The present disclosure relates to improving management of system resources used for recognition of content displayed by a media system (e.g., a television system, a computer system, or other electronic device capable of connecting to the Internet). In some examples, various techniques and systems are provided for determining a likelihood that content will be displayed on a media system in a future period of time.
A media system (e.g., a television system, a computer system, or other electronic device capable of connecting to the Internet) can display content for a user viewing the media system. In some examples, the content displayed on the media system might be unknown to the media system, and any application run on the media system. For examples, the media system might display whatever the media system is given. In such examples, an identification of the content might not be sent to the media system. In other examples, the identification of the content might have been lost between when the remote system sent the content and when the media system received the content. By not knowing what is being displayed on the media system, opportunities to show similar or relevant additional content with the content on the media system becomes difficult.
One solution to identify content displayed on a media system is to use a matching system, which matches content displayed on the media system with reference content. However, in order to be able to match content, the matching system must include a large number of reference content. In addition, not only must the matching system have a large number of reference content, the matching system also must have the right reference content. Therefore, there is a need in the art for managing reference content for a matching system.
Provided are devices, computer-program products, and methods for improved management of system resources in a matching system. For example, examples can increase the efficiency of system resource utilization by managing the duration that data related to video segments are retained based on data that takes into account an identified popularity of a video segment. The identified popularity can be determined by algorithms that take into account numbers of viewers who watched the video segment, ratings of the video segment, metrics derived from social media, or any other factor that can indicate likelihood that the video segment will be viewed.
In some implementations, a device, computer-program product, and method for improving management of system resources in a matching system is provided. For example, a method can include receiving a reference data set associated with a media segment and storing the reference data set in a reference database. In some examples, the reference data set can be received by a server. The server can be configured to identify an unidentified media segment by matching an unidentified data set with the reference data set. In such examples, the unidentified data set can be associated with the unidentified media segment. In some examples, a reference data set can include pixel data or audio data for a frame of the media segment.
The method can further include receiving popularity data indicating a popularity of the media segment. In some examples, the popularity data includes at least one or more of viewing information of the media segment, rating information of the media segment, or information associated with a posted message on a remote source. In such examples, the posted message can be associated with the media segment. In some examples, the information associated with the posted message on the remote source can include at least one or more of a number of posted messages on the remote source, a number of the posted messages that are positive, a number of the posted messages that are negative, a number of positive indications to the posted messages, a number of reposts of the posted message, or a number of views of the posted messages. In such examples, the posted messages are associated with the media segment. In some examples, the viewing information can include a number of times the media segment has been identified by the server.
The method can further include determining a deletion time for the reference data set. In some examples, the deletion time can be determined using the popularity data. The method can further include deleting the reference data set from the reference database. In some examples, the reference data set can be deleted after the deletion time has expired. In some examples, determining a deletion time can include computing an average of two or more values of the popularity data. In such examples, each value of the popularity data can be associated with a weight.
In some implementations, the method can further include adding the reference data set to a backup database when the reference data set is deleted from the reference database. In such implementations, the server can be configured to search the backup database after the reference database for a data set matching the unidentified data set.
The features, aspects, and advantages of the present disclosure will be most easily understood when the following description is read with reference to the accompanying drawings in which like numerical identifications represent like components or parts throughout the drawings.
Illustrative examples are described in detail below with reference to the following figures.
In the following description, for the purposes of explanation, specific details are set forth in order to provide a thorough understanding of examples of the invention. However, it will be apparent that various examples may be practiced without these specific details. The figures and description are not intended to be restrictive.
The ensuing description provides exemplary examples only, and is not intended to limit the scope, applicability, or configuration of the disclosure. Rather, the ensuing description of the exemplary examples will provide those skilled in the art with an enabling description for implementing an exemplary example. It should be understood that various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the invention as set forth in the appended claims.
Specific details are given in the following description to provide a thorough understanding of the examples. However, it will be understood by one of ordinary skill in the art that the examples may be practiced without these specific details. For example, circuits, systems, networks, processes, and other components may be shown as components in block diagram form in order not to obscure the examples in unnecessary detail. In other instances, well-known circuits, processes, algorithms, structures, and techniques may be shown without unnecessary detail in order to avoid obscuring the examples.
Also, it is noted that individual examples may be described as a process which is depicted as a flowchart, a flow diagram, a data flow diagram, a structure diagram, or a block diagram. Although a flowchart may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be re-arranged. A process is terminated when its operations are completed, but could have additional steps not included in a figure. A process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its termination can correspond to a return of the function to the calling function or the main function.
The term “machine-readable storage medium” or “computer-readable storage medium” includes, but is not limited to, portable or non-portable storage devices, optical storage devices, and various other mediums capable of storing, containing, or carrying instruction(s) and/or data. A machine-readable storage medium or computer-readable storage medium may include a non-transitory medium in which data can be stored and that does not include carrier waves and/or transitory electronic signals propagating wirelessly or over wired connections. Examples of a non-transitory medium may include, but are not limited to, a magnetic disk or tape, optical storage media such as compact disk (CD) or digital versatile disk (DVD), flash memory, memory or memory devices. A computer-program product may include code and/or machine-executable instructions that may represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software package, a class, or any combination of instructions, data structures, or program statements. A code segment may be coupled to another code segment or a hardware circuit by passing and/or receiving information, data, arguments, parameters, or memory contents. Information, arguments, parameters, data, or other information may be passed, forwarded, or transmitted using any suitable means including memory sharing, message passing, token passing, network transmission, or other transmission technique.
Furthermore, examples may be implemented by hardware, software, firmware, middleware, microcode, hardware description languages, or any combination thereof. When implemented in software, firmware, middleware or microcode, the program code or code segments to perform the necessary tasks (e.g., a computer-program product) may be stored in a machine-readable medium. A processor(s) may perform the necessary tasks.
Systems depicted in some of the figures may be provided in various configurations. In some examples, the systems may be configured as a distributed system where one or more components of the system are distributed across one or more networks in a cloud computing system.
As described in further detail below, certain aspects and features of the present disclosure relate to identifying unknown video segments by comparing unknown data points to one or more reference data points. The systems and methods described herein improve the efficiency of storing and searching large data sets that are used to identify the unknown video segments. For example, the systems and methods allow identification of the unknown data segments while reducing the density of the large data sets required to perform the identification. The techniques can be applied to any system that harvests and manipulates large volumes of data. Illustrative examples of these systems include automated content-based searching systems (e.g., automated content recognition for video-related applications or other suitable application), MapReduce systems, Bigtable systems, pattern recognition systems, facial recognition systems, classification systems, computer vision systems, data compression systems, cluster analysis, or any other suitable system. One of ordinary skill in the art will appreciate that the techniques described herein can be applied to any other system that stores data that is compared to unknown data. In the context of automated content recognition (ACR), for example, the systems and methods reduce the amount of data that must be stored in order for a matching system to search and find relationships between unknown and known data groups.
By way of example only and without limitation, some examples described herein use an automated audio and/or video content recognition system for illustrative purposes. However, one of ordinary skill in the art will appreciate that the other systems can use the same techniques.
A significant challenge with ACR systems and other systems that use large volumes of data can be managing the amount of data that is required for the system to function. Another challenge includes a need to build and maintain a database of known content to serve as a reference to match incoming content. Building and maintaining such a database involves collecting and digesting a vast amount (e.g., hundreds, thousands, or more) of content (e.g., nationally distributed television programs and an even larger amount of local television broadcasts among many other potential content sources). The digesting can be performed using any available technique that reduces the raw data (e.g., video or audio) into compressed, searchable data. With a 24-hour, seven-day-a-week operating schedule and a sliding window of perhaps two weeks of content (e.g., television programming) to store, the data volume required to perform ACR can build rapidly. Similar challenges can be present with other systems that harvest and manipulate large volumes of data, such as the example systems described above.
The systems and methods described herein can allow improved management of system resources in an ACR system. For example, examples can increase the efficiency of system resource utilization by managing the duration that data related to video segments are retained based on data that takes into account an identified popularity of a video segment. The identified popularity can be determined by algorithms that take into account numbers of viewers who watched the video segment, ratings of the video segment, metrics derived from social media, or any other factor that can indicate likelihood that the video segment will be viewed. While description herein can refer to a video segment, other media segments can also be used, including audio segments.
The matching system 100 includes a client device 102 and a matching server 104. The client device 102 includes a media client 106, an input device 108, an output device 110, and one or more contextual applications 126. The media client 106 (which can include a television system, a computer system, or other electronic device capable of connecting to the Internet) can decode data (e.g., broadcast signals, data packets, or other frame data) associated with video programs 128. The media client 106 can place the decoded contents of each frame of the video into a video frame buffer in preparation for display or for further processing of pixel information of the video frames. The client device 102 can be any electronic decoding system that can receive and decode a video signal. The client device 102 can receive video programs 128 and store video information in a video buffer (not shown). The client device 102 can process the video buffer information and produce unknown data points (which can referred to as “cues”), described in more detail below with respect to
The input device 108 can include any suitable device that allows a request or other information to be input to the media client 106. For example, the input device 108 can include a keyboard, a mouse, a voice-recognition input device, a wireless interface for receiving wireless input from a wireless device (e.g., from a remote controller, a mobile device, or other suitable wireless device), or any other suitable input device. The output device 110 can include any suitable device that can present or otherwise output information, such as a display, a wireless interface for transmitting a wireless output to a wireless device (e.g., to a mobile device or other suitable wireless device), a printer, or other suitable output device.
