumber_wt
0.021854
0.091788
0.045563




Yogurt_wt



octanoyl-
SF_Cooked
0.019953
SF_Coffee_wt
−0.01683
0.091768
0.04561



carnitine (C8)
mushrooms_wt



piperine
SF_Beer_wt
0.021738
Peach,
−0.01748
0.091715
0.045735






Nectarine,






Plum Freq



N-acetylproline
Potatoes
−0.0287
SF_Coffee_wt
0.023609
0.091347
0.046616




Boiled,




Baked,




Mashed,




Potatoes




Salad Freq



X - 12216
SF_Water_wt
0.030604
Roll or
−0.02626
0.09095
0.047581






Bageles Freq



2-hydroxyglutarate
SF_Rice
0.018396
SF_Apple_wt
0.018065
0.090942
0.0476




crackers_wt



choline
Turkey
−0.00423
SF_Rice_wt
0.004025
0.090928
0.047634




Meatballs,




Beef, Chicken




Freq



2,2′-Methylene-
SF_Vegetable
0.057288
SF_Cake_wt
−0.05264
0.090651
0.048319



bis(6-tert-
Salad_wt



butyl-p-cresol)



5,6-dihydrouridine
Turkey
−0.02117
SF_Diet
−0.01249
0.09055
0.04857




Meatballs,

Coke_wt




Beef, Chicken




Freq



cis-4-decenoate
SF_Low fat
−0.01521
Salty Cheese,
−0.01403
0.090157
0.04956



(10:1n6)*
Milk_wt

Tzfatit,






Bulgarian,






Brinza, Thick






Slice Freq










Food types that can be used for predicting the corresponding metabolite are also recited in Tables 3 and 4.


The analysis of the frequency of consumption of the food types and/or the daily mean consumption of the food types is optionally and preferably by executing a machine learning procedure. Any of the aforementioned types of machine learning procedures can be used for predicting the quantity of the metabolite based on the food types and/or the daily mean consumption of the food types.


When the metabolite is predicted based on the frequency of consumption and/or the daily mean consumption of the food types, the machine learning procedure used is a trained machine learning procedure. A machine learning procedure can be trained according to some embodiments of the present invention by feeding a machine learning training program with the frequency and/or the daily mean of food types consumed by a cohort of subjects from which the quantities of the metabolite have been determined by blood tests. Once the data are fed, the machine learning training program generates a trained machine learning procedure of a selected type which can then be used without the need to re-train it.


For example, when it is desired to employ decision trees, machine learning training program learns the structure of each tree in a plurality of decision trees (e.g., how many nodes there are in each tree, and how these are connected to one another), and also selects the decision rules for split nodes of each tree. At least a portion of the decision rules relate to one or more food types. A simple decision rule may be a threshold for the frequency of consumption and/or the daily mean consumption of a particular food type, but more complex rules, relating to more than one food type are also contemplated. The machine learning training program also accumulates data at the leaves of the trees.


The structures of the trees, the decision rules for the split nodes, and the data at the leaves are all selected by the machine learning training program, automatically and typically without user intervention, such that the frequency of consumption and/or the daily mean consumption of the food types at the root of the trees provide the quantities of the metabolite as determined by blood tests at the leaves of the trees. The final result of the machine learning training program in this case is a set of trees for each metabolite, where the structures, the decision rules for split nodes, and leaf data for each trees are defined by the machine learning training program.


The Examples section that follows describes machine learning training that was used to generate a set of trees for each of a plurality of metabolite, using training data including metabolite quantities and diet data collected from a cohort of about 500 subjects.


In various exemplary embodiments of the invention a library of machine learning procedures is accessed and searched for a trained machine learning procedure associated with the metabolite. It was found by the inventors that different libraries of machine learning procedures are suitable for microbiome data and for diet data. Thus, when the metabolite is predicted based on the frequency of consumption and/or the daily mean consumption of the food types, the library on medium 110 that is used is preferably not the same as the library used for predicting the metabolite based on the microbiome.


When the metabolite is predicted based on the frequency of consumption and/or the daily mean consumption of the food types, the library can include a machine learning procedure for each of the aforementioned metabolites (in which case N equals the number of the aforementioned metabolites), or a machine learning procedure for each of the metabolites set forth in Table 3 (in which case N equals the number of the metabolites set forth in Table 3), or a machine learning procedure for each of the metabolites set forth in Table 4 (in which case N equals the number of the metabolites set forth in Table 4). Also contemplated are embodiments in which the library includes a machine learning procedure for each of a subset of the aforementioned metabolites or of the metabolites in set forth Table 3, or of the metabolites in set forth Table 4.



FIG. 13 illustrates a machine learning procedure 114 which is the Lth (1≤L≤N) procedure in the library, and which is associated with the metabolite of which the quantity in the blood of the subject is to be predicted. The selected trained procedure 114 is fed with the frequency of consumption and/or the daily mean consumption of the food types, and provides an output indicative of the quantity of the metabolite in the blood.


When machine learning procedure 114 includes a set of decision trees, each of the trees receives food consumption data (typically frequency of consumption and/or the daily mean consumption of the food types), processes the received food consumption data by the split node decision rules that were defined during the training phase, and provides output values in accordance with the data at the leaves that were also defined during the training phase. The output of all trees is optionally and preferably combined (e.g., summed) to provide the quantity of the respective metabolite.


Preferably, the number of trees in the set is at least 1000 or at least 2000 or more. It was found by the inventors that the food types listed in Table 3 dominate the predicting ability of the decision trees. Thus, in some embodiments of the present invention the number of decision rules relating to the food types listed in Table 3 for the respective metabolite is larger than the number of decision rules relating to other food types.


The Inventors found that the machine learning procedures, particularly, but not exclusively the decision trees, can also be used for solving the inverse problem, wherein the machine learning procedure can recommend one or more amounts of microbiomes of an individual, or recommend consumption of one or more food types.


These embodiments are illustrated in FIG. 14 for the case in which the machine learning procedure recommends one or more amounts of microbiomes, and in FIG. 15 for the case in which the machine learning procedure recommends one or more food types.


With reference to FIGS. 11 and 14, the computer readable medium 110 storing a library of machine learning procedures trained using microbiome data is accessed. The library of trained machine learning procedures is searched for a trained machine learning procedure 112 associated with a metabolite of interest. The selected procedure 112 is then fed with a predetermined quantity of the metabolite of interest and provides an output indicative of recommended amounts of a plurality of microbes of a microbiome. The recommended amounts are amounts that would have resulted, within a tolerance of less than 10%, in the predetermined quantity of the metabolite of interest had the amounts been fed to a trained machine learning procedure associated with the metabolite of interest.


With reference to FIGS. 11 and 15, the computer readable medium 110 storing a library of machine learning procedures trained using frequency and/or the daily mean consumption of the food types is accessed. The library of trained machine learning procedures is searched for a trained machine learning procedure 114 associated with a metabolite of interest. The selected procedure 114 is then fed with a predetermined quantity of the metabolite of interest and provides an output indicative of recommended food consumption, typically a recommended set of food types and optionally a recommended consumption frequency and/or daily mean consumption of food types. The recommended food consumption is food consumption that would have resulted, within a tolerance of less than 10%, in the predetermined quantity of the metabolite of interest had the amounts been fed to a trained machine learning procedure associated with the metabolite of interest.


It was surprisingly found by the Inventors that a trained machine learning procedure that solves the forward problem, wherein the procedure provides a metabolite quantity after beaning fed with microbiome data (FIG. 12), or after being fed with consumption frequency and/or daily mean consumption of food types (FIG. 13), can also be used, optionally and preferably without being re-trained, to solve the backward problem, wherein the procedure provides amounts of microbes (FIG. 14) or food consumption (FIG. 15) after being fed with a metabolite quantity.


It will be appreciated that additional features may be used together with the information regarding bacterial abundance and/or food intake to raise the confidence level of the prediction. Such features include for example a macronutrients feature group which can include the daily mean consumption of macronutrients (lipids, proteins, carbohydrates), calories and water, calculated from real-time logging; an anthropometrics feature group which can include weight, BMI, waist and hips circumference, and waist to hips ratio (WHR); a cardiometabolic feature group which can include systolic and diastolic blood pressure, heart rate in beats per minute and a glycemic status; a lifestyle feature group which can include smoking status (current, past) from questionnaires, and the daily mean sleeping time, exercise time and midday sleep time based on the real time logging; a “drugs” feature group which can included binary features representing the reported medication intake of common drugs from questionnaires, and medication groups; a “time of day” feature which is a binary feature indicating whether the sample was taken during the first half of the day; a “seasonal effects” feature which is the month in which the sample was taken, and may also be also grouped months by season (Winter: December-February; Spring: March-May; Summer: June-August; Fall: September-November).


Once the prediction has been made about the metabolite, the present inventors contemplate corroborating the quantity of the metabolite by directly analyzing the amount of that metabolite in the blood of the subject. It is to be understood, however, that while such corroboration is contemplated in some embodiments of the present invention, the corroboration not necessary for the prediction itself. As demonstrated in the Example section that follows, the present inventors were able to train a machine learning procedure such that when fed by the input data (e.g., microbiome data, food consumption data) machine learning procedure, once trained, is capable of predicting the quantity of the metabolite in the blood of the subject even without performing direct analysis of the quantity of the metabolite in the blood of the subject.


Direct analysis of the quantity of the metabolite in the blood of the subject can be performed, for example, during or after the training of the machine learning procedure in order to determine whether the quantity of the metabolite that the machine learning procedure predicts is of clinical relevance, e.g. with a confidence level of at least 90% or at least 95%.


The confidence level of the metabolite quantity can be affirmed by conducting a hypothesis test as known in the art. Typically, the hypothesis test includes selecting the null and alternative hypotheses, and also selecting decision criteria, which are factors upon which a decision to reject or fail to reject the null hypothesis is based. Typical decision criteria include a choice of a test statistic and significance level (denoted algebraically as “alpha”) to be applied to the analysis. Many different test statistics can be used in hypothesis testing, including mean, variance and the like. A p-value can be calculated and be compared to the significance level. The p-value is quantitative assessment of the probability of observing a value of the test statistic that is either as extreme as or more extreme than the calculated value of the test statistic.


Once it is established that a particular trained machine learning procedure is capable of providing clinically relevant predictions for a particular metabolite, the trained machine learning procedure can execute without performing direct analysis of the quantity of the metabolite in the blood of the subject.


Following is a description of techniques suitable for corroborating the quantity of the metabolite in the blood of the subject by direct analysis.


In one embodiment, metabolites are identified using a physical separation method.


The term “physical separation method” as used herein refers to any method known to those with skill in the art sufficient to produce a profile of changes and differences in small molecules produced in hSLCs, contacted with a toxic, teratogenic or test chemical compound according to the methods of this invention. In a preferred embodiment, physical separation methods permit detection of cellular metabolites including but not limited to sugars, organic acids, amino acids, fatty acids, hormones, vitamins, and oligopeptides, as well as ionic fragments thereof and low molecular weight compounds (preferably with a molecular weight less than 3000 Daltons, and more particularly between 50 and 3000 Daltons). For example, mass spectrometry can be used. In particular embodiments, this analysis is performed by liquid chromatography/electrospray ionization time of flight mass spectrometry (LC/ESI-TOF-MS), however it will be understood that metabolites as set forth herein can be detected using alternative spectrometry methods or other methods known in the art for analyzing these types of compounds in this size range.


Certain metabolites can be identified by, for example, gene expression analysis, including real-time PCR, RT-PCR, Northern analysis, and in situ hybridization.


In addition, metabolites can be identified using Mass Spectrometry such as MALDI/TOF (time-of-flight), SELDI/TOF, liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography-mass spectrometry (HPLC-MS), capillary electrophoresis-mass spectrometry, nuclear magnetic resonance spectrometry, tandem mass spectrometry (e.g., MS/MS, MS/MS/MS, ESI-MS/MS etc.), secondary ion mass spectrometry (SIMS), or ion mobility spectrometry (e.g. GC-IMS, IMS-MS, LC-IMS, LC-IMS-MS etc.).


Mass spectrometry methods are well known in the art and have been used to quantify and/or identify biomolecules, such as proteins and other cellular metabolites (see, e.g., Li et al., 2000; Rowley et al., 2000; and Kuster and Mann, 1998).


In certain embodiments, a gas phase ion spectrophotometer is used. In other embodiments, laser-desorption/ionization mass spectrometry is used to identify metabolites. Modern laser desorption/ionization mass spectrometry (“LDI-MS”) can be practiced in two main variations: matrix assisted laser desorption/ionization (“MALDI”) mass spectrometry and surface-enhanced laser desorption/ionization (“SELDI”).


In MALDI, the metabolite is mixed with a solution containing a matrix, and a drop of the liquid is placed on the surface of a substrate. The matrix solution then co-crystallizes with the biomarkers. The substrate is inserted into the mass spectrometer. Laser energy is directed to the substrate surface where it desorbs and ionizes the proteins without significantly fragmenting them. However, MALDI has limitations as an analytical tool. It does not provide means for fractionating the biological fluid, and the matrix material can interfere with detection, especially for low molecular weight analytes.


In SELDI, the substrate surface is modified so that it is an active participant in the desorption process. In one variant, the surface is derivatized with adsorbent and/or capture reagents that selectively bind the biomarker of interest. In another variant, the surface is derivatized with energy absorbing molecules that are not desorbed when struck with the laser. In another variant, the surface is derivatized with molecules that bind the biomarker of interest and that contain a photolytic bond that is broken upon application of the laser. In each of these methods, the derivatizing agent generally is localized to a specific location on the substrate surface where the sample is applied. The two methods can be combined by, for example, using a SELDI affinity surface to capture an analyte (e.g. biomarker) and adding matrix-containing liquid to the captured analyte to provide the energy absorbing material.


For additional information regarding mass spectrometers, see, e.g., Principles of Instrumental Analysis, 3rd edition., Skoog, Saunders College Publishing, Philadelphia, 1985; and Kirk-Othmer Encyclopedia of Chemical Technology, 4.sup.th ed. Vol. 15 (John Wiley & Sons, New York 1995), pp. 1071-1094.


In some embodiments, the data from mass spectrometry is represented as a mass chromatogram. A “mass chromatogram” is a representation of mass spectrometry data as a chromatogram, where the x-axis represents time and the y-axis represents signal intensity. In one aspect the mass chromatogram is a total ion current (TIC) chromatogram. In another aspect, the mass chromatogram is a base peak chromatogram. In other embodiments, the mass chromatogram is a selected ion monitoring (SIM) chromatogram. In yet another embodiment, the mass chromatogram is a selected reaction monitoring (SRM) chromatogram. In one embodiment, the mass chromatogram is an extracted ion chromatogram (EIC).


In an EIC, a single feature is monitored throughout the entire run. The total intensity or base peak intensity within a mass tolerance window around a particular analyte's mass-to-charge ratio is plotted at every point in the analysis. The size of the mass tolerance window typically depends on the mass accuracy and mass resolution of the instrument collecting the data. As used herein, the term “feature” refers to a single small metabolite, or a fragment of a metabolite. In some embodiments, the term feature may also include noise upon further investigation.


Detection of the presence of a metabolite will typically involve detection of signal intensity. This, in turn, can reflect the quantity and character of a biomarker bound to the substrate. For example, in certain embodiments, the signal strength of peak values from spectra of a first sample and a second sample can be compared (e.g., visually, by computer analysis etc.) to determine the relative amounts of particular metabolites. Software programs such as the Biomarker Wizard program (Ciphergen Biosystems, Inc., Fremont, Calif.) can be used to aid in analyzing mass spectra. The mass spectrometers and their techniques are well known.


A person skilled in the art understands that any of the components of a mass spectrometer, e.g., desorption source, mass analyzer, detect, etc., and varied sample preparations can be combined with other suitable components or preparations described herein, or to those known in the art. For example, in some embodiments a control sample may contain heavy atoms, e.g. 13C, thereby permitting the test sample to be mixed with the known control sample in the same mass spectrometry run. Good stable isotopic labeling is included.


In one embodiment, a laser desorption time-of-flight (TOF) mass spectrometer is used. In laser desorption mass spectrometry, a substrate with a bound marker is introduced into an inlet system. The marker is desorbed and ionized into the gas phase by laser from the ionization source. The ions generated are collected by an ion optic assembly, and then in a time-of-flight mass analyzer, ions are accelerated through a short high voltage field and let drift into a high vacuum chamber. At the far end of the high vacuum chamber, the accelerated ions strike a sensitive detector surface at a different time. Since the time-of-flight is a function of the mass of the ions, the elapsed time between ion formation and ion detector impact can be used to identify the presence or absence of molecules of specific mass to charge ratio.


In one embodiment of the invention, levels of metabolites are detected by MALDI-TOF mass spectrometry.


Methods of detecting metabolites also include the use of surface plasmon resonance (SPR). The SPR biosensing technology has been combined with MALDI-TOF mass spectrometry for the desorption and identification of metabolites.


Data for statistical analysis can be extracted from chromatograms (spectra of mass signals) using softwares for statistical methods known in the art. “Statistics” is the science of making effective use of numerical data relating to groups of individuals or experiments. Methods for statistical analysis are well-known in the art.


In one embodiment a computer is used for statistical analysis.


In one embodiment, the Agilent MassProfiler or MassProfilerProfessional software is used for statistical analysis. In another embodiment, the Agilent MassHunter software Qual software is used for statistical analysis. In other embodiments, alternative statistical analysis methods can be used. Such other statistical methods include the Analysis of Variance (ANOVA) test, Chi-square test, Correlation test, Factor analysis test, Mann-Whitney U test, Mean square weighted derivation (MSWD), Pearson product-moment correlation coefficient, Regression analysis, Spearman's rank correlation coefficient, Student's T test, Welch's T-test, Tukey's test, and Time series analysis.


In different embodiments signals from mass spectrometry can be transformed in different ways to improve the performance of the method. Either individual signals or summaries of the distributions of signals (such as mean, median or variance) can be so transformed. Possible transformations include taking the logarithm, taking some positive or negative power, for example the square root or inverse, or taking the arcsin (Myers, Classical and Modern Regression with Applications, 2nd edition, Duxbury Press, 1990).


The ability to quantitate the amount of a metabolite allows for the diagnosis of diseases which are known to be associated with an up- or down-regulation of that metabolite.


Thus, according to another aspect of the present invention there is provided a method of diagnosing a disease of a subject comprising predicting the quantity of at least one metabolite which is indicative of the disease, wherein the predicting is carried out as described herein, thereby diagnosing the disease.


As used herein the term “diagnosing” refers to determining presence or absence of a pathology (e.g., a disease, disorder, condition or syndrome), classifying a pathology or a symptom, determining a severity of the pathology, monitoring pathology progression, forecasting an outcome of a pathology and/or prospects of recovery and screening of a subject for a specific disease.


Once the level of the metabolite is measured, it is typically compared to a level of that metabolite in a control subject who is known not to be suffering from said disease. If the amount of the metabolite is significantly up- or down-regulated (e.g. by as much as 1.5 fold, 2 fold, 5 fold, 10 fold or more), then it is indicative that the subject has the disease.


Measuring the amount of the metabolite in the control subject may be carried out prior to, at the same time as, or following measuring the amount of the metabolite of the test subject. Preferably, the abundance of said metabolite is measured in a plurality of control subjects. The data from such measurements may be stored in a database, as further described herein below.


Examples of metabolites whose levels are indicative of diseases include cholesterol (for diagnosis of atherosclerosis, cardio vascular disease (CVD)), and glucose (for diagnosis of diabetes). Particular embodiments of the present invention contemplate a metabolite that is not glucose and is also not cholesterol.


Additional examples of metabolites whose levels are indicative of diseases include trimethylamine N-oxide (TMAO) (for diagnosis of CVD); 3-Carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF)—(for diagnosis of chronic kidney disease (CKD)); indoxyl sulfate (for diagnosis of CKD, CVD); and phenylacetylglutamine for diagnosis of CKD, CVD, overall mortality. Additional metabolites which are indicative of disease are listed in Man Lam et al., Journal of Genetics and Genomics 44 (2017) 127e138, the contents of which are incorporated herein by reference.


Examples of diseases that may be diagnosed according to this aspect of the present invention include, but are not limited to atherosclerosis, cardio vascular disease (CVD), metabolic diseases such as diabetes, chronic kidney disease and cancer.


According to some embodiments of the invention, screening of the subject for a specific disease is followed by substantiation of the screen results using gold standard methods. Furthermore, once the disease has been diagnosed, the disease may be treated using methods known in the art, particular to each disease.


It will be appreciated that since the methods describe herein pinpoint particular bacterial functions (e.g. species, genus, families etc.) that contribute to the amount of blood metabolites, the present invention can be used for determining which microbes should be altered in order to bring about a particular effect on a particular blood metabolite.


Thus, according to yet another aspect of the present invention there is provided a method of altering the amount of a metabolite. The method optionally and preferably comprises predicting the amount of the metabolite, and administering to the subject one or more agents which specifically increases or decreases the microbe(s), wherein the agent is selected based on the quantity of the metabolite. The prediction of the metabolite can be done using a machine learning procedure, as described above with respect to FIGS. 11 and 12. Thus, computer readable medium 110 storing the library of machine learning procedures is accessed. The library can be searched for a trained machine learning procedure associated with the metabolite. The amounts of the microbes are fed to the selected procedure, which provides an output indicative of the quantity of the metabolite in the blood.


The microbe(s) of the microbiome to be specifically increased or decreased can be selected, according to some embodiments of the present invention, using machine learning. This can be done by operating the trained machine learning procedure to solve the aforementioned inverse problem (FIG. 14), in a manner that will now be explained.


Suppose, for example, that a biological microbiota sample is taken from the body of the subject and is analyzed by biological assays. Suppose that the results of the assays show that the biological microbiota sample contains a set of microbes present at a respective set of amounts in the biological microbiota sample. Suppose further that the amounts of microbes found by the biological assays are fed to a machine learning procedure that has been trained using microbiome data and that is associated with a particular metabolite. Suppose further that the machine learning procedure predicts (FIG. 12) a certain quantity of the particular metabolite, that the predicted quantity is clinically unsatisfactory, and that it is desired to alter the quantity of the particular metabolite to a new, desired, quantity. In this case, the desired, quantity of the particular metabolite can be fed to a machine learning procedure (that has been trained using microbiome data and that is associated with the particular metabolite) in a manner that the machine learning procedure propagates backwards to solve the inverse problem and to provide a set of recommended amounts of microbes (FIG. 14).


The recommended amounts of microbes found by the machine learning procedure can then be compared to the amounts of microbes found by the biological assays, and the agents that are administered are selected based on this comparison. For example, when for a particular microbe, the recommended amount is less that the amount found by the biological assays, the subject is administered with an agent that increases the amount of that particular microbe. Conversely, when for a particular microbe, the recommended amount is more that the amount found by the biological assays, the subject is administered with an agent that decreases the amount of that particular microbe. Also, when for a particular microbe, the recommended amount is the same or approximately the same (with tolerance of up to 10%) as the amount found by the biological assays, no agent is administered for this microbe.


According to one particular embodiment, the altering is carried out by increasing a bacterial population whose level is predicted to being below the level in a healthy subject. Table 1 provides examples of bacterial populations which positively and negatively correlate with a particular metabolite, predictor 1 being of the most significance and predictor 5 being of the least significance.


For example, according to Table 1, a positive number represents a positive correlation of that microbe with the corresponding metabolite and a negative number represents an inverse correlation of that microbe with the corresponding metabolite. Therefore in order to increase the level of X-16124 for example, agents may be provided which increase the level of F: Eggerthellaceae; and decrease the level of S: Gordonibacter pamelaeae.


Altering the amount of particular metabolites may be beneficial to the health of the subject.


According to a particular embodiment, altering the amount of a metabolite is beneficial for the treatment and/or prevention of a disease. Exemplary diseases include, but are not limited to those described herein above.


The term “treating” refers to inhibiting, preventing or arresting the development of a pathology (disease, disorder or condition) and/or causing the reduction, remission, or regression of a pathology. Those of skill in the art will understand that various methodologies and assays can be used to assess the development of a pathology, and similarly, various methodologies and assays may be used to assess the reduction, remission or regression of a pathology.


As used herein, the term “preventing” refers to keeping a disease, disorder or condition from occurring in a subject who may be at risk for the disease, but has not yet been diagnosed as having the disease.


Upregulation:


An agent which increases the amount of a particular bacteria includes that particular bacteria itself (i.e. a probiotic composition).


The term “probiotic” as used herein, refers to one or more microorganisms which, when administered appropriately, can confer a health benefit on the host or subject and/or reduction of risk and/or symptoms of a disease, disorder, condition, or event in a host organism.


The present invention contemplates an agent which up-regulates at least one strain, 10 strains, 20 strains, 30 strains, 40 strains, 50 strains, 60 strains, 70 strains, 80 strains, 90 strains or all of the strains of the above disclosed species.


In one embodiment, the agent specifically upregulates the specified species of bacteria.


Thus, for example, the agent may increase the amount of the specified bacterial species as compared to at least one other bacterial species of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent upregulates the particular bacterial species by at least 5 fold, 10 fold or more as compared to at least one other bacterial species of the microbiome.


In another embodiment, the agent increases the amount of the specified bacterial species as compared to at least 10% of the total bacterial species of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent upregulates the specified bacterial species by at least 5 fold, 10 fold or more as compared to at least 10% of the total bacterial species of the microbiome of the subject.


In another embodiment, the agent increases the amount of the specified bacterial species as compared to at least 20% of the total bacterial species of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent upregulates the specified bacterial species by at least 5 fold, 10 fold or more as compared to at least 20% of the total bacterial species of the microbiome of the subject.


In another embodiment, the agent increases the amount of the specified bacterial species as compared to at least 30% of the total bacterial species of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent upregulates the specified bacterial species by at least 5 fold, 10 fold or more as compared to at least 30% of the total bacterial species of the microbiome of the subject.


In another embodiment, the agent increases the amount of the specified bacterial species as compared to at least 40% of the total bacterial species of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent upregulates the specified bacterial species by at least 5 fold, 10 fold or more as compared to at least 40% of the total bacterial species of the microbiome of the subject.


In another embodiment, the agent increases the amount of the specified bacterial species as compared to at least 50% of the total bacterial species of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent upregulates the specified bacterial species by at least 5 fold, 10 fold or more as compared to at least 50% of the total bacterial species of the microbiome of the subject.


In another embodiment, the agent increases the amount of the specified bacterial species as compared to at least 60% of the total bacterial species of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent upregulates the specified bacterial species by at least 5 fold, 10 fold or more as compared to at least 60% of the total bacterial species of the microbiome of the subject.


In another embodiment, the agent increases the amount of the specified bacterial species as compared to at least 70% of the total bacterial species of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent upregulates the specified bacterial species by at least 5 fold, 10 fold or more as compared to at least 70% of the total bacterial species of the microbiome of the subject.


In another embodiment, the agent increases the amount of the specified bacterial species as compared to at least 80% of the total bacterial species of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent upregulates the specified bacterial species by at least 5 fold, 10 fold or more as compared to at least 80% of the total bacterial species of the microbiome of the subject.


In another embodiment, the agent increases the amount of the specified bacterial species as compared to at least 90% of the total bacterial species of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent upregulates the specified bacterial species by at least 5 fold, 10 fold or more as compared to at least 90% of the total bacterial species of the microbiome of the subject.


According to an embodiment of this aspect of the present invention, the agent increases the species of bacteria by at least 2 fold as compared to at least one other species of bacteria that belongs to a different genus present in the microbiome.


According to a particular embodiment the agent increases the species of bacteria by at least 5 fold, 10 fold or more as compared to at least one other species of bacteria that belongs to a different genus present in the microbiome.


According to one embodiment, the agent increases the species of bacteria by at least 2 fold as compared to at least one other species of bacteria that belongs to the same genus present in the microbiome.


According to a particular embodiment the agent increases the species of bacteria by at least 5 fold, 10 fold or more as compared to at least one other species of bacteria that belongs to the same genus present in the microbiome.


Preferably, the agents of this aspect of the present invention are capable of increases the growth and/or colonization of the bacterial species.


