This disclosure relates to downhole tools and, more particular, to predicting the pump power and efficiency of a pump in a downhole tool.
Downhole drilling operations may include the use of downhole tools used for measuring, logging, or sampling while drilling. Some downhole tools may include a pump to obtain samples of formation fluids for determination of fluid properties using downhole fluid analysis (DFA). A downhole tool may be used in a variety of downhole operation conditions and formation fluid compositions. Estimating the performance of a pump of a downhole tool may be difficult. Inaccurate or time-consuming estimates may affect the operation to obtain of a desired volume of formation fluid within a certain amount of time and without contamination.
A summary of certain embodiments disclosed herein is set forth below. It should be understood that these embodiments and associated aspects are presented merely to provide the reader with a brief summary of these certain embodiments and that the associated aspects are not intended to limit the scope of this disclosure. Indeed, this disclosure may encompass a variety of embodiments and aspects that may not be set forth below.
Embodiments of this disclosure relate to various systems, methods, and devices for determining pump performance in downhole tools, such as for planning an operation (e.g., a sampling operation) for a subterranean formation. In some embodiments, a method is provided that includes obtaining a plurality of operating conditions associated with a pump of a downhole tool configured to be operated in a wellbore of a well. The pump may be coupled to a flowline and a sample bottle for obtaining a sample of a formation fluid. The method further includes determining, from the plurality of operating conditions, first predictions associated with performance of the pump. The first predictions may include at least one of a minimum alternator voltage, a maximum pump flow rate, a pumpout performance estimate, and an achievable formation mobility. The method also includes obtaining a type of the formation fluid, one or more wellbore properties associated with the wellbore, and one or more formation properties associated with the formation and determining based at least in part on the formation fluid type, the one or more wellbore properties, the one or more formation properties, and a pump flow rate at a selected achievable formation mobility, second predictions associated with performance of the pump. The second predictions may include at least one of a volume efficiency of the pump, a minimum pressure in the flowline, a number of strokes of the pump to fill the sampling bottle, and an amount of time to fill the sampling bottle. The method further includes planning the operation based at least in part on the first predictions and the second predictions.
In some embodiments, non-transitory machine-readable medium storing computer-executable instructions that, when executed, causes a processor to perform the following: obtaining a plurality of operating conditions associated with a pump of a downhole tool configured to be operated in a wellbore of a well. The pump may be coupled to a flowline and a sample bottle for obtaining a sample of a formation fluid. The computer-executable instructions that, when executed, further cause the processor to perform the following: determining, from the plurality of operating conditions, first predictions associated with performance of the pump. The first predictions may include at least one of a minimum alternator voltage, a maximum pump flow rate, a pumpout performance estimate, and an achievable formation mobility. The computer-executable instructions that, when executed, also cause the processor to perform the following: also includes obtaining a type of the formation fluid, one or more wellbore properties associated with the wellbore, and one or more formation properties associated with the formation; and determining based at least in part on the formation fluid type, the one or more wellbore properties, the one or more formation properties, and a pump flow rate at a selected achievable formation mobility, second predictions associated with performance of the pump. The second predictions may include at least one of a volume efficiency of the pump, a minimum pressure in the flowline, a number of strokes of the pump to fill the sampling bottle, and an amount of time to fill the sampling bottle.
Additionally, in some embodiments, a system is provided that includes a processor and a at least one memory storing computer-executable instructions, that when executed, causes the processor to perform the following: obtaining a plurality of operating conditions associated with a pump of a downhole tool configured to be operated in a wellbore of a well. The pump may be coupled to a flowline and a sample bottle for obtaining a sample of a formation fluid. The computer-executable instructions that, when executed, further cause the processor to perform the following: determining, from the plurality of operating conditions, first predictions associated with performance of the pump. The first predictions may include at least one of a minimum alternator voltage, a maximum pump flow rate, a pumpout performance estimate, and an achievable formation mobility. The computer-executable instructions that, when executed, also cause the processor to perform the following: also includes obtaining a type of the formation fluid, one or more wellbore properties associated with the wellbore, and one or more formation properties associated with the formation; and determining based at least in part on the formation fluid type, the one or more wellbore properties, the one or more formation properties, and a pump flow rate at a selected achievable formation mobility, second predictions associated with performance of the pump. The second predictions may include at least one of a volume efficiency of the pump, a minimum pressure in the flowline, a number of strokes of the pump to fill the sampling bottle, and an amount of time to fill the sampling bottle.