The matching system 100 can begin a process of identifying a video segment by first collecting data samples from known video data sources 118. For example, the matching server 104 collects data to build and maintain a reference database 116 from a variety of video data sources 118. The video data sources 118 can include media providers of television programs, movies, or any other suitable video source. Video data from the video data sources 118 can be provided as over-the-air broadcasts, as cable TV channels, as streaming sources from the Internet, and from any other video data source. In some examples, the matching server 104 can process the received video from the video data sources 118 to generate and collect reference video data points in the reference database 116, as described below. In some examples, video programs from video data sources 118 can be processed by a reference video program ingest system (not shown), which can produce the reference video data points and send them to the reference database 116 for storage. The reference data points can be used as described above to determine information that is then used to analyze unknown data points.
The matching server 104 can store reference video data points for each video program received for a period of time (e.g., a number of days, a number of weeks, a number of months, or any other suitable period of time) in the reference database 116. The matching server 104 can build and continuously or periodically update the reference database 116 of television programming samples (e.g., including reference data points, which may also be referred to as cues or cue values). In some examples, the data collected is a compressed representation of the video information sampled from periodic video frames (e.g., every fifth video frame, every tenth video frame, every fifteenth video frame, or other suitable number of frames). In some examples, a number of bytes of data per frame (e.g., 25 bytes, 50 bytes, 75 bytes, 100 bytes, or any other amount of bytes per frame) are collected for each program source. Any number of program sources can be used to obtain video, such as 25 channels, 50 channels, 75 channels, 100 channels, 200 channels, or any other number of program sources. Using the example amount of data, the total data collected during a 24-hour period over three days becomes very large. Therefore, reducing the number of actual reference data point sets is advantageous in reducing the storage load of the matching server 104.
The media client 106 can send a communication 122 to a matching engine 112 of the matching server 104. The communication 122 can include a request for the matching engine 112 to identify unknown content. For example, the unknown content can include one or more unknown data points and the reference database 116 can include a plurality of reference data points. The matching engine 112 can identify the unknown content by matching the unknown data points to reference data in the reference database 116. In some examples, the unknown content can include unknown video data being presented by a display (for video-based ACR), a search query (for a MapReduce system, a Bigtable system, or other data storage system), an unknown image of a face (for facial recognition), an unknown image of a pattern (for pattern recognition), or any other unknown data that can be matched against a database of reference data. The reference data points can be derived from data received from the video data sources 118. For example, data points can be extracted from the information provided from the video data sources 118 and can be indexed and stored in the reference database 116.
The matching engine 112 can send a request to the candidate determination engine 114 to determine candidate data points from the reference database 116. A candidate data point can be a reference data point that is a certain determined distance from the unknown data point. In some examples, a distance between a reference data point and an unknown data point can be determined by comparing one or more pixels (e.g., a single pixel, a value representing group of pixels (e.g., a mean, an average, a median, or other value), or other suitable number of pixels) of the reference data point with one or more pixels of the unknown data point. In some examples, a reference data point can be the certain determined distance from an unknown data point when the pixels at each sample location are within a particular pixel value range.
In one illustrative example, a pixel value of a pixel can include a red value, a green value, and a blue value (in a red-green-blue (RGB) color space). In such an example, a first pixel (or value representing a first group of pixels) can be compared to a second pixel (or value representing a second group of pixels) by comparing the corresponding red values, green values, and blue values respectively, and ensuring that the values are within a certain value range (e.g., within 0-5 values). For example, the first pixel can be matched with the second pixel when (1) a red value of the first pixel is within 5 values in a 0-255 value range (plus or minus) of a red value of the second pixel, (2) a green value of the first pixel is within 5 values in a 0-255 value range (plus or minus) of a green value of the second pixel, and (3) a blue value of the first pixel is within 5 values in a 0-255 value range (plus or minus) of a blue value of the second pixel. In such an example, a candidate data point is a reference data point that is an approximate match to the unknown data point, leading to multiple candidate data points (related to different media segments) being identified for the unknown data point. The candidate determination engine 114 can return the candidate data points to the matching engine 112.
For a candidate data point, the matching engine 112 can add a token into a bin that is associated with the candidate data point and that is assigned to an identified video segment from which the candidate data point is derived. A corresponding token can be added to all bins that correspond to identified candidate data points. As more unknown data points (corresponding to the unknown content being viewed) are received by the matching server 104 from the client device 102, a similar candidate data point determination process can be performed, and tokens can be added to the bins corresponding to identified candidate data points. Only one of the bins corresponds to the segment of the unknown video content being viewed, with the other bins corresponding to candidate data points that are matched due to similar data point values (e.g., having similar pixel color values), but that do not correspond to the actual segment being viewed. The bin for the unknown video content segment being viewed will have more tokens assigned to it than other bins for segments that are not being watched. For example, as more unknown data points are received, a larger number of reference data points that correspond to the bin are identified as candidate data points, leading to more tokens being added to the bin. Once a bin includes a particular number of tokens, the matching engine 112 can determine that the video segment associated with the bin is currently being displayed on the client device 102. A video segment can include an entire video program or a portion of the video program. For example, a video segment can be a video program, a scene of a video program, one or more frames of a video program, or any other portion of a video program.
In determining candidate data points 206 for an unknown data point (e.g., unknown data content 202), the candidate determination engine 214 determines a distance between the unknown data point and the reference data points 204 in the reference database. The reference data points that are a certain distance from the unknown data point are identified as the candidate data points 206. In some examples, a distance between a reference data point and an unknown data point can be determined by comparing one or more pixels of the reference data point with one or more pixels of the unknown data point, as described above with respect to
An example allocation of pixel patches (e.g., pixel patch 304) is shown in
A mean value (or an average value in some cases) of each pixel patch is taken, and a resulting data record is created and tagged with a time code (or time stamp). For example, a mean value is found for each 10×10 pixel patch array, in which case twenty-four bits of data per twenty-five display buffer locations are produced for a total of 600 bits of pixel information per frame. In one example, a mean of the pixel patch 304 is calculated, and is shown by pixel patch mean 308. In one illustrative example, the time code can include an “epoch time,” which representing the total elapsed time (in fractions of a second) since midnight, Jan. 1, 1970. For example, the pixel patch mean 308 values are assembled with a time code 412. Epoch time is an accepted convention in computing systems, including, for example, Unix-based systems. Information about the video program, known as metadata, is appended to the data record. The metadata can include any information about a program, such as a program identifier, a program time, a program length, or any other information. The data record including the mean value of a pixel patch, the time code, and metadata, forms a “data point” (also referred to as a “cue”). The data point 310 is one example of a reference video data point.
A process of identifying unknown video segments begins with steps similar to creating the reference database. For example,
As shown in
In some examples, the pixel values can be sent directly to a matching server 520 (which can perform similar to the matching server 104) from the client device 510. In other examples, a portion of the pixel values can be sent to the matching server 520 using techniques described above (e.g., pixel cue points can be sent to the matching server 520). In other examples, the pixel values (or a portion thereof) can be summarized by the client device 510, where the summarized pixel values can be sent to the matching server 520.
The matching server 520 can include a matching engine 530 (which can perform the same or similar to the matching engine 112) to identify an unidentified video segment being displayed on the client device 510. To identify the unidentified video segment, the matching engine 530 can receive pixel values (or pixel cue points, average pixel values, or other representations of a frame) associated with one or more frames from the client device 510. The matching engine 530 can also receive or obtain reference data to match with the pixel values. In some examples, the reference data can be received from a reference database 550. In such examples, the reference database 550 can send one or more reference data sets, which can be stored in the reference database 550, to the matching engine 530. In other examples, the matching engine 530 can obtain the one or more reference data sets from the reference database 550 using a database query. In some examples, the matching engine 530 can send a request to a candidate determination engine 540 to determine candidate data points from the reference database 550. As described above, the candidate data points can be reference data points that are a certain determined distance from one or more data points in a frame. The candidate determination engine 540 can return the candidate data points to the matching engine 530.
As described above, for each of the candidate data points, the matching engine 530 can add a token into a bin corresponding to an identified video segment. The identified video segment can be associated with one or more candidate data points that include the candidate data point causing the token to be added to the bin. This process can repeat for each new frame that is sent to the matching engine 530 from the client device 510. Once a bin includes a particular number of tokens, the matching engine 530 can determine that the video segment associated with the bin is currently being displayed by the client device 510.
Once the matching engine 530 identifies a video segment, the matching engine 530 can send a signal to a results engine 580 (which can perform similar to the results engine 120) indicating the identified video segment. The results engine 580 can determine an action to perform in response to the identified video segment. In some examples, the results engine 580 can identify a contextual application that corresponds to the identified video segment. The contextual application can be stored on the client device 510. In some examples, the contextual application can be an application associated with at least a portion of a video segment. The contextual application can run on the client device 510 to display content on the client device 510. The content displayed can be an overlay on content already being displayed on the client device 510 or can replace the content being displayed on the client device 510.
The results engine 580 can send a signal to the client device 510 to cause the identified contextual application to perform an action. For example, the contextual application can display content on the client device 510. The content can be related to the identified video segment. Other actions the identified contextual application can perform include, but are not limited to, replacement of a commercial message with one more commercial messages directed to a specific viewer, additional information regarding the identified video segment, or an opportunity to interact with the identified video segment or other's watching the identified video segment.