Exemplary agents that are capable of increasing the specified species include microbial compositions. Such microbial compositions typically do not comprise more than 100 bacterial species, more than 90 bacterial species, more than 80 bacterial species, more than 70 bacterial species, more than 60 bacterial species, more than 50 bacterial species, more than 40 bacterial species, more than 30 bacterial species, more than 20 bacterial species, more than 10 bacterial species, or even more than 5 bacterial species.


The microbial compositions of the present invention are not fecal transplants derived from a healthy subject.


The bacterial compositions can comprise more than one strain of a bacterial species, more than 2 strains of a bacterial species, more than 3 strains of a bacterial species, more than 4 strains of a bacterial species, more than 5 strains of a bacterial species, more than 6 strains of a bacterial species, more than 7 strains of a bacterial species, more than 8 strains of a bacterial species, more than 9 strains of a bacterial species, more than 10 strains of a bacterial species, more than 11 strains of a bacterial species, more than 12 strains of a bacterial species, more than 13 strains of a bacterial species, more than 14 strains of a bacterial species, more than 15 strains of a bacterial species, more than 16 strains of a bacterial species, more than 17 strains of a bacterial species, more than 18 strains of a bacterial species, more than 19 strains of a bacterial species, more than 20 strains of a bacterial species or more.


The present inventors contemplate microbial compositions where more than 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or even 100%, of the bacteria of the composition is bacteria of the specified bacterial species.


The present inventors contemplate any formulation for the microbial compositions so long as the bacterial population within is capable of propagating when administered to the subject.


The compositions of the present invention may be formulated as a food supplement, an enema, a tablet, a capsule or a syringe.


The compositions of the invention can be formulated as a slurry, saline or buffered suspensions (e.g., for an enema, suspended in a buffer or a saline), in a drink (e.g., a milk, yoghurt, a shake, a flavoured drink or equivalent) for oral delivery, and the like.


In alternative embodiments, compositions of the invention can be formulated as an enema product, a spray dried product, reconstituted enema, a small capsule product, a small capsule product suitable for administration to children, a bulb syringe, a bulb syringe suitable for a home enema with a saline addition, a powder product, a powder product in oxygen deprived sachets, a powder product in oxygen deprived sachets that can be added to, for example, a bulb syringe or enema, or a spray dried product in a device that can be attached to a container with an appropriate carrier medium such as yoghurt or milk and that can be directly incorporated and given as a dosing for example for children.


In one embodiment, compositions of the invention can be delivered directly in a carrier medium via a screw-top lid wherein the bacterial material is suspended in the lid and released on twisting the lid straight into the carrier medium.


In alternative embodiments methods of delivery of compositions of the invention include use of bacterial slurries into the bowel, via an enema suspended in saline or a buffer, via a small bowel infusion via a nasoduodenal tube, via a gastrostomy, or by using a colonoscope.


According to still another embodiment, the microbial composition of any of the aspects of the present invention is devoid (or comprises only trace quantities) of fecal material (e.g., fiber).


The probiotic bacteria may be in any suitable form, for example in a powdered dry form. In addition, the probiotic microorganism may have undergone processing in order for it to increase its survival. For example, the microorganism may be coated or encapsulated in a polysaccharide, fat, starch, protein or in a sugar matrix. Standard encapsulation techniques known in the art can be used. For example, techniques discussed in U.S. Pat. No. 6,190,591, which is hereby incorporated by reference in its entirety, may be used.


According to a particular embodiment, the probiotic microorganism composition is formulated in a food product, functional food or nutraceutical.


In some embodiments, a food product, functional food or nutraceutical is or comprises a dairy product. In some embodiments, a dairy product is or comprises a yogurt product. In some embodiments, a dairy product is or comprises a milk product. In some embodiments, a dairy product is or comprises a cheese product. In some embodiments, a food product, functional food or nutraceutical is or comprises a juice or other product derived from fruit. In some embodiments, a food product, functional food or nutraceutical is or comprises a product derived from vegetables. In some embodiments, a food product, functional food or nutraceutical is or comprises a grain product, including but not limited to cereal, crackers, bread, and/or oatmeal. In some embodiments, a food product, functional food or nutraceutical is or comprises a rice product. In some embodiments, a food product, functional food or nutraceutical is or comprises a meat product.


Prior to administration, the subject may be pretreated with an agent which reduces the number of naturally occurring microbes in the microbiome (e.g. by antibiotic treatment). According to a particular embodiment, the treatment significantly eliminates the naturally occurring gut microflora by at least 20%, 30% 40%, 50%, 60%, 70%, 80% or even 90%.


Downregulation:


The present invention contemplates an agent which down-regulates at least one strain, 10% of the strains, 20% of the strains, 30% of the strains, 40% of the strains, 50% of the strains, 60% of the strains, 70% of the strains, 80% of the strains, 90% of the strains or all of the strains of any of the uncovered species recited in Table 1.


Thus, for example, the agent may reduce the amount of the specified bacterial species as compared to at least one other bacterial species of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent downregulates the particular bacterial species by at least 5 fold, 10 fold or more as compared to at least one other bacterial species of the microbiome.


In another embodiment, the agent reduces the amount of the specified bacterial species as compared to at least 10% of the total bacterial species of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent downregulates the specified bacterial species by at least 5 fold, 10 fold or more as compared to at least 10% of the total bacterial species of the microbiome of the subject.


In another embodiment, the agent reduces the amount of the specified bacterial species as compared to at least 20% of the total bacterial species of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent downregulates the specified bacterial species by at least 5 fold, 10 fold or more as compared to at least 20% of the total bacterial species of the microbiome of the subject.


In another embodiment, the agent reduces the amount of the specified bacterial species as compared to at least 30% of the total bacterial species of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent downregulates the specified bacterial species by at least 5 fold, 10 fold or more as compared to at least 30% of the total bacterial species of the microbiome of the subject.


In another embodiment, the agent reduces the amount of the specified bacterial species as compared to at least 40% of the total bacterial species of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent downregulates the specified bacterial species by at least 5 fold, 10 fold or more as compared to at least 40% of the total bacterial species of the microbiome of the subject.


In another embodiment, the agent reduces the amount of the specified bacterial species as compared to at least 50% of the total bacterial species of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent downregulates the specified bacterial species by at least 5 fold, 10 fold or more as compared to at least 50% of the total bacterial species of the microbiome of the subject.


In another embodiment, the agent reduces the amount of the specified bacterial species as compared to at least 60% of the total bacterial species of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent downregulates the specified bacterial species by at least 5 fold, 10 fold or more as compared to at least 60% of the total bacterial species of the microbiome of the subject.


In another embodiment, the agent reduces the amount of the specified bacterial species as compared to at least 70% of the total bacterial species of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent downregulates the specified bacterial species by at least 5 fold, 10 fold or more as compared to at least 70% of the total bacterial species of the microbiome of the subject.


In another embodiment, the agent reduces the amount of the specified bacterial species as compared to at least 80% of the total bacterial species of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent downregulates the specified bacterial species by at least 5 fold, 10 fold or more as compared to at least 80% of the total bacterial species of the microbiome of the subject.


In another embodiment, the agent reduces the amount of the specified bacterial species as compared to at least 90% of the total bacterial species of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent downregulates the specified bacterial species by at least 5 fold, 10 fold or more as compared to at least 90% of the total bacterial species of the microbiome of the subject.


According to an embodiment of this aspect of the present invention, the agent reduces the species of bacteria by at least 2 fold as compared to at least one other species of bacteria that belongs to a different genus present in the microbiome.


According to a particular embodiment the agent reduces the species of bacteria by at least 5 fold, 10 fold or more as compared to at least one other species of bacteria that belongs to a different genus present in the microbiome.


According to one embodiment, the agent reduces the species of bacteria by at least 2 fold as compared to at least one other species of bacteria that belongs to the same genus present in the microbiome.


According to a particular embodiment the agent reduces the species of bacteria by at least 5 fold, 10 fold or more as compared to at least one other species of bacteria that belongs to the same genus present in the microbiome.


Preferably, the agents of this aspect of the present invention are capable of decreasing the growth and/or colonization of the bacterial species.


The agent which downregulates the bacteria that is recited in Tables 1 or 2 may be able to reduce the amount (either absolute or relative amount) and/or activity (either absolute or relative activity) of a particular strain of bacteria.


According to a particular embodiment, the agent specifically downregulates the specified strain.


Thus, in one embodiment, the agent reduces the amount of the specified bacterial strain as compared to at least one other bacterial strain of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent downregulates the particular bacterial strain by at least 5 fold, 10 fold or more as compared to at least one other bacterial strain of the microbiome.


In another embodiment, the agent reduces the amount of the specified bacterial strain as compared to at least 10% of the total bacterial strains of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent downregulates the specified bacterial strain by at least 5 fold, 10 fold or more as compared to at least 10% of the total bacterial strains of the microbiome of the subject.


In another embodiment, the agent reduces the amount of the specified bacterial strain as compared to at least 20% of the total bacterial strains of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent downregulates the specified bacterial strain by at least 5 fold, 10 fold or more as compared to at least 20% of the total bacterial strains of the microbiome of the subject.


In another embodiment, the agent reduces the amount of the specified bacterial strain as compared to at least 30% of the total bacterial strains of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent downregulates the specified bacterial strain by at least 5 fold, 10 fold or more as compared to at least 30% of the total bacterial strains of the microbiome of the subject.


In another embodiment, the agent reduces the amount of the specified bacterial strain as compared to at least 40% of the total bacterial strains of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent downregulates the specified bacterial strain by at least 5 fold, 10 fold or more as compared to at least 40% of the total bacterial strains of the microbiome of the subject.


In another embodiment, the agent reduces the amount of the specified bacterial strain as compared to at least 50% of the total bacterial strains of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent downregulates the specified bacterial strain by at least 5 fold, 10 fold or more as compared to at least 50% of the total bacterial strains of the microbiome of the subject.


In another embodiment, the agent reduces the amount of the specified bacterial strain as compared to at least 60% of the total bacterial strains of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent downregulates the specified bacterial strain by at least 5 fold, 10 fold or more as compared to at least 60% of the total bacterial strains of the microbiome of the subject.


In another embodiment, the agent reduces the amount of the specified bacterial strain as compared to at least 70% of the total bacterial strains of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent downregulates the specified bacterial strain by at least 5 fold, 10 fold or more as compared to at least 70% of the total bacterial strains of the microbiome of the subject.


In another embodiment, the agent reduces the amount of the specified bacterial strain as compared to at least 80% of the total bacterial strains of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent downregulates the specified bacterial strain by at least 5 fold, 10 fold or more as compared to at least 80% of the total bacterial strains of the microbiome of the subject.


In another embodiment, the agent reduces the amount of the specified bacterial strain as compared to at least 90% of the total bacterial strains of the microbiome of the subject, by at least 2 fold. According to a particular embodiment, the agent downregulates the specified bacterial strain by at least 5 fold, 10 fold or more as compared to at least 90% of the total bacterial strains of the microbiome of the subject.


According to an embodiment of this aspect of the present invention, the agent reduces the strain of bacteria by at least 2 fold as compared to at least one other strain of bacteria that belongs to a different species present in the microbiome.


According to a particular embodiment the agent reduces the strain of bacteria by at least 5 fold, 10 fold or more as compared to at least one other strain of bacteria that belongs to a different species present in the microbiome.


According to one embodiment, the agent reduces the strain of bacteria by at least 2 fold as compared to at least one other strain of bacteria that belongs to the same species present in the microbiome.


According to a particular embodiment the agent reduces the strain of bacteria by at least 5 fold, 10 fold or more as compared to at least one other strain of bacteria that belongs to the same species present in the microbiome.


Preferably, the agents of this aspect of the present invention are capable of decreasing the growth and/or colonization of the bacterial strain.


An exemplary agent which is capable of reducing a particular bacterial species or strain is an antibiotic.


As used herein, the term “antibiotic agent” refers to a group of chemical substances, isolated from natural sources or derived from antibiotic agents isolated from natural sources, having a capacity to inhibit growth of, or to destroy bacteria, and other microorganisms, used chiefly in treatment of infectious diseases.


Examples of antibiotics contemplated by the present invention include, but are not limited to Daptomycin; Gemifloxacin; Telavancin; Ceftaroline; Fidaxomicin; Amoxicillin; Ampicillin; Bacampicillin; Carbenicillin; Cloxacillin; Dicloxacillin; Flucloxacillin; Mezlocillin; Nafcillin; Oxacillin; Penicillin G; Penicillin V; Piperacillin; Pivampicillin; Pivmecillinam; Ticarcillin; Aztreonam; Imipenem; Doripenem; Meropenem; Ertapenem; Clindamycin; Lincomycin; Pristinamycin; Quinupristin; Cefacetrile (cephacetrile); Cefadroxil (cefadroxyl); Cefalexin (cephalexin); Cefaloglycin (cephaloglycin); Cefalonium (cephalonium); Cefaloridine (cephaloridine); Cefalotin (cephalothin); Cefapirin (cephapirin); Cefatrizine; Cefazaflur; Cefazedone; Cefazolin (cephazolin); Cefradine (cephradine); Cefroxadine; Ceftezole; Cefaclor; Cefamandole; Cefmetazole; Cefonicid; Cefotetan; Cefoxitin; Cefprozil (cefproxil); Cefuroxime; Cefuzonam; Cefcapene; Cefdaloxime; Cefdinir; Cefditoren; Cefetamet; Cefixime; Cefmenoxime; Cefodizime; Cefotaxime; Cefpimizole; Cefpodoxime; Cefteram; Ceftibuten; Ceftiofur; Ceftiolene; Ceftizoxime; Ceftriaxone; Cefoperazone; Ceftazidime; Cefclidine; Cefepime; Cefluprenam; Cefoselis; Cefozopran; Cefpirome; Cefquinome; Fifth Generation; Ceftobiprole; Ceftaroline; Not Classified; Cefaclomezine; Cefaloram; Cefaparole; Cefcanel; Cefedrolor; Cefempidone; Cefetrizole; Cefivitril; Cefmatilen; Cefmepidium; Cefovecin; Cefoxazole; Cefrotil; Cefsumide; Cefuracetime; Ceftioxide; Azithromycin; Erythromycin; Clarithromycin; Dirithromycin; Roxithromycin; Telithromycin; Amikacin; Gentamicin; Kanamycin; Neomycin; Netilmicin; Paromomycin; Streptomycin; Tobramycin; Flumequine; Nalidixic acid; Oxolinic acid; Piromidic acid; Pipemidic acid; Rosoxacin; Ciprofloxacin; Enoxacin; Lomefloxacin; Nadifloxacin; Norfloxacin; Ofloxacin; Pefloxacin; Rufloxacin; Balofloxacin; Gatifloxacin; Grepafloxacin; Levofloxacin; Moxifloxacin; Pazufloxacin; Sparfloxacin; Temafloxacin; Tosufloxacin; Besifloxacin; Clinafloxacin; Gemifloxacin; Sitafloxacin; Troyafloxacin; Prulifloxacin; Sulfamethizole; Sulfamethoxazole; Sulfisoxazole; Trimethoprim-Sulfamethoxazole; Demeclocycline; Doxycycline; Minocycline; Oxytetracycline; Tetracycline; Tigecycline; Chloramphenicol; Metronidazole; Tinidazole; Nitrofurantoin; Vancomycin; Teicoplanin; Telavancin; Linezolid; Cycloserine 2; Rifampin; Rifabutin; Rifapentine; B acitracin; Polymyxin B; Viomycin; Capreomycin.


Antibacterial agents also include antibacterial peptides. Examples include but are not limited to abaecin; andropin; apidaecins; bombinin; brevinins; buforin II; CAP18; cecropins; ceratotoxin; defensins; dermaseptin; dermcidin; drosomycin; esculentins; indolicidin; LL37; magainin; maximum H5; melittin; moricin; prophenin; protegrin; and or tachyplesins.


According to a particular embodiment, the antibiotic is a non-absorbable antibiotic.


Other agents which are not antibiotics are also contemplated by the present inventors.


Thus the present inventors contemplate the use of bacteriophages to downregulate the disclosed bacterial species/strains.


As used herein, the term “bacteriophage” refers to a virus that infects and replicates within bacteria. Bacteriophages are composed of proteins that encapsulate a genome comprising either DNA or RNA. Bacteriophages replicate within bacteria following the injection of their genome into the bacterial cytoplasm.


In one embodiment, the bacteriophage is a lytic bacteriophage. In another embodiment, the bacteriophage is lysogenic.


In some embodiments, the bacteriophages are used in combination with one or more other bacteriophages. The combinations of bacteriophages can target the same detrimental microorganism or different detrimental microorganisms. Preferably, the combination of bacteriophages targets the same detrimental microorganism.


In some embodiments, the bacteriophage or combination of bacteriophages are used in combination with one or more probiotic microorganisms—such as those described herein below.


In other embodiments, the bacteriophages or combination of bacteriophages are used in combination with one or more antibiotic, as disclosed herein.


In some embodiments, the bacteriophage is administered orally at a dose ranging from 105 to 1010 plaque-forming units (PFU)/g, preferably 107 to 108 PFU/g. In some embodiments, the bacteriophages are administered at a dose of 105 to 1010 PFU/day, preferably 107 to 108 PFU/day.


According to another embodiment, the agent is a bacteriophage protein such as an isolated phage protein, e.g., a lysin protein, tail protein, or active fragment.


In one embodiment, the agent which is capable of down-regulating a particular bacterial species/strain is a bacterial population that competes with the bacterial species/strain for essential resources. Bacterial compositions are further described herein below.


In still another embodiment, the agent which is capable of down-regulating a particular bacterial species/strain is a metabolite of a competing bacterial population (or even from the same species/strain) that serves to decrease the relative amount of the bacterial species/strain.


Additional agents that can specifically reduce a particular bacterial species or strain are known in the art and include polynucleotide silencing agents.


Preferably, the polynucleotide silencing agent of this aspect of the present invention targets a sequence that encodes at least one essential gene (i.e., compatible with life) in the bacteria. The sequence which is targeted should be specific to the particular bacteria species that it is desired to down-regulate. Such genes include ribosomal RNA genes (16S and 23S), ribosomal protein genes, tRNA-synthetases, as well as additional genes shown to be essential such as dnaB, fabI, folA, gyrB, murA, pytH, metG, and tufA(B).


According to an embodiment of the invention, the polynucleotide silencing agent is specific to the target RNA and does not cross inhibit or silence other targets or a splice variant which exhibits 99% or less global homology to the target gene, e.g., less than 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%, 89%, 88%, 87%, 86%, 85%, 84%, 83%, 82%, 81% global homology to the target gene; as determined by PCR, Western blot, Immunohistochemistry and/or flow cytometry.


One agent capable of downregulating an essential bacterial gene is a RNA-guided endonuclease technology e.g. CRISPR system. In one embodiment, the CRISPR system is expressed in a bacteriophage.


As used herein, the term “CRISPR system” also known as Clustered Regularly Interspaced Short Palindromic Repeats refers collectively to transcripts and other elements involved in the expression of or directing the activity of CRISPR-associated genes, including sequences encoding a Cas gene (e.g. CRISPR-associated endonuclease 9), a tracr (trans-activating CRISPR) sequence (e.g. tracrRNA or an active partial tracrRNA), a tracr-mate sequence (encompassing a “direct repeat” and a tracrRNA-processed partial direct repeat) or a guide sequence (also referred to as a “spacer”) including but not limited to a crRNA sequence (i.e. an endogenous bacterial RNA that confers target specificity yet requires tracrRNA to bind to Cas) or a sgRNA sequence (i.e. single guide RNA).


In some embodiments, one or more elements of a CRISPR system is derived from a type I, type II, or type III CRISPR system. In some embodiments, one or more elements of a CRISPR system (e.g. Cas) is derived from a particular organism comprising an endogenous CRISPR system, such as Streptococcus pyogenes, Neisseria meningitides, Streptococcus thermophilus or Treponema denticola.


In general, a CRISPR system is characterized by elements that promote the formation of a CRISPR complex at the site of a target sequence (also referred to as a protospacer in the context of an endogenous CRISPR system).


In the context of formation of a CRISPR complex, “target sequence” refers to a sequence to which a guide sequence (i.e. guide RNA e.g. sgRNA or crRNA) is designed to have complementarity, where hybridization between a target sequence and a guide sequence promotes the formation of a CRISPR complex. Full complementarity is not necessarily required, provided there is sufficient complementarity to cause hybridization and promote formation of a CRISPR complex. Thus, according to some embodiments, global homology to the target sequence may be of 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95% or 99%. A target sequence may comprise any polynucleotide, such as DNA or RNA polynucleotides. In some embodiments, a target sequence is located in the nucleus or cytoplasm of a cell.


Thus, the CRISPR system comprises two distinct components, a guide RNA (gRNA) that hybridizes with the target sequence, and a nuclease (e.g. Type-II Cas9 protein), wherein the gRNA targets the target sequence and the nuclease (e.g. Cas9 protein) cleaves the target sequence. The guide RNA may comprise a combination of an endogenous bacterial crRNA and tracrRNA, i.e. the gRNA combines the targeting specificity of the crRNA with the scaffolding properties of the tracrRNA (required for Cas9 binding). Alternatively, the guide RNA may be a single guide RNA capable of directly binding Cas.


Typically, in the context of an endogenous CRISPR system, formation of a CRISPR complex (comprising a guide sequence hybridized to a target sequence and complexed with one or more Cas proteins) results in cleavage of one or both strands in or near (e.g. within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, or more base pairs from) the target sequence. Without wishing to be bound by theory, the tracr sequence, which may comprise or consist of all or a portion of a wild-type tracr sequence (e.g. about or more than about 20, 26, 32, 45, 48, 54, 63, 67, 85, or more nucleotides of a wild-type tracr sequence), may also form part of a CRISPR complex, such as by hybridization along at least a portion of the tracr sequence to all or a portion of a tracr mate sequence that is operably linked to the guide sequence.


In some embodiments, the tracr sequence has sufficient complementarity to a tracr mate sequence to hybridize and participate in formation of a CRISPR complex. As with the target sequence, a complete complementarity is not needed, provided there is sufficient to be functional. In some embodiments, the tracr sequence has at least 50%, 60%, 70%, 80%, 90%, 95% or 99% of sequence complementarity along the length of the tracr mate sequence when optimally aligned.


Introducing CRISPR/Cas into a cell may be effected using one or more vectors driving expression of one or more elements of a CRISPR system such that expression of the elements of the CRISPR system direct formation of a CRISPR complex at one or more target sites. For example, a Cas enzyme, a guide sequence linked to a tracr-mate sequence, and a tracr sequence could each be operably linked to separate regulatory elements on separate vectors. Alternatively, two or more of the elements expressed from the same or different regulatory elements, may be combined in a single vector, with one or more additional vectors providing any components of the CRISPR system not included in the first vector. CRISPR system elements that are combined in a single vector may be arranged in any suitable orientation, such as one element located 5′ with respect to (“upstream” of) or 3′ with respect to (“downstream” of) a second element. The coding sequence of one element may be located on the same or opposite strand of the coding sequence of a second element, and oriented in the same or opposite direction. A single promoter may drive expression of a transcript encoding a CRISPR enzyme and one or more of the guide sequence, tracr mate sequence (optionally operably linked to the guide sequence), and a tracr sequence embedded within one or more intron sequences (e.g. each in a different intron, two or more in at least one intron, or all in a single intron).


As well as altering the bacterial composition of the microbiome of the subject, the present inventors also contemplate altering food intake to control the level of a metabolite.


Thus, according to a particular aspect of the present invention there is provided a method of providing dietary advice to a subject, the method comprising predicting the level of a metabolite in the blood by carrying out the methods described herein, wherein when said metabolite is above or below the recommended level of said metabolite, recommending consumption of at least one food type that alters the level of said metabolite.


The dietary advice can be provided, according to some embodiments of the present invention, using machine learning. This can be done by operating the trained machine learning procedure to solve the aforementioned inverse problem (FIG. 15), in a manner that will now be explained.


Suppose, for example, that for a particular subject it was found that a certain quantity Q1 of a particular metabolite is clinically unsatisfactory, and that it is desired to alter the quantity of the particular metabolite to a new, desired, quantity Q2. The quantity Q1 can be found by performing a blood test or, more preferably, by feeding a machine learning procedure that has been trained using food consumption data and that is associated with a particular metabolite, with the frequency and/or the daily mean consumption of several food types (FIG. 13).


The desired quantity Q2 of the particular metabolite can fed to a machine learning procedure (that has been trained using food consumption data and that is associated with the particular metabolite) in a manner that the machine learning procedure propagates backwards to solve the inverse problem and to provide a recommended food consumption (FIG. 15), typically a recommended set of food types and optionally a recommended consumption frequency and/or daily mean consumption of food types. The recommended food consumption can be used as the dietary advice.


In one embodiment, the metabolite is set forth in Table 3 and more preferably in Table 4.


The dietary advise provided to the subject could include a list of foods that may help in increasing or decreasing that metabolite.


According to one particular embodiment, the altering is carried out by increasing intake of a food whose level is predicted to being below the level in a healthy subject. Table 3 provides examples food types which positively correlate with a particular metabolite.


For example, according to Table 3, in order to increase the level of 1-methylxanthine for example, the amount of coffee intake should be increased.


Tables 3 and 4 list the most preferred foods that can be altered in order to alter the level of the corresponding metabolite, predictor 1 being of the most significance and predictor 5 being of the least significance. Of note, the abbreviation “wt” which appears in the Tables refers to the daily mean consumption of specific food types in grams.


As used herein the term “about” refers to ±10%.


The terms “comprises”, “comprising”, “includes”, “including”, “having” and their conjugates mean “including but not limited to”.


The term “consisting of” means “including and limited to”.


The term “consisting essentially of” means that the composition, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.


As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a compound” or “at least one compound” may include a plurality of compounds, including mixtures thereof.


Throughout this application, various embodiments of this invention may be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.


Whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range. The phrases “ranging/ranges between” a first indicate number and a second indicate number and “ranging/ranges from” a first indicate number “to” a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.


As used herein the term “method” refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the chemical, pharmacological, biological, biochemical and medical arts.


As used herein, the term “treating” includes abrogating, substantially inhibiting, slowing or reversing the progression of a condition, substantially ameliorating clinical or aesthetical symptoms of a condition or substantially preventing the appearance of clinical or aesthetical symptoms of a condition.


When reference is made to particular sequence listings, such reference is to be understood to also encompass sequences that substantially correspond to its complementary sequence as including minor sequence variations, resulting from, e.g., sequencing errors, cloning errors, or other alterations resulting in base substitution, base deletion or base addition, provided that the frequency of such variations is less than 1 in 50 nucleotides, alternatively, less than 1 in 100 nucleotides, alternatively, less than 1 in 200 nucleotides, alternatively, less than 1 in 500 nucleotides, alternatively, less than 1 in 1000 nucleotides, alternatively, less than 1 in 5,000 nucleotides, alternatively, less than 1 in 10,000 nucleotides.


It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.


Various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below find experimental support in the following examples.


EXAMPLES

Reference is now made to the following examples, which together with the above descriptions illustrate some embodiments of the invention in a non limiting fashion.