Various embodiments and associated aspects of this disclosure may be better understood upon reading the following detailed description and upon reference to the drawings in which:
Described herein are various implementations related to a pump performance predictor for a downhole tool. The pump performance predictor may receive inputs and generate outputs that predict the performance of a pump of a pumpout module of a downhole tool. In some embodiments, the operation conditions of a pump operating environment may be provided to the pump performance predictor. In some embodiments, a turbine type and a pump type may also be provided to the pump performance predictor. In some embodiments, the pump performance predictor may calculate and output a set of first predictions that include, for example, the minimum power source (e.g., alternator) voltage of a power module used to power the electronics of the pumpout module, the maximum pump flowrate, the pumpout performance, and the achievable formation mobility.
In some embodiments, a second set of inputs may be provided to the pump performance predictor. The second set of inputs may include, for example, a formation fluid type, wellbore properties, and formation properties. In some embodiments, calculation selections, such as the predictions for a specific operation, may be provided to the pump performance predictor. In some embodiments, the pump performance predictor may calculate and output a set of second predictions that may include, for example, a pump volume efficiency, a pressure profile in a flowline (e.g., including a minimum pressure in the flowline), the number of strokes to fill a sampling bottle, and the time to fill the sampling bottle. In some embodiments, the second predictions may include the number of strokes to purge a flowline and the time to purge flowline before filling the sampling bottle.
In some embodiments, the pump performance predictor may implement various models to enable determination of the predictions from the received inputs. In some embodiments, the pump performance predictor may implement alternator voltage models, a maximum pump speed model, pump rates and differential pressure models, and a formation model. In some embodiments, the pump performance predictor may implement a reservoir pressure drop, flowline pressure drop, and check valve sub-models, a real gas model, and a thermodynamic and transport database of known thermodynamic and transport properties. In some embodiments, the pump performance predictor may include a user interface that provides for user input of some or all of the inputs to the pump performance predictor and displays some or all of the outputs calculated by the pump performance predictor.
These and other embodiments of the disclosure will be described in more detail through reference to the accompanying drawings in the detailed description of the disclosure that follows. This brief introduction, including section titles and corresponding summaries, is provided for the reader's convenience and is not intended to limit the scope of the claims or the proceeding sections. Furthermore, the techniques described above and below may be implemented in a number of ways and in a number of contexts. Several example implementations and contexts are provided with reference to the following figures, as described below in more detail.
More specifically, a drilling system 10 is depicted in
The drill string 16 can be suspended within the well 14 from a hook 22 of the drilling rig 12 via a swivel 24 and a kelly 26. Although not depicted in
During operation, drill cuttings or other debris may collect near the bottom of the well 14. Drilling fluid 32, also referred to as drilling mud, can be circulated through the well 14 to remove this debris. The drilling fluid 32 may also clean and cool the drill bit 20 and provide positive pressure within the well 14 to inhibit formation fluids from entering the wellbore. In
In addition to the drill bit 20, the bottomhole assembly 18 can also include various instruments that measure information of interest within the well 14. For example, as depicted in
The bottomhole assembly 18 can also include other modules. As depicted in
The steering module 52 may include a rotary-steerable system that facilitates directional drilling of the well 14. The communication module 54 can enable communication of data (e.g., data collected downhole tool 44) between the bottomhole assembly 18 and the surface. In one embodiment, the communication module 54 can communicate via mud pulse telemetry, in which the communication module 54 uses the drilling fluid 32 in the drill string as a propagation medium for a pressure wave encoding the data to be transmitted.
