This invention relates to methods of producing hybrid plants and hybrid non-human animals having high levels of hybrid vigour or heterosis and/or producing plants and non-human animals (e.g. hybrid, inbred or recombinant plants) having other traits such as desired flowering time, seed oil content and/or seed fatty acid ratios, and plants and non-human animals produced by these methods.
The invention relates to selection of suitable organisms, preferably plants or non-human animals, for use in producing hybrids and/or for use in breeding programmes, e.g. screening of germplasm collections for plants that may be suitable for inclusion in breeding programmes.
Many animal and plant species exhibit increased growth rates, reach larger sizes and, in the cases of crops [1,2] and farm animals [3,4], have higher yields and productivity when bred as hybrids, produced by crossing genetically dissimilar parents, a phenomenon known as hybrid vigour or heterosis [5]. The term heterosis can be applied to almost any aspect of biology in which a hybrid can be described as outperforming its parents.
The degree of heterosis observed varies a lot between different hybrids. The magnitude of heterosis can be described relative to the mean value of the parents (Mid-Parent Heterosis, MPH) or relative to the “better” of the parents (Best-Parent Heterosis, BPH).
Heterosis is of great importance in many agricultural crops and in plant and animal breeding, where it is clearly desirable to produce hybrids with high levels of heterosis. However, despite extensive genetic analysis in this area, the molecular mechanisms underlying heterosis remain poorly understood. Some progress has been made towards understanding the heterosis observed in simple traits controlled by single genes [6], but the mechanisms controlling more complex forms of heterosis, such as the vegetative vigour of hybrids, remain unknown [7, 8, 9].
Genetic analyses of heterosis have led to three, non-exclusive, genetic mechanisms being hypothesised to explain heterosis:
the “dominance” model, in which heterotic interactions are considered to be the cumulative effect of the phenotypic expression of dispersed dominant alleles, whereby deleterious alleles that are homozygous in the respective parents are complemented in the hybrids [2, 10];
the “overdominance” model, in which heterotic interactions are considered to be the result of heterozygous loci resulting in a phenotypic expression in excess of either parent, so that the heterozygosity per se produces heterosis [5, 11, 12];
the “epistatic” model, which includes other types of specific interactions between combinations of alleles at separate loci [13, 14].
Hypothetical models based on gene regulatory networks have been proposed to explain these types of interaction [15].
Whilst the hypothesised models attempt to explain in genetic terms at least a proportion of heterosis observed in hybrids, they do not provide a practical indicator that would enable breeders to predict quantitatively the level of heterosis for a given hybrid or to know which hybrid crosses are likely to perform well.
In allogamous crops, such as maize, heterotic groups have been established that enable the selection of inbreds that will show good heterosis when crossed. For example, Iowa Stiff Stalk vs. Non-Stiff Stalk lines [16]. Inter-group hybrids have greater genetic distance and heterosis than hybrids produced by crossing within an individual heterotic group [17] and it has been proposed that the level of genetic diversity may be a predictor of heterosis and yield [18]. However, this has not proven to be a reliable approach for the prediction of heterosis in crops [17]. Heterosis shows an inconsistent relationship with the degree of relatedness of the two parents, with an absence of correlation reported between heterosis and genetic distance in Arabidopsis thaliana [7, 19] and other species [20, 21, 22]. Thus, in general the level of heterosis observed in a hybrid does not depend solely upon the genetic distance between the two parents from which the hybrid was produced, nor does this variable, genetic distance, necessarily provide a good indicator of likely heterosis of hybrids.
At the gene transcript level, expression of alleles in a hybrid may represent the cumulative level of expression of the alleles inherited from each parent, or expression may be non-additive. Non-additive patterns of gene expression are believed to contribute to hybrid effects and therefore several studies have investigated non-additive gene expression in hybrids compared with their parents. Characteristics of the transcriptome (the contribution to the mRNA pool of each gene in the genome) have been analysed in heterotic hybrids of crop plants, and extensive differences in gene expression in the hybrids relative to the parents have been reported [23, 24, 25, 26, 27]. Hybrid transcriptomes were shown to be different from the transcriptomes of the parents. Quantitative changes were seen in the contribution to the mRNA pool of a subset of genes, when the transcriptomes of the hybrids were compared with the transcriptomes of their parents. These experiments were conducted with the expectation that differences in the transcriptomes of the hybrids, compared with their parents, contribute to the basis of heterosis.
Using differential display, Sun et al [24] identified differences in gene expression, of approximately 965 genes, between wheat seedling hybrids and their parents. The hybrids were generated from two single direction crosses, and represented one heterotic and one non-heterotic sample. Differences in gene expression were found between the hybrids and the parents, with some evidence provided of differences in response between the hybrids. In later experiments, Sun et al [28] used differential display techniques to identify changes in transcriptional remodelling for 2800 genes, between nine parental and 20 wheat hybrids. They found that around 30% of these genes showed some degree of remodelling. Broad trends in gene expression were assessed by random amplification. Gene expression differences were observed between the hybrid and both parents, between the hybrid and one parent only, and genes expressed only in the hybrid. The total number of non-additively expressed genes was found to correlate with some traits. The authors concluded that these differences in gene expression must be involved in developing a heterotic phenotype.