Generally, the nomenclature used herein and the laboratory procedures utilized in the present invention include molecular, biochemical, microbiological and recombinant DNA techniques. Such techniques are thoroughly explained in the literature. See, for example, “Molecular Cloning: A laboratory Manual” Sambrook et al., (1989); “Current Protocols in Molecular Biology” Volumes I-III Ausubel, R. M., ed. (1994); Ausubel et al., “Current Protocols in Molecular Biology”, John Wiley and Sons, Baltimore, Md. (1989); Perbal, “A Practical Guide to Molecular Cloning”, John Wiley & Sons, New York (1988); Watson et al., “Recombinant DNA”, Scientific American Books, New York; Birren et al. (eds) “Genome Analysis: A Laboratory Manual Series”, Vols. 1-4, Cold Spring Harbor Laboratory Press, New York (1998); methodologies as set forth in U.S. Pat. Nos. 4,666,828; 4,683,202; 4,801,531; 5,192,659 and 5,272,057; “Cell Biology: A Laboratory Handbook”, Volumes I-III Cellis, J. E., ed. (1994); “Culture of Animal Cells—A Manual of Basic Technique” by Freshney, Wiley-Liss, N. Y. (1994), Third Edition; “Current Protocols in Immunology” Volumes I-III Coligan J. E., ed. (1994); Stites et al. (eds), “Basic and Clinical Immunology” (8th Edition), Appleton & Lange, Norwalk, Conn. (1994); Mishell and Shiigi (eds), “Selected Methods in Cellular Immunology”, W. H. Freeman and Co., New York (1980); available immunoassays are extensively described in the patent and scientific literature, see, for example, U.S. Pat. Nos. 3,791,932; 3,839,153; 3,850,752; 3,850,578; 3,853,987; 3,867,517; 3,879,262; 3,901,654; 3,935,074; 3,984,533; 3,996,345; 4,034,074; 4,098,876; 4,879,219; 5,011,771 and 5,281,521; “Oligonucleotide Synthesis” Gait, M. J., ed. (1984); “Nucleic Acid Hybridization” Hames, B. D., and Higgins S. J., eds. (1985); “Transcription and Translation” Hames, B. D., and Higgins S. J., eds. (1984); “Animal Cell Culture” Freshney, R. I., ed. (1986); “Immobilized Cells and Enzymes” IRL Press, (1986); “A Practical Guide to Molecular Cloning” Perbal, B., (1984) and “Methods in Enzymology” Vol. 1-317, Academic Press; “PCR Protocols: A Guide To Methods And Applications”, Academic Press, San Diego, Calif. (1990); Marshak et al., “Strategies for Protein Purification and Characterization—A Laboratory Course Manual” CSHL Press (1996); all of which are incorporated by reference as if fully set forth herein. Other general references are provided throughout this document. The procedures therein are believed to be well known in the art and are provided for the convenience of the reader. All the information contained therein is incorporated herein by reference.


This Example examines the relationship between levels of serum metabolites and a rich resource of clinical parameters, dietary intake patterns, lifestyle measurements, human genetics and gut microbiota composition across a large healthy cohort. This Example demonstrates that using these features highly accurate out-of-sample predictions for over 1000 circulating serum metabolites can be obtained, with diet and gut microbiome having the highest predictive power, and being particularly predictive for unknown compounds. The inventors uncovered a list of associations between genetic loci and circulating blood metabolites and showed that we replicate several known links between specific SNPs and metabolites. By applying the prediction models of the present embodiments to an independent cohort of 31 participants, the inventors validated many of the associations. Using feature attribution analysis on the resulting predictive models, the inventors uncovered both known and novel associations between diet, gut microbiome and the levels of blood metabolites.


This Example demonstrates that many metabolites are exclusively explained by gut microbiome composition, highlighting its potential as their key determinant, and revealed the identities and predicted candidate structure of many unknown compounds which are highly predictable by the microbiome.


This Example also demonstrates that the uncovered associations are causal, as levels of metabolites were predicted to be positively associated with bread increased following a randomized clinical trial of bread intervention.


This Example concentrates on estimates computed via out-of-sample predictions, since such evaluation of performance is based only on unseen samples as the most strict and conservative estimate of performance. As such, the results presented herein constitute a lower bound for the amount of variance in metabolite levels that may be explained by the various features we examined.


The heterogeneity of the data is advantageous since its estimates do not depend on modeling assumptions.


Materials and Methods

All statistical and machine learning analyses were performed using Python (version 2.7.8).


Description of Cohorts


We analyzed banked samples from two previously collected cohorts25,48, for a total of 522 Israeli individuals. Studies were approved by Tel Aviv Sourasky Medical Center Institutional Review Board (IRB), approval numbers TLV-0658-12, TLV-0050-13 and TLV-0522-10; Kfar Shaul Hospital IRB, approval number 0-73. All participants signed written informed consent forms. Full study designs, including inclusion and exclusion criteria were described elsewhere25,48. In brief, participants in both studies were healthy individuals aged between 18 and 70. All participants answered detailed medical, lifestyle and nutritional questionnaires, provided stool and serum samples for metagenomic sequencing and metabolomics, were genotyped, underwent a comprehensive blood test, and for a period of at least one week, recorded all of their daily activities and nutritional intake in real-time using their smartphones with a specialized app provided to them48.


Feature Groups


The “diet” feature group includes answers for a detailed food frequency questionnaire (FFQ) aimed at capturing long term dietary habits, and the daily mean consumption of different food types, computed over a week based on real-time logging. In both cases we kept only items which were reported to be consumed at least once by at least 1% of our participants, resulting in 670 different food types from logging, and 141 different items from the FFQ.


The “macronutrients” feature group includes the daily mean consumption of macronutrients (lipids, proteins, carbohydrates), calories and water, calculated from real-time logging.


The “anthropometrics” feature group includes weight, BMI, waist and hips circumference, and waist to hips ratio (WHR).


The “cardiometabolic” feature group includes systolic and diastolic blood pressure, heart rate in beats per minute and a glycemic status as previously described30.


The “drugs” feature group includes 30 binary features representing the intake of 20 common medications as reported in questionnaires, in addition to 10 medication groups as previously described30. We included only drugs reported to be used by at least 1% of our participants.


The “clinical data” feature group includes the age and sex of the participants, and the following feature groups described above: anthropometrics, cardiometabolic, and drugs.


The “lifestyle” feature group includes smoking status (current, past), stress levels obtained from questionnaires, and the daily mean sleeping time, exercise time and midday sleep time based on real time logging.


The “time of day” feature is a binary feature indicating whether the sample was taken during the first half of the day.


The “seasonal effects” feature is the month in which the sample was taken. In some analyses we also grouped months by season (Winter: December-February; Spring: March-May; Summer: June-August; Fall: September-November).


The “microbiome” feature group includes bacterial relative abundance calculated both by considering coverage (see below), and by MetaPhlAn255, as well as the first 10 principal components computed over the log transformed relative abundance of a bacterial gene catalog56 as previously described3057. Preprocessing steps are described below.


We further defined a full model that included all of the above.


Metabolomics Profiling and Preprocessing Metabolite concentrations were measured in serum samples by Metabolon, Inc., Durham, N.C., USA, by using an untargeted LC/MS platform as previously described65859. A total of 540 serum samples were profiled, 19 of which were control samples (technical replicate) pooled from several individuals. The other 521 serum samples belonged to 491 participants.


We removed from further analysis 27 metabolites with less than 10 measurements across our cohort, and 54 metabolites that we found to have significantly different distributions in samples collected in two different recruitment centers (Mann-Whitney U p<0.05/1251; Bonferroni corrected). For the remaining 1170 metabolites, we performed robust standardization (subtracting the median and dividing by the standard deviation) over the log (base 10) transformed levels, followed by clipping outlier samples which were farther than 5 standard deviations. We next used two separate normalization schemes, one for single metabolites, which we subsequently used in the feature attribution analysis, and the second for metabolite groups, which we used for global and enrichment analyses.


For single metabolites, we regressed metabolite levels against storage times (only for metabolites present in at least 50 samples), and finally, imputed missing values as the minimum value per metabolite. For the second scheme, metabolites were grouped by correlation with a Spearman rho threshold of 0.85. This is done in order to handle possible bias resulting from uncertainty of metabolite assignments and a high rate of highly correlated mass spectrometry peaks, and resulted in 1067 metabolite groups, 982 of which are singletons. The value of the metabolite group was set to the mean. The category of each metabolite group was assigned based on majority vote, where unknown compounds were excluded from the vote unless all metabolites in the group were unknown.


Microbiome Preprocessing


Sample collection, DNA extraction, and sequencing of the samples in this study was described previously25,30,48 Briefly, we used only samples which were collected using swabs, filtered metagenomic reads containing Illumina adapters, filtered low-quality reads and trimmed low-quality read edges. We detected host DNA by mapping with GEM60 to the human genome (hg19) with inclusive parameters, and removed human reads. We subsampled all samples to have 10 million reads.


Bacterial relative abundance estimation was performed by mapping bacterial reads to species-level genome bins (SGB) representative genomes33. We selected all SGB representatives with at least 5 genomes in group, and for these representative genomes kept only unique regions as a reference data set. Mapping was performed using bowtie261 and abundance was estimated by calculating the mean coverage of unique genomic regions across the 50 percent most densely covered areas as previously described5762. Feature names include the lowest taxonomy level identified.


Comparing Metabolomics to Lab Tests


We compared the levels of both creatinine and cholesterol which we previously obtained via standard lab tests25 with their metabolomic levels. Since the lab tests were performed by two different labs, we centered the tests by reducing from the value of each sample the mean of all tests taken in the lab in which it was performed. We then performed a standardization of the resulting measurements. The metabolomic profiling and the lab tests were performed on two samples taken at the same blood draw.


Correlation of Metabolic Profiles within and Between Individuals


We compared the levels of both creatinine and cholesterol which we previously obtained via standard lab tests25 with their metabolomic levels. Since the lab tests were performed by two different labs, we centered the tests by reducing from the value of each sample the mean of all tests taken in the lab in which it was performed. We then performed a standardization of the resulting measurements. The metabolomic profiling and the lab tests were performed on two samples taken at the same blood draw.


Predictive Models of Metabolite Groups


We used gradient boosting decision trees from the LightGBM (version 2.1.2) package27, in order to predict the levels of 1067 metabolite groups based on 7 feature groups in held-out subjects. In order to estimate the EV of each metabolite group we ran a 5-fold cross validation (CV) model using each feature group as input, and evaluated the results using Pearson correlation. For all prediction results we computed 95% confidence intervals and p-values via 1000 iterations of bootstrapping63. In each bootstrap iteration, we performed a random 5-fold cross validation, were in each fold we randomly sampled (with replacement) a group of subjects from the training set to have the same size as the current training set. We next used this set in order to train our model and evaluated the model's performance on the set of subjects in the remaining fold. Finally we computed the Pearson correlation between the measured values of the metabolite and the concatenation of the CV's predicted values as obtained from the bootstrapping iteration. We applied the Fisher transformation to the Pearson correlations we got from bootstrapping in order to induce normality64, and then computed a standard error, and estimated the p-values via the normal CDF using the Wald test65, such that our null hypothesis is that the correlations should distribute normally with zero mean. Confidence intervals were computed empirically from the bootstrapping correlations. We corrected p-values of predictions for multiple hypotheses using the Bonferroni procedure within each feature group (p<0.05/1067). In all CV and bootstrapping runs we used a fixed and predetermined set of hyperparameters (Table 5).












TABLE 5







Microbiome and
Other feature



Diet
groups




















LightGBM HyperParameter





learning_rate
0.005
0.01



max_depth
default
5



feature_fraction
0.2
0.8



num_leaves
default
25



min_data_in_leaf
15
15



metric
12
12



early_stopping_rounds
None
None



n_estimators
2000
200



bagging_fraction
0.8
0.9



bagging_freq
1
5



num_threads
1
1



verbose
−1
−1



silent
TRUE
TRUE










Testing for SNP Associations with Metabolites


Genotype processing and imputation of 413 individuals were described previously30. We performed genome wide associations for single metabolites (n=1170) and calculated the p-value and the estimated effect sizes using plink (v1.07). When declaring a genome-wide significance for the SNP-metabolite associations we used a conservative Bonferroni adjustment procedure to control for the false discovery rate due to the large number of SNPs tested (p<(5×10−8)/1170). We performed all genome wide associations using imputed genotypes. Results presented in FIGS. 2A-F are based on a similar analysis performed over the metabolite groups (n=1067).


For the replication of SNP-metabolite associations from a previous study6 we correlated the EV of each metabolite from a model based on top significantly associated SNPs in the TwinsUK, and the effect size of the single top significantly associated SNP in this study. Only 301 metabolites which were measured in both studies were considered for analysis.


Pathway Category Enrichment Analysis


For each pathway category we used a Mann-Whitney U test comparing the prediction accuracy of metabolites from that category compared to prediction accuracy of metabolites from other categories. Direction of enrichment was determined by the sign of the Mann-Whitney U test statistic. We considered only metabolite groups for which at least one feature group had a significant prediction (after correcting for multiple hypothesis), resulting with 982 metabolite groups.


Validation of Metabolite Predictions


For every feature group, we trained a prediction model based solely on the samples from the main cohort, and evaluated its performance on the independent validation cohort. In all validation analyses we only considered 877 metabolite groups which were present in both the main and the validation cohort. We did not validate the associations of metabolites with time of day as all of our samples in the validation cohort were taken during the same time of the day.


Feature Attribution Analysis


We used SHAP (SHapley Additive exPlanations)34, a recently introduced framework for interpreting predictions, which assigns each feature an importance value for a particular prediction. Briefly, for a specific prediction, a feature's SHAP value is defined as the change in the expected value of the model's output when this feature is observed vs when it is missing. It is computed using a sum that represents the impact of each feature being added to the model averaged over all possible orderings of features being introduced.


Individual SHAP values were computed for held-out subjects in 5-fold CV using the module TreeExplainer (version 0.24.0)3566, based on models trained only on features from the respective feature group. Before training, we standardized the levels of target metabolites, so that SHAP values from different models would be comparable (they are measured in the same units as the target). In each CV fold we ran a random hyperparameter search consistent of 10 iterations using the module RandomizedSearchCV from sklearn (version 0.20.4), and chose the best model for predicting the held out subjects and computing SHAP values. In all feature attribution analyses we used the ungrouped list of 1170 metabolites.


For every feature, we computed the mean absolute SHAP value across all instances in a specific model, reflecting the mean impact of each feature on the predictions and serving as a feature importance measure. We further used these values to compute directional mean absolute SHAP values, by multiplying them with the sign of the Spearman correlation between the population feature and the target. Here, positive values indicate that higher feature values lead, on average, to higher predicted values, while negative values indicate that lower feature values lead, on average, to lower predicted values.


When performing feature attribution analysis with gut microbiome data as input, we only included the relative abundance of SGB representative genomes as features, taking only features which were present in over 5% of the samples, resulting with 753 bacterial taxa. When using diet as input, we only considered features which were present in at least 5% of the samples, resulting with 398 food types from logging and items from the FFQ.


Comparing Gradient Boosting Decision Trees with a Linear Model


We compared the EV of every single metabolite obtained for a GBDT and a Lasso regression model. The EV of all models were calculated in 5-fold CV, where in each fold we ran a hyperparameter search consistent of 10 iterations as described above. We used LightGBM as the GBDT model, and Lasso regression (sklearn, version 0.20.4) as the linear model, since its regularization scheme is better suited for a large number of features, as in the case of diet and gut microbiome composition. Since GBDT handles missing values well, we first imputed all missing values as the median of each feature to assure a fair comparison. When applying the models on the microbiome data, we used log 10 transformed values.


Estimating Relative Predictive Power of Feature Groups


In order to estimate the relative predictive power of different feature groups we first applied a principal component analysis over the metabolite groups data to get the first 400 PCs which constitute >99% of the total variance in the data (FIG. 16). We then used 5-fold CV prediction models as described above to predict the PCs based on the different feature groups independently. As baseline, we used the full model, which consists of all features combined to predict the levels of the PCs, and estimated the overall fraction of variance explained by: (ΣiEVi×PCi)/(ΣiPCi), where the summation is from i=1 to i=nPC, EVi is the fraction of EV that the model recovers for PC i, PCi is the fraction of variance that PC i explains out of the overall variation in the data, and nPC is the number of the first PCs, those which capture the most variation. For the features we have collected, we defined this sum obtained for the full model as the total explainable variance in circulating blood metabolites. Next, for every feature group we computed a similar expression and calculated the relative predictive power by dividing this expression by that of the full model. The estimates we present are for nPC=15, as the overall EV of the full model that we estimated using the first 15 PCs constitutes over 97% of the overall EV of the full model based on all 400 PCs.


Identification of Unknown Metabolites by Metabolon


Identification of unknown metabolites was done as previously described29. Briefly, identification of tentative structural features for unknown biochemicals incorporates a detailed analysis of mass spec data, i.e., gathering information such as the accurate monoisotopic mass, the elution time and fragmentation pattern of the primary ion, and correlation to other molecules. The accurate monoisotopic mass is used to identify a likely structural formula for the unknown biochemical, which is then used to search against chemical structure databases. When a candidate structure fits the accurate monoisotopic mass and fragmentation data, an authentic standard is commercially purchased or synthesized (when possible). Conformation of a proposed structure is based on a match to three primary criteria, including co-elution with the unknown molecule of interest, and a high degree match to both the accurate monoisotopic mass and fragmentation pattern.


Interaction Networks


We used a graphical layout in order to visualize the associations of features with the levels of metabolites. The nodes are either metabolites or features, and the edges are the directional mean absolute SHAP values computed from models trained only on features from the respective feature group as described above. All networks were constructed using Cytoscape67. The threshold for presenting SHAP values as edges was determined as 0.12, keeping the network sparse enough for convenience of visualization.


Analysis of Bread Intervention


In order to find the associations between metabolite levels and the consumption of both types of bread in the study cohort we computed the directional mean absolute SHAP values of the reported consumption of both white and whole-wheat bread for all metabolites. The SHAP values were computed in cross validation from models based only on the reported consumption of each type of bread. We ranked the metabolites according to their directional mean absolute SHAP value for each type of bread and used the top 5% positively and negatively driven metabolites for further analysis. The prediction models were constructed using 458 samples of distinct individuals, a subset of our cohort from which we excluded all samples of individuals which participated in the intervention study.


For each metabolite in every individual, we computed the FC of metabolite levels between the samples taken at the end of the first week of intervention and the start of that week. Prior to computing FC we imputed missing values with the minimum per metabolite and standardized their log (base 10) transformed levels. Furthermore, for each intervention group, we computed the mean FC of every metabolite based on the 10 samples from that group. We then compared the mean FC of the top 5% positively and negatively driven metabolites mentioned above within each intervention group by performing a rank sum test (Mann-Whitney U) over the mean FC.


For comparing the FC of betaine and cytosine between the two intervention groups, we used a Mann-Whitney U test.


LMM-Based Estimates of the Explained Variance of Metabolites Using Gut Microbiome


For the in-sample estimation of EV for metabolites based on gut microbiome we used a linear mixed model framework that we had recently developed30. Briefly, we used GCTA68, a tool used in statistical genetics for the estimating of SNP-based genetic kinship. Instead of a matrix of host SNPs, as is commonly used in GCTA, we used a kinship matrix computed over the presence-absence of microbial species which were also used as features in the out-of-sample prediction models. We added the storage time as a covariate to the model. P-values were computed using RL-SKAT69.


Results

Accurate and Reproducible Untargeted Serum Metabolomics from a Deeply Phenotyped Human Cohort


We used mass spectrometry to profile 521 serum samples from 491 healthy individuals for whom we previously collected extensive clinical data, anthropometrics measurements, cardiometabolic parameters, medication data, lifestyle, genetics, gut microbiome, dietary logging and answers to clinical and nutritional questionnaires25 (FIG. 1A-B; Methods). Our untargeted metabolomics measured the levels of 1251 metabolites, covering a wide range of biochemicals including lipids, amino acids, xenobiotics, carbohydrates, peptides, nucleotides and approximately 30% unknown compounds (FIG. 1C, Methods). Most measured metabolites were prevalent across the cohort, including 498 metabolites detected in all samples, and 1104 metabolites detected in at least 50% of the samples (FIG. 1D).


To test whether our measurements accurately report metabolite levels, we compared the metabolomic levels of creatinine and cholesterol to measurements of these compounds using standardized lab tests (Methods) performed separately on different blood samples taken from the same individual on a single visit, and found excellent agreement (R=0.87, creatinine; R=0.79, cholesterol, FIGS. 8A-B). Further demonstrating the reproducibility of our metabolomic measurements, we found that samples taken one week apart for 20 participants were significantly correlated (median Spearman R=0.68, std=0.06), in contrast to samples of different participants that show no correlation (median Spearman R=0.05, std=0.12; Methods; FIG. 1E). In addition to validating the reproducibility and accuracy of our data, these results are consistent with previous work showing that the human metabolic phenotype is stable even over several years26, and suggest that this metabolic profile is a unique ‘fingerprint-like’ person-specific signature.


Diet, Microbiome, and Clinical Data Predict the Levels of Most Serum Metabolites


To estimate the extent to which metabolites can be predicted by the wealth of data we collected, we devised machine learning algorithms that predict the levels of each metabolite in held-out subjects (out-of-sample 5-fold cross validation prediction). One exception was human genetics, for which we considered the explained variance (EV) of each metabolite as that of the single most associated SNP (Methods). For prediction, we used gradient boosting decision trees27 (GBDT; Methods) as these are powerful models which perform well in many different settings and can capture nonlinear interactions which are likely to be present in such a heterogeneous feature space and within the high dimensionality of the diet and microbiome data. We found that GBDT systematically outperformed linear models (Lasso; Methods), with a median and maximum EV gain of 3.3 and 38%, respectively, for prediction with diet data and 4.3 and 13% for prediction with microbiome data. (FIGS. 9A-E). Notably, our predictions were statistically significant for over 92% of the metabolite groups tested, following a strict Bonferroni correction (Methods), using at least one of the feature groups, with diet significantly explaining the largest number of metabolites (636), and gut microbiome explaining 389 metabolites (FIG. 2A-B). Together, our models explained over 10% of the variance for 467 metabolite groups (FIG. 2D), with a median R2 of 10.7% (range 1.1-75.3%). For some metabolites, our models explained over 50% of the variance, using either genetics, sex, dietary, or microbiome features. For example, gut microbiome features alone explained 60% of the variance of the unknown compound X-16124.


To understand whether specific feature groups better predict certain types of metabolites, we checked, for each feature group, whether any type of metabolites was enriched with superior predictions (FIG. 2C). We found that clinical data, which includes age, sex, anthropometrics and cardiometabolic parameters, better predicted blood lipids, amino acids and peptides compared to xenobiotics and unknown compounds (FIG. 2C). In contrast, gut microbiome data predominantly explained levels of unknown compounds (p<0.005), highlighting the potential of the microbiome for discovering microbiome-derived metabolites and explaining the origin of the large number of unknown compounds.


We next asked whether different feature groups predict metabolites with similar accuracy, by computing the correlation between the accuracy of metabolite predictions of every pair of input feature groups (FIG. 2E; FIG. 10). We found that predictions based on clinical data were significantly correlated with those of diet (Spearman R=0.32, p<10−20), suggesting that some of the information captured by these feature groups is shared. A comparison to the lower (albeit significant) correlation between predictions made by clinical data and gut microbiome (R=0.22, p<10−12) implies that each capture unique information about metabolites. In addition, diurnal-based predictions were not correlated with any other feature group, demonstrating that metabolites explained by the time of the day were not predicted by and other data. Notably, predictions based on gut microbiome data had the highest correlation to predictions based on diet (R=0.44, p<10−20), suggesting possible interactions between these feature groups in explaining the levels of many serum metabolites, an aspect that we further explore below. Finally, we found that the most genetically heritable metabolites could not be predicted by any of the other feature groups, as there was a negative correlation between the prediction accuracy of the full model and the heritability of metabolites (R=−0.14, p<10−5).


Taken together, our results show that we can devise statistically significant predictions for most serum metabolites using diet, gut microbiome, or other lifestyle and clinical parameters, with each feature group being especially informative with respect to a different set of metabolites. We next wished to estimate the general predictive power of each feature group across all measured serum metabolites. We built models predicting the principal components of the metabolomics data (FIG. 16), and then looked at the fraction of weighted explained variance in each feature group compared to that achieved with a model based on all features combined. We estimate that diet has the largest predictive power and could be used to infer 48.7% of the explainable variance in circulating blood metabolites compared to the full mode, while the prediction power of lifestyle factors constitute only 1.9% of that EV (FIG. 2F). Notably, gut microbiome data has 30.5% of the predictive power of the full model, and with a large portion of it not overlapping with the predictions of other data, this marks the importance of the microbiome in independently predicting and potentially determining serum metabolites levels.


Metabolite Predictions Replicate in an Independent Cohort


To test the robustness and reproducibility of our associations, we used the following approaches.


Firstly, we asked whether our cohort replicates significant associations between metabolite levels and body mass index (BMI) that were recently reported28, and found that most of these associations replicated with high accuracy (Pearson R=0.85, p<10−10, FIG. 3A).


Secondly, we applied the same metabolomic profiling to an independent cohort of 31 individuals for which we also obtained identical measurements to those we had on the main cohort, including diet and gut microbiome data. Data from this additional cohort were not available to us while developing the prediction models. Notably, using our models, trained only on samples from our main cohort, for metabolites significantly predicted in our main cohort, we obtained predictions with similar accuracy on samples from this independent validation cohort. Specifically, for both diet and gut microbiome data, we found high agreement between the prediction accuracy and the overall predictive power of our models in the main cohort and in the replication cohort (Pearson R=0.59, p<10−18, microbiome; R=0.60, diet, p<10−20; FIGS. 3B-C, FIG. 17). These results further validate that our models unravel robust associations between the levels of blood metabolites and the feature groups we measured.


Thirdly, the model of the present embodiments was applied, without modification, to an independent cohort from the United Kingdom [UK Adult Twin Registry, www(dot)twinsuk(dot)ac(dot)uk]. FIGS. 7A and 7B demonstrate that at least the top 50 associations all replicate in this cohort, and that at least 94 out of the top 110 associations replicate. Table 6, below, summarizes the results for the top 110 metabolites, including the explained variance in the two cohorts, and the significance level of the replication, both raw and adjusted for multiple testing.