The drilling system 10 can also include a monitoring and control system 56. The monitoring and control system 56 can include one or more computer systems that enable monitoring and control of various components of the drilling system 10. The monitoring and control system 56 can also receive data from the bottomhole assembly 18 (e.g., data from the downhole tool 44 and other modules 46 and 48) for processing and for communication to an operator, to name just two examples. While depicted on the drill floor 30 in
The pumpout module 74 can draw the sampled formation fluid into the intake 86, through a flowline 92, and then either out into the wellbore through one or more outlets 94 or into a storage container (e.g., a bottle within fluid storage module 78) for transport back to the surface when the fluid sampling tool 62 is removed from the well 14. The fluid analysis module 72, which may also be referred to as the fluid analyzer or a DFA module, can include one or more sensors for measuring properties of the sampled formation fluid, such as the optical density of the fluid, and the power module 76 provides power to electronic and hydraulic components of the fluid sampling tool 62.
The drilling and tool environments depicted in
Additional details as to the construction and operation of the downhole tool 62 may be are illustrated in to
In operation, the hydraulic system 102 can extend the probe 82 and the setting pistons 88 to facilitate sampling of a formation fluid through the wall 84 of the well 14. It also can retract the probe 82 and the setting pistons 88 to facilitate subsequent movement of the downhole tool 62 within the well. The spectrometer 104, which can be positioned within the fluid analyzer 72, can collect data about optical properties of the sampled formation fluid. Such measured optical properties can include optical densities (absorbance) of the sampled formation fluid at different wavelengths of electromagnetic radiation. Using the optical densities, the composition of a sampled fluid (e.g., weight fractions of its constituent components) can be determined. Other sensors 106 can be provided in the downhole tool 62 (e.g., as part of the probe module 70 or the fluid analyzer 72) to take additional measurements related to the sampled fluid. In various embodiments, these additional measurements could include reservoir pressure and temperature, live fluid density, live fluid viscosity, electrical resistivity, saturation pressure, and fluorescence, to name several examples.
In the embodiment depicted in
A pump 108 may be provided in the pumpout module 74 to enable formation fluid to be drawn into and pumped through the flowline 92 in the manner discussed above. Sample bottles 110 for formation fluid samples may retain desired samples within the downhole tool 62 and, in some embodiments, transport the formation fluid samples to the surface. Both the storage devices 110 and the check valves 112 may be provided as part of the fluid storage module 78. The pump 108 may be reciprocating pump, such as electro-mechanical displacement unit (DU) with motor-gearbox-roller-screw. In some embodiments, the valves 112 may include four check valves that may be in line with the flowline 92. As will be appreciated, the piston in the reciprocating pump may move forward and/or in reverse, driven by a motor, in order to create pressure drops and pressure increases that move the formation fluid from the reservoir to sampling bottles of the fluid storage module 78. In some embodiments, four check valves are used in combination to control the flow direction only to the sampling bottles. In some embodiments, the pumpout module 74 may include a turbine alternator, in addition to or instead of a turbine alternator included in the power module.
As described below, the performance of the pump 108 may be predicted using a pump performance predictor that takes various inputs and provided outputs such as pump power and efficiency. The pump performance predictor may provide relatively fast predictions of the pump performance to enable field engineers to relatively quickly plan and estimate operations using the pumpout module, such as sampling, dumping, and filling operations. As described below, the pump performance predictor may be used to calculate relatively accurate pump volume efficiency and other outputs for specific fluid types and downhole operations. Additionally, the pump performance predictor may enable field engineers to estimate the pressure, temperature, and mass flow rate through the pump 108, the number of strokes and time to fill a sampling bottle, the minimum pressure in the flowline to avoid dropping below sample fluid phase change (e.g., saturation pressure) during a sampling job, the number of strokes and time to purge a portion of the flowline (e.g., the portion of the flowline between a halfway outlet and the farthest outlet).
Additionally, in some embodiments, the first inputs 404 may include an identification of a turbine type (e.g., a specific turbine manufacturer, model, a turbine operation range, etc.). In some embodiments, the first inputs 404 may include an identification of a pump type (e.g., a specific pump manufacturer, specific pump model, etc.).