In some examples, the reference data sets in the reference database 550 can be managed by a retention engine 560. Management of the reference data sets can include determining when to remove, or delete, reference data sets from the reference database 550. In some examples, when a reference data set that is associated with a video segment is removed, one or more other reference data sets that are also associated with the video segment can be removed. In some examples, the one or more other reference data sets are not removed. Further details regarding removal or deletion of reference data sets are described below.
In some examples, reference data sets that are removed, or deleted, from the reference database 550 can be added to a backup database (not shown). In some examples, the backup database can be located on the matching server 520. In other examples, the backup database can be located remotely from the matching server 520. In such examples, the backup database can be on a cloud (e.g., one or more remote servers associated with the matching server 520). The candidate determination engine 540 can be configured to search the backup database for a matching candidate data set after the reference database 550 has been searched and no match is found or an insufficient number of matches has been found.
A person of ordinary skill will recognize that there might be more than one backup database. Zero or more of the backup databases can be located with the matching server 520 and zero or more the backup databases can be located remotely from the matching server 520. In some examples, each additional backup database can retain reference data sets longer than a previous backup database. When a reference data set is removed completely from databases associated with the matching server 520, the reference data set would no longer be able to be compared to a unidentified data set by the candidate determination engine 540. In some examples, each backup database can be managed by the retention engine 560. In other examples, each backup database can be managed by a separate retention engine. A backup database can either use the same length of time as the reference database (essentially doubling the life of a reference data set) or can use a different length of time based on a same, a similar, or a different process as that used to determine the length of time for the reference database.
A person of ordinary skill in the art will recognize that a number of backup databases used will depend on resources available for an enterprise managing the backup databases, as well as efficiency concerns with having the candidate determining engine searching more and more backup databases. In some examples, each backup database can be searched using a separate process, allowing searches of multiple backup databases to minimally affect normal operation of the candidate determination engine 540. In some examples, the separate processes can be run in parallel so that that multiple backup databases can be searched at least partially in parallel. For example, a first database can be searched until a certain percent of the first database has been searched, at which time a second database can begin being searched in parallel with the first database.
The retention engine 560 can determine a length of time to retain reference data sets in the reference database 550 (e.g., referred to as a deletion time, a retention time, a removal time, or any other term that indicates a time at which a reference data set is removed, or deleted, from the reference database 550). The retention engine 560 can use popularity data (e.g., statistics, numbers, information, or other popularity data) associated with a video segment to determine the length of time to retain a reference data set.
In some examples, the length of time can be different for reference data sets associated with different video segments, for each reference data set, or any combination thereof. A person of ordinary skill in the art will recognize that many configurations of length of time for reference data sets can apply.
In some examples, the length of time can be extended whenever a particular number of views of a video segment occur with the matching server 520 (e.g., 1 view per day, 10 views per day, 1 view per week, an average of 10 views per week, or any other suitable number of views). The views of the video segment can be determined when the matching server 520 identifies that a media system is displaying the video segment, as will be discussed below. In some examples the length of time can be reassessed when the length of time expires.
In some examples, the length of time can be consistent for all video segments of a content item (e.g., a movie, a show, an episode, etc.). For example, all reference data sets for all video segments of a content item can be retained for a day, a week, or another amount of time. In some examples, the length of time can be consistent for all reference data sets associated with a single video segment. In such examples, even though a reference data set is not matched by the matching server 520, the reference data set can be retained as long as another reference data set associated with the same video segment is matched by the matching server 520.
In some examples, the popularity data can be associated with an identified popularity of a video segment. The popularity data can include viewing information, which can indicate a number of views of a video segment from a viewing information source 572. In some examples, the number of views can be associated with a particular time period. In some examples, the time period can be the day that a video segment is broadcast (e.g., same-day viewing data) or a period of time later after the day that a video segment is broadcast (delayed viewing data). A person of ordinary skill in the art will recognize that other time periods can be used.
In some examples, the viewing information source 572 can be a third-party server (e.g., over a network, such as using the Internet 570). Examples of viewing information can include any type of audience measurement system, including, but not limited to, Nielsen/NetRatings, Nielsen BuzzMetrics, Nielsen Media Research (NMR) comScore, Wakoopa, and Hitwise, Visible Measures, GfK, Sightcorp, TruMedia, Quividi, relEYEble, stickyPiXEL, Cognitec, goCount and CognoVision, or any other form of audience measurement system.
In some examples, the viewing information can be determined using the matching engine 530. For example, when a video segment is identified by the matching engine 530 (when a bin reaches a certain number of tokens, as described above), the matching server 520 can store a record that the video segment has been displayed by a media system. In such an example, the matching server 520 can keep track of the number of times a video segment has been displayed by a media system. Thus, the number of times a video segment has been displayed by a media system can be used as a number of viewings of a video segment for purposes of the viewing information.
A person of ordinary skill in the art will also recognize that more than one viewing information can be used to determine the length of time. For example, viewing information using the matching engine 530 and viewing information from a viewing information source 572 can be used. For another example, viewing information from a first viewing information source and viewing information from a second viewing information source can be used.
The popularity data can also include rating information of the video segment from a rating source 574. The rating information can indicate a desirability, popularity, and/or demand of the video segment. For example, the rating information can be a percentage of viewers who liked the video segment. The percentage of viewers who liked the video segment can be determined by a source on a network (such as the Internet 570) that provides a rating for video segments. For example, the rating can be a rating given to the video segment by one or more reviewers on a website, a mobile application, or the like. In some examples, the one or more reviewers can be from at least one or more of a professional group of reviewers and a recreational group of reviewers. The rating sources 574 can be a third-party server (e.g., over a network, such as using the Internet 570). Examples of the rating source 574 can include Rotten Tomatoes, Metacritic, Everyone's a Critic, Reviewer, Movie Attractions, Flixster, FilmCrave, Flickchart, blogs, and systems such as the “undulating curve of shifting expectations” (which use automated systems to review video segments). A person of ordinary skill in the art will also recognize that more than one rating information or source can be used to determine the length of time. In one illustrative example, rating information using a professional reviewer and rating information from a recreational group of reviewers can be used.
The popularity data can also include information associated with one or more posts (e.g., a posted message) on one or more remote sources (e.g., a review source or a social media source 576, such as a website and a mobile application). The one or more posts can be associated with the video segment. The social media source 576 can be a third-party server (e.g., over a network, such as using the Internet 570). Examples of a social media source can include, but are not limited to, Facebook, YouTube, Twitter, LinkedIn, Pinterest, Google Plus+, Instagram, Reddit, and Rotten Tomatoes.
Examples of information associated with one or more posts can include, but are not limited to, at least one or more of a number of posted messages from one or more remote sources, a number of posted messages from one or more remote sources that are positive in nature toward the video segment (based on a natural language parsing of the one or more message), a number of posted messages from one or more remote sources that are negative in nature toward the video segment (again, based on a natural language parsing of the one or more message), a number of positive indications from one or more remote sources (e.g., a “Like” on Facebook), a number of reposts of a posted message associated with a video segment on one or more remote sources, a number of views of a page associated with the video segment on one or more remote sources, or any combination thereof. In some examples, a rating (e.g., 1 to 100) can be determined from one or more posted messages that identifies how much the video segment is liked based on words used in the one or more posted messages. In such examples, certain words can score certain points. In some examples, a number of mentions on a social media platform regarding a video segment or an actor associated with the video program.
A person of ordinary skill in the art will also recognize that more than one information associated with one or more posts on one or more remote sources information can be used to determine the length of time. For example, information of a number of posted messages from one or more remote sources and a number of positive indications from the one or more remote sources can be used.
In some examples, the length of time can be determined by calculating a representative value (e.g., an average, a mean, a median, or some combination thereof) of the popularity data. The representative value can indicate a probability of whether a reference data set will be (or is sufficiently likely to be) needed by the matching system in the future to justify a cost of retaining the reference data set in the reference database 550. In some examples, an average can indicate a likelihood that a video segment will be displayed on a media system (either associated with the matching server or not) within a particular amount of time (e.g., within a day, within a week, within a month, or with any other suitable period of time). When calculating the average, the retention engine 560 can identify the popularity data available, and use the available popularity data. While calculating an average, if a video segment is not included in a source, a reference data set associated with the video segment can receive a zero for the source.
In some examples, the popularity data can be normalized such that the popularity data is all based on a similar or a same scale. For example, a rating from 0 to 1 can be multiplied by 100 to correspond to a rating from 0 to 100. For another example, a largest number for each type of popularity data can either be determined by analyzing a type of popularity data or pre-identified by a user. In such an example, a number associated with a type of popularity data can be divided by the largest number such that all of the numbers are a percentage of the largest number. In some examples, numbers larger than the largest number can either be allowed to pass a percentage of 1, or the number can be capped at 1.
In some examples, weights can be applied to the popularity data, such that some portions of the popularity data affect the average more than others. In an illustrative example, weighting of popularity data can include: direct mention of a video segment or actor associated with the video segment could be weighted higher than a mention of the video segment on a social media communication. Another weighting factor could be a number of words used in a message associated with a video segment. Another weighting factor could be a number of specific actors associated with a video segment cited in a message.