TABLE 6








TwinsUK
TwinsUK
TwinsUK



PNP R2
p-value
q-value
R2




















X - 16124
0.60193
 1.76E−123
 1.94E−121
0.42746


X - 11850
0.494078
1.30E−90
7.17E−89
0.334257


100000442
0.466141
2.06E−27
2.52E−26
0.110844


X - 11843
0.436607
4.06E−76
1.49E−74
0.288504


100001405
0.424833
2.42E−06
5.31E−06
0.021954


100001315
0.416363
3.72E−27
3.72E−26
0.109801


100006191
0.4089
7.65E−33
1.05E−31
0.132607


X - 12013
0.396407
4.51E−60
1.24E−58
0.234211


100001417
0.392058
3.90E−11
1.26E−10
0.042661


100001106
0.373802
3.05E−07
7.14E−07
0.025838


100001403
0.368044
0.000767
0.001223
0.011239


X - 12816
0.363962
7.36E−25
5.40E−24
0.100435


100001400
0.360403
4.89E−06
1.03E−05
0.020633


100001399
0.355817
0.00088 
0.001383
0.010987


X - 21442
0.350055
2.75E−20
1.68E−19
0.081518


849
0.335179
0.001585
0.002357
0.009912


100000011
0.331918
5.65E−13
2.00E−12
0.050565


100000437
0.331126
0.00761 
0.010085
0.007087


100000453
0.322879
2.85E−05
5.43E−05
0.017334


100001397
0.297921
0.000428
0.000736
0.01231


100006098
0.279406
2.39E−15
9.38E−15
0.060702


X - 12216
0.270791
2.52E−19
1.26E−18
0.077493


100000010
0.253025
2.73E−41
6.00E−40
0.165457


100002253
0.241426
3.84E−39
7.03E−38
0.15722


X - 23649
0.24028
4.83E−09
1.44E−08
0.033625


100004112
0.240092
7.02E−13
2.41E−12
0.050159


X - 23997
0.234264
0.005032
0.00675
0.007825


100001092
0.232021
6.21E−17
2.84E−16
0.067422


100001402
0.211918
0.002301
0.003331
0.009235


100001657
0.209332
6.99E−15
2.65E−14
0.058715


X - 12230
0.198428
1.34E−13
4.90E−13
0.053246


100004111
0.198406
5.71E−20
3.31E−19
0.080192


100002021
0.190037
7.69E−35
1.21E−33
0.140485


100001083
0.184587
6.50E−17
2.84E−16
0.067341


X - 12329
0.179864
9.28E−06
1.89E−05
0.019433


X - 12306
0.178041
2.19E−12
7.29E−12
0.048042


X - 21821
0.175098
3.16E−08
8.27E−08
0.0301


X - 23639
0.170295
0.017756
0.022195
0.005596


X - 17351
0.164692
1.09E−08
2.99E−08
0.032101


100002911
0.163574
6.72E−17
2.84E−16
0.067279


100001658
0.162903
1.01E−25
7.97E−25
0.103956


100000014
0.158807
1.50E−19
8.25E−19
0.078438


X - 11315
0.145696
1.33E−06
3.05E−06
0.023072


100001086
0.143621
0.000207
0.000361
0.013655


100009002
0.139306
0.051746
0.061205
0.003771


X - 21752
0.13783
3.48E−24
2.40E−23
0.097664


   1135
0.135034
2.24E−18
1.07E−17
0.073506


100000467
0.134245
6.24E−10
1.91E−09
0.037467


X - 12730
0.132732
0.004609
0.006337
0.007983


X - 17185
0.13236
2.45E−07
5.99E−07
0.026249


100000580
0.131515
0.877499
0.877499
2.37E−05


X - 22162
0.130587
0.00256 
0.003658
0.009042


X - 21286
0.125927
1.78E−08
4.79E−08
0.031173


X - 17145
0.125471
2.54E−26
2.15E−25
0.106407


100001148
0.114388
2.84E−27
3.13E−26
0.110276


100000436
0.112946
8.08E−09
2.34E−08
0.03266


100001510
0.111889
2.40E−19
1.26E−18
0.077585


100000447
0.111378
0.001518
0.002287
0.009992


   136
0.109922
4.15E−21
2.68E−20
0.084944


100005864
0.109533
0.000188
0.000334
0.013825


X - 12738
0.107436
0.00053 
0.000861
0.011917


   1258
0.106308
0.858411
0.866286
3.18E-05


X - 21339
0.099392
0.004846
0.006581
0.007893


100004208
0.098996
0.000519
0.000861
0.011955


100003434
0.098884
1.78E−15
7.26E−15
0.061243


   339
0.09559
5.17E−10
1.62E−09
0.037821


X - 11880
0.090108
6.26E−05
0.000117
0.015872


100001456
0.085311
0.688289
0.714263
0.000161


X - 11308
0.084777
0.052811
0.0618 
0.003737


100004046
0.0844
0.110712
0.126858
0.002537


X - 18914
0.082799
0.000172
0.00031 
0.013996


100002154
0.081625
6.56E−08
1.64E−07
0.028726


X - 13835
0.079674
0.317852
0.339453
0.000996


100001624
0.079165
9.24E−09
2.61E−08
0.032409


100002241
0.078238
0.046573
0.055685
0.003947


100001022
0.077824
0.012876
0.016664
0.006158


X - 11372
0.077439
0.001173
0.001791
0.010462


X - 21736
0.07603
0.000917
0.001421
0.010912


X - 11381
0.074129
0.000467
0.000791
0.012149


   381
0.072941
0.755927
0.769926
9.65E-05


100000445
0.07275
0.014756
0.018874
0.005919


100001162
0.072115
0.559964
0.586629
0.000339


100001743
0.071197
0.002787
0.003931
0.008889


100004110
0.070462
1.67E−06
3.74E−06
0.02265


   1668
0.070161
2.86E−07
6.83E−07
0.025962


100001756
0.070086
1.44E−05
2.88E−05
0.01861


X - 23587
0.069924
3.78E−08
9.67E−08
0.029761


   1518
0.069794
0.176014
0.197566
0.001827


100003001
0.064862
0.096912
0.112213
0.002748


X - 12221
0.063781
2.86E−05
5.43E−05
0.01733


100001126
0.063769
0.305695
0.329671
0.001047


100002122
0.062773
1.69E−05
3.32E−05
0.018315


100008999
0.061545
0.025154
0.031089
0.004993


100001300
0.061295
0.041996
0.050764
0.004121


100001605
0.060642
0.000532
0.000861
0.01191


100001051
0.060427
0.199497
0.221663
0.001642


100006126
0.060353
0.027193
0.033235
0.004859


X - 16935
0.059659
6.37E−06
1.32E−05
0.020139


100004328
0.059032
0.747708
0.768672
0.000103


100008920
0.058966
0.516784
0.546598
0.00042


100000042
0.058828
0.258925
0.281997
0.001272


100000841
0.058762
0.002027
0.002974
0.009465


X - 12822
0.057473
0.000131
0.00024 
0.014499


X - 23314
0.057217
0.204197
0.224617
0.001608


X - 15728
0.057172
7.08E−27
6.49E−26
0.108667


100001541
0.056209
0.131519
0.149145
0.002269


100001055
0.056172
0.011833
0.015495
0.006306


X - 18249
0.054302
0.00363 
0.005054
0.008412


   240
0.052766
0.017548
0.022187
0.005616


100001034
0.051379
2.98E−06
6.43E−06
0.021559









Novel Associations Between Human Genetics and Circulating Blood Metabolites


Several studies found that human genetics affect serum metabolites6,7,29. In this study we measured hundreds of novel molecules which were not yet identified in previously published studies including both serum metabolomics and human genetics, and therefore set to look for novel associations between single nucleotide polymorphisms (SNPs) and serum metabolites levels. Notably, we found 553 statistically significant associations with genetic for 67 metabolites (p<5×10−11), many of which are novel. This includes the unknown metabolite X-24809 which was associated with rs4539242 that alone explained 52% of its variance. To further validate our results, we set to replicate previous reported associations between SNPs and the levels of circulating blood metabolites. Among the 529 metabolites analysed in a previous large study which included 7824 individuals6, 301 were also measured by us using the same MS platform (Metabolon, inc.; Methods), and 111 of them were reported to have significant associations with SNPs. Due to the difference in cohort sizes, we were limited in terms of the statistical power needed for the replication of relatively small effect variants. Overall, we found a high correlation between the EV of a model based on top significantly associated SNPs in the previous study and a model based on the single top associated SNP in our study (Pearson R=0.73, p<10−20; FIG. 18). In our cohort, we found significant associations between SNPs and 14 out of the 111 metabolites, but no significant associations for any of the remaining 190 metabolites (p<10−6 for only replicating a subgroup of known associations, Fisher exact test). We found that in 11 cases out of the 14 the association between the metabolite and the specific SNP reported in the previous study was replicated in this study, while in the other three cases the associations that we found are novel, in all these cases, the EV by the reported SNP in both the previous study and in this study was highly similar (R=0.91, p<10−4).


Diet and Gut Microbiome Data Independently Explain a Wide Range of Metabolites


Diet and gut microbiome had the largest predictive power and there is a significant correlation in the metabolites that they each predicted well (FIG. 2E). Since diet is known to modulate the composition of the gut microbiome30-32, we sought to unravel which metabolites are more likely to be driven by diet and which by the gut microbiota, by comparing the EV of metabolites obtained by a model based on diet and by one based on gut microbiome data (FIG. 4A). If the prediction of metabolites by the microbiome was confounded by diet, in other words if diet affects both the metabolites and the microbiome, then we would expect that all microbiome-predicted metabolites could also be predicted (possibly with higher accuracy) by diet. However, we found that although some metabolites were significantly predicted by both diet and gut microbiome, many metabolites were predicted well by only one of the two data types (FIG. 4A). To measure the contribution of the microbiome to the prediction of each metabolite, we compared the EV of a model based on both diet and microbiome to a model based only on diet data (FIG. 4B). We found that adding microbiome data to the prediction model improved the model's accuracy in 66% of cases (median and max gain of 2.1%, 61.2% respectively; FIG. 4C). Finally, 34 metabolites were significantly predicted only using the gut microbiome, and the predictions of multiple others improved upon introducing microbiome to the models. Taken together, these results suggest that the gut microbiome modulates the production of many circulating metabolites independent of diet.


We next sought to interpret the diet and gut microbiome models and ask which dietary features and bacterial taxa drive the predictions of each metabolite. Our diet data consists of both answers to food frequency questionnaires and one week of dietary logging collected in real-time via a mobile App we devised25, and thus allows us to address the predictive power of both long term and short term nutritional patterns. The gut microbiome composition is represented as relative abundance of bacterial species and we estimated it based on high depth metagenomic sequencing followed by mapping to a unique and comprehensive microbial database that was recently published33 (Methods). In order to explain the output of our machine learning models and find specific associations between features and metabolite levels we used SHAP (SHapley Additive exPlanations)34, a feature attribution analysis tool which assigns each feature an importance value (SHAP value) for a particular prediction35 (Methods). Shapley values based analysis in gut microbiome data was recently demonstrated to be useful, as it allowed for the estimation of complex contributions of gut microbiome taxa to functional shifts, while maintaining global community composition properties36.


We found dozens of diet features and bacterial taxa that were strongly predictive of blood metabolites in our models (FIG. 4F; FIGS. 19A-F). Notably, the reported consumption of coffee (both long- and short-term) had higher importance compared to other dietary features with respect to a large number of xenobiotics and unknown compounds. As previously reported37, metabolites from the xanthine metabolism pathway such as paraxanthine (Prediction Pearson R=0.64, p<10−20, based on diet data) and caffeine (Prediction R=0.68, p<10−20) were significantly predicted using coffee consumption. These metabolites were also significantly predicted using gut microbiome data, with one bacterial feature from the Clostridiceae family being the main predictor. Another strong predictor was the reported consumption of fish, which was assigned with the highest SHAP values in models based on diet features which accurately predicted the levels of several blood lipids such as 3-Carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF; prediction R=0.71, p<10−20), a potent uremic toxin known to accumulate in the serum of chronic kidney disease (CKD) patients38 and which was also suggested to prevent and reverses steatosis39. Other examples included saccharin (Prediction R=0.6, p<10−20) and acesulfame (Prediction R=0.47, p<10−20, two artificial sweeteners whose main predictors were the reported consumption of artificial sweeteners and diet soda. As mentioned above, microbiome data alone accurately predicted the levels of many metabolites such as X-16124 (Pearson R=0.77, p<10−20), an unknown metabolite whose main predictor is the relative abundance of a bacteria from the Eggerthellaceae family, and X-11850 (R=0.7, p<10−20), another unknown compound whose main predictor is a species of Clostridium. The microbiome data was also highly predictive of two uremic toxins (phenylacetylglutamine, R=0.63, p<10−20, and indoxyl sulfate, R=0.37, p<10−20) previously reported in association with CKD40 and several other comorbidities41,42, and these predictions were positively driven by a bacteria from the Lachnospiraceae family.


As a more global view, we next asked whether a few bacterial features are important for the prediction of many metabolites, or whether metabolite prediction is specific to several unique important taxa. To this end, for each metabolite we defined its main predictor as the bacterial taxa with the maximal mean absolute SHAP value. We found that 19 bacterial taxa were the main predictors for the top 50 predicted metabolites (Prediction R>0.4; Table 7). One bacterial feature from the Clostridiceae family was the main predictor of 22 of these metabolites which are also strongly associated with coffee consumption in diet-based models. Clostridium sp. CAG:138 was the main predictor of 5 metabolites, including 3 unknown compounds, phenylacetylcarnitine (R=0.47, p<10−20) and p-cresol-glucuronide (R=0.64, p<10−20) which was previously reported to be metabolized by Clostridium43. Furthermore, 6 bacterial features were the main predictors of 2 metabolites each, and each of the other 11 bacterial features was a main predictor of a single metabolite. Hence, in most cases many specific bacteria are required in order to accurately predict the levels of distinct metabolites, but in some cases a single bacteria might underlie the predictions of a broad metabolic pathway involving dozens of metabolites. In terms of higher bacterial taxonomy levels, among the bacterial features that best predicted the top 100 metabolites, 89 belonged to Firmicutes, 4 to Actinobacteria and 7 to an unknown phylum, showing the strong predictive power of Firmicutes. Interestingly, although Bacteroidetes is the second most abundant phylum in our cohort (FIG. 20), none of its species was a main predictor for any of the 100 metabolites best predicted with microbiome data.


We next asked whether these single best predictors are sufficient for the accurate prediction of each metabolite or whether additional information regarding the composition of the gut microbiome is needed. To this end, for each metabolite we compared the results from a full model of the microbiome to a prediction model based only on the strongest predictor (FIG. 4D). We found that for most of the metabolites which were best predicted using microbiome data, a model based only on the single best predictor could explain 20-70% of the variance that the full model explained with a median of 36%, showing that for many metabolites the relative abundance of other bacterial taxa are needed for better predictions. In addition, this result implies that the levels of these metabolites are associated with different bacterial taxa in different individuals, as in the case of cinnamoylglycine which is significantly predicted using the full gut microbiome composition (R=0.49, p<10−20), yet a model based only on its top predictor fails to provide a significant prediction. In contrast, some metabolites are exclusively predicted by a single bacterial species, as in the case of the unknown metabolite X-16124, for which a model based only on the relative abundance of a bacteria from the Eggerthellaceae family explained 93% of the variance compared to the full model. Indeed in 95% of the individuals where this bacteria was detectable in stool this metabolite was also detectable in their serum, compared to only 23% of individuals for which this bacteria was not detected in their stool (p<10−20, FIG. 4E).












TABLE 7







Prediction
mean absolute


BIOCHEMICAL
Main driver
Pearson R
SHAP values


















X - 11850
(14306) S: Clostridium sp
0.71031646
0.377656597



CAG 138


X - 11843
(14306) S: Clostridium sp
0.666618163
0.354302695



CAG 138


X - 12013
(14306) S: Clostridium sp
0.648938368
0.302711426



CAG 138


p-cresol-glucuronide*
(14306) S: Clostridium sp
0.634978874
0.169905629



CAG 138


phenylacetylcarnitine
(14306) S: Clostridium sp
0.452402753
0.102290219



CAG 138


5alpha-androstan-
(14311) F: Clostridiaceae
0.43740413
0.099953342


3beta,17alpha-diol disulfate


4-methylcatechol sulfate
(14397) S: Collinsella sp
0.403773094
0.210294783



CAG 289


X - 16124
(14816) F: Eggerthellaceae
0.797710646
0.731921094


4-ethylcatechol sulfate
(14861) U: Unknown
0.413293556
0.13518011


X - 12816
(14921) U: Unknown
0.557555233
0.345160261


X - 24410
(15119) F: Clostridiales
0.444238234
0.208132929



unclassified


X - 24811
(15154) F: Clostridiales
0.538397579
0.486675273



unclassified


5-acetylamino-6-amino-3-
(15154) F: Clostridiales
0.525783812
0.384463759


methyluracil
unclassified


caffeine
(15154) F: Clostridiales
0.479015705
0.247431918



unclassified


1,7-dimethylurate
(15154) F: Clostridiales
0.516271766
0.379716336



unclassified


1,3-dimethylurate
(15154) F: Clostridiales
0.506154168
0.432380221



unclassified


theophylline
(15154) F: Clostridiales
0.500430564
0.35139537



unclassified


paraxanthine
(15154) F: Clostridiales
0.494814811
0.480019756



unclassified


quinate
(15154) F: Clostridiales
0.550659433
0.320069825



unclassified


X - 21442
(15154) F: Clostridiales
0.485910453
0.325317846



unclassified


1,3,7-trimethylurate
(15154) F: Clostridiales
0.481535209
0.332818145



unclassified


1-methylurate
(15154) F: Clostridiales
0.543233686
0.354953786



unclassified


1-methylxanthine
(15154) F: Clostridiales
0.522307846
0.409986488



unclassified


citraconate/glutaconate
(15154) F: Clostridiales
0.397920928
0.126892778



unclassified


X - 23649
(15154) F: Clostridiales
0.405318367
0.214755421



unclassified


X - 12837
(15154) F: Clostridiales
0.449837283
0.17833279



unclassified


3-methyl catechol sulfate (1)
(15154) F: Clostridiales
0.430459047
0.195565418



unclassified


X - 23655
(15154) F: Clostridiales
0.419593407
0.266598091



unclassified


3-hydroxypyridine sulfate
(15154) F: Clostridiales
0.421956386
0.158726692



unclassified


taurolithocholate 3-sulfate
(15216) F: Clostridiales
0.409120959
0.082624734



unclassified


3-phenylpropionate
(15236) G: Firmicutes
0.463566191
0.061088396


(hydrocinnamate)
unclassified


cinnamoylglycine
(15236) G: Firmicutes
0.50723076
0.095710259



unclassified


isoursodeoxycholate
(15265) S: Firmicutes
0.45029973
0.072828701



bacterium CAG 103


p-cresol sulfate
(15271) S: Ruthenibacterium
0.588586011
0.131445263



lactatiformans


X - 23997
(15356) U: Unknown
0.413579828
0.109760662


X - 12216
(15369) S: Faecalibacterium
0.473979701
0.081022475



sp CAG 74


X - 12126
(15369) S: Faecalibacterium
0.506863696
0.116282931



sp CAG 74


X - 12261
(3926) U: Unknown
0.652153347
0.165363667


X - 17612
(3957) F: Lachnospiraceae
0.426420399
0.086057928


phenylacetate
(3957) F: Lachnospiraceae
0.564932682
0.083074571


X - 17469
(4552) S: Ruminococcus sp
0.405437752
0.067777374


glycolithocholate sulfate*
(4552) S: Ruminococcus sp
0.458290469
0.113144654


X - 21821
(4564) S: Ruminococcus
0.433421509
0.067984888




torques



X - 17351
(4564) S: Ruminococcus
0.416500421
0.085811771




torques



X - 12851
(4782) U: Unknown
0.479290527
0.141919097


indolepropionate
(4810) S: Blautia sp CAG
0.402571341
0.090296832



237


phenylacetylglutamine
(4951) S: Roseburia
0.605077279
0.072142918



intestinalis


X - 13729
(5190) S: Firmicutes
0.412316821
0.14903645



bacterium CAG 102


N-acetyl-cadaverine
(5843) S: Allisonella
0.464233346
0.339842275



histaminiformans


ursodeoxycholate
(6148) F:
0.412223334
0.133438158



Peptostreptococcaceae









We also explored which metabolites were best explained by gut microbiome data. For each of the metabolite groups which were significantly predicted using the gut microbiome we computed a score between 0 and 1, representing the fraction of variance that the microbiome data model explains out of that explained by the sum of the microbiome model and the next best model from the feature groups except microbiome. For 80 microbiome predicted metabolite groups, the score was higher than 0.5, indicating that microbiome had the highest predictive power among all feature groups tested (Table 8).













TABLE 8








Next best r2
Next best





(other than
(other than


BIOCHEMICAL
Score
Microbiome r2
Microbiome)
Microbiome)



















carnitine
0.276977
0.059446
0.155178
Sex


3-phenylpropionate
0.765705
0.212152
0.064916
Diet


(hydrocinnamate)


phenylacetate +
0.927233
0.376409
0.02954
Diet


phenylacetylglutamine


hippurate
0.435493
0.132882
0.172249
Diet


xanthurenate
0.342061
0.016314
0.031379
Diet


3-methyl-2-oxovalerate + 4-
0.157003
0.032823
0.176237
Diet


methyl-2-oxopentanoate


3-methylhistidine
0.237835
0.098778
0.316545
Diet


glucuronate
0.308446
0.026981
0.060492
Time of day


glycodeoxycholate
0.7384
0.150068
0.053166
Time of day


quinate
0.367987
0.303854
0.521864
Diet


theobromine + 7-
0.276803
0.044924
0.117371
Diet


methylxanthine


gentisate
0.365171
0.104458
0.181595
Diet


paraxanthine
0.366152
0.24232
0.419483
Diet


indolelactate
0.090336
0.023379
0.235425
Sex


3-indoxyl sulfate
0.756091
0.129252
0.041696
Diet


1,5-anhydroglucitol (1,5-AG)
0.376695
0.170413
0.281977
Diet


2-arachidonoylglycerol (20:4)
0.333827
0.01343
0.0268
Diet


docosahexaenoate (DHA;
0.099721
0.022662
0.204594
Diet


22:6n3)


alpha-hydroxyisocaproate
0.190883
0.068172
0.288966
Sex


phenyllactate (PLA)
0.107697
0.018901
0.156605
Sex


N-acetylaspartate (NAA)
0.569841
0.052896
0.03993
Anthropometrics


dehydroisoandrosterone
0.21087
0.059998
0.224529
Age


sulfate (DHEA-S) +


androstenediol


(3beta,17beta) monosulfate


(1)


acetylcarnitine (C2)
0.242397
0.032595
0.101875
Diet


1-palmitoylglycerol (16:0)
0.200892
0.02802
0.111459
Cardiometabolic


tartronate (hydroxymalonate)
0.367069
0.046048
0.079399
Diet


oxalate (ethanedioate)
0.299409
0.085133
0.199205
Diet


2,3-dihydroxypyridine
0.332366
0.167731
0.336927
Diet


1-oleoylglycerol (18:1)
0.075271
0.009936
0.122073
Cardiometabolic


2-oleoylglycerol (18:1)
0.237011
0.020489
0.065958
Anthropometrics


2-linoleoylglycerol (18:2)
0.42404
0.020463
0.027794
Sex


N-acetylglycine
0.363161
0.044588
0.078189
Diet


threonate
0.436455
0.101397
0.130922
Diet


indoleacetate
0.617335
0.053492
0.033158
Diet


1-methylhistidine
0.308979
0.080211
0.179388
Sex


isobutyrylcarnitine (C4)
0.392293
0.0513
0.079469
Diet


glycolithocholate
0.766774
0.092844
0.02824
Time of day


indolepropionate
0.705066
0.155376
0.064995
Diet


trigonelline (N′-
0.26634
0.13141
0.361983
Diet


methylnicotinate)


dodecanedioate
0.395794
0.054011
0.082451
Diet


3-methylxanthine
0.266129
0.046021
0.126905
Diet


gamma-glutamylvaline
0.268344
0.088646
0.2417
Diet


5-hydroxyhexanoate
0.888408
0.127023
0.015955
Time of day


propionylglycine
0.293976
0.032648
0.078409
Diet


propionylcarnitine (C3)
0.397752
0.076808
0.116297
Anthropometrics


3-hydroxy-2-ethylpropionate
0.358802
0.05234
0.093534
Diet


3-carboxy-4-methyl-5-propyl-
0.079797
0.04595
0.529887
Diet


2-furanpropanoate (CMPF)


I-urobilinogen
0.667928
0.086
0.042756
Time of day


tauro-beta-muricholate
0.334622
0.042089
0.083692
Anthropometrics


N-acetylarginine
0.171476
0.021006
0.101494
Cardiometabolic


piperine
0.379707
0.025898
0.042307
Seasonal effects


myristoylcarnitine
0.154516
0.021401
0.117106
Diet


(C14) + palmitoylcarnitine


(C16)


epiandrosterone
0.224373
0.03567
0.123306
Sex


sulfate + androsterone sulfate


alpha-hydroxyisovalerate
0.266863
0.07422
0.2039
Sex


p-cresol sulfate
0.940319
0.366329
0.023251
Diet


DSGEGDFXAEGGGVR* +
0.233223
0.02929
0.096297
Diet


Fibrinopeptide A (5-


16)* + Fibrinopeptide A (7-


16)* + Fibrinopeptide A (3-


16)**


stearoylcarnitine (C18)
0.126388
0.02328
0.160912
Diet


isovalerylcarnitine (C5)
0.263186
0.057778
0.161754
Cardiometabolic


1,7-
0.369806
0.266644
0.454393
Diet


dimethylurate + theophylline


1-methylurate + 1,3-
0.379695
0.304028
0.496689
Diet


dimethylurate


5-acetylamino-6-
0.366103
0.137479
0.238041
Diet


formylamino-3-methyluracil


5-acetylamino-6-amino-3-
0.361042
0.269664
0.477241
Diet


methyluracil


1-methylxanthine
0.354964
0.288703
0.524628
Diet


N1-methylinosine
0.269149
0.034367
0.093322
Diet


4-hydroxyhippurate
0.357954
0.019849
0.035602
Diet


7-methylguanine
0.563232
0.092589
0.0718
Diet


3-methylcytidine
0.550664
0.048046
0.039205
Age


N1-Methyl-2-pyridone-5-
0.217095
0.043443
0.156667
Diet


carboxamide


1-docosahexaenoylglycerol
0.255119
0.059142
0.172678
Diet


(22:6)


gamma-glutamylisoleucine*
0.206551
0.053026
0.203694
Anthropometrics


oleoylcarnitine (C18:1)
0.192587
0.012451
0.052201
Sex


gamma-glutamyl-2-
0.484066
0.052892
0.056374
Diet


aminobutyrate


2-methylbutyrylcarnitine (C5)
0.383153
0.093097
0.149879
Sex


phenol sulfate
0.92377
0.131786
0.010875
Age


pyroglutamine*
0.101858
0.040868
0.360359
Sex


2-hydroxy-3-methylvalerate
0.1959
0.053295
0.218756
Sex


dimethyl sulfoxide (DMSO)
0.409281
0.081046
0.116975
Diet


glutarylcarnitine (C5-DC)
0.071028
0.015927
0.208308
Sex


tiglylcarnitine (C5:1-DC)
0.179638
0.040058
0.182934
Diet


catechol sulfate + O-
0.31156
0.0758
0.167492
Diet


methylcatechol sulfate


7-alpha-hydroxy-3-oxo-4-
0.422661
0.033347
0.04555
Sex


cholestenoate (7-Hoca)


tetradecanedioate
0.293974
0.016216
0.038946
Sex


1-myristoylglycerol (14:0)
0.182225
0.029043
0.130336
Anthropometrics


3-(3-
0.453199
0.087249
0.10527
Diet


hydroxyphenyl)propionate + 3-


hydroxyhippurate + X - 12543


ectoine
0.207595
0.02318
0.088479
Sex


glycolithocholate sulfate*
0.814685
0.206354
0.046939
Sex


taurolithocholate 3-sulfate
0.855405
0.190948
0.032277
Anthropometrics


deoxycarnitine
0.146301
0.054833
0.319963
Sex


1-ribosyl-imidazoleacetate*
0.357369
0.028333
0.050949
Diet


indoleacetylglutamine
0.281227
0.013213
0.03377
Age


hexanoylglutamine
0.205895
0.030468
0.117512
Macronutrients


tryptophan betaine
0.223764
0.081053
0.281174
Diet


4-ethylphenylsulfate
0.276416
0.076357
0.199882
Diet


3-methyladipate
0.373318
0.031094
0.052197
Diet


o-cresol sulfate
0.058764
0.019915
0.318978
Time of day


4-allylphenol sulfate
0.461766
0.059053
0.068832
Diet


N-methylproline + stachydrine
0.168014
0.043504
0.215429
Diet


beta-cryptoxanthin
0.260259
0.111969
0.318252
Diet


5alpha-androstan-
0.125245
0.04892
0.341679
Sex


3beta,17beta-diol disulfate


5alpha-pregnan-
0.214237
0.029969
0.109918
Age


3beta,20alpha-diol disulfate


glycocholenate sulfate*
0.16895
0.013276
0.065304
Diet


androstenediol (3beta,17beta)
0.167763
0.030466
0.151134
Sex


disulfate (1)


pregnen-diol disulfate
0.30319
0.054851
0.126061
Sex


C21H34O8S2* + pregnenetriol


disulfate*


androstenediol (3beta,17beta)
0.225886
0.05468
0.187388
Sex


disulfate (2)


21-hydroxypregnenolone
0.199878
0.022581
0.090394
Age


disulfate


5alpha-androstan-
0.254411
0.100841
0.295528
Sex


3alpha,17alpha-diol


monosulfate


5alpha-pregnan-
0.237568
0.047354
0.151974
Age


3beta,20alpha-diol


monosulfate (2) + 5alpha-


pregnan-3beta,20beta-diol


monosulfate (1)


5alpha-pregnan-3(alpha or
0.216205
0.029103
0.105504
Age


beta),20beta-diol disulfate


5alpha-androstan-
0.123633
0.096467
0.683802
Sex


3alpha,17beta-diol disulfate


5alpha-androstan-
0.147812
0.030066
0.173341
Sex


3alpha,17beta-diol


monosulfate (1) + 5alpha-


androstan-3beta,17beta-diol


monosulfate (2)


5alpha-androstan-
0.557296
0.213581
0.169664
Sex


3beta,17alpha-diol disulfate


androstenediol (3alpha,
0.187007
0.051007
0.221749
Sex


17alpha) monosulfate (2)


androstenediol (3alpha,
0.16319
0.049941
0.25609
Sex


17alpha) monosulfate (3)


5alpha-pregnan-3beta-ol,20-one
0.206087
0.027644
0.106492
Age


sulfate


4-hydroxycoumarin
0.80298
0.10379
0.025466
Time of day


pregn steroid monosulfate
0.238328
0.076802
0.245452
Age


C21H34O5S* + pregnenolone


sulfate


sphingomyelin (d18:1/18:1,
0.335254
0.045242
0.089706
Sex


d18:2/18:0)