Using the first inputs 404, the pump performance predictor 402 may output first predictions 406. In some embodiments, the first predictions 406 may include a minimum power source voltage (measured in volts, for example), e.g., the minimum power source voltage to operate the electronics of the pumpout module at the operation conditions), the turbine rotational speed (measured in RPM, for example) associated with the minimum alternator voltage, a maximum pump flow rate (measured in cc/sec, for example), a pumpout performance (e.g., a graph of maximum DU differential pressure vs. flow rate), an achievable formation mobility (e.g., a graph of achievable mobility vs. flow rate), or any combination thereof. For example,
In some embodiments, the first predictions 406 may be determined using alternator voltage models 408. The alternator voltage models 408 may include curve fit models based on empirical data that correlates turbine speed to mud flow rate, and turbine speed to alternator voltage. For example,
In some embodiments, the first predictions 406 may be determined using a maximum pump speed model 410. The maximum pump speed model 410 may determine a maximum pump speed based at least in part on the on the power source voltage. In some embodiments, the maximum pump speed model 410 be described below in Equation 1:
Max_Pump_Speed=Volt_Alt*x (1)
where x is a scaling factor expressed in RPM/V and is dependent on the pulse width modulation (PWM) drive limitation and impedance drop of the pump system.
In some embodiments, the pumpout performance of the first predictions 406 may be determined using DU pump rates and DU differential pressure models 412. In some embodiments, the DU pump rates and DU differential pressure models 412 may include a two variable curve fit that fits flow loop empirical data linking the alternator voltage across a matrix of varying DU pump rates and DU differential pressures at ambient conditions.
In some embodiments, a formation model 414 may be used to associate the output of the predicted pump at the limited alternator power to the formation response as expressed in pressure drop and mobility. Using the models 408, 410, 412, and 414, the pump performance predictor 404 may model the pump flow rate to the achievable formation response. Additionally, in some embodiments, the models 408, 410, 412, and 414 may be corrected for temperature (and, in some embodiments, other environmental parameters) to further increase the accuracy of the first predictions 406.
In some embodiments, one or more of the first predictions may be input (line 416) into the pump performance predictor 402 and used in the determination of additional predictions. In some embodiments, after the output of first predictions, second inputs 418 may be provided to the pump performance predictor 406. The second inputs 418 may include a formation fluid type, wellbore properties, and formation properties. In some embodiments, the formation fluid type may be selected among a gas, a hydrocarbon mixture, water, or oil. In some embodiments, the composition of a hydrocarbon mixture may be included in the second inputs 418. In some embodiments, the density, compressibility, and viscosity of an oil may be included in the second inputs 418. In some embodiments, calculation selections 420 may also be provided to the pump performance predictor 402. The calculation selections 420 may include a selection of an operation mode (e.g., sampling a formation fluid, dumping a formation fluid, or filling a sampling bottle), a thermal condition (e.g., isentropic (referring to an adiabatic boundary condition, such as no heat transfer through a pumpout module housing) or isothermal (referring to a constant fluid temperature in the pump with assumed infinitely fast heat transfer through the pumpout module housing), and a constant pump rate (measured in cc/sec, for example). In some embodiments, the wellbore properties may include a wellbore pressure (measured in psi, for example). In some embodiments, the formation properties may include formation pressure (measured in psi, for example), formation temperature (measured in ° C., for example), and formation mobility (measured in mD, for example). In some embodiments, the first inputs 404 may be obtained from user input via a graphical user interface, as described below and illustrated in
Based at least in part on the second inputs 418, the calculation selections 420, and one or more of the first predictions 414, the pump performance predictor 402 may output second predictions 422. In some embodiments, the second predictions 422 may include a pump volume efficiency (expressed as a percentage, for example), the number of strokes to cleanup the flowline and/or fill a sample bottle, the amount of time to cleanup the flowline and/or fill a sampling bottle (measured in sec, for example), and the minimum pressure in the flowline (expressed in psi, for example, and may be used as an indication of phase change during the sampling process). The pump volume efficiency may refer to the effectively used volume during a full pump cycle (e.g., a pump volume efficiency of 53% means that with 1 full stroke (back or forth) fluid of 53% of the chamber volume at the formation state is pumped out). In some embodiments, the prediction of the number of strokes to fill a sample bottle and the amount of time to fill a sampling bottle may be provided in response to calculation selection (e.g., such as when a filling operation is selected).