In one example, a highest weight (e.g., 50%) can be associated with one or more popularity datum of the popularity data. A popularity datum can be a viewing information from the matching server (block 620). The viewing information can indicate a number of times a video segment is identified by the matching server as having been viewed by a media system associated with the matching system. The number can increase every time that the matching server identifies the video segment as being displayed by a media system, as described above.
In the same example, a medium weight (e.g., 30%) can be associated with one or more popularity datum of the popularity data. For example, a first popularity datum of the popularity data can be a list of the top 20 programs for same-day viewing information (block 630). The list can include a number of times a top 20 program is viewed. The same-day viewing information can be received from a secondary source (e.g., from a viewing information source 572 over the Internet). The same-day viewing information can be weighted less than the viewing information from the matching server (block 620) because the same-day viewing information is not from the matching server, but from a secondary source. A second popularity datum of the popularity data can be social media popularity information (block 650). The social media popularity information can be a number of posted messages regarding the video segment on one or more social media sources. For example, a wall post on Facebook can mention a video segment by name. The wall post can count as one posted message regarding the video segment.
In the same example, a low weight (e.g., 20%) can also be associated with one or more popularity datum of the popularity data. For example, a first popularity datum of the popularity data can be a second social media popularity information (block 640). The second social media popularity information can be a number of positive indications from one or more social media sources. A second popularity data of the popularity data can be a number of positive indications from the one or more remote sources (block 660). A person of ordinary skill will recognize that other configurations of weight can be used. In addition, any combination of popularity data can be used for a calculation of the weights.
The weights can be applied to the popularity data or the averages of the popularity data to create a weighted average of popularity data for a video segment (block 670). For example, weights can be applied by multiplication with an average data associated with a weight.
A total number (e.g., an average, a weighted average, or a sum of the popularity data data) associated with a video segment can be used to determine a length of time to retain one or more reference data sets associated with the video segment. In some examples, the length of time can be computed using a range for the total number. In some examples, a range can be predetermined (e.g., 0 to 50 or some other range that is received by the retention engine), based on particular percentages of the maximum total number possible, based on total numbers that have been seen by the matching system, or some other method of determining a range. In one illustrative example of percentages of the maximum total number possible, a maximum number for each popularity datum used to compute the total number can be summed together to determine the maximum total number possible. Then, each range can represent a certain percentage of the maximum total number possible. For example, a first range can be all total numbers that fall between 0 and 50% of the maximum total number possible.
In one illustrative example, when the total number is within a first range, a reference data set associated with the video segment associated with the total number can be retained for a first period of time (e.g., a day). When the total number is within a second range, the reference data set associated with the video segment associated with the total number can be retained for a second period of time (e.g., one week). A person of ordinary skill in the art will recognize that the ranges, the periods of time, and the number of ranges can be different than illustrated above.
The process of determining lengths of time can be dynamically configured by the retention engine 560. For example, the ranges can be manipulated during normal processing to see whether different ranges provide an effective balance between number of matches and size of the reference database. Effectiveness of the length of time determination can be based on a number of matches determined and an average time between matches in the reference database (where the average time is a positive whole number such as nanoseconds). For example, an efficiency measure can be calculated by dividing the number of matches determined by the average time. The efficiency measure can be optimized by changing the ranges, the periods of times, and the number of ranges by small increments until an optimized efficiency measure is found. The small increments can be tested by rematching past popularity data with different retention policies (e.g., various configurations of ranges, periods of time, and number of ranges) to see if the efficiency measure increases or decreases.
In some examples, a length of time can be determined based on viewing statistics that measured an average number of days that a video segment was viewed. Such data can be commercially available from companies such as AC Nielsen and Rentrack. The data can then be correlated with the popularity data (perhaps weighted by genre, e.g., sports, reality TV, crime series, etc.). The correlated data can then provide a direct time metric relative to popularity.
In other examples, a length of time can be determined based on tracking value of a weighted average. For example, when said an average value falls below a predetermined limit (e.g., below 50%), the video segment data can cease to be retained for a predetermined period of time.
Additionally, the process 700 can be performed under the control of one or more computer systems configured with executable instructions and can be implemented as code (e.g., executable instructions, one or more computer programs, or one or more applications) executing collectively on one or more processors, by hardware, or combinations thereof. As noted above, the code can be stored on a machine-readable storage medium, for example, in the form of a computer program comprising a plurality of instructions executable by one or more processors. The machine-readable storage medium can be non-transitory.
At step 710, the process 700 includes receiving a reference data set associated with a media segment. In some examples, the reference data set can be received by a server. The server can be configured to identify an unidentified media segment by matching an unidentified data set with the reference data set. In some examples, the unidentified data set can be associated with the unidentified media segment. In some examples, the reference data set can include pixel data or audio data for a frame of the media segment.
At step 720, the process 700 includes storing the reference data set in a reference database.
At step 730, the process 700 includes receiving popularity data indicating a popularity of the media segment. In some examples, the popularity data includes at least one or more of viewing information of the media segment, rating information of the media segment, or information associated with a posted message on a remote source. In such examples, the posted message can be associated with the media segment. In some examples, the information associated with the posted message on the remote source can include at least one or more of a number of posted messages on the remote source, a number of the posted messages that are positive, a number of the posted messages that are negative, a number of positive indications to the posted message, a number of reposts of the posted message, or a number of views of the posted message. In some examples, the posted messages can be associated with the media segment. In some examples, the viewing information can include a number of times the media segment has been identified by the server.
At step 740, the process 700 includes determining a deletion time for the reference data set. In some examples, the deletion time can be determined using the popularity data. In some examples, determining a deletion time can include computing an average of two or more values of the popularity data. In such examples, each value of the popularity data can be associated with a weight.
At step 750, the process 700 includes deleting the reference data set from the reference database. In some examples, the reference data set can be deleted after the deletion time has expired.
In some implementations, the process 700 can further include adding the reference set to a backup database when the reference data set is deleted from the reference database. In such implementations, the server can be configured to search the backup database after the reference database for a data set matching the unidentified data set.
As discussed above, a video matching system can be configured to identify a media content stream when the media content stream includes an unscheduled media segment. As further discussed above, identifying the media content stream may include identifying media content played by a media display device before or after the unscheduled media segment. Processes for identifying media content are discussed above with respect to
The video matching system may further include various methods to improve the efficiency of finding potential matches, or “candidates” in the database. The database may contain an enormous number of cues, and thus the video matching system may include algorithms for finding candidate cues to match against cues generated from the media content device's display mechanism. Locating candidate cues may be more efficient than other methods for matching cue values against the values in the database, such as matching a cue against every entry in the database.
Nearest neighbor and path pursuit are examples of techniques that can be used to locate candidate queues in the reference database. Below, an example of tracking video transmission using ambiguous cues is given, but the general concept can be applied to any field where match candidates are to be selected from a reference database.
A method for efficient video pursuit is presented. Given a large number of video segments, the system must be able to identify in real time what segment a given query video input is taken from and in what time offset. The segment and offset together are referred to as the location. The method is called video pursuit since it must be able to efficiently detect and adapt to pausing, fast forwarding, rewinding, abrupt switching to other segments and switching to unknown segments. Before being able to pursue live video the database is processed. Visual cues (a handful of pixel values) are taken from frames every constant fraction of a second and put in specialized data structure (note that this can also be done in real time). The video pursuit is performed by continuously receiving cues from the input video and updating a set of beliefs or estimates about its current location. Each cue either agrees or disagrees with the estimates, and they are adjusted to reflect the new evidence. A video location is assumed to be the correct one if the confidence in this being true is high enough. By tracking only a small set of possible “suspect” locations, this can be done efficiently.
A method is described for video pursuit but uses mathematical constructs to explain and investigate it. It is the aim of this introduction to give the reader the necessary tools to translate between the two domains. A video signal, or video data, is comprised of sequential frames. Each can be thought of as a still image. Every frame is a raster of pixels. Each pixel is made out of three intensity values corresponding to the red, green, and blue (RGB) make of that pixel's color. In the terminology used herein, a cue is a list of RGB values of a subset of the pixels in a frame and a corresponding time stamp. The number of pixels in a cue is significantly smaller than in a frame, usually between 5 and 15. Being an ordered list of scalar values, the cue values are in fact a vector. This vector is also referred to as a point.
Although these points are in high dimension, usually between 15 and 150, they can be imagined as points in two dimensions. In fact, the illustrations will be given as two dimensional plots. Now, consider the progression of a video and its corresponding cue points. Usually a small change in time produces a small change in pixel values. The pixel point can be viewed as “moving” a little between frames. Following these tiny movements from frame to frame, the cue follows a path in space like a bead would on a bent wire.
In the language of this analogy, in video pursuit the locations of the bead in space (the cue points) are received and the part of wire (path) the bead is following is looked for. This is made significantly harder by two facts. First, the bead does not follow the wire exactly but rather keeps some varying unknown distance from it. Second, the wires are all tangled together. These statements are made exact in section 2. The algorithm described below does this in two conceptual steps. When a cue is received, the algorithm looks for all points on all the known paths that are sufficiently close to the cue point; these are called suspects. This is done efficiently using the Probabilistic Point Location in Equal Balls algorithm. These suspects are added to a history data structure and the probability of each of them indicating the true location is calculated. This step also includes removing suspect locations that are sufficiently unlikely. This history update process ensures that on the one hand only a small history is kept but on the other hand no probable locations are ever deleted. The generic algorithm is given in Algorithm 1 and illustrated in
The following sections begin with describing the Probabilistic Point Location in Equal Balls (PPLEB) algorithm in Section 1. The PPLEB algorithm is used in order to perform line 5 in Algorithm 1 above efficiently. The ability to perform this search for suspects quickly is crucial for the applicability of this method. In section 2 one possible statistical model is described for performing lines 6 and 7. The described model is a natural choice for the setup. It is also shown how it can be used very efficiently.