17alpha-
0.174737
0.039231
0.185283
Age


hydroxypregnenolone 3-


sulfate


andro steroid monosulfate
0.233965
0.024136
0.079025
Age


C19H28O6S (1)* + 16a-


hydroxy DHEA 3-sulfate


ergothioneine
0.419401
0.105559
0.146132
Diet


S-methylmethionine
0.273073
0.04592
0.122239
Diet


indole-3-carboxylic acid
0.701777
0.044805
0.01904
Time of day


tridecenedioate (C13:1-DC)*
0.136806
0.029936
0.188882
Diet


N-acetyl-3-methylhistidine*
0.245217
0.03119
0.096003
Diet


7-methylurate
0.307947
0.049891
0.11212
Diet


N-acetyl-cadaverine
0.780853
0.184978
0.051914
Diet


cinnamoylglycine
0.742039
0.246357
0.085643
Diet


2,3-dihydroxyisovalerate
0.468748
0.030495
0.034561
Sex


cysteinylglycine disulfide*
0.07097
0.014108
0.184685
Anthropometrics


isoursodeoxycholate
0.926202
0.201975
0.016093
Anthropometrics


formiminoglutamate
0.307344
0.056343
0.126979
Cardiometabolic


L-urobilin
0.85654
0.151148
0.025315
Time of day


S-methylcysteine + S-
0.148468
0.040269
0.230963
Diet


methylcysteine sulfoxide


androsterone glucuronide
0.050174
0.012288
0.232627
Sex


argininate*
0.270733
0.0546
0.147073
Diet


1-lignoceroyl-GPC (24:0)
0.385846
0.091729
0.146006
Diet


1-(1-enyl-palmitoyl)-GPC
0.246711
0.015476
0.047253
Anthropometrics


(P-16:0)*


1-methyl-5-
0.253327
0.125742
0.37062
Diet


imidazoleacetate + X - 13835


glycoursodeoxycholate
0.926769
0.146924
0.01161
Diet


tauroursodeoxycholate
0.643116
0.044636
0.02477
Time of day


15-methylpalmitate + myristate
0.071405
0.014394
0.187193
Diet


(14:0)


1-(1-enyl-palmitoyl)-GPE (P-
0.2704
0.040271
0.108661
Diet


16:0)* + 1-(1-enyl-oleoyl)-


GPE(P-18:1)*


1-(1-enyl-stearoyl)-GPE
0.223621
0.049078
0.170391
Diet


(P-18:0)*


N-oleoyltaurine
0.308874
0.023147
0.051792
Diet


linoleoylcarnitine (C18:2)*
0.166332
0.028811
0.144404
Sex


leucylalanine
0.074872
0.012745
0.15748
Diet


N-palmitoyltaurine
0.357112
0.021222
0.038204
Anthropometrics


trimethylamine N-oxide
0.351416
0.041943
0.077412
Diet


imidazole propionate
0.50283
0.058109
0.057455
Sex


pregnanediol-3-glucuronide
0.343259
0.045552
0.087153
Age


3-hydroxybutyrylcarnitine (1)
0.297005
0.064329
0.152263
Macronutrients


5-hydroxymethyl-2-furoic
0.437487
0.036237
0.046592
Diet


acid


N-acetylcarnosine
0.189673
0.120697
0.515647
Sex


margaroylcarnitine*
0.442252
0.037078
0.046761
Diet


N-methyltaurine
0.322565
0.047903
0.100604
Diet


glycohyocholate + X - 22716
0.353491
0.055731
0.101928
Diet


4-methylcatechol sulfate
0.84032
0.144559
0.02747
Time of day


3-methyl catechol sulfate
0.390624
0.185658
0.289628
Diet


(1) + 3-methyl catechol sulfate


(2)


indolin-2-one
0.874083
0.143459
0.020666
Sex


3-acetylphenol sulfate
0.428795
0.101779
0.135582
Diet


sphingomyelin (d18:1/14:0,
0.30794
0.112004
0.251715
Diet


d16:1/16:0)*


N-delta-acetylornithine
0.333084
0.100466
0.201158
Diet


acisoga
0.414816
0.043529
0.061406
Diet


benzoylcarnitine*
0.617258
0.099975
0.061992
Diet


N-formylanthranilic acid
0.288919
0.012053
0.029664
Diet


N2,N5-diacetylornithine
0.359311
0.10592
0.188867
Diet


1H-indole-7-acetic acid
0.570809
0.086686
0.065179
Time of day


3-(3-
0.312026
0.042273
0.093206
Diet


hydroxyphenyl)propionate


sulfate


methyl glucopyranoside
0.357751
0.131982
0.236939
Diet


(alpha + beta)


sphingomyelin (d18:2/14:0,
0.305079
0.091381
0.208152
Sex


d18:1/14:1)*


5alpha-androstan-
0.154317
0.142246
0.779535
Sex


3alpha,17beta-diol


monosulfate (2)


4-hydroxychlorothalonil
0.365537
0.041478
0.071994
Diet


3-hydroxypyridine sulfate +
0.382638
0.224392
0.362042
Diet


X - 23655


phenylacetylcarnitine
0.883782
0.18954
0.024925
Sex


arabonate/xylonate
0.358472
0.066979
0.119867
Diet


pregnanolone/allopregnanolone
0.147609
0.02298
0.132703
Age


sulfate


p-cresol-glucuronide*
0.928391
0.401115
0.030939
Anthropometrics


6-hydroxyindole sulfate +
0.789913
0.123466
0.032837
Diet


X - 21310


sphingomyelin (d18:1/22:1,
0.337653
0.052896
0.103761
Sex


d18:2/22:0, d16:1/24:1)*


sphingomyelin (d17:1/16:0,
0.255659
0.104608
0.304562
Diet


d18:1/15:0,


d16:1/17:0)* + sphingomyelin


(d18:1/17:0, d17:1/18:0,


d19:1/16:0)


3-methoxycatechol sulfate
0.409823
0.029801
0.042916
Diet


(1) + 1,2,3-benzenetriol


sulfate (2)


arabitol/xylitol
0.439269
0.051734
0.066039
Age


citraconate/glutaconate + maleate
0.425319
0.167781
0.226702
Diet


adipoylcarnitine (C6-DC)
0.226355
0.027684
0.094619
Diet


glycodeoxycholate sulfate
0.377098
0.02516
0.04156
Seasonal effects


taurodeoxycholic acid 3-
0.482548
0.051577
0.055307
Time of day


sulfate


phenol glucuronide
0.779761
0.054834
0.015488
Sex


linoleoyl ethanolamide
0.282102
0.009612
0.024462
Time of day


1-stearoyl-2-
0.130097
0.035116
0.234806
Diet


docosahexaenoyl-GPC


(18:0/22:6)


2-hydroxybutyrate/2-
0.179884
0.041659
0.189928
Diet


hydroxyisobutyrate


2-hydroxylaurate
0.208051
0.05741
0.218534
Sex


sphingomyelin (d18:2/24:1,
0.158306
0.029344
0.156017
Sex


d18:1/24:2)*


1-palmitoyl-2-palmitoleoyl-
0.271175
0.047007
0.126339
Diet


GPC (16:0/16:1)* + 1-


myristoyl-2-palmitoyl-GPC


(14:0/16:0)


gamma-tocopherol/beta-
0.295388
0.041578
0.09918
Diet


tocopherol


1-(1-enyl-stearoyl)-2-
0.187762
0.073886
0.319622
Diet


arachidonoyl-GPE (P-


18:0/20:4)*


1-(1-enyl-palmitoyl)-2-
0.286155
0.137336
0.342599
Diet


arachidonoyl-GPE (P-


16:0/20:4)*


1-(1-enyl-palmitoyl)-2-oleoyl-
0.221341
0.057445
0.202087
Anthropometrics


GPC (P-16:0/18:1)*


1-(1-enyl-palmitoyl)-2-
0.175395
0.047465
0.223155
Diet


arachidonoyl-GPC (P-


16:0/20:4)*


sphingomyelin (d18:0/18:0,
0.205885
0.022245
0.085801
Cardiometabolic


d19:0/17:0)* + sphingomyelin


(d18:0/20:0, d16:0/22:0)*


myristoyl
0.241208
0.049654
0.156202
Diet


dihydrosphingomyelin


(d18:0/14:0)*


1-(1-enyl-palmitoyl)-2-
0.32451
0.055708
0.115959
Diet


linoleoyl-GPE (P-16:0/18:2)*


1-oleoyl-2-docosahexaenoyl-
0.231722
0.033848
0.112222
Diet


GPC (18:1/22:6)*


1-palmitoyl-2-gamma-
0.242427
0.01428
0.044623
Anthropometrics


linolenoyl-GPC


(16:0/18:3n6)*


1-(1-enyl-palmitoyl)-2-
0.211229
0.016329
0.060975
Sex


palmitoleoyl-GPC (P-


16:0/16:1)*


1-oleoyl-2-docosahexaenoyl-
0.281112
0.024935
0.063767
Diet


GPE (18:1/22:6)*


2-methylserine
0.253501
0.028295
0.083321
Diet


glycocholate glucuronide (1)
0.837853
0.071558
0.013848
Drugs


14-HDoHE/17-HDoHE
0.444463
0.032585
0.040728
Seasonal effects


catechol glucuronide
0.238255
0.026107
0.083469
Diet


palmitoloelycholine
0.482857
0.026824
0.028729
Sex


eicosapentaenoylcholine
0.37232
0.018401
0.031021
Cardiometabolic


caffeic acid sulfate
0.24934
0.050395
0.151718
Diet


2,3-dihydroxy-2-
0.28063
0.037595
0.096372
Diet


methylbutyrate


linoleoyl-arachidonoyl-
0.15431
0.011884
0.06513
Cardiometabolic


glycerol (18:2/20:4)


[2]* + linoleoyl-arachidonoyl-


glycerol (18:2/20:4) [1]*


perfluorooctanesulfonic acid
0.168419
0.051079
0.252208
Diet


(PFOS)


2-hydroxynervonate*
0.354288
0.03507
0.063918
Diet


N-palmitoyl-
0.577092
0.042882
0.031425
Diet


heptadecasphingosine


(d17:1/16:0)*


ceramide (d18:1/14:0,
0.335338
0.070115
0.138972
Diet


d16:1/16:0)*


glycosyl ceramide
0.319625
0.02929
0.062349
Sex


(d18:2/24:1, d18:1/24:2)*


sphingomyelin (d18:1/19:0,
0.281767
0.08422
0.21468
Diet


d19:1/18:0)* + sphingomyelin


(d18:1/21:0, d17:1/22:0,


d16:1/23:0)*


sphingomyelin (d18:2/21:0,
0.323837
0.086469
0.180544
Sex


d16:2/23:0)* + sphingomyelin


(d18:2/23:0, d18:1/23:1,


d17:1/24:1)*


sphingomyelin (d18:2/23:1)*
0.257535
0.083923
0.241946
Diet


sphingomyelin (d17:2/16:0,
0.342481
0.109936
0.211062
Diet


d18:2/15:0)*


linolenoylcarnitine (C18:3)*
0.210918
0.020812
0.07786
Sex


cerotoylcarnitine (C26)*
0.11618
0.013297
0.101154
Sex


ximenoylcarnitine (C26:1)*
0.265347
0.020312
0.056238
Age


arachidonoylcarnitine (C20:4)
0.094692
0.018103
0.173076
Sex


docosahexaenoylcarnitine
0.317392
0.017468
0.037569
Diet


(C22:6)*


N-trimethyl 5-aminovalerate
0.165255
0.029086
0.14692
Diet


carotene diol (2) + carotene
0.460312
0.11677
0.136906
Diet


diol (1)


carotene diol (3)
0.141962
0.013149
0.079477
Diet


hydroxy-CMPF*
0.039891
0.021204
0.51034
Diet


dodecenedioate (C12:1-DC)*
0.192548
0.033906
0.142187
Time of day


3-carboxy-4-methyl-5-pentyl-
0.334037
0.070428
0.14041
Diet


2-furanpropionate (3-


CMPFP)**


glucuronide of C10H18O2
0.343845
0.017662
0.033704
Seasonal effects


(7)*


perfluorooctanoate (PFOA)
0.376413
0.027342
0.045295
Anthropometrics


N-methylhydroxyproline**
0.217206
0.022951
0.082713
Diet


N,N,N-trimethyl-
0.096878
0.043365
0.404257
Sex


alanylproline betaine (TMAP)


gamma-glutamylcitrulline*
0.484649
0.052195
0.055501
Sex


glycine conjugate of
0.302041
0.061761
0.142718
Diet


C10H14O2 (1)*


N-acetyl-isoputreanine*
0.324644
0.030469
0.063385
Diet


2-naphthol sulfate
0.477464
0.037791
0.041359
LifeStyle


dihydrocaffeate sulfate (2)
0.303748
0.046147
0.105779
Diet


2,6-dihydroxybenzoic acid
0.166009
0.036423
0.182979
Diet


2,3-dihydroxy-5-methylthio-
0.096753
0.02623
0.24487
Cardiometabolic


4-pentenoate (DMTPA)*


taurochenodeoxycholic acid
0.357058
0.024331
0.043812
Time of day


3-sulfate


eicosenedioate (C20:1-DC)*
0.232762
0.06327
0.208553
Diet


hydroxy-N6,N6,N6-
0.197005
0.040766
0.166161
Sex


trimethyllysine*


picolinoylglycine
0.337869
0.051426
0.100781
Age


sarcosine
0.33884
0.023562
0.045975
Time of day


glycerate
0.691439
0.046054
0.020552
Sex


N-acetylmethionine
0.470656
0.042956
0.048313
Seasonal effects


thyroxine
0.299497
0.027143
0.063486
Sex


alpha-tocopherol
0.430181
0.052832
0.069982
Age


vanillylmandelate (VMA)
0.112075
0.02733
0.216523
Age


chenodeoxycholate
0.652154
0.027443
0.014637
Time of day


2-aminobutyrate
0.267642
0.074972
0.205149
Diet


urate
0.146965
0.062233
0.361222
Anthropometrics


ursodeoxycholate
0.817802
0.152604
0.033999
Sex


4-hydroxyphenylpyruvate
0.142653
0.012647
0.076009
Diet


isocitrate
0.303912
0.034287
0.078531
Diet


creatine
0.088312
0.023386
0.241425
Diet


cys-gly, oxidized
0.109975
0.013287
0.107532
Sex


choline
0.237484
0.013308
0.042728
Diet


anthranilate
0.78757
0.114992
0.031017
Age


cholate
0.609831
0.086449
0.05531
Time of day


N-palmitoyl-sphingosine
0.52251
0.059534
0.054405
Age


(d18:1/16:0)


stearoyl sphingomyelin
0.345845
0.064702
0.122383
Diet


(d18:1/18:0)


N-stearoyl-sphingosine
0.30437
0.049542
0.113227
Diet


(d18:1/18:0)*


taurodeoxycholate
0.958573
0.095894
0.004144
Macronutrients


N6,N6,N6-trimethyllysine
0.227981
0.038408
0.130061
Sex


3-(4-hydroxyphenyl)lactate
0.184398
0.062185
0.27505
Sex


biliverdin + bilirubin (E,E)*
0.226841
0.032125
0.109494
Sex


3-hydroxybutyrate (BHBA)
0.193033
0.037267
0.155792
Macronutrients


creatinine
0.145844
0.083478
0.4889
Sex


cystine
0.193485
0.038517
0.160552
Age


deoxycholate
0.706467
0.035508
0.014753
Age


gamma-glutamylglutamate
0.271228
0.048136
0.129338
Anthropometrics


glutarate (pentanedioate)
0.621059
0.087665
0.053489
Sex


guanidinoacetate
0.13674
0.021507
0.135779
Sex


myo-inositol
0.511408
0.070411
0.06727
Time of day


isoleucine
0.189793
0.031782
0.135676
Diet


2-aminoadipate
0.224225
0.057367
0.198478
Diet


citrulline
0.446846
0.046122
0.057095
Age


leucine + gamma-
0.288715
0.06693
0.164891
Anthropometrics


glutamylleucine


malate
0.321709
0.033531
0.070697
Diet


nicotinamide
0.127478
0.018211
0.124646
Time of day


ornithine
0.167702
0.018443
0.091533
Anthropometrics


phytanate
0.180388
0.033068
0.150248
Diet


proline
0.289837
0.025212
0.061775
Sex


retinol (Vitamin A)
0.250333
0.027347
0.081897
Cardiometabolic


taurine
0.599726
0.035708
0.023833
Seasonal effects


urea
0.260789
0.051152
0.144991
Diet


glutamate
0.18149
0.040377
0.182097
Anthropometrics


valine
0.186757
0.032666
0.142244
Diet


caffeine + 1,3,7-trimethylurate
0.394336
0.270008
0.414708
Diet


caprate (10:0)
0.1687
0.02295
0.11309
Diet


alpha-ketoglutarate
0.226222
0.035558
0.121624
Anthropometrics


X - 01911
0.223063
0.016043
0.055877
Sex


X - 11261
0.315102
0.048919
0.10633
Diet


X - 11299 + X - 11483
0.754082
0.025772
0.008405
Macronutrients


X - 11308
0.25473
0.119144
0.348583
Diet


X - 11315
0.266674
0.135361
0.372229
Diet


X - 11378
0.158686
0.052512
0.278406
Sex


X - 11381
0.205243
0.072687
0.281463
Diet


X - 11444
0.083443
0.018535
0.203599
Anthropometrics


X - 11470
0.068143
0.011831
0.16179
Time of day


X - 11478
0.42134
0.056492
0.077585
Diet


X - 11485
0.232614
0.023795
0.078497
Diet


X - 11491
0.205863
0.018237
0.070353
Anthropometrics


X - 11640
0.403971
0.053868
0.079478
Diet


X - 11795
0.110742
0.034854
0.279879
Diet


X - 11843 + X - 11850 +
0.953159
0.479096
0.023544
Macronutrients


X - 12013


X - 11849
0.102283
0.019434
0.170569
Diet


X - 11852
0.436372
0.014419
0.018625
Diet


X - 11858
0.051082
0.017322
0.321775
Diet


X - 11880 + X - 11372
0.278849
0.137921
0.356687
Diet


X - 12063
0.123077
0.041351
0.294627
Anthropometrics


X - 12101
0.178396
0.028461
0.131076
Diet


X - 12126
0.846036
0.251003
0.045678
Diet


X - 12206
0.47295
0.034313
0.038238
Diet


X - 12212
0.503736
0.057528
0.056675
Diet


X - 12216
0.933304
0.234275
0.016742
Time of day


X - 12221
0.316174
0.048395
0.10467
Diet


4-ethylcatechol sulfate
0.383336
0.182636
0.293803
Diet


X - 12261
0.964726
0.403181
0.014742
Cardiometabolic


X - 12283
0.640942
0.128873
0.072195
Diet


X - 12306
0.592862
0.17703
0.121572
Diet


X - 12329 + N-
0.401011
0.113761
0.169925
Diet


(2-furoyl)glycine


X - 12411
0.256335
0.036709
0.106498
Time of day


X - 12544
0.283296
0.043788
0.110778
Diet


X - 12718
0.619573
0.14593
0.089603
Age


X - 12730
0.424132
0.107163
0.1455
Diet


X - 12738
0.429681
0.094466
0.125386
Diet


X - 12798
0.278326
0.024121
0.062544
Diet


X - 12816
0.527171
0.311965
0.279807
Diet


X - 12822
0.569941
0.081195
0.061267
Sex


X - 12830
0.568434
0.037847
0.028734
Time of day


X - 12837
0.590399
0.222416
0.154305
Diet


X - 12851
0.938032
0.269466
0.017802
Sex


X - 12906
0.182565
0.03077
0.137774
Time of day


X - 13431
0.297652
0.042781
0.100947
Diet


X - 13684
0.144862
0.019582
0.115595
Sex


X - 13703 + X - 13255
0.387965
0.060009
0.094668
Diet


X - 13729
0.759983
0.18146
0.057308
Diet


X - 13844
0.110693
0.038524
0.309501
Diet


X - 13866
0.154912
0.025277
0.137895
Diet


X - 14082
0.484328
0.062808
0.066872
Diet


X - 14662
0.754385
0.122946
0.040029
Diet


X - 14939
0.135131
0.036604
0.234274
Diet


X - 15461
0.442749
0.061711
0.077671
Cardiometabolic


X - 15503
0.131259
0.036143
0.239213
Age


X - 15728
0.582189
0.046332
0.03325
Seasonal effects


X - 16087
0.389475
0.080624
0.126383
Diet


X - 16124
0.945499
0.572857
0.033021
Seasonal effects


X - 16580
0.32773
0.051125
0.104872
Diet


X - 16654
0.879092
0.124415
0.017112
Sex


X - 16935
0.304491
0.082094
0.187518
Diet


X - 16944
0.372807
0.03057
0.051429
Diet


X - 17145
0.390481
0.163885
0.255816
Diet


X - 17185
0.240775
0.094821
0.298997
Diet


X - 17337
0.345807
0.044816
0.084783
Diet


X - 17354 + X - 22509
0.508746
0.11158
0.107743
Diet


X - 17367 + X - 17325
0.207975
0.041148
0.156702
Diet


X - 17469
0.889628
0.181012
0.022457
LifeStyle


X - 17612
0.879879
0.200559
0.02738
Time of day


X - 17653
0.209
0.049858
0.188697
Diet


X - 17654
0.272664
0.064005
0.170734
Diet


X - 17655
0.172795
0.024202
0.11586
Diet


X - 17676
0.221321
0.040236
0.141564
Diet


X - 18240
0.485008
0.074912
0.079543
Diet


X - 18249
0.275114
0.115544
0.304443
Diet


X - 18606
0.340199
0.04149
0.080469
Diet


X - 18886
0.300093
0.069255
0.161523
Diet


X - 18887
0.294542
0.019636
0.04703
Time of day


X - 18899
0.102736
0.009298
0.081209
Diet


X - 18901
0.281107
0.048952
0.125188
Diet


X - 18914
0.244488
0.101505
0.313669
Diet


X - 18922
0.203237
0.064215
0.251745
Diet


X - 19434
0.648943
0.075494
0.04084
Time of day


X - 21285
0.207055
0.031312
0.119913
Sex


X - 21286
0.84225
0.121941
0.022839
Time of day


X - 21319
0.273118
0.048592
0.129323
Diet


X - 21339
0.248849
0.101561
0.306562
Diet


X - 21364
0.163809
0.028826
0.147146
Sex


X - 21383
0.19078
0.038465
0.163157
Diet


X - 21410
0.333429
0.042032
0.084028
Diet


X - 21442
0.315377
0.229695
0.498624
Diet


X - 21467
0.38719
0.024764
0.039194
Drugs


X - 21657
0.412839
0.034462
0.049014
Sex


X - 21659 + X - 21474
0.324629
0.035262
0.073361
Seasonal effects


X - 21661 + X - 11847
0.04478
0.010795
0.230265
Diet


X - 21736
0.392913
0.128818
0.199036
Diet


X - 21752
0.361439
0.161664
0.285614
Diet


X - 21821 + X - 17351
0.697643
0.190367
0.082505
Diet


X - 21829
0.429735
0.09914
0.131561
Diet


X - 21839
0.869517
0.046487
0.006976
Time of day


X - 21845
0.751507
0.077756
0.025711
Time of day


X - 22162
0.637822
0.143328
0.081386
Time of day


X - 22520
0.677537
0.097295
0.046306
Time of day


X - 22834
0.784112
0.057478
0.015825
Seasonal effects


X - 23314
0.343232
0.050182
0.096022
Diet


X - 23583
0.374073
0.018852
0.031545
Time of day


X - 23585
0.412576
0.018921
0.02694
Seasonal effects


X - 23587
0.492778
0.073376
0.075527
Diet


X - 23639
0.374358
0.159606
0.26674
Diet


X - 23649
0.378597
0.175167
0.287507
Diet


X - 23652
0.245643
0.132477
0.40683
Diet


X - 23654
0.211333
0.041121
0.153456
Anthropometrics


X - 23659
0.390389
0.071798
0.112116
Diet


X - 23680
0.225153
0.023519
0.08094
Diet


X - 23782
0.306691
0.045979
0.10394
Diet


X - 23974
0.293538
0.025475
0.061312
Diet


X - 23997
0.939331
0.218763
0.014129
LifeStyle


X - 24243
0.638978
0.144722
0.081768
Diet


X - 24328
0.077111
0.0184
0.220214
Sex


X - 24337
0.232288
0.03201
0.105794
Diet


X - 24352
0.288702
0.028808
0.070977
Diet


X - 24410
0.775694
0.192359
0.055624
Diet


X - 24435
0.354507
0.019877
0.036192
Time of day


X - 24455
0.301566
0.013947
0.032302
Time of day


X - 24473
0.359349
0.078371
0.139721
Diet


X - 24475
0.226309
0.064789
0.221498
Diet


X - 24512
0.120053
0.013585
0.099577
Sex


X - 24544
0.270667
0.052693
0.141986
Age


X - 24556
0.434236
0.049206
0.06411
Diet


X - 24693
0.383104
0.064027
0.103099
Diet


X - 24736
0.408414
0.06513
0.09434
Diet


X - 24748
0.198616
0.015027
0.060632
Diet


X - 24760 + 3-
0.280665
0.044235
0.113372
Diet


hydroxyhippurate sulfate


X - 24801
0.145752
0.037726
0.221109
Anthropometrics


X - 24811
0.387112
0.286808
0.454083
Diet


X - 24947
0.459853
0.039444
0.046332
Sex


X - 24948
0.258436
0.079687
0.228657
Sex


X - 24949
0.162358
0.059267
0.30577
Diet


X - 24951
0.323964
0.087978
0.18359
Diet


X - 24972
0.401434
0.055144
0.082224
Age









Identification and Candidate Structures of Microbiome-Related Unknown Compounds


Metabolites that are accurately predicted by the gut microbiome are of particular interest as they may be modulated by perturbing the bacterial community. Since many of the metabolites that were predicted by the gut microbiome with high accuracy are unknown, we sought their identification. Here we provide the chemical identification of 11 compounds and candidate structures for 19 other compounds previously tagged as unknown (Table 9). Among these metabolites are some of those that are predicted by the microbiome with the highest accuracy, including X-11850, X-12261 and X-11843. These were all predicted with R2>0.45 using the microbiome, and are likely to be derivatives of aromatic amino acids, a class of molecules known to be metabolized by the gut microbiome. This list constitutes a major step towards mapping the metabolic producing and modulating potential of the human gut microbiome.











TABLE 9







Metabolite

Microbiome


name
Identified molecule
R2





X - 12837
glucuronide of C19H28O4 (2)*
0.28


X - 12230
4-ethylcatechol sulfate
0.23


X - 23649
3-hydroxypyridine glucuronide
0.21


X - 12329
3-hydroxy-2-methylpyridine sulfate
0.17


X - 17145
branched chain 14:0 dicarboxylic acid**
0.16


X - 14662
glycoursodeoxycholate sulfate (1)
0.14


X - 17469
lithocholic acid sulfate (1)
0.12


X - 16654
deoxycholic acid (12 or 24)-sulfate*
0.12


X - 18249
3,5-dichloro-2,6-dihydroxybenzoic acid
0.09


X - 11640
enterolactone sulfate
0.07


X - 18914
3-bromo-5-chloro-2,6-dihydroxybenzoic acid*
0.04












Metabolite

Microbiome


name
Candidate structure
R2





X - 11850
aromatic amino acid related metabolite
0.52


X - 12261
aromatic amino acid related metabolite
0.47


X - 11843
aromatic amino acid related metabolite
0.46


X - 23655
pyridine related
0.31


X - 12126
aromatic amino acid related metabolite
0.27


X - 12216
aromatic amino acid related metabolite
0.25


X - 24410
piperidine related
0.19


X - 17185
phenol-related
0.19


X - 12718
aromatic amino acid related metabolite
0.17


X - 17354
polyphenol related
0.16


X - 21286
pyridine related
0.14


X - 12283
aromatic amino acid related metabolite
0.14


X - 12738
phenol-related
0.14


X - 24243
piperidine related
0.13


X - 22520
fatty acid conjugate
0.13


X - 11315
amino acid derivative
0.12


X - 22509
polyphenol related
0.12


X - 13844
benzoic acid derivative
0.1


X - 13835
aromatic amino acid related metabolite
0.08









In Table 9, names of unknown compounds as provided by Metabolon Inc along with their new identification and candidate structures are provided. Microbiome R2 is the EV of each metabolite as estimated by a prediction model based on gut microbiome data


Networks of Interactions Between Features Explain Diverse Metabolites


As multiple metabolites were significantly predicted using more than one feature group, we next examined how different feature groups interact in explaining the levels of these metabolites. By building separate predictive models each based on a different feature group and using SHAP in order to estimate the impact of each specific feature on the output of the models, we uncovered a dense network of interactions between feature groups in explaining metabolite levels (FIG. 5A).