In some embodiments, the second predictions 422 may be determined using reservoir pressure drop, flowline pressure drop, and check valve sub-models 424, a real gas model 426, and a thermodynamic and transport database 428 (e.g., a database of known thermodynamic and transport properties). For example, the following fourteen (14) paragraphs describe example implementations of the reservoir pressure drop, flowline pressure drop, and check valve sub-models 424, a real gas model 426, and a thermodynamic and transport database 428 in accordance with some embodiments of the pump performance predictor 402.
In some embodiments, the state changes of formation fluid samples in a predicted pump in a full sampling cycle may be modeled as isentropic processes. For example,
In view of the foregoing discussion,
As mentioned above, in some embodiments the pump performance predictor 402 may include a reservoir sub-model.
Where pprobe is the pressure at the probe in atm, pƒ is the pressure at the formation, ω is a shape factor of the probe, rprobe is the probe radius, μ is the viscosity, k is the permeability of the formation, and q is the flow rate.
In some embodiments, the pressure loss in the flowlines may be modeled in the flowline pressure drop sub-model using friction correlations (e.g., the Blasius formula), as shown in Equation 3 below:
Where p is the pressure, v is the viscosity, D is the diameter of the flowline, and f is determined according to Equation 4 below:
Where Re is the Reynolds number. In some embodiments, the selection of the check valve sub-models may be based on the same routing valves (e.g., check valves) used in the downhole tool.
Similarly, in some embodiments of the check valve models 326 the flow rate (q) may have an empirical correlation described below in Equation 6:
Where CD is the drag coefficient and k may be determined according to Equation 7:
Where p may be determined according to Equation 8:
p=pA−pB (8)
Where the Reynolds number Re may be determined according to Equation 9:
Where CDL may be determined according to Equation 10:
and Where DH may be determined according to Equation 11:
Although the above discussion provides examples of implementations of the Reservoir pressure drop, flowline pressure drop, and check value sub-models 424, the real gas model 426, and the thermodynamic and transport database 428, it should be appreciated that other embodiments may use variations of or different implementations that those presented above.
Next, the achievable pump speed and pressure differential capability for the operating conditions of the first inputs may be calculated (block 1108), and the formation response in terms of pressure drop and mobility may be calculated (block 1110). In some embodiments, a graph of maximum DU pump differential pressure vs. flow rate and a graph of achievable mobility vs. flow rate may be generated, and the graphs may be output to a display device (block 1112).
As shown by connector block A, the process 1100 is further illustrated in
Initially, second inputs and calculation preferences may be obtained (block 1114), such as from user inputs into a graphical user interface (GUI) and the outputs from the previous calculations of the process 1100. Next, the pressure drops (Δp1-Δp5) at steady state between each of the sub-processes (p1-p4 described above) may be determined (block 1116), such as from the reservoir pressure drop, flowline pressure drop, and check value sub-models 424. The pressures for each the sub-processes (p1-p4) may then be calculated (block 1118).
Next, the entropy (s) may be calculated (block 1120) using the pressure and temperature of the formation fluid based at least in part on, for example, the real gas model 426 and the thermodynamic and transport database 428. Next, the temperatures (T1-T4) for each of the sub-processes (p1-p4) may be calculated (block 1122) from the pressure and entropy and based at least in part on, for example, the real gas model 426 and the thermodynamic and transport database 428. Next, the densities (ρ1-ρ4) for each of the sub-processes (p1-p4) may be calculated (block 1124) from the pressure and temperate and based at least in part on, for example, the real gas model 426 and the thermodynamic and transport database 428.
Next, as shown in
Next, the minimum alternator voltage to operate the pump electronics under the operating conditions may be determined (block 1206). If the alternate voltage is determined to be inadequate, then the operating conditions may be determined to be infeasible and changes may be made to the operating conditions. If the alternator voltage is determined to be adequate, the pump performance predictor may be used to determine the maximum pump flowrate, the pumpout performance, and the achievable formation mobility (block 1208). Next, the formation fluid type, wellbore properties, and formation properties for a well of interest may be determined (block 1210). Here again, in some embodiments the formation fluid type, wellbore properties, and formation properties may be determine from an existing well or, in other embodiments, a well simulation or other sources.