Section 1—Probabilistic Point Location in Equal Balls
The following section describes a simple algorithm for performing probabilistic point location in equal balls (PPLEB). In the traditional PLEB (point location in equal balls), one starts with a set of n points x, in 1R d and a specified ball of radius r. The algorithm is given O(poly(n)) preprocessing time to produce an efficient data structure. Then, given a query point x the algorithm is required to return all points x, such that ∥x−xi∥≤r. The set of points such that ∥x−xi∥≤r. geometrically lie within a ball of radius r surrounding the query x (see
The problem of PPLEB and the problem of nearest neighbor search are two similar problems that received much attention in the academic community. In fact, these problems were among the first studied in the field of computational geometry. Many different methods cater to the case where the ambient dimension is small or constant. These partition the space in different ways and recursively search through the parts. These methods include KD-trees, cover-trees, and others. Although very efficient in low dimension, when the ambient dimension is high, they tend to perform very poorly. This is known as the “curse of dimensionality”. Various approaches attempt to solve this problem while overcoming the curse of dimensionality. The algorithm used herein uses a simpler and faster version of the algorithm and can rely on Local Sensitive Hashing.
Section 1.1 Locality Sensitive Hashing
In the scheme of local sensitive hashing, one devises a family of hash functions H such that:
In words, the probability of x and y being mapped to the same value by h is significantly higher if they are close to each other.
For the sake of clarity, let us first deal with a simplified scenario where all incoming vectors are of the same length r′ and r′>√{square root over (2r)}. The reason for the latter condition will become clear later. First a random function u∈U is defined, which separates between x and y according to the angle between them. Let {right arrow over (u)} be a random vector chosen uniformly from the unit sphere Sd−1 and let u(x)=sign ({right arrow over (u)}·x). It is easy to verify that Pru−U(u(x))≠u(y))=0x,y/π. Moreover, for any points x, y, x′, y′ on a circle such that ∥x′−y′∥≤2∥x−y∥, 0x′,y≤20x,y is achieved. Defining p, the following equations are used:
The family of functions H is set to be a cross product oft independent copies of u, i.e. h(x)=[u1(x), . . . , ut(x)]. Intuitively, one would like to have that if h(x)=h(y) then x and y are likely to be close to each other. Let us quantify that. First, compute the expected number of false positive mistakes nfp. These are the cases for which h(x)=h(y) but ∥x−y∥>2r. A value t is found for which nfp is no more than 1, i.e. one is not expected to be wrong.
E[nfi]≤n(1−2p)t≤1
→t≥log(1/n)/log(1−2p)
Now, the probability that h(x)=h(y) given that they are neighbors is computed:
Pr(h(x)=h(y)|∥x−y∥≤r)≥(1−p)log(1/n)/log(1−2p)=(1/n)log(1−p)/log(1−2p)≥1/√{square root over (n)}.
Note here that one must have that 2p<1 which requires r′>√{square root over (2r)}. This might not sound like a very high success probability. Indeed, 1/√{square root over (n)} is significantly smaller than ½. The next section will describe how to boost this probability up to ½.
Section 1.2 The Point Search Algorithm
Each function h maps every point in space to a bucket. Define the bucket function Bh:d→2[n] of a point x with respect to hash function h as Bh(x)≡{xi|h(xi)=h(x)}. The data structure maintained is m=O(√{square root over (n)}) instances of bucket functions [Bh1, . . . , Bhm]. When one searches for a point x, the function returns B(x)=∪iBhj(x). According to the previous section, there are two desired results:
Pr(xi∈B(x)|∥xi−x∥≤r)≥½
E[|B(x)∩{xi|∥x−xi∥>2r}|]≤√{square root over (n)}.
In other words, while with probability at least ½ each neighbor of x is found, one is not likely to find many non-neighbors.
Section 1.3 Dealing with Different Radii Input Vectors
The previous sections only dealt with searching through vectors of the same length, namely r′. Now described is how one can use the construction as a building block to support a search in different radii. As seen in
Section 2 The Path Pursuit Problem
In the path pursuit problem, a fixed path in space is given along with the positions of a particle in a sequence of time points. The terms particle, cue, and point will be used interchangeably. The algorithm is required to output the position of the particle on the path. This is made harder by a few factors: the particle only follows the path approximately; the path can be discontinuous and intersect itself many times; both particle and path positions are given in a sequence of time points (different for each).
It is important to note that this problem can simulate tracking a particle on any number of paths. This is simply done by concatenating the paths into one long path and interpreting the resulting position as the position on the individual paths.
More precisely, let path P be parametric curve P:→d. The curve parameter will be referred to as the time. The points on the path that are known to us are given in arbitrary time points ti, i.e. n pairs (ti, P(ti)) are given. The particle follows the path but its positions are given in different time points, as shown in
Section 2.1 Likelihood Estimation
Since the particle does not follow the path exactly and since the path can intersect itself many times it is usually impossible to positively identify the position on the path the particle is actually on. Therefore, a probability distribution is computed on all possible path locations. If a location probability is significantly probable, the particle position is assumed to be known. The following section describes how this can be done efficiently.
If the particle is following the path, then the time difference between the particle time stamp and the offset of the corresponding points on P should be relatively fixed. In other words, if x(t′) is currently in offset t on the path then it should be close to P(t). Also, τ seconds ago it should have been in offset t−τ. Thus x(t′−τ) should be close to P(t−τ) (note that if the particle is intersecting the path, and x(t′) is close to P(t) temporarily, it is unlikely that x(t′−τ) and P(t−τ) will also be close). Define the relative offset as Δ=t−t′. Notice that as long as the particle is following the path the relative offset Δ remains unchanged. Namely, x(t′) is close to P(t′+Δ).
The maximum likelihood relative offset is obtained by calculating:
In words, the most likely relative offset is the one for which the history of the particle is most likely. This equation however cannot be solved without a statistical model. This model must quantify: how tightly x follows the path; how likely it is that x jumps between locations; and how smooth the path and particle curves are between the measured points.
Section 2.2 Time Discounted Binning
Now described is a statistical model for estimating the likelihood function. The model makes the assumption that the particle's deviation away from the path distributes normally with standard deviation ar. It also assumes that at any given point in time, there is some non-zero probability the particle will abruptly switch to another path. This is manifested by an exponential discount with time for past points. Apart for being a reasonable choice for a modeling point of view this model also has the advantage of being efficiently updateable. For some constant time unit 1: set the likelihood function to be proportional to ƒ which is defined as follows:
Here α<<1 is a scale coefficient and ζ>0 is the probability that the particle will jump to a random location on the path in a given time unit.
Updating the function ƒ efficiently can be achieved using the following simple observation.
Moreover, since α<<1, if ∥x(t′m)−P(ti)∥≥r, the following occurs:
This is an important property of the likelihood function since the sum update can now performed only over the neighbors of x(t′j) and not the entire path. Denote by S the set of (ti, P(ti)) such that ∥x(t′m)−P(ti)∥≤r. The follow equation occurs:
This is described in Algorithm 2.2 below. The term ƒ is used as a sparse vector that receives also negative integer indices. The set S is the set of all neighbors of x(ti) on the path and can be computed quickly using the PPLEB algorithm. It is easy to verify that if the number of neighbors of x(ti) is bounded by some constant nnear then the number of non-zeros in the vector ƒ is bounded by nnear/ζ which is only a constant factor larger. The final stage of the algorithm is to output a specific value of δ if ƒ(└δ/τ┘) is above some threshold value.
In
Substantial variations may be made in accordance with specific requirements. For example, customized hardware might also be used, and/or particular elements might be implemented in hardware, software (including portable software, such as applets, etc.), or both. Further, connection to other access or computing devices such as network input/output devices may be employed.
In the foregoing specification, aspects of the invention are described with reference to specific examples thereof, but those skilled in the art will recognize that the invention is not limited thereto. Various features and aspects of the above-described invention may be used individually or jointly. Further, examples can be utilized in any number of environments and applications beyond those described herein without departing from the broader spirit and scope of the specification. The specification and drawings are, accordingly, to be regarded as illustrative rather than restrictive.
In the foregoing description, for the purposes of illustration, methods were described in a particular order. It should be appreciated that in alternate examples, the methods may be performed in a different order than that described. It should also be appreciated that the methods described above may be performed by hardware components or may be embodied in sequences of machine-executable instructions, which may be used to cause a machine, such as a general-purpose or special-purpose processor or logic circuits programmed with the instructions to perform the methods. These machine-executable instructions may be stored on one or more machine readable mediums, such as CD-ROMs or other type of optical disks, floppy diskettes, ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, flash memory, or other types of machine-readable mediums suitable for storing electronic instructions. Alternatively, the methods may be performed by a combination of hardware and software.