As mentioned above, we found that the reported consumption of coffee was linked to a large number of metabolites, most of which are unknown compounds and xenobiotics from the xanthine metabolism pathway. Notably, we found that a specific bacterial species from the Clostridiales order was linked to a large number of these metabolites (FIG. 5B), suggesting a possible interaction between coffee consumption and the presence of this bacteria in explaining the levels of these metabolites. Being the most predictive features among their feature categories, coffee consumption and this Clostridiales species may be targets for validation using interventional studies.


We next focused on metabolites which were significantly explained using seasonal effects, and examined which dietary features interact with them (FIG. 5C). The consumption of citrus fruits such as oranges positively affected (on average) the prediction of several metabolites such as stachydrine, a known biomarker for the consumption of citrus fruits45 (also named proline betaine; significantly predicted by diet, Pearson R=0.50, p<10−20), which in turn had higher values in samples taken in winter months compared to samples taken during the summer, consistent with the fact that oranges are seasonal fruits available in Israel mostly during winter. Another example is N-methyltaurine (R=0.35, p<10−20), an amino acid which has higher levels in samples taken during winter, and whose prediction was negatively affected, on average, by the consumption of watermelon, a summer seasonal fruit.


Finally, we explored some known examples of associations between metabolites and features to further validate the quality of data in our cohort (FIG. 5D). The diurnal cycle is known to regulate the levels of multiple circulating metabolites. We found that the levels of cortisol were lower in samples taken during the second half of the day (Prediction with time of day, R=0.63, p<10−20, positive SHAP value for samples taken in the morning), consistent with previous studies showing that cortisol levels peak early in the morning46. We also found that the levels of tobacco-related metabolites such as cotinine (Prediction R=0.72 by lifestyle, p<10−20) were higher in samples of active smokers (positive SHAP values for smoking), and that no other feature could significantly explain their levels. Finally, we found that blood levels of serotonin (Prediction R=0.46 by drugs, p<10−6) were lower in samples of participants who reported taking psychiatric drugs (negative SHAP values), despite serotonin being a therapeutic target for selective serotonin reuptake inhibitors (SSRI)47 which are prescribed to increase serotonin levels in the brain.


Metabolites Explained by Bread Increase Following a Bread Consumption Intervention


As a proof of concept examining whether some of the feature-metabolite interactions we uncovered may be causal, we profiled the serum metabolome of samples from a randomized cross-over trial that we previously conducted48, in which we compared the effects of consuming artisanal whole-grain sourdough bread (hereinafter, “sourdough bread”) to those of industrial white bread made from refined wheat (“white bread”). Twenty healthy subjects were randomly divided into two groups of 10, who then underwent a 1-week-long dietary intervention of increased bread consumption, where each group received a different type of bread. Following two weeks of washout, the intervention was performed again, switching bread types between the groups. (FIG. 6C). In the present study, we performed metabolomic profiling of blood samples that were taken at both the beginning and the end of the first week of intervention, in order to estimate the effect of the dietary intervention on serum metabolites.


We used the healthy cohort of 458 participants for which we had one week of logged normal diet, without any intervention (FIG. 6A) to identify potential associations between the reported consumption of white and whole-wheat breads and the levels of metabolites (FIG. 6B). We ranked the metabolites according to the mean absolute SHAP value for consumption of whole-wheat bread computed based on the 458 participants, and selected the top 5% positively and negatively associated metabolites for further analysis (FIG. 6B). Notably, analyzing the metabolomic samples of subjects who received the sourdough bread intervention, we found that metabolites that were positively associated with the consumption of whole-wheat bread in our cohort increased significantly more (median fold-change 1.44) than metabolites that were negatively associated with the consumption of whole-wheat bread in the 458-participants cohort (median fold-change 0.66, p<10−8, Mann-Whitney U; FIG. 6D). Moreover, we found no statistically significant differences when comparing the mean fold-change of these metabolites in the group which received the white bread intervention (p>0.3, Mann-Whitney U; FIG. 6D).


Some of the metabolites which increased in levels following the sourdough bread intervention were previously reported to be linked to the consumption of whole-grain wheat flour. A notable example is betaine, an amino acid which has been shown to protect internal organs, improve vascular risk factors49 and is also known to be highly abundant in a wide variety of foods, of which wheat bran and wheat germ are the highest naturally occurring sources50,51. We found that in the group that received sourdough bread the mean fold-change in betaine levels was 6.16, while the mean fold-change in the group that received white bread was 0.82 (Mann-Whitney U p<0.004; FIG. 6E; Methods), consistent with the correlation between betaine levels and the consumption of whole-grain wheat in the larger cohort (Spearman R=0.14, p<0.003). Another example is cytosine, for which the mean fold-change was far greater in the sourdough bread compared to the white bread group, 78.5 vs. 0.53, respectively (Mann-Whitney U p<0.002; FIG. 6F). Unlike betaine, the levels of cytosine were not previously linked to the rate or type of bread consumption.


We also performed a similar analysis using metabolites that were associated with white bread consumption in our cohort, but did not find significant changes in these metabolites in the bread intervention study, potentially stemming from high white wheat consumption in the typical diet before the intervention. Overall, these results suggest that some of the associations that we found between the consumption of whole-wheat bread and the levels of metabolites in our larger cohort might be causal, as their levels increase following a dietary intervention that increased the consumption of whole-wheat bread.


Sequence Identifiers for Metagenomic Sequences of Unknown Bacteria

Table 10 provides the sequence identifier for the metagenomic sequences of the unknown bacteria.