Next, the formation fluid type, wellbore properties, formation properties, and calculation selections, may be input to the pump performance predictor (block 1212), such as using a graphical user interface of the pump performance predictor. Finally, as described above, the pump performance predictor may be used to determine the pump operating efficiency and, in some embodiments, number of strokes and time to fill a sample bottle (block 1214). The pump operating efficiency (and in some instances number of strokes and time to fill a sample bottle) may be used to plan a job using a downhole tool (block 1216). In some embodiments, the pump operating efficiency and other predictions may be used during a job. In some embodiments, the pump operating efficiency and other predictions may be modeled in real-time to evaluate the operation of a downhole tool. For example, a large difference between the actual pump operating efficiency and the model pump operating efficiency may indicate a problem with the downhole tool and prompt corrective action.
The processor 1302 may provide the processing capability to execute programs, user interfaces, and other functions of the system 1300. The processor 1302 may include one or more processors and may include “general-purpose” microprocessors, special purpose microprocessors, such as application-specific integrated circuits (ASICs), or any combination thereof. In some embodiments, the processor 1302 may include one or more reduced instruction set (RISC) processors, such as those implementing the Advanced RISC Machine (ARM) instruction set. Additionally, the processor 1302 may include single-core processors and multicore processors and may include graphics processors, video processors, and related chip sets. Accordingly, the system 1300 may be a uni-processor system having one processor (e.g., processor 1302a), or a multi-processor system having two or more suitable processors (e.g., 1302A-1302N). Multiple processors may be employed to provide for parallel or sequential execution of the techniques described herein. Processes, such as logic flows, described herein may be performed by the processor 1302 executing one or more computer programs to perform functions by operating on input data and generating corresponding output. The processor 1302 may receive instructions and data from a memory (e.g., memory 1304).
The memory 1304 (which may include one or more tangible non-transitory computer readable storage mediums) may include volatile memory and non-volatile memory accessible by the processor 1302 and other components of the system 1300. For example, the memory 1304 may include volatile memory, such as random access memory (RAM). The memory 1304 may also include non-volatile memory, such as ROM, flash memory, a hard drive, other suitable optical, magnetic, or solid-state storage mediums or any combination thereof. The memory 1304 may store a variety of information and may be used for a variety of purposes. For example, the memory 1304 may store executable computer code, such as the firmware for the system 1300, an operating system for the system 1300, and any other programs or other executable code for providing functions of the system 1300. Such executable computer code may include program instructions 1318 executable by a processor (e.g., one or more of processors 1302A-1302N) to implement one or more embodiments of the present disclosure. Program instructions 1318 may include computer program instructions for implementing one or more techniques described herein. Thus, in some embodiments, the program instructions 1318 may implement a pump performance predictor 1320 having the capabilities described above. In some embodiments, the pump performance predictor 1320 may include a graphical user interface (GUI) 1322 that may be displayed on the display device 1314.
The interface 1316 may include multiple interfaces and may enable communication between various components of the system 1300, the processor 1302, and the memory 1304. In some embodiments, the interface 1314, the processor 1302, memory 1304, and one or more other components of the system 1300 may be implemented on a single chip, such as a system-on-a-chip (SOC). In other embodiments, these components, their functionalities, or both may be implemented on separate chips. The interface 1316 may enable communication between processors 1302a-1302n, the memory 1304, the network interface 1312, the display device 1314, or any other devices of the system 1300 or a combination thereof. The interface 1316 may implement any suitable types of interfaces, such as Peripheral Component Interconnect (PCI) interfaces, the Universal Serial Bus (USB) interfaces, Thunderbolt interfaces, Firewire (IEEE-1394) interfaces, and so on.
The system 1300 may also include an input and output port 1308 to enable connection of additional devices, such as I/O devices 1314. Embodiments of the present disclosure may include any number of input and output ports 1308, including headphone and headset jacks, universal serial bus (USB) ports, Firewire (IEEE-1394) ports, Thunderbolt ports, and AC and DC power connectors. Further, the system 1300 may use the input and output ports to connect to and send or receive data with any other device, such as other portable computers, personal computers, printers, etc.
The processing system 1300 may include one or more input devices 1308. The input device(s) 1308 permit a user to enter data and commands used and executed by the processor 1312. The input device 1308 may include, for example, a keyboard, a mouse, a touchscreen, a track-pad, a trackball, an isopoint, and/or a voice recognition system, among others. The processing system 1300 may also include one or more output devices 1310. The output devices 1310 may include, for example, printers, speakers, and other suitable output devices.