Where components are described as being configured to perform certain operations, such configuration can be accomplished, for example, by designing electronic circuits or other hardware to perform the operation, by programming programmable electronic circuits (e.g., microprocessors, or other suitable electronic circuits) to perform the operation, or any combination thereof.
While illustrative examples of the application have been described in detail herein, it is to be understood that the inventive concepts may be otherwise variously embodied and employed, and that the appended claims are intended to be construed to include such variations, except as limited by the prior art.
This application claims the benefit of U.S. Provisional Application No. 62/193,331, filed on Jul. 16, 2015, which is hereby incorporated by reference in its entirety. This application also incorporates by reference the following in their entirety: U.S. patent application Ser. No. 14/089,003, which was filed on Nov. 25, 2013, U.S. Provisional Application No. 61/182,334, which was filed on May 29, 2009, U.S. Provisional Application No. 61/290,714, which was filed on Dec. 29, 2009, U.S. application Ser. No. 12/788,748, which was filed on May 27, 2015, and U.S. application Ser. No. 12/788,721, which was filed on May 27, 2015.
Number | Name | Date | Kind |
---|---|---|---|
4677466 | Lert, Jr. et al. | Jun 1987 | A |
4697209 | Kiewit et al. | Sep 1987 | A |
4739398 | Thomas et al. | Apr 1988 | A |
5019899 | Boles et al. | May 1991 | A |
5319453 | Copriviza et al. | Jun 1994 | A |
5436653 | Ellis et al. | Jul 1995 | A |
5481294 | Thomas et al. | Jan 1996 | A |
5557334 | Legate | Sep 1996 | A |
5572246 | Ellis et al. | Nov 1996 | A |
5812286 | Li | Sep 1998 | A |
5826165 | Echeita et al. | Oct 1998 | A |
5918223 | Blum et al. | Jun 1999 | A |
6008802 | Goldschmidt et al. | Dec 1999 | A |
6035177 | Moses et al. | Mar 2000 | A |
6064764 | Bhaskaran et al. | May 2000 | A |
6381362 | Deshpande et al. | Apr 2002 | B1 |
6415438 | Blackketter et al. | Jul 2002 | B1 |
6463585 | Hendricks et al. | Oct 2002 | B1 |
6469749 | Dimitrova | Oct 2002 | B1 |
6577346 | Perlman | Jun 2003 | B1 |
6577405 | Kranz et al. | Jun 2003 | B2 |
6628801 | Powell et al. | Sep 2003 | B2 |
6647548 | Lu et al. | Nov 2003 | B1 |
6675174 | Bolle et al. | Jan 2004 | B1 |
6771316 | Iggulden | Aug 2004 | B1 |
6804659 | Graham et al. | Oct 2004 | B1 |
6978470 | Swix et al. | Dec 2005 | B2 |
6990453 | Wang et al. | Jan 2006 | B2 |
7028327 | Dougherty et al. | Apr 2006 | B1 |
7039930 | Goodman et al. | May 2006 | B1 |
7050068 | Bastos et al. | May 2006 | B1 |
7051351 | Goldman et al. | May 2006 | B2 |
7064796 | Roy et al. | Jun 2006 | B2 |
7089575 | Agnihotri et al. | Aug 2006 | B2 |
7136875 | Anderson et al. | Nov 2006 | B2 |
7210157 | Devara | Apr 2007 | B2 |
7346512 | Wang et al. | Mar 2008 | B2 |
7421723 | Harkness et al. | Sep 2008 | B2 |
7590998 | Hanley | Sep 2009 | B2 |
7623823 | Zito et al. | Nov 2009 | B2 |
7793318 | Deng | Sep 2010 | B2 |
7933451 | Kloer | Apr 2011 | B2 |
8001571 | Schwartz et al. | Aug 2011 | B1 |
8094872 | Yagnik et al. | Jan 2012 | B1 |
8171004 | Kaminski, Jr. et al. | May 2012 | B1 |
8171030 | Peira et al. | May 2012 | B2 |
8175413 | Ioffe et al. | May 2012 | B1 |
8189945 | Stojancic et al. | May 2012 | B2 |
8195689 | Ramanathan et al. | Jun 2012 | B2 |
8229227 | Stojancic et al. | Jul 2012 | B2 |
8335786 | Peira et al. | Dec 2012 | B2 |
8364703 | Ramanathan et al. | Jan 2013 | B2 |
8385644 | Stojancic et al. | Feb 2013 | B2 |
8392789 | Biscondi et al. | Mar 2013 | B2 |
8494234 | Djordjevic et al. | Jul 2013 | B1 |
8522283 | Laligand et al. | Aug 2013 | B2 |
8595781 | Neumeier et al. | Nov 2013 | B2 |
8625902 | Baheti et al. | Jan 2014 | B2 |
8769854 | Battaglia | Jul 2014 | B1 |
8776105 | Sinha et al. | Jul 2014 | B2 |
8832723 | Sinha et al. | Sep 2014 | B2 |
8856817 | Sinha et al. | Oct 2014 | B2 |
8893167 | Sinha et al. | Nov 2014 | B2 |
8893168 | Sinha et al. | Nov 2014 | B2 |
8898714 | Neumeier et al. | Nov 2014 | B2 |
8918804 | Sinha et al. | Dec 2014 | B2 |
8918832 | Sinha et al. | Dec 2014 | B2 |
8930980 | Neumeier et al. | Jan 2015 | B2 |
8959202 | Haitsma et al. | Feb 2015 | B2 |
9055309 | Neumeier et al. | Jun 2015 | B2 |
9055335 | Neumeier et al. | Jun 2015 | B2 |
9071868 | Neumeier et al. | Jun 2015 | B2 |
9094714 | Neumeier et al. | Jul 2015 | B2 |
9094715 | Neumeier et al. | Jul 2015 | B2 |
9449090 | Neumeier et al. | Sep 2016 | B2 |
9465867 | Hoarty | Oct 2016 | B2 |
20010039658 | Walton | Nov 2001 | A1 |
20010044992 | Jahrling | Nov 2001 | A1 |
20020026635 | Wheeler et al. | Feb 2002 | A1 |
20020054695 | Bjorn et al. | May 2002 | A1 |
20020056088 | Silva, Jr. et al. | May 2002 | A1 |
20020059633 | Harkness et al. | May 2002 | A1 |
20020100041 | Rosenberg et al. | Jul 2002 | A1 |
20020105907 | Bruekers et al. | Aug 2002 | A1 |
20020120925 | Logan | Aug 2002 | A1 |
20020122042 | Bates | Sep 2002 | A1 |
20020162117 | Pearson et al. | Oct 2002 | A1 |
20020162118 | Levy et al. | Oct 2002 | A1 |
20030026422 | Gerheim et al. | Feb 2003 | A1 |
20030086341 | Wells | May 2003 | A1 |
20030121037 | Swix et al. | Jun 2003 | A1 |
20030121046 | Roy et al. | Jun 2003 | A1 |
20030147561 | Faibish et al. | Aug 2003 | A1 |
20030188321 | Shoff et al. | Oct 2003 | A1 |
20040045020 | Witt et al. | Mar 2004 | A1 |
20040059708 | Dean et al. | Mar 2004 | A1 |
20040216171 | Barone et al. | Oct 2004 | A1 |
20040221237 | Foote et al. | Nov 2004 | A1 |
20040226035 | Hauser | Nov 2004 | A1 |
20040240562 | Bargeron et al. | Dec 2004 | A1 |
20050015795 | Iggulden | Jan 2005 | A1 |
20050015796 | Bruckner et al. | Jan 2005 | A1 |
20050027766 | Ben | Feb 2005 | A1 |
20050066352 | Herley | Mar 2005 | A1 |
20050172312 | Lienhart et al. | Aug 2005 | A1 |
20050207416 | Rajkotia | Sep 2005 | A1 |
20050209065 | Schlosser et al. | Sep 2005 | A1 |
20050235318 | Grauch et al. | Oct 2005 | A1 |
20060029368 | Harville | Feb 2006 | A1 |
20060031914 | Dakss et al. | Feb 2006 | A1 |
20060133647 | Werner et al. | Jun 2006 | A1 |
20060153296 | Deng | Jul 2006 | A1 |
20060155952 | Haas | Jul 2006 | A1 |
20060173831 | Basso et al. | Aug 2006 | A1 |
20060187358 | Lienhart et al. | Aug 2006 | A1 |
20060195857 | Wheeler et al. | Aug 2006 | A1 |
20060195860 | Eldering et al. | Aug 2006 | A1 |
20060245724 | Hwang et al. | Nov 2006 | A1 |
20060245725 | Lim | Nov 2006 | A1 |
20060253330 | Maggio et al. | Nov 2006 | A1 |
20070033608 | Eigeldinger | Feb 2007 | A1 |
20070050832 | Wright et al. | Mar 2007 | A1 |
20070061724 | Slothouber et al. | Mar 2007 | A1 |
20070061831 | Savoor et al. | Mar 2007 | A1 |
20070094696 | Sakai | Apr 2007 | A1 |
20070109449 | Cheung | May 2007 | A1 |
20070113263 | Chatani | May 2007 | A1 |
20070139563 | Zhong | Jun 2007 | A1 |
20070143796 | Malik | Jun 2007 | A1 |
20070168409 | Cheung | Jul 2007 | A1 |
20070180459 | Smithpeters et al. | Aug 2007 | A1 |
20070192782 | Ramaswamy | Aug 2007 | A1 |
20070250901 | McIntire et al. | Oct 2007 | A1 |