TABLE 10







Seq ID
unknown bacteria number



















1
14921



2
13981



3
14252



4
4781



5
14999



6
14764



7
15385



8
4121



9
4121



10
14027



11
4121



12
4342



13
15403



14
13983



15
4029



16
4342



17
14999



18
4130



19
14250



20
4781



21
15390



22
14263



23
14250



24
15403



25
14999



26
14974



27
4029



28
4029



29
14921



30
14932



31
15403



32
4781



33
15403



34
13981



35
4342



36
15385



37
14263



38
8767



39
14263



40
14899



41
14921



42
3926



43
4121



44
14999



45
14999



46
14020



47
14252



48
14027



49
15403



50
14252



51
3964



52
14932



53
4395



54
14974



55
4130



56
14253



57
15403



58
15390



59
14999



60
14937



61
14252



62
14999



63
4342



64
4767



65
13982



66
4130



67
15350



68
14921



69
3574



70
3964



71
15395



72
14027



73
15403



74
4121



75
4121



76
14899



77
4394



78
4029



79
4781



80
4781



81
13983



82
14253



83
14921



84
8767



85
4781



86
14252



87
14252



88
15403



89
4029



90
4121



91
4029



92
15356



93
14999



94
4121



95
15390



96
15395



97
4781



98
8767



99
15403



100
4029



101
15403



102
15356



103
4029



104
15350



105
4781



106
14252



107
14764



108
4130



109
15403



110
15385



111
4130



112
14921



113
3574



114
14253



115
15403



116
4782



117
3926



118
4394



119
14937



120
14764



121
14252



122
15356



123
4029



124
14764



125
3952



126
15356



127
4342



128
4342



129
15403



130
14937



131
4029



132
15403



133
14861



134
8767



135
15350



136
3574



137
4130



138
13981



139
14999



140
14252



141
3940



142
3952



143
3926



144
15403



145
14252



146
14252



147
14252



148
14999



149
4767



150
4781



151
15403



152
14999



153
14250



154
14252



155
14252



156
14027



157
4130



158
4029



159
14999



160
14899



161
13981



162
4395



163
8767



164
14764



165
14252



166
3574



167
4029



168
14252



169
15350



170
14253



171
4767



172
4767



173
4130



174
14932



175
14764



176
14999



177
14253



178
4342



179
4342



180
3574



181
14999



182
14999



183
15403



184
13981



185
14921



186
4767



187
14921



188
4342



189
14921



190
14899



191
3926



192
4121



193
14252



194
14250



195
4394



196
4121



197
14999



198
4029



199
15390



200
15356



201
14974



202
14999



203
4121



204
14999



205
15403



206
15395



207
15385



208
4781



209
14899



210
14974



211
14252



212
4394



213
4781



214
4029



215
14999



216
14921



217
4394



218
4342



219
14252



220
14252



221
4121



222
3574



223
14253



224
3952



225
4394



226
4342



227
8767



228
15350



229
14027



230
3952



231
14252



232
3964



233
4121



234
14999



235
15356



236
4781



237
14937



238
4130



239
14999



240
14252



241
4342



242
14899



243
14974



244
14252



245
14932



246
14899



247
14253



248
14921



249
13981



250
15385



251
4342



252
14999



253
14250



254
14999



255
14764



256
15350



257
4782



258
14861



259
14253



260
3952



261
4394



262
4781



263
14252



264
14932



265
14252



266
4029



267
14764



268
3964



269
15395



270
15385



271
15403



272
4029



273
4029



274
4029



275
14899



276
14252



277
15403



278
14921



279
14250



280
3574



281
13982



282
14027



283
14974



284
3952



285
14999



286
15356



287
4342



288
4029



289
14252



290
14937



291
4781



292
15350



293
14999



294
14263



295
14899



296
14999



297
14999



298
14027



299
14921



300
14252



301
3926



302
14999



303
4342



304
14764



305
4029



306
14253



307
3940



308
15356



309
14764



310
13981



311
14899



312
14899



313
15395



314
4342



315
14764



316
15403



317
4029



318
3964



319
14921



320
4781



321
14764



322
4029



323
3940



324
14252



325
14253



326
4342



327
14999



328
15356



329
14999



330
4342



331
15403



332
3574



333
14999



334
4342



335
14999



336
14252



337
3952



338
14921



339
14932



340
15403



341
15350



342
4342



343
3952



344
14252



345
4029



346
14252



347
14252



348
14974



349
4029



350
14999



351
14253



352
13981



353
3952



354
14921



355
14764



356
15403



357
14252



358
14974



359
15390



360
15390



361
3574



362
4394



363
14899



364
14252



365
14764



366
14764



367
3940



368
14999



369
13981



370
4781



371
4029



372
14027



373
13981



374
14932



375
14899



376
13981



377
14252



378
15403



379
15395



380
15350



381
4342



382
14899



383
4395



384
4029



385
13981



386
14263



387
14253



388
3574



389
13981



390
14252



391
14999



392
14921



393
15403



394
4342



395
4342



396
4029



397
14252



398
4342



399
3574



400
4121



401
14999



402
14764



403
4029



404
14252



405
4782



406
14764



407
3952



408
14861



409
14899



410
13982



411
14999



412
14999



413
4781



414
15385



415
14999



416
4782



417
13981



418
14937



419
3940



420
4029



421
15350



422
4342



423
4121



424
4767



425
3940



426
14921



427
3964



428
3964



429
13981



430
15350



431
14252



432
4767



433
15350



434
14764



435
4121



436
14252



437
4781



438
14253



439
4394



440
14899



441
14999



442
14999



443
14921



444
4781



445
14999



446
5184



447
4342



448
14027



449
14999



450
13981



451
14764



452
14932



453
14764



454
13981



455
3574



456
3964



457
13982



458
3574



459
4781



460
4781



461
4782



462
14252



463
3952



464
15403



465
15390



466
14252



467
14250



468
14764



469
14999



470
4342



471
3952



472
13981



473
14999



474
14027



475
14999



476
3964



477
3574



478
14250



479
3574



480
4121



481
8767



482
14999



483
15350



484
14899



485
4782



486
15390



487
3952



488
14974



489
14764



490
4394



491
13981



492
14974



493
4342



494
4781



495
15403



496
15385



497
14932



498
14764



499
14253



500
4130



501
3952



502
14252



503
14253



504
4029



505
3940



506
14999



507
14899



508
14253



509
3574



510
14252



511
14252



512
14999



513
4029



514
14999



515
4767



516
14252



517
4342



518
4029



519
13981



520
14252



521
13983



522
14999



523
3964



524
15403



525
4342



526
14252



527
14252



528
3574



529
15390



530
14764



531
14764



532
14253



533
14999



534
15403



535
4395



536
14253



537
14020



538
4342



539
14899



540
14252



541
3940



542
14921



543
14250



544
15395



545
15385



546
14999



547
14999



548
4029



549
14937



550
14764



551
4130



552
3926



553
14764



554
14250



555
4782



556
14252



557
15385



558
14250



559
14974



560
15385



561
14974



562
4130



563
14253



564
14899



565
4767



566
14899



567
4121



568
14921



569
14252



570
3964



571
14252



572
4767



573
4121



574
14921



575
14764



576
13981



577
14999



578
14921



579
4782



580
14764



581
15395



582
14921



583
15403



584
14252



585
4781



586
14921



587
14764



588
14999



589
14921



590
13983



591
14921



592
15350



593
14932



594
14764



595
15385



596
3574



597
4781



598
4767



599
14899



600
3964



601
4342



602
13981



603
14921



604
13982



605
14999



606
14974



607
14932



608
4029



609
15385



610
15350



611
4767



612
4130



613
14263



614
14252



615
4782



616
4781



617
14252



618
4767



619
14252



620
4029



621
14921



622
13982



623
3926



624
14999



625
14999



626
15403



627
4782



628
3952



629
4121



630
14252



631
14764



632
14937



633
3574



634
4394



635
15403



636
4342



637
4767



638
3574



639
14250



640
14764



641
3574



642
15395



643
15356



644
14764



645
13981



646
4121



647
4394



648
14861



649
4130



650
14921



651
4029



652
14252



653
14020



654
14250



655
3574



656
15356



657
14921



658
15356



659
14999



660
14937



661
3574



662
3574



663
4029



664
4342



665
4781



666
3574



667
15403



668
14999



669
14764



670
4782



671
3574



672
4130



673
14899



674
4342



675
4781



676
14253



677
15385



678
4781



679
4029



680
14921



681
14253



682
13981



683
14252



684
14899



685
14974



686
14252



687
14899



688
3574



689
14252



690
4394



691
14921



692
8767



693
14263



694
15395



695
3964



696
14027



697
3940



698
15403



699
3940



700
14921



701
3964



702
14899



703
14764



704
15403



705
14999



706
3964



707
4781



708
14253



709
14999



710
4342



711
15350



712
4342



713
5184



714
4121



715
4342



716
4029



717
4029



718
14932



719
4767



720
3926



721
15403



722
15403



723
13981



724
14764



725
14764



726
4029



727
15403



728
14252



729
14764



730
3964



731
14921



732
4342



733
4029



734
15403



735
3940



736
4781



737
14253



738
15385



739
14999



740
4781



741
4029



742
4342



743
14027



744
15403



745
15395



746
14999



747
14899



748
4782



749
3926



750
15395



751
14999



752
14899



753
4342



754
4029



755
4342



756
14027



757
14937



758
3952



759
14899



760
14921



761
13981



762
14250



763
15390



764
14999



765
15356



766
3574



767
15350



768
4029



769
15403



770
3574



771
14764



772
14252



773
14974



774
14252



775
5184



776
15403



777
4130



778
3964



779
3574



780
14027



781
4121



782
3952



783
4029



784
3574



785
4781



786
14253



787
14999



788
4767



789
14252



790
14921



791
4395



792
15356



793
13983



794
14999



795
15403



796
4782



797
3964



798
3574



799
14252



800
14861



801
3964



802
15403



803
14999



804
15403



805
13981



806
4029



807
14020



808
14027



809
14764



810
14252



811
3574



812
4781



813
14764



814
3926



815
14999



816
3574



817
14250



818
13981



819
4342



820
3574



821
14974



822
14252



823
4342



824
15350



825
3574



826
15350



827
14999



828
14764



829
3574



830
14764



831
15350



832
4029



833
3940



834
3952



835
14250



836
14921



837
14999



838
4767



839
4781



840
4342



841
4029



842
15395



843
15403



844
13981



845
4342



846
3952



847
13982



848
14932



849
14974



850
15403



851
15356



852
3574



853
3940



854
14250



855
14899



856
14999



857
14861



858
14937



859
14250



860
14974



861
14999



862
14027



863
15385



864
14764



865
4130



866
13981



867
15395



868
4767



869
13981



870
3926



871
15350



872
15385



873
4781



874
4394



875
4029



876
14027



877
4781



878
4781



879
14764



880
14253



881
4029



882
4342



883
5184



884
3574



885
3940



886
3940



887
14999



888
14921



889
15356



890
4342



891
15385



892
15390



893
14252



894
14764



895
14764



896
15356



897
4029



898
3926



899
15385



900
14921



901
3952



902
15403



903
14999



904
15403



905
14999



906
14899



907
4394



908
4395



909
14764



910
14252



911
14252



912
4782



913
14252



914
14899



915
15350



916
8767



917
14252



918
14974



919
14999



920
3574



921
3940



922
14999



923
14252



924
14252



925
15403



926
14899



927
14252



928
3940



929
14252



930
14937



931
14253



932
14764



933
15395



934
3574



935
4781



936
3574



937
14252



938
15350



939
15385



940
3964



941
14252



942
14027



943
14921



944
3940



945
15350



946
14999



947
4342



948
15403



949
14027



950
4029



951
14899



952
3574



953
4767



954
14921



955
14999



956
14250



957
14764



958
14764



959
14999



960
14999



961
13981



962
15385



963
4781



964
14764



965
15403



966
4029



967
14250



968
4781



969
14764



970
14974



971
14764



972
15350



973
3574



974
4781



975
4767



976
3574



977
4781



978
14921



979
4781



980
14999



981
14937



982
14027



983
4121



984
14252



985
4394



986
4767



987
15350



988
4767



989
4781



990
14027



991
4121



992
15403



993
3964



994
4342



995
14932



996
4767



997
14252



998
14999



999
4029



1000
14899



1001
4781



1002
4394



1003
4781



1004
14921



1005
4130



1006
4342



1007
4782



1008
14027



1009
8767



1010
14974



1011
14764



1012
4029



1013
15403



1014
3940



1015
4767



1016
3964



1017
4394



1018
4342



1019
3964



1020
15356



1021
14974



1022
14027



1023
14999



1024
14252



1025
4781



1026
4029



1027
4781



1028
3940



1029
14252



1030
4394



1031
14252



1032
14999



1033
14764



1034
4767



1035
14999



1036
15356



1037
3964



1038
14999



1039
4342



1040
15403



1041
15403



1042
14253



1043
14764



1044
14020



1045
14253



1046
15385



1047
4342



1048
14263



1049
15356



1050
14252



1051
14932



1052
4029



1053
13981



1054
3574



1055
4029



1056
4342



1057
14764



1058
4029



1059
14252



1060
4029



1061
14921



1062
4394



1063
3574



1064
3940



1065
14974



1066
15350



1067
4781



1068
15403



1069
15403



1070
8767



1071
14999



1072
14999



1073
14974



1074
4342



1075
15395



1076
3926



1077
14921



1078
4342



1079
14764



1080
14921



1081
4029



1082
4781



1083
4767



1084
14921



1085
3926



1086
14263



1087
14921



1088
14253



1089
4767



1090
14020



1091
4029



1092
4029



1093
5184



1094
14921



1095
3574



1096
14899



1097
14921



1098
15403



1099
14253



1100
14250



1101
4394



1102
4394



1103
3964



1104
4342



1105
8767



1106
15385



1107
4029



1108
14921



1109
13982



1110
3574



1111
14250



1112
14999



1113
15395



1114
4394



1115
15395



1116
4342



1117
4342



1118
4781



1119
14252



1120
14253



1121
4781



1122
3574



1123
14252



1124
3964



1125
4029



1126
15350



1127
14999



1128
4394



1129
14764



1130
14899



1131
14250



1132
4121



1133
4781



1134
3964



1135
3926



1136
15390



1137
3574



1138
14253



1139
14932



1140
14999



1141
14899



1142
14027



1143
4029



1144
14020



1145
14764



1146
14899



1147
3952



1148
14764



1149
14921



1150
14932



1151
4767



1152
4342



1153
14252



1154
3964



1155
15403



1156
13981



1157
13981



1158
3952



1159
15356



1160
4781



1161
14252



1162
14899



1163
14921



1164
14974



1165
14921



1166
14921



1167
4121



1168
3952



1169
14764



1170
15385



1171
14899



1172
5184



1173
3574



1174
14921



1175
4130



1176
3940



1177
14252



1178
14999



1179
14899



1180
14899



1181
14027



1182
14999



1183
14764



1184
15350



1185
4029



1186
4029



1187
14999



1188
14020



1189
14999



1190
15356



1191
14999



1192
14764



1193
3574



1194
13981



1195
3574



1196
4781



1197
4130



1198
14253



1199
4121



1200
4130



1201
14252



1202
15356



1203
3574



1204
14921



1205
15395



1206
15395



1207
8767



1208
4029



1209
14252



1210
4781



1211
3964



1212
14921



1213
15403



1214
4781



1215
14027



1216
4342



1217
15356



1218
14999



1219
3952



1220
4029



1221
4781



1222
4342



1223
14252



1224
14899



1225
3940



1226
3952



1227
14999



1228
14027



1229
4130



1230
3964



1231
14999



1232
14764



1233
3574



1234
4781



1235
14921



1236
14252



1237
14999



1238
15385



1239
4342



1240
14921



1241
4781



1242
14937



1243
14899



1244
8767



1245
4781



1246
3964



1247
3964



1248
3952



1249
15390



1250
4781



1251
4342



1252
4781



1253
14764



1254
4781



1255
14252



1256
15350



1257
4342



1258
14899



1259
4342



1260
15385



1261
14899



1262
15385



1263
14764



1264
14999



1265
3952



1266
14252



1267
14999



1268
14921



1269
15385



1270
4130



1271
4029



1272
14252



1273
14999



1274
15385



1275
4781



1276
14921



1277
4342



1278
4781



1279
14253



1280
14764



1281
14764



1282
4394



1283
15390



1284
14764



1285
15403



1286
5184



1287
4781



1288
4394



1289
14932



1290
14252



1291
4781



1292
14252



1293
4029



1294
15350



1295
4782



1296
4029



1297
15356



1298
4029



1299
15403



1300
14999



1301
4130



1302
3940



1303
14252



1304
14999



1305
4342



1306
3926



1307
14764



1308
4781



1309
3574



1310
4767



1311
14764



1312
15403



1313
4342



1314
15403



1315
3940



1316
15356



1317
14921



1318
4029



1319
14921



1320
4781



1321
14253



1322
14252



1323
4121



1324
14921



1325
4342



1326
5184



1327
15403



1328
4782



1329
14999



1330
13981



1331
4029



1332
14263



1333
15395



1334
4029



1335
4781



1336
8767



1337
4767



1338
4767



1339
15356



1340
15356



1341
4394



1342
14252



1343
14999



1344
14253



1345
4130



1346
14999



1347
14253



1348
3952



1349
4029



1350
15356



1351
4029



1352
14253



1353
4767



1354
4130



1355
14252



1356
4130



1357
15395



1358
3926



1359
15390



1360
14932



1361
15356



1362
4342



1363
13981



1364
4781



1365
14252



1366
15356



1367
4394



1368
4782



1369
4767



1370
4029



1371
15350



1372
15395



1373
4395



1374
4782



1375
4029



1376
4782



1377
14921



1378
13981



1379
3952



1380
4342



1381
4767



1382
14999



1383
14764



1384
13981



1385
3574



1386
14999



1387
4342



1388
14899



1389
3574



1390
4342



1391
4342



1392
14999



1393
15356



1394
4029



1395
3952



1396
14899



1397
4394



1398
3952



1399
4029



1400
13982



1401
14921



1402
14999



1403
4029



1404
14999



1405
4342



1406
14253



1407
4781



1408
5184



1409
4782



1410
4394



1411
14020



1412
4029



1413
14899



1414
14027



1415
3940



1416
8767



1417
3940



1418
14263



1419
4029



1420
3574



1421
14252



1422
15395



1423
4029



1424
4342



1425
4029



1426
4394



1427
14999



1428
15395



1429
13982



1430
4029



1431
4767



1432
14263



1433
14252



1434
4781



1435
3952



1436
15395



1437
4342



1438
14764



1439
14253



1440
4781



1441
3574



1442
4342



1443
3926



1444
14921



1445
14764



1446
14861



1447
14999



1448
14253



1449
4781



1450
14974



1451
15403



1452
4394



1453
4767



1454
15403



1455
4342



1456
3964



1457
14764



1458
15350



1459
14999



1460
15395



1461
14921



1462
3574



1463
4029



1464
14974



1465
4782



1466
4342



1467
14252



1468
3574



1469
14974



1470
14252



1471
14764



1472
4394



1473
4781



1474
4781



1475
4029



1476
14899



1477
14764



1478
14252



1479
14027



1480
14861



1481
4767



1482
15350



1483
15403



1484
14999



1485
14252



1486
3940



1487
14921



1488
4130



1489
14999



1490
4342



1491
14974



1492
4342



1493
4394



1494
14999



1495
14253



1496
4395



1497
4395



1498
13982



1499
4342



1500
14974



1501
14974



1502
3574



1503
13982



1504
14921



1505
4394



1506
14263



1507
4394



1508
15385



1509
15356



1510
14932



1511
13981



1512
15403



1513
13983



1514
4130



1515
15385



1516
14263



1517
4781



1518
4767



1519
3940



1520
14252



1521
14921



1522
14764



1523
14899



1524
15350



1525
15395



1526
15385



1527
4029



1528
15385



1529
4394



1530
14974



1531
15385



1532
4781



1533
15385



1534
4395



1535
4029



1536
14921



1537
3940



1538
14921



1539
14937



1540
14027



1541
15390



1542
3574



1543
4781



1544
14921



1545
14764



1546
4029



1547
15390



1548
15385



1549
14253



1550
13983



1551
15390



1552
15350



1553
14999



1554
4395



1555
4781



1556
14999



1557
14999



1558
14999



1559
4130



1560
14921



1561
14921



1562
15350



1563
14252



1564
15385



1565
4029



1566
8767



1567
4782



1568
4781



1569
15390



1570
14974



1571
4342



1572
14921



1573
4029



1574
14764



1575
4781



1576
4395



1577
15403



1578
14764



1579
4121



1580
14020



1581
14937



1582
4342



1583
14921



1584
4394



1585
4781



1586
4130



1587
14999



1588
14899



1589
13981



1590
4782



1591
14937



1592
15350



1593
14921



1594
4342



1595
3574



1596
4767



1597
4342



1598
14999



1599
4781



1600
14921



1601
14921



1602
4029



1603
4029



1604
4781



1605
14764



1606
3940



1607
4342



1608
14252



1609
3574



1610
14764



1611
13982



1612
15395



1613
4781



1614
4394



1615
15385



1616
14974



1617
14999



1618
15395



1619
14999



1620
13981



1621
14252



1622
14764



1623
15395



1624
14764



1625
15356



1626
14764



1627
15403



1628
14253



1629
3940



1630
14764



1631
15395



1632
4782



1633
14020



1634
4767



1635
15385



1636
4781



1637
14263



1638
14974



1639
14921



1640
14937



1641
14252



1642
14921



1643
14250



1644
14252



1645
14263



1646
14921



1647
14250



1648
14764



1649
4767



1650
15395



1651
14250



1652
4029



1653
14999



1654
15356



1655
3964



1656
15403



1657
13981



1658
14764



1659
15395



1660
4767



1661
4781



1662
3952



1663
4394



1664
4121



1665
13981



1666
3574



1667
14253



1668
14252



1669
4029



1670
4029



1671
3952



1672
14252



1673
15403



1674
14764



1675
4029



1676
3574



1677
15356



1678
14027



1679
14921



1680
3940



1681
14263



1682
14250



1683
13981



1684
14250



1685
14253



1686
14937



1687
14921



1688
4781



1689
14250



1690
14253



1691
15350



1692
14253



1693
14999



1694
13981



1695
4342



1696
14921



1697
4029



1698
14899



1699
3574



1700
3940



1701
4394



1702
14999



1703
15350



1704
14253



1705
4342



1706
4342



1707
3952



1708
4781



1709
15356



1710
14937



1711
14253



1712
14899



1713
4767



1714
4342



1715
4121



1716
4342



1717
4029



1718
14999



1719
14974



1720
14899



1721
15385



1722
4130



1723
3952



1724
4395



1725
4782



1726
4130



1727
14932



1728
3574



1729
4342



1730
14764



1731
13981



1732
4029



1733
4767



1734
14027



1735
14263



1736
14263



1737
4029



1738
14252



1739
4130



1740
13981



1741
14252



1742
4342



1743
3926



1744
13981



1745
4029



1746
14921



1747
14764



1748
14932



1749
14921



1750
14764



1751
14252



1752
4130



1753
13981



1754
14252



1755
14020



1756
3940



1757
13981



1758
14764



1759
15403



1760
14027



1761
15403



1762
14999



1763
15403



1764
14899



1765
4767



1766
14921



1767
14764



1768
4130



1769
13981



1770
14999



1771
14764



1772
4130



1773
14027



1774
15350



1775
3952



1776
14020



1777
14937



1778
14937



1779
14252



1780
15403



1781
15350



1782
14252



1783
14999



1784
4782



1785
13981



1786
14263



1787
14974



1788
14921



1789
14027



1790
14974



1791
4767



1792
14999



1793
4029



1794
14263



1795
4029



1796
14899



1797
4029



1798
14252



1799
14764



1800
14252



1801
14253



1802
4029



1803
15395



1804
4781



1805
4029



1806
14027



1807
3926



1808
14252



1809
14921



1810
14921



1811
15390



1812
14253



1813
14253



1814
14252



1815
4121



1816
3574



1817
4781



1818
14252



1819
3574



1820
15350



1821
4342



1822
15403



1823
13982



1824
14252



1825
14253



1826
3574



1827
3964



1828
3952



1829
13983



1830
4029



1831
4029



1832
8767



1833
14999



1834
15350



1835
4782



1836
3964



1837
14020



1838
4342



1839
14020



1840
4395



1841
14250



1842
14764



1843
14899



1844
13981



1845
4782



1846
14921



1847
4781



1848
14999



1849
3574



1850
3940



1851
4781



1852
4342



1853
14252



1854
3574



1855
4767



1856
14764



1857
14252



1858
14252



1859
4029



1860
3952



1861
4342



1862
3952



1863
14253



1864
4394



1865
4781



1866
15356



1867
4029



1868
14027



1869
14921



1870
15395



1871
4342



1872
14999



1873
14999



1874
4342



1875
8767



1876
4781



1877
4342



1878
4767



1879
14899



1880
14921



1881
4029



1882
4767



1883
14253



1884
4767



1885
14932



1886
4029



1887
3964



1888
15385



1889
14027



1890
4781



1891
4781



1892
4342



1893
14252



1894
4767



1895
14999



1896
4029



1897
14764



1898
14764



1899
4342



1900
14764



1901
3574



1902
3964



1903
14252



1904
14937



1905
14999



1906
3574



1907
13981



1908
14764



1909
14252



1910
4029



1911
3952



1912
3574



1913
4781



1914
13983



1915
14764



1916
4394



1917
4130



1918
3574



1919
14974



1920
14921



1921
4029



1922
4782



1923
4029



1924
3952



1925
4029



1926
14252



1927
3574



1928
14252



1929
13981



1930
14253



1931
4781



1932
3574



1933
14899



1934
4394



1935
13981



1936
14999



1937
15356



1938
14899



1939
14252



1940
15395



1941
3574



1942
3926



1943
4342



1944
3574



1945
4342



1946
4029



1947
15356



1948
4342



1949
4767



1950
4029



1951
14027



1952
4121



1953
3964



1954
4781



1955
14764



1956
14252



1957
3574



1958
4767



1959
4781



1960
15350



1961
15385



1962
15385



1963
13982



1964
4130



1965
3574



1966
4029



1967
14932



1968
14764



1969
14250



1970
14999



1971
3952



1972
14252



1973
14899



1974
4342



1975
14999



1976
4782



1977
14764



1978
14899



1979
14921



1980
15385



1981
15350



1982
14921



1983
14932



1984
4342



1985
4781



1986
4121



1987
15403



1988
4342



1989
15350



1990
4394



1991
14764



1992
13981



1993
4130



1994
14252



1995
15356



1996
14899



1997
14999



1998
14999



1999
14999



2000
3574



2001
14999



2002
14921



2003
3964



2004
3574



2005
3574



2006
14250



2007
14899



2008
14999



2009
4781



2010
4394



2011
4781



2012
4782



2013
14921



2014
15385



2015
15385



2016
4130



2017
3940



2018
14263



2019
14932



2020
14252



2021
14764



2022
4342



2023
14921



2024
14899



2025
13981



2026
14921



2027
14252



2028
14899



2029
3574



2030
4767



2031
3952



2032
14764



2033
14999



2034
4130



2035
3574



2036
14027



2037
4029



2038
14253



2039
15403



2040
3964



2041
14252



2042
14899



2043
8767



2044
14252



2045
4781



2046
14899



2047
15403



2048
3964



2049
14999



2050
14999



2051
3574



2052
14999



2053
4767



2054
14921



2055
14252



2056
14253



2057
15385



2058
5184



2059
4781



2060
14020



2061
13983



2062
4781



2063
14974



2064
4029



2065
14999



2066
14252



2067
14027



2068
14250



2069
4781



2070
15356



2071
14253



2072
4394



2073
14764



2074
4342



2075
14263



2076
14999



2077
8767



2078
13981



2079
4781



2080
4342



2081
3964



2082
14252



2083
4767



2084
15390



2085
15390



2086
14250



2087
3574



2088
13981



2089
4767



2090
15385



2091
14999



2092
4782



2093
3964



2094
4782



2095
4767



2096
3574



2097
3940



2098
3574



2099
14921



2100
14921



2101
3940



2102
14937



2103
14899



2104
14921



2105
4782



2106
14861



2107
14932



2108
4029



2109
4130



2110
14252



2111
14253



2112
4130



2113
14974



2114
15356



2115
14250



2116
4781



2117
14974



2118
14253



2119
4767



2120
13981



2121
14921



2122
3964



2123
14999



2124
4781



2125
14899



2126
15403



2127
14263



2128
15385



2129
14921



2130
14921



2131
14899



2132
4781



2133
4121



2134
4342



2135
14764



2136
4121



2137
4781



2138
14764



2139
14253



2140
14999



2141
14253



2142
4767



2143
15356



2144
4029



2145
4029



2146
3574



2147
15385



2148
4130



2149
3926



2150
14263



2151
14020



2152
14899



2153
3574



2154
4029



2155
14764



2156
14250



2157
3952



2158
4781



2159
4342



2160
14921



2161
14921



2162
3964



2163
14252



2164
15403



2165
13981



2166
14252



2167
14253



2168
3952



2169
14999



2170
4342



2171
14252



2172
15385



2173
4342



2174
14764



2175
3940



2176
8767



2177
14937



2178
13981



2179
4767



2180
14921



2181
15395



2182
14921



2183
14764



2184
14253



2185
4781



2186
4781



2187
4029



2188
15403



2189
4342



2190
14999



2191
14999



2192
15390



2193
15385



2194
3574



2195
3574



2196
14921



2197
4781



2198
15356



2199
14932



2200
4342



2201
14764



2202
14027



2203
4781



2204
14999



2205
4394



2206
14027



2207
4029



2208
14764



2209
15356



2210
3940



2211
4767



2212
14027



2213
14974



2214
3964



2215
4029



2216
14764



2217
4130



2218
4781



2219
4767



2220
13982



2221
15390



2222
14899



2223
14027



2224
4121



2225
14253



2226
4121



2227
4394



2228
13982



2229
4394



2230
4782



2231
4394



2232
14921



2233
3964



2234
14974



2235
15356



2236
4029



2237
14253



2238
4781



2239
3952



2240
4782



2241
14921



2242
14999



2243
4781



2244
14999



2245
14999



2246
4029



2247
14861



2248
14027



2249
4342



2250
14974



2251
4121



2252
13981



2253
3926



2254
14252



2255
4029



2256
3940



2257
14252



2258
4394



2259
14921



2260
4342



2261
4767



2262
14932



2263
14999



2264
14921



2265
4029



2266
4342



2267
15390



2268
4130



2269
15385



2270
14764



2271
4029



2272
3574



2273
4130



2274
4394



2275
15403



2276
14974



2277
8767



2278
4342



2279
14252



2280
13982



2281
4782



2282
15385



2283
14764



2284
14252



2285
3574



2286
14253



2287
14253



2288
4029



2289
4767



2290
3952



2291
4029



2292
14252



2293
14932



2294
3964



2295
14764



2296
14921



2297
15385



2298
14764



2299
14999



2300
14253



2301
14263



2302
14252



2303
14899



2304
4029



2305
4767



2306
14263



2307
3952



2308
15385



2309
14899



2310
13981



2311
14999



2312
15403



2313
14937



2314
4342



2315
14250



2316
4130



2317
14253



2318
14921



2319
4394



2320
4781



2321
4029



2322
14899



2323
3574



2324
14252



2325
14921



2326
14921



2327
15403



2328
14252



2329
14999



2330
14921



2331
14252



2332
4029



2333
15385



2334
14921



2335
14899



2336
13981



2337
14764



2338
15395



2339
14974



2340
3574



2341
4130



2342
4781



2343
15385



2344
14899



2345
15403



2346
15385



2347
14252



2348
14921



2349
14921



2350
14250



2351
4394



2352
14899



2353
14921



2354
14027



2355
15385



2356
14764



2357
15395



2358
15395



2359
14252



2360
13983



2361
4395



2362
3940



2363
4767



2364
4029



2365
4121



2366
14999



2367
15390



2368
4781



2369
4029



2370
14921



2371
15403



2372
4394



2373
4781



2374
3952



2375
13981



2376
14252



2377
14253



2378
15403



2379
14764



2380
14921



2381
4121



2382
14937



2383
4121



2384
14764



2385
14999



2386
14764



2387
4029



2388
14999



2389
4029



2390
14999



2391
4781



2392
4767



2393
4781



2394
14921



2395
3952



2396
4781



2397
14252



2398
4130



2399
13981



2400
3952



2401
4394



2402
4767



2403
14899



2404
3574



2405
13982



2406
14253



2407
3964



2408
14999



2409
3574



2410
15403



2411
14253



2412
15385



2413
4767



2414
4029



2415
15385



2416
14027



2417
5184



2418
14937



2419
3926



2420
14937



2421
4781



2422
3964



2423
14921



2424
15356



2425
4342



2426
14252



2427
14764



2428
15356



2429
14252



2430
4029



2431
3926



2432
4342



2433
14250



2434
14921



2435
4029



2436
4781



2437
3574



2438
3574



2439
3940



2440
3952



2441
3574



2442
4342



2443
4029



2444
4121



2445
3940



2446
14253



2447
3574



2448
3952



2449
3964



2450
14252



2451
14764



2452
14937



2453
4029



2454
8767



2455
13981



2456
4394



2457
15350



2458
15350



2459
14974



2460
14937



2461
14921



2462
4130



2463
14999



2464
13981



2465
15350



2466
14974



2467
4029



2468
14932



2469
14250



2470
3574



2471
14250



2472
14764



2473
4781



2474
4121



2475
14764



2476
4029



2477
14921



2478
4342



2479
3964



2480
14999



2481
15385



2482
14937



2483
4767



2484
3574



2485
8767



2486
15395



2487
14027



2488
14899



2489
14899



2490
13983



2491
3574



2492
14921



2493
14263



2494
15403



2495
14253



2496
14020



2497
3574



2498
14263



2499
13981



2500
4121



2501
15385



2502
14253



2503
14921



2504
15390



2505
5184



2506
4342



2507
15390



2508
13983



2509
14250



2510
14999



2511
3574



2512
4781



2513
13981



2514
14974



2515
14937



2516
14764



2517
14027



2518
14932



2519
14764



2520
15395



2521
14974



2522
14999



2523
15385



2524
14764



2525
4130



2526
14027



2527
4121



2528
14899



2529
4121



2530
4130



2531
4342



2532
4121



2533
4130



2534
3964



2535
4394



2536
14861



2537
4342



2538
4767



2539
14999



2540
14027



2541
13981



2542
8767



2543
14921



2544
15403



2545
4767



2546
14253



2547
14932



2548
14999



2549
14764



2550
3574



2551
13982



2552
3952



2553
4394



2554
14027



2555
15385



2556
14921



2557
3952



2558
14974



2559
15403



2560
8767



2561
15350



2562
15390



2563
14253



2564
4029



2565
14252



2566
13981



2567
4029



2568
3964



2569
3940



2570
4767



2571
14764



2572
3574



2573
4767



2574
15350



2575
4781



2576
14921



2577
14764



2578
15403



2579
14899



2580
14899



2581
15350



2582
4781



2583
3926



2584
13981



2585
3926



2586
3964



2587
14253



2588
4395



2589
13982



2590
14252



2591
13981



2592
4342



2593
14253



2594
4394



2595
14921



2596
4130



2597
4029



2598
3926



2599
14899



2600
15356



2601
14263



2602
4029



2603
14999



2604
14974



2605
4782



2606
3964



2607
14999



2608
4395



2609
4781



2610
14764



2611
4394



2612
14027



2613
14764



2614
14999



2615
4029



2616
13981



2617
14252



2618
14253



2619
14764



2620
14921



2621
4394



2622
4342



2623
4029



2624
4342



2625
14999



2626
4342



2627
15385



2628
14937



2629
14764



2630
14921



2631
14253



2632
14252



2633
14764



2634
15395



2635
14932



2636
4394



2637
14252



2638
14999



2639
3964



2640
14253



2641
14999



2642
14999



2643
15395



2644
15356



2645
4029



2646
14932



2647
14937



2648
4767



2649
4781



2650
15385



2651
14921



2652
15390



2653
13981



2654
14937



2655
13981



2656
4781



2657
14974



2658
15350



2659
14899



2660
14253



2661
14764



2662
3574



2663
8767



2664
4781



2665
14764



2666
14253



2667
3940



2668
15356



2669
14999



2670
3574



2671
4342



2672
4342



2673
4342



2674
14764



2675
4029



2676
4029



2677
4394



2678
14250



2679
14899



2680
5184



2681
4029



2682
14921



2683
14999



2684
14937



2685
15403



2686
14999



2687
15385



2688
3926



2689
14263



2690
4029



2691
14899



2692
14999



2693
15395



2694
14764



2695
14899



2696
15390



2697
14764



2698
14999



2699
4342



2700
3574



2701
15385



2702
14999



2703
4767



2704
15403



2705
15403



2706
15390



2707
14932



2708
14764



2709
15403



2710
4342



2711
14764



2712
14253



2713
15403



2714
4781



2715
13981



2716
4029



2717
3952



2718
14252



2719
14999



2720
4029



2721
4781



2722
3926



2723
4767



2724
4342



2725
4029



2726
14252



2727
3926



2728
3952



2729
3940



2730
4029



2731
15403



2732
14252



2733
4342



2734
14921



2735
13981



2736
15403



2737
15403



2738
3952



2739
4767



2740
4767



2741
14764



2742
3574



2743
15403



2744
14263



2745
14253



2746
4781



2747
4029



2748
14999



2749
14921



2750
4394



2751
14999



2752
14899



2753
14253



2754
4121



2755
14974



2756
3940



2757
4394



2758
4394



2759
4029



2760
14252



2761
14899



2762
4029



2763
4121



2764
15403



2765
14921



2766
14999



2767
4130



2768
4029



2769
13981



2770
14252



2771
14253



2772
14999



2773
4394



2774
14252



2775
14932



2776
14921



2777
15395



2778
14999



2779
14921



2780
14252



2781
14999



2782
4342



2783
4342



2784
4342



2785
14253



2786
4121



2787
4121



2788
4781



2789
14999



2790
14999



2791
4767



2792
4342



2793
14932



2794
3940



2795
4130



2796
14899



2797
13981



2798
4781



2799
4342



2800
15395



2801
4767



2802
14252



2803
4342



2804
4767



2805
4029



2806
3574



2807
14921



2808
14999



2809
4767



2810
14999



2811
4130



2812
8767



2813
13981



2814
14020



2815
15356



2816
14999



2817
15395



2818
14999



2819
4781



2820
14764



2821
14764



2822
14027



2823
14999



2824
4394



2825
4342



2826
4029



2827
14921



2828
4781



2829
15350



2830
14932



2831
15350



2832
14974



2833
14921



2834
4130



2835
4029



2836
14027



2837
14899



2838
15356



2839
14253



2840
13983



2841
14253



2842
14932



2843
14999



2844
4029



2845
15395



2846
13982



2847
13981



2848
4767



2849
15385



2850
4781



2851
4130



2852
14921



2853
14921



2854
13981



2855
4121



2856
4121



2857
14899



2858
14974



2859
14921



2860
14999



2861
14250



2862
14921



2863
4781



2864
4342



2865
15385



2866
14974



2867
13981



2868
14764



2869
4342



2870
4130



2871
15403



2872
4342



2873
14252



2874
14932



2875
4395



2876
14027



2877
14250



2878
15385



2879
15403



2880
14252



2881
14252



2882
14921



2883
4782



2884
5184



2885
14921



2886
8767



2887
4121



2888
14999



2889
15395



2890
15390



2891
3574



2892
14252