The system 1300 depicted in
The system 1300 also includes a display device 1314. The display device 1314 may include may include a liquid crystal display (LCD) an organic light emitting diode (OLED) display, or other display types. In some embodiments, the display 1314 may display a GUI (e.g., GUI 1322) executed by the processor 1302. The display device 1314 may also display various indicators to provide feedback to a user. In some embodiments, the display device 1314 may be a touch screen and may include or be provided in conjunction with touch sensitive elements through which a user may interact with the graphical user interface.
In some embodiments, the screen 1400 includes an outputs section 1406 that displays outputs (e.g., the first predictions described above) of the pump performance predictor. For example, as described above and as shown in
The screen 1500 also includes additional sections that provide for the display of outputs from the pump performance predictor, such as an outputs section 1508 that displays the pump volume efficiency, the number of strokes to fill a sample bottle, the time to fill a sample bottle, and the lowest pressure in the flowline. In some embodiments, the screen 1500 may include a pumping dynamic responses section 1510 that provides graphs of the pressure, temperature, and mass flow rate for chambers of a pump. In some embodiments, the screen 1500 may include a first
Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain implementations could include, while other implementations do not include, certain features, elements, and/or operations. Thus, such conditional language is not generally intended to imply that features, elements, and/or operations are in any way used for one or more implementations or that one or more implementations necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or operations are included or are to be performed in any particular implementation.
Many modifications and other implementations of the disclosure set forth herein will be apparent having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the disclosure is not to be limited to the specific implementations disclosed and that modifications and other implementations are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense and not for purposes of limitation.
Number | Name | Date | Kind |
---|---|---|---|
7594541 | Ciglenec | Sep 2009 | B2 |
8813554 | Fujisawa | Aug 2014 | B2 |
8967253 | Ciglenec | Mar 2015 | B2 |
9109434 | Indo | Aug 2015 | B2 |
9222352 | Hoefel | Dec 2015 | B2 |
9334724 | Hsu | May 2016 | B2 |
9347314 | Indo | May 2016 | B2 |
9453408 | Indo | Sep 2016 | B2 |
9557312 | Zuo | Jan 2017 | B2 |
9803467 | Tang | Oct 2017 | B2 |
9957783 | Gonzales | May 2018 | B2 |
20070020110 | Mills | Jan 2007 | A1 |
20110088484 | Camilleri | Apr 2011 | A1 |
20110266056 | Pop et al. | Nov 2011 | A1 |
20120304757 | Fujisawa | Dec 2012 | A1 |
20130133881 | Boyles et al. | May 2013 | A1 |
20140131037 | Hsu | May 2014 | A1 |
20140360257 | Indo | Dec 2014 | A1 |
20140360259 | Indo | Dec 2014 | A1 |
20140379300 | Devine et al. | Dec 2014 | A1 |
20150013968 | Hsu | Jan 2015 | A1 |
20150226059 | Zuo | Aug 2015 | A1 |
20150308261 | Zuo | Oct 2015 | A1 |
20150308264 | Zuo | Oct 2015 | A1 |
20150354353 | Indo | Dec 2015 | A1 |
20160053607 | Pop | Feb 2016 | A1 |
20160168985 | Betancourt-Pocaterra | Jun 2016 | A1 |
20160177707 | Hsu | Jun 2016 | A1 |
20160252454 | Zuo | Sep 2016 | A1 |
20160265341 | Subervie | Sep 2016 | A1 |
20170002644 | Chen | Jan 2017 | A1 |
20170089192 | Rendusara | Mar 2017 | A1 |
20170101863 | Coste | Apr 2017 | A1 |
20170122094 | Chugunov | May 2017 | A1 |
20170138921 | Zuo | May 2017 | A1 |
20170175516 | Eslinger | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
2767538 | Jun 2013 | CA |
Entry |
---|
International Search Report and Written Opinion issued in corresponding International application PCT/US2016/038283 dated Sep. 12, 2016. 15 pages. |
Number | Date | Country | |
---|---|---|---|
20170002644 A1 | Jan 2017 | US |