20070261070 | Brown et al. | Nov 2007 | A1 |
20070261075 | Glasberg | Nov 2007 | A1 |
20070271300 | Ramaswamy | Nov 2007 | A1 |
20070274537 | Srinivasan | Nov 2007 | A1 |
20070300280 | Turner et al. | Dec 2007 | A1 |
20080044102 | Ekin | Feb 2008 | A1 |
20080046945 | Hanley | Feb 2008 | A1 |
20080089551 | Heather et al. | Apr 2008 | A1 |
20080138030 | Bryan et al. | Jun 2008 | A1 |
20080155588 | Roberts et al. | Jun 2008 | A1 |
20080155627 | O'Connor et al. | Jun 2008 | A1 |
20080172690 | Kanojia et al. | Jul 2008 | A1 |
20080208891 | Wang et al. | Aug 2008 | A1 |
20080240562 | Fukuda et al. | Oct 2008 | A1 |
20080263620 | Berkvens et al. | Oct 2008 | A1 |
20080276266 | Huchital et al. | Nov 2008 | A1 |
20080310731 | Stojancic et al. | Dec 2008 | A1 |
20080313140 | Pereira et al. | Dec 2008 | A1 |
20090007195 | Beyabani | Jan 2009 | A1 |
20090024923 | Hartwig et al. | Jan 2009 | A1 |
20090028517 | Shen et al. | Jan 2009 | A1 |
20090052784 | Covell et al. | Feb 2009 | A1 |
20090087027 | Eaton et al. | Apr 2009 | A1 |
20090088878 | Otsuka et al. | Apr 2009 | A1 |
20090100361 | Abello et al. | Apr 2009 | A1 |
20090131861 | Braig et al. | May 2009 | A1 |
20090172728 | Shkedi et al. | Jul 2009 | A1 |
20090172746 | Aldrey et al. | Jul 2009 | A1 |
20090213270 | Ismert et al. | Aug 2009 | A1 |
20090235312 | Morad et al. | Sep 2009 | A1 |
20100010648 | Bull et al. | Jan 2010 | A1 |
20100083299 | Nelson | Apr 2010 | A1 |
20100115543 | Falcon | May 2010 | A1 |
20100125870 | Ukawa et al. | May 2010 | A1 |
20100166257 | Wredenhagen | Jul 2010 | A1 |
20100199295 | Katpelly et al. | Aug 2010 | A1 |
20100235486 | White et al. | Sep 2010 | A1 |
20100269138 | Krikorian et al. | Oct 2010 | A1 |
20100306805 | Neumeier et al. | Dec 2010 | A1 |
20100306808 | Neumeier et al. | Dec 2010 | A1 |
20110015996 | Kassoway et al. | Jan 2011 | A1 |
20110026761 | Radhakrishnan et al. | Feb 2011 | A1 |
20110041154 | Olson | Feb 2011 | A1 |
20110055552 | Francis et al. | Mar 2011 | A1 |
20110096955 | Voloshynovskiy et al. | Apr 2011 | A1 |
20110251987 | Buchheit | Apr 2011 | A1 |
20110247042 | Mallinson | Oct 2011 | A1 |
20110289099 | Quan | Nov 2011 | A1 |
20110299770 | Vaddadi et al. | Dec 2011 | A1 |
20120017240 | Shkedi | Jan 2012 | A1 |
20120054143 | Doig et al. | Mar 2012 | A1 |
20120158511 | Lucero et al. | Jun 2012 | A1 |
20120174155 | Mowrey et al. | Jul 2012 | A1 |
20120177249 | Levy et al. | Jul 2012 | A1 |
20120185566 | Nagasaka | Jul 2012 | A1 |
20120272259 | Cortes | Oct 2012 | A1 |
20120317240 | Wang | Dec 2012 | A1 |
20120324494 | Burger et al. | Dec 2012 | A1 |
20130007191 | Klappert et al. | Jan 2013 | A1 |
20130007792 | Jeon | Jan 2013 | A1 |
20130042262 | Riethmueller | Feb 2013 | A1 |
20130054356 | Richman et al. | Feb 2013 | A1 |
20130067523 | Etsuko et al. | Mar 2013 | A1 |
20130070847 | Iwamoto et al. | Mar 2013 | A1 |
20130139209 | Urrabazo et al. | May 2013 | A1 |
20130202150 | Sinha et al. | Aug 2013 | A1 |
20130209065 | Yeung | Aug 2013 | A1 |
20130290502 | Bilobrov | Oct 2013 | A1 |
20130297727 | Levy | Nov 2013 | A1 |
20130318096 | Cheung | Nov 2013 | A1 |
20140016696 | Nelson | Jan 2014 | A1 |
20140025837 | Swenson | Jan 2014 | A1 |
20140082663 | Neumeier et al. | Mar 2014 | A1 |
20140088742 | Srinivasan | Mar 2014 | A1 |
20140130092 | Kunisetty | May 2014 | A1 |
20140188487 | Perez Gonzalez | Jul 2014 | A1 |
20140193027 | Scherf et al. | Jul 2014 | A1 |
20140195548 | Harron | Jul 2014 | A1 |
20140201769 | Neumeier et al. | Jul 2014 | A1 |
20140201772 | Neumeier | Jul 2014 | A1 |
20140219554 | Yamaguchi et al. | Aug 2014 | A1 |
20140237576 | Zhang | Aug 2014 | A1 |
20140258375 | Munoz | Sep 2014 | A1 |
20140270489 | Jaewhan et al. | Sep 2014 | A1 |
20140270504 | Baum et al. | Sep 2014 | A1 |
20140270505 | McCarthy | Sep 2014 | A1 |
20140282671 | McMillan | Sep 2014 | A1 |
20140344880 | Geller et al. | Nov 2014 | A1 |
20150100979 | Moskowitz et al. | Apr 2015 | A1 |
20150112988 | Pereira et al. | Apr 2015 | A1 |
20150163545 | Freed et al. | Jun 2015 | A1 |
20150181311 | Navin et al. | Jun 2015 | A1 |
20150382075 | Neumeier et al. | Dec 2015 | A1 |
20160227261 | Neumeier et al. | Aug 2016 | A1 |
20160286244 | Chang et al. | Sep 2016 | A1 |
20170017645 | Neumeier et al. | Jan 2017 | A1 |
20170017651 | Neumeier et al. | Jan 2017 | A1 |
20170017652 | Neumeier et al. | Jan 2017 | A1 |
20170019716 | Neumeier et al. | Jan 2017 | A1 |
20170019719 | Neumeier et al. | Jan 2017 | A1 |
20170026671 | Neumeier et al. | Jan 2017 | A1 |
20170032033 | Neumeier et al. | Feb 2017 | A1 |
20170032034 | Neumeier et al. | Feb 2017 | A1 |
20170134770 | Neumeier et al. | May 2017 | A9 |
20170186042 | Wong et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
2501316 | Sep 2005 | CA |
1557096 | Dec 2004 | CN |
101162470 | Apr 2008 | CN |
1681304 | Jul 2010 | CN |
102377960 | Mar 2012 | CN |
248 533 | Aug 1994 | EP |
1578126 | Sep 2005 | EP |
2 084 624 | Aug 2009 | EP |
2 352 289 | Aug 2011 | EP |
2 541 963 | Jan 2013 | EP |
2457694 | Aug 2009 | GB |
0144992 | Jun 2001 | WO |
2005101998 | Nov 2005 | WO |
2007114796 | Oct 2007 | WO |
2008065340 | Jun 2008 | WO |
2009131861 | Oct 2009 | WO |
2009150425 | Dec 2009 | WO |
2010135082 | Nov 2010 | WO |
2011090540 | Jul 2011 | WO |
2012057724 | May 2012 | WO |
2012108975 | Aug 2012 | WO |
2012170451 | Dec 2012 | WO |
2014142758 | Sep 2014 | WO |
2014145929 | Sep 2014 | WO |
2015100372 | Jul 2015 | WO |
2016123495 | Aug 2016 | WO |
2016168556 | Oct 2016 | WO |
2017011758 | Jan 2017 | WO |
2017011792 | Jan 2017 | WO |
Entry |
---|
“Cache Policies for cloud-based systems: To Keep or Not to Keep”; By: Nicolas Le Scouarnec; Published 2014 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6973717. |
International Search Report and Written Opinion dated Mar. 31, 2015 for PCT Application No. PCT/US2014/072255, 8 pages. |
International Search Report and Written Opinion dated Apr. 26, 2016 for PCT Application No. PCT/US2016/015681,13 pages. |
“How to: Watch from the beginning |About DISH” (Dec. 31, 2014) XP055265764, retrieved on Apr. 15, 2016 from URL:http://about.dish.com/blog/hopper/how-watch-beginning 2 pages. |
International Search Report and Written Opinion dated Jun. 24, 2016 for PCT Application No. PCT/US2016/027691, 13 pages. |
Gionis et al., “Similarity Search in High Dimension via Hashing”, Proceedings of the 25th VLDB Conference, 1999, 12 pages. |
Huang , “Bounded Coordinate System Indexing for Real-time Video Clip Search”, Retrieved from the Internet:URL:http://staff.itee.uq.edu.aujzxf/papers/TOIS.pdf, Jan. 1, 2009, 32 pages. |
Kim et al., “Edge-Based Spatial Descriptor Using Color Vector Angle for Effective Image Retrieval”, Modeling Decisions for Artificial Intelligence; [Lecture Notes in Computer Science; Lecture Notes in Artificial Intelligence, Jul. 1, 2005, pp. 365-375. |
Liu et al., “Near-duplicate video retrieval”, ACM Computing Surveys, vol. 45, No. 4, Aug. 30, 2013, pp. 1-23. |
International Search Report and Written Opinion dated Oct. 12, 2016 for PCT Application No. PCT/US2016/042522,13 pages. |