2893
14253



2894
14252



2895
4342



2896
4342



2897
15395



2898
4029



2899
15350



2900
14899



2901
14932



2902
14937



2903
4394



2904
4342



2905
4130



2906
14921



2907
14263



2908
14921



2909
3964



2910
4395



2911
3574



2912
14921



2913
4782



2914
15395



2915
4121



2916
4782



2917
14899



2918
14764



2919
14974



2920
4394



2921
4781



2922
3574



2923
15350



2924
4029



2925
4342



2926
15403



2927
4029



2928
14263



2929
4395



2930
15350



2931
3574



2932
14937



2933
14974



2934
14921



2935
3574



2936
14899



2937
14252



2938
14921



2939
13981



2940
14999



2941
14263



2942
14253



2943
14932



2944
14899



2945
3952



2946
13982



2947
15395



2948
15403



2949
3964



2950
3926



2951
4781



2952
14252



2953
3952



2954
3574



2955
14921



2956
14252



2957
14252



2958
4130



2959
15395



2960
14999



2961
4029



2962
4121



2963
15390



2964
13982



2965
3940



2966
4029



2967
14764



2968
14764



2969
4342



2970
14974



2971
14764



2972
14020



2973
15356



2974
14921



2975
15403



2976
4767



2977
14999



2978
4342



2979
15403



2980
4781



2981
14921



2982
14027



2983
15356



2984
15395



2985
3940



2986
14250



2987
15395



2988
14253



2989
14999



2990
14764



2991
3574



2992
14027



2993
3964



2994
14932



2995
14252



2996
14921



2997
14250



2998
15385



2999
4782



3000
14999



3001
4394



3002
14252



3003
3574



3004
4781



3005
15385



3006
14999



3007
14932



3008
14999



3009
4782



3010
15350



3011
15350



3012
4767



3013
15390



3014
3574



3015
15403



3016
14252



3017
4781



3018
14252



3019
3574



3020
14027



3021
4781



3022
13983



3023
15403



3024
4342



3025
14999



3026
15403



3027
4130



3028
14252



3029
4394



3030
4782



3031
4130



3032
14999



3033
4121



3034
14027



3035
14252



3036
4342



3037
14932



3038
14974



3039
15390



3040
14999



3041
5184



3042
14921



3043
15403



3044
4029



3045
15356



3046
14974



3047
14764



3048
4781



3049
14921



3050
4029



3051
13981



3052
14932



3053
14027



3054
4781



3055
4130



3056
14921



3057
3574



3058
3926



3059
14253



3060
13981



3061
4121



3062
4781



3063
14263



3064
15385



3065
13981



3066
15403



3067
15356



3068
14252



3069
14921



3070
8767



3071
14027



3072
15385



3073
15403



3074
14764



3075
14253



3076
4342



3077
14999



3078
4394



3079
15350



3080
14027



3081
15403



3082
4130



3083
3964



3084
4394



3085
14861



3086
4781



3087
3952



3088
13981



3089
3574



3090
4395



3091
14921



3092
14027



3093
3574



3094
4121



3095
14999



3096
15395



3097
15395



3098
14027



3099
4029



3100
15403



3101
14027



3102
4767



3103
15403



3104
4342



3105
15356



3106
14764



3107
3940



3108
14027



3109
15395



3110
3964



3111
14932



3112
4130



3113
14899



3114
4029



3115
3574



3116
14921



3117
15385



3118
15403



3119
14250



3120
14252



3121
3964



3122
14263



3123
14899



3124
13981



3125
15403



3126
14999



3127
4394



3128
14250



3129
14252



3130
3574



3131
4781



3132
15395



3133
14937



3134
14252



3135
4130



3136
14921



3137
3940



3138
4121



3139
14027



3140
14999



3141
4394



3142
14252



3143
3940



3144
15403



3145
14899



3146
14263



3147
14252



3148
14921



3149
14764



3150
14252



3151
4342



3152
3952



3153
15403



3154
14252



3155
13982



3156
3952



3157
3964



3158
3574



3159
14252



3160
3940



3161
15403



3162
4342



3163
3574



3164
15350



3165
4767



3166
14921



3167
4029



3168
4342



3169
14764



3170
14937



3171
14252



3172
4342



3173
14899



3174
15385



3175
14764



3176
4029



3177
15395



3178
4130



3179
14999



3180
14252



3181
14921



3182
14921



3183
4767



3184
3940



3185
4781



3186
4029



3187
4767



3188
15350



3189
14252



3190
4342



3191
14764



3192
14764



3193
8767



3194
3952



3195
3940



3196
15350



3197
14764



3198
14921



3199
3940



3200
14921



3201
14252



3202
14974



3203
14999



3204
14252



3205
14921



3206
15403



3207
14764



3208
4121



3209
14999



3210
14999



3211
3964



3212
15356



3213
4121



3214
4029



3215
14899



3216
14252



3217
4767



3218
14999



3219
13981



3220
14253



3221
3574



3222
15403



3223
3574



3224
4029



3225
3926



3226
3574



3227
4342



3228
4029



3229
14999



3230
14253



3231
4342



3232
14921



3233
14899



3234
14999



3235
3964



3236
14250



3237
14921



3238
3940



3239
4029



3240
13981



3241
4781



3242
4781



3243
14252



3244
14974



3245
4781



3246
14921



3247
4781



3248
14764



3249
3940



3250
14027



3251
14899



3252
14764



3253
4121



3254
15403



3255
14252



3256
4029



3257
5184



3258
14020



3259
14974



3260
14020



3261
14974



3262
4121



3263
14999



3264
14921



3265
15403



3266
14899



3267
4342



3268
14764



3269
14253



3270
14921



3271
3964



3272
15390



3273
14861



3274
14921



3275
14764



3276
14253



3277
3574



3278
3926



3279
3926



3280
14253



3281
15385



3282
4342



3283
14921



3284
14921



3285
14263



3286
4029



3287
3952



3288
14999



3289
4342



3290
15385



3291
4781



3292
14252



3293
4130



3294
4767



3295
14861



3296
14921



3297
3952



3298
14252



3299
14999



3300
4781



3301
3964



3302
4342



3303
13981



3304
14899



3305
4782



3306
15356



3307
15403



3308
14764



3309
4342



3310
14263



3311
14999



3312
14921



3313
14937



3314
14921



3315
8767



3316
14764



3317
3574



3318
4394



3319
13981



3320
14764



3321
4342



3322
14899



3323
14899



3324
14921



3325
14253



3326
14899



3327
13981



3328
15385



3329
4782



3330
4767



3331
14253



3332
13981



3333
15385



3334
14253



3335
4781



3336
14764



3337
14899



3338
15350



3339
14027



3340
4781



3341
4781



3342
4342



3343
14250



3344
3952



3345
4342



3346
14250



3347
14974



3348
4394



3349
3940



3350
14764



3351
3574



3352
14253



3353
14974



3354
14764



3355
15395



3356
5184



3357
4781



3358
3940



3359
4781



3360
4395



3361
14999



3362
4781



3363
14999



3364
14921



3365
3964



3366
4395



3367
14252



3368
3964



3369
4395



3370
14999



3371
15403



3372
14252



3373
14253



3374
14764



3375
4394



3376
14252



3377
14020



3378
4342



3379
4130



3380
3952



3381
3574



3382
14999



3383
4130



3384
4781



3385
14899



3386
15350



3387
14932



3388
14921



3389
14999



3390
14252



3391
4781



3392
4342



3393
14252



3394
14999



3395
4781



3396
4394



3397
4342



3398
14764



3399
3926



3400
15403



3401
14252



3402
3952



3403
14932



3404
4029



3405
3964



3406
4767



3407
14252



3408
3964



3409
14974



3410
15350



3411
3574



3412
14899



3413
4342



3414
4029



3415
3952



3416
14921



3417
13981



3418
4029



3419
4029



3420
4782



3421
15385



3422
4029



3423
15350



3424
14027



3425
14263



3426
13981



3427
4342



3428
13981



3429
14921



3430
14899



3431
13981



3432
14932



3433
14932



3434
14921



3435
4029



3436
4130



3437
14999



3438
14937



3439
4342



3440
15350



3441
4130



3442
4395



3443
13983



3444
14027



3445
14999



3446
4342



3447
4029



3448
14252



3449
4781



3450
13982



3451
14263



3452
15403



3453
3952



3454
14764



3455
14252



3456
14764



3457
3964



3458
14921



3459
15403



3460
14252



3461
15350



3462
4029



3463
14252



3464
4781



3465
4029



3466
13982



3467
13982



3468
14974



3469
4781



3470
14999



3471
4130



3472
15403



3473
14027



3474
14999



3475
4781



3476
14252



3477
4782



3478
15385



3479
15395



3480
14764



3481
4121



3482
14921



3483
3574



3484
13981



3485
15356



3486
14764



3487
15390



3488
14999



3489
15395



3490
4342



3491
14921



3492
14764



3493
4130



3494
14253



3495
14252



3496
15385



3497
14999



3498
4781



3499
15385



3500
14252



3501
13982



3502
4029



3503
3574



3504
14764



3505
14252



3506
14250



3507
4121



3508
4781



3509
3964



3510
14253



3511
4121



3512
15403



3513
3940



3514
14252



3515
14252



3516
14999



3517
4394



3518
13983



3519
14252



3520
14764



3521
8767



3522
14252



3523
3574



3524
13981



3525
14253



3526
14999



3527
14999



3528
14764



3529
13981



3530
15395



3531
4782



3532
14027



3533
4342



3534
4781



3535
14974



3536
4342



3537
4781



3538
3940



3539
14999



3540
5184



3541
14999



3542
4781



3543
14027



3544
14252



3545
4394



3546
4029



3547
14974



3548
15403



3549
14252



3550
14252



3551
4767



3552
4767



3553
8767



3554
14999



3555
4781



3556
4121



3557
4767



3558
14999



3559
8767



3560
15390



3561
3926



3562
14263



3563
3574



3564
14027



3565
14999



3566
14999



3567
4121



3568
4121



3569
4781



3570
15350



3571
4767



3572
4395



3573
3940



3574
14263



3575
14899



3576
14764



3577
14764



3578
4781



3579
4782



3580
3964



3581
14027



3582
3964



3583
14932



3584
14921



3585
14020



3586
14921



3587
14250



3588
14899



3589
4781



3590
14921



3591
14937



3592
3940



3593
15385



3594
14253



3595
3926



3596
14027



3597
3574



3598
15403



3599
14253



3600
14253



3601
8767



3602
14899



3603
4342



3604
4029



3605
14764



3606
15403



3607
13981



3608
14252



3609
4781



3610
4781



3611
15403



3612
3964



3613
14861



3614
14937



3615
14027



3616
4781



3617
14764



3618
15385



3619
15385



3620
14252



3621
14253



3622
14027



3623
3952



3624
4767



3625
14999



3626
5184



3627
4767



3628
14974



3629
14027



3630
14764



3631
14764



3632
14974



3633
5184



3634
3964



3635
15356



3636
4767



3637
14263



3638
15395



3639
4781



3640
14027



3641
14764



3642
4029



3643
3940



3644
4342



3645
4767



3646
3574



3647
4121



3648
4781



3649
4342



3650
14999



3651
14020



3652
14937



3653
4029



3654
4781



3655
3964



3656
13981



3657
14999



3658
14764



3659
14899



3660
4029



3661
14252



3662
4342



3663
14027



3664
15356



3665
4781



3666
14861



3667
14253



3668
15390



3669
4029



3670
13981



3671
14253



3672
14937



3673
13981



3674
14999



3675
15385



3676
14252



3677
3940



3678
4394



3679
4342



3680
4342



3681
14263



3682
14974



3683
13981



3684
13983



3685
15350



3686
4342



3687
14899



3688
4130



3689
4342



3690
14937



3691
14999



3692
15350



3693
3940



3694
4767



3695
14921



3696
3940



3697
4394



3698
13983



3699
4029



3700
4130



3701
14999



3702
3926



3703
4767



3704
14027



3705
13981



3706
4029



3707
3940



3708
14252



3709
14764



3710
3574



3711
3940



3712
4342



3713
4767



3714
14764



3715
4029



3716
14764



3717
14764



3718
3574



3719
14252



3720
15390



3721
4781



3722
15403



3723
13981



3724
4781



3725
5184



3726
15385



3727
15403



3728
4029



3729
4767



3730
14764



3731
14937



3732
14932



3733
4781



3734
14252



3735
14899



3736
4130



3737
4781



3738
14899



3739
4767



3740
4342



3741
14027



3742
4029



3743
14764



3744
14250



3745
14899



3746
14250



3747
14999



3748
4767



3749
3964



3750
4121



3751
15390



3752
14764



3753
3926



3754
14027



3755
8767



3756
4130



3757
15395



3758
14252



3759
4781



3760
14921



3761
15385



3762
3964



3763
4781



3764
14764



3765
13981



3766
4767



3767
14921



3768
14899



3769
4781



3770
15356



3771
14937



3772
3574



3773
15390



3774
14999



3775
14252



3776
4394



3777
15403



3778
13981



3779
14974



3780
15356



3781
13981



3782
14999



3783
14252



3784
4029



3785
15403



3786
13981



3787
3940



3788
14252



3789
14764



3790
14932



3791
14252



3792
15403



3793
13981



3794
4342



3795
4130



3796
14252



3797
5184



3798
13981



3799
4121



3800
3952



3801
3574



3802
15350



3803
3574



3804
14999



3805
14253



3806
14027



3807
3952



3808
15385



3809
4342



3810
4342



3811
4029



3812
14899



3813
14921



3814
14932



3815
4767



3816
4781



3817
15350



3818
3964



3819
15403



3820
4029



3821
14999



3822
4781



3823
14899



3824
14027



3825
14937



3826
14764



3827
4767



3828
14253



3829
4781



3830
14252



3831
4781



3832
14253



3833
14027



3834
4121



3835
3574



3836
15395



3837
14252



3838
14921



3839
14250



3840
14027



3841
14250



3842
4781



3843
15350



3844
4121



3845
3964



3846
14861



3847
15356



3848
3574



3849
14252



3850
3964



3851
14253



3852
3940



3853
14252



3854
13981



3855
14764



3856
14974



3857
14253



3858
4121



3859
15403



3860
4130



3861
15385



3862
14764



3863
3952



3864
4767



3865
14764



3866
14253



3867
14932



3868
3574



3869
14861



3870
4029



3871
3964



3872
14252



3873
4130



3874
4029



3875
4342



3876
14932



3877
14764



3878
4781



3879
13981



3880
4130



3881
3926



3882
15350



3883
4394



3884
4130



3885
13981



3886
15390



3887
4029



3888
14250



3889
4029



3890
3952



3891
4394



3892
4782



3893
4029



3894
14932



3895
14899



3896
14932



3897
4767



3898
14921



3899
14999



3900
4781



3901
4029



3902
14937



3903
14250



3904
3964



3905
14764



3906
4029



3907
3926



3908
15350



3909
14252



3910
15385



3911
15403



3912
13981



3913
14252



3914
14999



3915
4342



3916
14921



3917
14999



3918
4121



3919
14974



3920
14974



3921
14250



3922
14252



3923
14861



3924
15403



3925
14253



3926
14764



3927
14253



3928
15350



3929
4029



3930
13981



3931
15356



3932
4130



3933
3940



3934
4781



3935
13981



3936
14252



3937
13981



3938
14999



3939
4781



3940
14999



3941
14999



3942
14252



3943
4130



3944
15356



3945
4767



3946
14974



3947
14999



3948
14937



3949
4782



3950
4781



3951
15385



3952
14899



3953
13981



3954
4781



3955
14999



3956
4029



3957
4121



3958
4342



3959
14899



3960
14253



3961
4781



3962
14974



3963
14999



3964
4781



3965
14252



3966
14999



3967
4767



3968
14937



3969
15390



3970
14921



3971
3940



3972
14932



3973
14974



3974
14999



3975
4121



3976
14932



3977
4394



3978
3964



3979
14252



3980
14027



3981
4029



3982
4781



3983
4395



3984
15350



3985
14764



3986
14932



3987
14999



3988
3940



3989
14999



3990
14252



3991
14764



3992
8767



3993
13981



3994
14999



3995
14252



3996
14899



3997
14921



3998
4394



3999
14999



4000
14253



4001
3964



4002
14250



4003
15390



4004
4781



4005
4029



4006
14999



4007
4782



4008
14020



4009
14999



4010
4130



4011
4029



4012
3964



4013
3940



4014
15350



4015
14764



4016
4342



4017
4395



4018
13981



4019
14764



4020
15350



4021
3940



4022
14764



4023
3926



4024
14250



4025
15390



4026
15403



4027
13981



4028
4782



4029
4029



4030
14921



4031
14253



4032
14899



4033
13981



4034
14921



4035
4394



4036
14020



4037
14253



4038
14999



4039
4395



4040
3964



4041
8767



4042
14250



4043
15403



4044
14861



4045
4395



4046
14932



4047
3574



4048
14974



4049
15395



4050
3574



4051
4029



4052
14027



4053
4342



4054
4781



4055
14764



4056
14921



4057
15403



4058
4781



4059
4782



4060
14250



4061
4342



4062
3574



4063
4767



4064
15403



4065
3574



4066
15350



4067
3926



4068
14999



4069
15403



4070
14999



4071
14999



4072
15350



4073
4394



4074
15403



4075
4029



4076
4029



4077
14974



4078
14252



4079
14020



4080
14937



4081
15395



4082
14974



4083
14921



4084
4130



4085
15403



4086
4029



4087
4342



4088
3940



4089
14921



4090
14250



4091
14974



4092
4029



4093
14252



4094
14764



4095
4767



4096
15403



4097
4781



4098
4342



4099
3964



4100
15390



4101
14999



4102
4394



4103
14999



4104
13983



4105
4394



4106
14764



4107
14899



4108
14999



4109
14999



4110
4130



4111
14252



4112
13981



4113
4121



4114
15385



4115
15395



4116
14250



4117
3940



4118
14252



4119
4029



4120
14921



4121
14932



4122
15350



4123
4130



4124
14764



4125
14999



4126
3574



4127
15350



4128
4767



4129
14027



4130
14932



4131
13981



4132
14253



4133
14937



4134
14899



4135
14899



4136
13981



4137
14999



4138
4342



4139
14253



4140
4781



4141
14764



4142
14999



4143
15350



4144
14027



4145
8767



4146
14027



4147
3964



4148
3574



4149
14252



4150
3964



4151
4342



4152
4029



4153
15350



4154
3574



4155
14974



4156
4781



4157
14764



4158
4342



4159
14253



4160
4782



4161
14764



4162
13981



4163
4342



4164
15350



4165
15403



4166
14999



4167
14764



4168
3940



4169
14253



4170
13981



4171
13983



4172
4029



4173
4029



4174
14921



4175
4029



4176
4767



4177
14253



4178
14764



4179
14252



4180
13982



4181
4767



4182
4342



4183
14999



4184
4781



4185
14027



4186
15385



4187
4395



4188
4029



4189
15356



4190
14921



4191
13983



4192
14252



4193
3940



4194
4121



4195
14899



4196
4121



4197
4342



4198
4121



4199
15350



4200
14250



4201
14764



4202
4029



4203
14253



4204
14999



4205
3952



4206
4029



4207
14921



4208
14764



4209
4029



4210
4029



4211
14250



4212
15403



4213
13983



4214
14999



4215
4782



4216
14252



4217
14764



4218
15385



4219
14937



4220
14974



4221
14999



4222
14764



4223
3952



4224
3964



4225
4781



4226
14921



4227
3940



4228
14764



4229
14027



4230
4781



4231
14937



4232
14764



4233
14027



4234
3926



4235
14921



4236
4781



4237
14921



4238
4781



4239
14999



4240
3952



4241
13981



4242
14932



4243
4394



4244
14027



4245
4781



4246
15395



4247
14921



4248
14252



4249
14764



4250
3574



4251
14027



4252
14764



4253
14253



4254
14899



4255
14263



4256
14932



4257
3952



4258
14899



4259
14263



4260
14921



4261
4781



4262
4121



4263
13981



4264
14999



4265
14999



4266
4781



4267
3926



4268
15403



4269
14253



4270
13981



4271
3940



4272
14252



4273
14999



4274
3574



4275
14252



4276
15385



4277
4029



4278
4029



4279
15395



4280
15350



4281
14764



4282
13981



4283
14253



4284
4342



4285
14921



4286
4029



4287
4121



4288
3574



4289
4782



4290
14764



4291
14027



4292
4394



4293
14899



4294
4394



4295
15385



4296
3952



4297
4767



4298
4342



4299
14921



4300
15385



4301
4342



4302
14921



4303
3574



4304
4394



4305
15403



4306
14020



4307
14250



4308
4342



4309
4029



4310
14921



4311
4029



4312
15403



4313
14253



4314
14921



4315
4029



4316
8767



4317
4394



4318
14252



4319
14899



4320
14764



4321
14899



4322
14999



4323
4781



4324
14999



4325
14999



4326
4342



4327
4029



4328
15395



4329
4781



4330
13982



4331
4130



4332
4121



4333
14921



4334
14999



4335
14250



4336
14250



4337
3952



4338
3952



4339
4130



4340
13983



4341
3574



4342
14999



4343
15350



4344
14252



4345
5184



4346
14999



4347
14899



4348
4130



4349
13981



4350
14937



4351
3574



4352
15403



4353
14764



4354
14252



4355
14974



4356
4394



4357
4342



4358
4029



4359
14921



4360
4121



4361
15403



4362
14932



4363
4782



4364
15390



4365
4767



4366
4767



4367
14764



4368
14974



4369
14899



4370
14974



4371
4029



4372
3926



4373
14921



4374
4342



4375
3964



4376
15403



4377
3574



4378
15390



4379
3574



4380
4029



4381
4767



4382
15385



4383
4782



4384
14999



4385
14253



4386
4029



4387
3952



4388
4121



4389
4767



4390
15385



4391
15403



4392
14974



4393
14764



4394
4782



4395
13983



4396
14937



4397
4342



4398
14899



4399
4029



4400
14921



4401
3574



4402
14252



4403
13982



4404
3964



4405
15385



4406
14250



4407
14937



4408
4781



4409
14764



4410
4029



4411
14252



4412
4767



4413
15395



4414
14921



4415
14974



4416
14252



4417
13981



4418
14252



4419
4342



4420
14764



4421
14921



4422
14250



4423
14932



4424
15403



4425
14252



4426
14764



4427
3574



4428
4781



4429
3940



4430
15350



4431
4395



4432
4029



4433
15390



4434
4130



4435
4029



4436
13981



4437
3574



4438
4342



4439
15403



4440
14253



4441
14027



4442
14937



4443
15403



4444
13981



4445
4394



4446
4782



4447
14263



4448
3964



4449
4029



4450
13981



4451
3964



4452
3574



4453
14764



4454
14252



4455
4781



4456
4781



4457
14764



4458
4395



4459
14999



4460
14999



4461
14999



4462
15385



4463
4395



4464
14999



4465
4029



4466
14899



4467
15403



4468
14899



4469
4394



4470
4342



4471
14921



4472
14974



4473
4781



4474
14999



4475
14999



4476
14764



4477
4342



4478
14921



4479
14999



4480
4394



4481
13983



4482
15350



4483
3952



4484
4130



4485
4781



4486
15403



4487
14252



4488
4130



4489
14999



4490
4029



4491
14921



4492
14999



4493
14999



4494
14974



4495
15403



4496
13981



4497
15403



4498
14921



4499
14263



4500
14253



4501
14974



4502
15356



4503
4029



4504
14999



4505
14932



4506
15385



4507
15403



4508
14861



4509
14252



4510
14999



4511
4029



4512
4342



4513
13981



4514
14999



4515
15350



4516
15403



4517
14974



4518
14027



4519
4767



4520
14899



4521
14921



4522
4342



4523
15390



4524
14999



4525
14932



4526
14252



4527
14764



4528
4342



4529
15390



4530
14921



4531
4029



4532
13981



4533
4029



4534
14921



4535
14252



4536
4394



4537
4130



4538
14999



4539
14921



4540
15385



4541
14921



4542
14974



4543
3926



4544
3574



4545
4767



4546
15356



4547
15403



4548
14899



4549
14764



4550
14999



4551
14921



4552
14252



4553
15356



4554
14899



4555
14861



4556
15350



4557
14899



4558
15403



4559
3940



4560
4781



4561
4121



4562
3574



4563
15403



4564
14932



4565
4342



4566
15350



4567
3964



4568
14253



4569
3574



4570
14250



4571
14020



4572
13981



4573
4394



4574
15390



4575
3574



4576
8767



4577
4781



4578
14999



4579
14253



4580
4029



4581
15403



4582
14764



4583
14999



4584
14027



4585
14252



4586
4394



4587
14252



4588
14999



4589
4767



4590
14253



4591
14921



4592
14253



4593
14764



4594
14974



4595
14252



4596
4342



4597
14764



4598
14764



4599
14974



4600
4029



4601
14921



4602
14999



4603
13981



4604
14921



4605
15356



4606
4121



4607
15390



4608
14921



4609
14253



4610
4342



4611
15390



4612
3964



4613
14253



4614
14899



4615
4029



4616
4781



4617
15350



4618
13981



4619
3574



4620
15385



4621
3964



4622
14932



4623
14932



4624
14974



4625
3964



4626
4342



4627
14921



4628
3964










Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.


All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that section headings are used, they should not be construed as necessarily limiting.


In addition, any priority document(s) of this application is/are hereby incorporated herein by reference in its/their entirety.


REFERENCES



  • 1. Psychogios, N. et al. The human serum metabolome. PLoS ONE 6, e16957 (2011).

  • 2. Ridker, P. M., Stampfer, M. J. & Rifai, N. Novel risk factors for systemic atherosclerosis. JAMA 285, 2481 (2001).

  • 3. Baigent, C. et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366, 1267-1278 (2005).

  • 4. National Diabetes Statistics Report|Data & Statistics|Diabetes|CDC. at <www(dot)cdc(dot)gov/diabetes/data/statistics/statistics-report.html>

  • 5. Floegel, A. et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 62, 639-648 (2013).

  • 6. Shin, S.-Y. et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 46, 543-550 (2014).

  • 7. Long, T. et al. Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites. Nat. Genet. 49, 568-578 (2017).

  • 8. Wikoff, W. R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 106, 3698-3703 (2009).

  • 9. Fischbach, M. A. Microbiome: focus on causation and mechanism. Cell 174, 785-790 (2018).

  • 10. Liu, R. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23, 859-868 (2017).

  • 11. Fujisaka, S. et al. Diet, genetics, and the gut microbiome drive dynamic changes in plasma metabolites. Cell Rep. 22, 3072-3086 (2018).

  • 12. Wilson, M. Microbial Inhabitants of Humans: Their ecology and role in health and disease. (Cambridge University Press, 2004). doi:10.1017/CB09780511735080

  • 13. Topping, D. L. Short-chain fatty acids produced by intestinal bacteria. Asia Pac. J. Clin. Nutr. 5, 15-19 (1996).

  • 14. Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376-381 (2016).

  • 15. Patel, K. P., Luo, F. J.-G., Plummer, N. S., Hostetter, T. H. & Meyer, T. W. The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores. Clin. J. Am. Soc. Nephrol. 7, 982-988 (2012).

  • 16. Tang, W. H. W. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575-1584 (2013).

  • 17. Li, X. S. et al. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur. Heart J. 38, 814-824 (2017).

  • 18. Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576-585 (2013).

  • 19. Brown, J. M. & Hazen, S. L. Metaorganismal nutrient metabolism as a basis of cardiovascular disease. Curr. Opin. Lipidol. 25, 48-53 (2014).

  • 20. Zhu, W. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111-124 (2016).

  • 21. Floegel, A. et al. Variation of serum metabolites related to habitual diet: a targeted metabolomic approach in EPIC-Potsdam. Eur. J. Clin. Nutr. 67, 1100-1108 (2013).

  • 22. Thorburn, A. N., Macia, L. & Mackay, C. R. Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity 40, 833-842 (2014).

  • 23. Playdon, M. C. et al. Comparing metabolite profiles of habitual diet in serum and urine. Am. J. Clin. Nutr. 104, 776-789 (2016).

  • 24. Xu, T. et al. Effects of smoking and smoking cessation on human serum metabolite profile: results from the KORA cohort study. BMC Med. 11, 60 (2013).

  • 25. Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079-1094 (2015).

  • 26. Yousri, N. A. et al. Long term conservation of human metabolic phenotypes and link to heritability. Metabolomics 10, 1005-1017 (2014).

  • 27. Ke, G. et al. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. (2017).

  • 28. Cirulli, E. T. et al. Profound Perturbation of the Metabolome in Obesity Is Associated with Health Risk. Cell Metab. 29, 488-500.e2 (2019).

  • 29. Yousri, N. A. et al. Whole-exome sequencing identifies common and rare variant metabolic QTLs in a Middle Eastern population. Nat. Commun. 9, 333 (2018).

  • 30. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210-215 (2018).

  • 31. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565-569 (2016).

  • 32. Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560-564 (2016).

  • 33. Pasolli, E. et al. Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle. Cell 176, 649-662.e20 (2019).

  • 34. Lundberg, S. & Lee, S.-I. A Unified Approach to Interpreting Model Predictions. arXiv (2017).

  • 35. Lundberg, S. M., Erion, G. G. & Lee, S.-I. Consistent Individualized Feature Attribution for Tree Ensembles. arXiv (2018).

  • 36. Manor, O. & Borenstein, E. Systematic characterization and analysis of the taxonomic drivers of functional shifts in the human microbiome. Cell Host Microbe 21, 254-267 (2017).

  • 37. Ashihara, H., Monteiro, A. M., Gillies, F. M. & Crozier, A. Biosynthesis of caffeine in leaves of coffee. Plant Physiol. 111, 747-753 (1996).

  • 38. Tsutsumi, Y. et al. Renal disposition of a furan dicarboxylic acid and other uremic toxins in the rat. J. Pharmacol. Exp. Ther. 303, 880-887 (2002).

  • 39. Prentice, K. J. et al. CMPF, a Metabolite Formed Upon Prescription Omega-3-Acid Ethyl Ester Supplementation, Prevents and Reverses Steatosis. EBioMedicine 27, 200-213 (2018).

  • 40. Hung, S.-C., Kuo, K.-L., Wu, C.-C. & Tang, D.-C. Indoxyl sulfate: A novel cardiovascular risk factor in chronic kidney disease. J. Am. Heart Assoc. 6, (2017).

  • 41. Barrios, C. et al. Gut-Microbiota-Metabolite Axis in Early Renal Function Decline. PLoS ONE 10, e0134311 (2015).

  • 42. Poesen, R. et al. Microbiota-Derived Phenylacetylglutamine Associates with Overall Mortality and Cardiovascular Disease in Patients with CKD. J. Am. Soc. Nephrol. 27, 3479-3487 (2016).

  • 43. Evenepoel, P., Meijers, B. K. I., Bammens, B. R. M. & Verbeke, K. Uremic toxins originating from colonic microbial metabolism. Kidney Int. Suppl. S12-9 (2009). doi:10.1038/ki.2009.402

  • 44. Dodd, D. et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551, 648-652 (2017).

  • 45. Atkinson, W., Downer, P., Lever, M., Chambers, S. T. & George, P. M. Effects of orange juice and proline betaine on glycine betaine and homocysteine in healthy male subjects. Eur. J. Nutr. 46, 446-452 (2007).

  • 46. Smyth, J. M. et al. Individual differences in the diurnal cycle of cortisol. Psychoneuroendocrinology 22, 89-105 (1997).

  • 47. Hyttel, J. Pharmacological characterization of selective serotonin reuptake inhibitors (SSRIs). Int. Clin. Psychopharmacol. 9, 19-26 (1994).

  • 48. Korem, T. et al. Bread Affects Clinical Parameters and Induces Gut Microbiome-Associated Personal Glycemic Responses. Cell Metab. 25, 1243-1253.e5 (2017).

  • 49. Olthof, M. R., van Vliet, T., Boelsma, E. & Verhoef, P. Low dose betaine supplementation leads to immediate and long term lowering of plasma homocysteine in healthy men and women. J. Nutr. 133, 4135-4138 (2003).

  • 50. Craig, S. A. S. Betaine in human nutrition. Am. J. Clin. Nutr. 80, 539-549 (2004).

  • 51. Fardet, A. et al. Whole-grain and refined wheat flours show distinct metabolic profiles in rats as assessed by a 1H NMR-based metabonomic approach. J. Nutr. 137, 923-929 (2007).

  • 52. Chalmers, T. C. et al. A method for assessing the quality of a randomized control trial. Control. Clin. Trials 2, 31-49 (1981).

  • 53. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565-569 (2010).

  • 54. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

  • 55. Segata, N. et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods 9, 811-814 (2012).

  • 56. Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834-841 (2014).

  • 57. Zeevi, D. et al. Structural variation in the gut microbiome associates with host health. Nature (2019).

  • 58. Bridgewater B R, E. A. High Resolution Mass Spectrometry Improves Data Quantity and Quality as Compared to Unit Mass Resolution Mass Spectrometry in High-Throughput Profiling Metabolomics. Metabolomics 04, (2014).

  • 59. Zierer, J. et al. The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet. 50, 790-795 (2018).

  • 60. Marco-Sola, S., Sammeth, M., Guigó, R. & Ribeca, P. The GEM mapper: fast, accurate and versatile alignment by filtration. Nat. Methods 9, 1185-1188 (2012).

  • 61. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359 (2012).

  • 62. Korem, T. et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science 349, 1101-1106 (2015).

  • 63. Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap. (Chapman and Hall/CRC, 1994). doi:10.1007/978-1-4899-4541-9

  • 64. Fisher, R. A. Frequency Distribution of the Values of the Correlation Coefficient in Samples from an Indefinitely Large Population. Biometrika 10, 507 (1915).

  • 65. Wald, A. Sequential tests of statistical hypotheses. Ann. Math. Statist. 16, 117-186 (1945).

  • 66. GitHub—slundberg/shap: A unified approach to explain the output of any machine learning model. at <github(dot)com/slundberg/shap>

  • 67. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504 (2003).

  • 68. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76-82 (2011).

  • 69. Schweiger, R. et al. RL-SKAT: An Exact and Efficient Score Test for Heritability and Set Tests. Genetics 207, 1275-1283 (2017).











LENGTHY TABLES




The patent application contains a lengthy table section. A copy of the table is available in electronic form from the USPTO web site (). An electronic copy of the table will also be available from the USPTO upon request and payment of the fee set forth in 37 CFR 1.19(b)(3).





Claims
  • 1. A method of predicting the quantity of a metabolite in the blood of a subject, the method comprising: accessing a computer readable medium storing a library of trained machine learning procedures, each being associated with a different metabolite;searching said library for a trained machine learning procedure associated with the metabolite;feeding said selected procedure with amount of a plurality of microbes of a microbiome of the subject; andreceiving from said selected procedure an output indicative of the quantity of the metabolite in the blood.
  • 2. The method of claim 1, further comprising measuring the amount of microbes of said microbiome of the subject prior to said analyzing.
  • 3. The method according to claim 1, wherein said microbiome is a fecal microbiome.
  • 4. The method according to claim 1, wherein said plurality of microbes comprises more than 20 microbes.
  • 5. The method according to claim 1, wherein said metabolite is set forth in Table 2.
  • 6. The method according to claim 1, wherein said metabolite is other than glucose and other than cholesterol.
  • 7. (canceled)
  • 8. The method according to claim 1, wherein at least some of said trained machine learning procedures in said library comprises a set of decision trees.
  • 9. (canceled)
  • 10. The method according to claim 1, wherein said selected machine learning procedure comprises a set of decision trees, each decision tree comprises a plurality of nodes associated with a respective plurality of decision rules, each decision rule relating to at least one microbe of said microbiome, and wherein a number of decision rules relating to microbes listed in Table 1 is larger than a number of decision rules relating to other microbes of said microbiome.
  • 11. A method of predicting the quantity of a metabolite set forth in Table 1, the method comprising: accessing a computer readable medium storing a trained machine learning procedure associated with the metabolite;feeding said trained procedure with an amount of N of the corresponding microbes set forth in Table 1, said N being at most 50; andreceiving from said procedure an output indicative of the quantity of the metabolite in the blood, thereby predicting the quantity of the metabolite in the blood.
  • 12. The method of claim 11, further comprising measuring the amount of microbes of said fecal microbiome of the subject prior to said analyzing.
  • 13. (canceled)
  • 14. A method of predicting the quantity of a metabolite in the blood of a subject that consumes a diet of a plurality of food types, the method comprising: accessing a computer readable medium storing a library of trained machine learning procedures, each being associated with a different metabolite;searching said library for a trained machine learning procedure associated with the metabolite;feeding said selected procedure with a frequency of consumption of at least 5 of said food types over at least one month and/or a daily mean consumption of at least 5 of said food types; andreceiving from said selected procedure an output indicative of the quantity of the metabolite in the blood.
  • 15. The method of claim 14, wherein said metabolite is set forth in Table 4.
  • 16-17. (canceled)
  • 18. The method according to claim 14, wherein at least some of said trained machine learning procedures in said library comprises a set of decision trees.
  • 19. (canceled)
  • 20. The method according to claim 14, wherein said selected machine learning procedure comprises a set of decision trees, each decision tree comprises a plurality of nodes associated with a respective plurality of decision rules, each decision rule relating to at least one food type, and wherein a number of decision rules relating to food types listed in Table 3 is larger than a number of decision rules relating to other food types.
  • 21-23. (canceled)
  • 24. The method according to claim 1, further comprising corroborating the quantity of the metabolite by measuring the amount of said metabolite in a blood sample of the subject.
  • 25. A method of diagnosing a disease of a subject comprising predicting the quantity of at least one metabolite which is indicative of the disease, wherein said predicting is carried out according to claim 1, thereby diagnosing the disease.
  • 26. The method of claim 25, wherein the disease is selected from the group consisting of a metabolic disease, a cardiovascular disease and kidney disease.
  • 27-31. (canceled)
  • 32. A method of providing dietary advice to a subject, the method comprising predicting the quantity of a metabolite in the blood by carrying out the method according to claim 14, wherein when said metabolite is above or below the recommended quantity of said metabolite, recommending consumption of at least one food type that alters the quantity of said metabolite.
  • 33. The method of claim 32, wherein said metabolite is set forth in Table 4.
  • 34. The method of claim 33, wherein said food type is the corresponding food type set forth in Table 4.
  • 35-36. (canceled)
Priority Claims (1)
Number Date Country Kind
264581 Jan 2019 IL national
PCT Information
Filing Document Filing Date Country Kind
PCT/IL2020/050121 1/30/2020 WO 00