International Search Report and Written Opinion dated Oct. 11, 2016 for PCT Application No. PCT/US2016/042621, 13 pages. |
International Search Report and Written Opinion dated Oct. 20, 2016 for PCT Application No. PCT/US2016/042611,12 pages. |
Scouarnec et al., “Cache policies for cloud-based systems:To keep or not to keep”, 2014 IEEE 7th International Conference on Cloud Computing, IEEE XP032696624, Jun. 27, 2014, pp. 1-8. |
International Search Report and Written Opinion dated Oct. 25, 2016 for PCT Application No. PCT/US2016/042564, 14 pages. |
Anonymous; “Cache (computing)” Wikipedia, the free encyclopedia, URL:http://en.wikipedia.org/w/index.phpti tle=Cache (computing)&oldid=474222804, Jan. 31, 2012; 6 pages. |
International Search Report and Written Opinion dated Oct. 24, 2016 for PCT Application No. PCT/US2016/042557, 11 pages. |
Anil K. Jain, “Image Coding via a Nearest Neighbors Image Model” IEEE Transactions on Communications, vol. Com-23, No. 3, Mar. 1975, pp. 318-331. |
Lee et al., “Fast Video Search Algorithm for Large Video Database Using Adjacent Pixel Intensity Difference Quantization Histogram Feature” International Journal of Computer Science and Network Security, vol. 9, No. 9, Sep. 2009, pp. 214-220. |
Li et al., A Confidence Based Recognition System for TV Commercial Extraction, Conferences in Research and Practice in Information Technology vol. 75, 2008. |
International Search Report and Written Opinion dated Jul. 27, 2011 for PCT Application No. PCT/US2010/057153, 8 pages. |
International Search Report and Written Opinion dated Aug. 31, 2011 for PCT Application No. PCT/US2010/057155, 8 pages. |
International Search Report and Written Opinion dated Aug. 26, 2014 for PCT Application No. PCT/US2014/030782; 11 pages. |
International Search Report and Written Opinion dated Jul. 21, 2014 for PCT Application No. PCT/US2014/030795; 10 pages. |
International Search Report and Written Opinion, dated Jul. 25, 2014 for PCT Application No. PCT/US2014/030805, 10 pages. |
Extended European Search Report dated Mar. 7, 2013 for European Application No. 12178359.1, 8 pages. |
Extended European Search Report dated Oct. 11, 2013 for European Application No. 10844152.8, 19 pages. |
Kabal (P.), Ramachandran (R.P.): The computation of line spectral frequencies using Chebyshev polynomials, IEEE Trans. on ASSP, vol. 34, No. 6, pp. 1419-1426, 1986. |
Itakura (F.): Line spectral representation of linear predictive coefficients of speech signals, J. Acoust. Soc. Amer., vol. 57, Supplement No. 1, S35, 1975, 3 pages. |
Bistritz (Y.), Pellerm (S.): Immittance Spectral Pairs (ISP) for speech encoding, Proc. ICASSP'93, pp. 11-9 to 11-12. |
International Search Report and Written Opinion dated Mar. 8, 2016 for PCT Application No. PCT/ US2015/062945; 9 pages. |
Extended European Search Report dated Dec. 21, 2016 for European Application No. 14763506.4, 11 pages. |
Extended European Search Report dated Nov. 23, 2016 for European Application No. 14764182.3, 10 pages. |
Extended European Search Report dated Jan. 24, 2017 for European Application No. 14762850.7, 12 pages. |
Extended European Search Report dated Jun. 16, 2017, for European Patent Application No. 14873564.0, 8 pages. |
U.S. Appl. No. 14/551,933 , “Final Office Action”, dated May 23, 2016, 19 pages. |
U.S. Appl. No. 14/551,933 , “Non-Final Office Action”, dated Oct. 17, 2016, 15 pages. |
U.S. Appl. No. 14/551,933 , “Non-Final Office Action”, dated Dec. 31, 2015, 24 pages. |
U.S. Appl. No. 14/551,933 , “Notice of Allowance”, dated Mar. 21, 2017, 8 pages. |
U.S. Appl. No. 14/217,039 , “Non-Final Office Action”, dated May 23, 2014, 27 pages. |
U.S. Appl. No. 14/217,039 , “Final Office Action”, dated Nov. 7, 2014, 15 pages. |
U.S. Appl. No. 14/217,039 , “Notice of Allowance”, dated Jan. 29, 2015, 8 pages. |
U.S. Appl. No. 14/678,856 , “Non-Final Office Action”, dated Dec. 1, 2015, 28 pages. |
U.S. Appl. No. 14/678,856 , “Notice of Allowance”, dated May 20, 2016, 9 pages. |
U.S. Appl. No. 14/217,075, “Non-Final Office Action”, dated Jul. 16, 2014, 39 pages. |
U.S. Appl. No. 14/217,075, “Notice of Allowance ”, dated Feb. 20, 2015, 51 pages. |
U.S. Appl. No. 14/217,094, “Notice of Allowance ”, dated Sep. 4, 2014, 30 pages. |
U.S. Appl. No. 14/217,375, “Non-Final Office Action”, dated Apr. 1, 2015, 39 pages. |
U.S. Appl. No. 14/217,375, “Notice of Allowance”, dated Apr. 1, 2015, 31 pages. |
U.S. Appl. No. 14/217,425, “Non-Final Office Action”, dated Apr. 7, 2015, 12 pages. |
U.S. Appl. No. 14/217,425, “Notice of Allowance”, dated May 20, 2015, 15 pages. |
U.S. Appl. No. 14/217,435, “Non-Final Office Action”, dated Nov. 24, 2014, 9 pages. |
U.S. Appl. No. 14/217,435, “Notice of Allowance”, dated Jun. 5, 2015, 9 pages. |
U.S. Appl. No. 15/011,099 , “First Action Interview Office Action Summary”, dated May 9, 2017, 6 pages. |
U.S. Appl. No. 15/011,099 , “First Action Interview Pilot Program Pre-Interview Communication”, dated Feb. 28, 2017, 5 pages. |
U.S. Appl. No. 12/788,721 , “Non-Final Office Action”, dated Mar. 28, 2012, 15 Pages. |
U.S. Appl. No. 12/788,721 , “Final Office Action”, dated Aug. 15, 2012, 22 Pages. |
U.S. Appl. No. 12/788,721 , “Notice of Allowance”, dated Aug. 15, 2013, 16 Pages. |
U.S. Appl. No. 14/763,158 , “Non-Final Office Action”, dated Jun. 27, 2016, 16 Pages. |
U.S. Appl. No. 14/763,158 , “Final Office Action”, dated Sep. 7, 2016, 12 Pages. |
U.S. Appl. No. 14/763,158 , “Notice of Allowance”, dated Mar. 17, 2016, 8 Pages. |
U.S. Appl. No. 14/807,849 , “Non-Final Office Action”, dated Nov. 25, 2015, 12 Pages. |
U.S. Appl. No. 14/807,849 , “Final Office Action”, dated Apr. 19, 2016, 13 pages. |
U.S. Appl. No. 14/807,849 , “Non-Final Office Action”, dated Feb. 28, 2017, 10 Pages. |
U.S. Appl. No. 14/089,003 , “Notice of Allowance”, dated Jul. 30, 2014, 24 Pages. |
U.S. Appl. No. 12/788,748 , “Non-Final Office Action”, dated Jan. 10, 2013, 10 Pages. |
U.S. Appl. No. 12/788,748 , “Final Office Action”, dated Nov. 21, 2013, 13 Pages. |
U.S. Appl. No. 12/788,748 , “Notice of Allowance”, dated Mar. 6, 2014, 7 Pages. |
U.S. Appl. No. 14/953,994 , “Non-Final Office Action”, dated Mar. 3, 2016, 34 Pages. |
U.S. Appl. No. 14/953,994 , “Final Office Action”, dated Jun. 1, 2016, 36 Pages. |
U.S. Appl. No. 14/953,994 , “Notice of Allowance”, dated Aug. 31, 2016, 15 Pages. |
U.S. Appl. No. 14/807,849 , “Final Office Action”, dated Jun. 22, 2017, 10 pages. |
U.S. Appl. No. 15/011,099 , “Final Office Action”, dated Jul. 24, 2017, 22 pages. |
U.S. Appl. No. 15/240,801 , “Non-Final Office Action”, dated Aug. 11, 2017, 18 pages. |
U.S. Appl. No. 15/240,815 , “Non-Final Office Action”, dated Aug. 23, 2017, 15 pages. |
U.S. Appl. No. 15/211,345 , “First Action Interview Pilot Program Pre-Interview Communication”, dated Sep. 19, 2017, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20170017652 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
62193331 | Jul 2015 | US |