Guo et al. [29] reported allele-specific variation in transcript abundance in hybrids. Transcript abundance of 15 genes was analysed in maize hybrids, and transcript levels for the two alleles of each gene were compared. In 11 genes, the two alleles were found to be expressed unequally (bi-allelic expression), and in 4 genes just one allele was expressed (mono-allelic expression). Allele-specific differences in expression were observed between genetically different hybrids. Additionally, the two alleles in each hybrid were shown to respond differently to abiotic stress. Allele-specific differences may indicate different functions for the two parental alleles in hybrids, and this functional diversity of the two parental alleles in the hybrid was suggested to have an impact on heterosis.
Auger et al. [27] examined differences in transcript abundance between hybrids relative to their inbred parents. Several genes were found to be expressed at non-additive levels in the hybrids, but relevance to heterosis was not demonstrated.
Vuylsteke et al. [30] measured variations in transcript abundance between three inbred lines and two pairs of reciprocal F1 hybrids of Arabidopsis. Non-additive levels of gene expression in the hybrids were used to estimate the proportion of genes expressed in a “dominance” fashion according to a genetic model of heterosis.
Microarray technology has also been used to study differences in transcript abundance across plant populations. For example, Kliebenstein et al. [31] used microarrays to quantify gene expression in seven Arabidopsis accessions, and found an average of 2234 genes to be significantly differentially expressed between any pair of accessions. The differences in gene expression were found to be related to sequence diversity in the accessions. Kirst et al. [32] examined transcript abundance in a pseudobackcross population of eucalyptus in order to compare transcript regulation in different genetic backgrounds of eucalyptus, and concluded that the genetic control of transcript levels was modulated by variation at different regulatory loci in different genetic backgrounds. Paux et al. [33] also conducted transcript profiling of eucalyptus genes, to examine gene expression during tension wood formation.
Another mechanism that has been proposed to explain heterosis is complementation of bottlenecks in metabolic systems [34]. It is possible that several different mechanisms are involved in heterosis, so that any one specific mechanism may only explain a proportion of heterosis observed.
Heterosis has been the subject of intense genetic analysis for almost a century, but no reliable and accurate basis for determining, predicting or influencing the degree of heterosis in a given hybrid has yet been identified. Thus, there has been a long-felt need to identify some basis on which parents may be selected in order to produce hybrids of increased vigour.
Attempts to produce hybrids with high levels of heterosis must currently be undertaken on the basis of trial and error, by experimentally crossing different parents and then waiting for the progeny to grow until it can be seen which of the new hybrids exhibit the most vigour. Breeding for new heterotic hybrids thus necessarily results in the co-production of significant numbers of under-performing hybrids with low hybrid vigour. The desired hybrids may not be obtained, or may only represent a fraction of the total number of hybrids produced overall. Additionally, hybrids must normally reach a certain age before their level of heterosis can be determined, which increases still further the time, cost and resources that must be invested in a breeding program, since it is necessary to continue to grow large numbers of hybrids even though many, or perhaps all, will not have the desired characteristics.
A method that could provide at least some measure of prediction of the level of heterosis likely to be exhibited by a given hybrid could result in significantly more effective breeding programs.
There are comparable needs to determine a basis on which plants or animals may be selected as parents for producing hybrids with further desirable multigenic traits, and for predicting which hybrid, inbred or recombinant plants or animals are likely to exhibit desired traits.
The invention disclosed herein is based on the unexpected finding that transcript abundance of certain genes is predictive of the degree of heterosis in a hybrid. Transcriptome analysis may be used to identify genes whose transcript abundance in hybrids correlates with heterosis. The abundance of those gene transcripts in a new hybrid can then be used to predict the degree of heterosis of the new hybrid. Moreover, transcriptome analysis may be used to identify genes whose transcript abundance in plants or animals correlates with heterosis in hybrids produced by crossing those plants or animals. Thus, transcriptome data from parents can be used to predict the magnitude of heterosis in hybrids which have yet to be produced.
We show herein that changes in transcript abundance in the transcriptome represent the majority of the basis of heterosis. Importantly, this means that predictions based on transcript abundance are close to the observed magnitude of heterosis, i.e. the invention allows quantitative prediction of the degree of heterosis in a hybrid. Transcriptome characteristics alone may thus be used to predict heterosis in hybrids and as a basis for selection of parents.
Thus, remarkably, we have solved a problem that has been unanswered for almost a century. By demonstrating that the basis of heterosis resides primarily at the level of the regulation of transcript abundance, we have provided a means of predicting heterosis in hybrids and thus selecting which hybrids to maintain. Furthermore, we were able to identify characteristics of parental transcriptomes that could be used successfully as markers to predict the magnitude of heterosis in untested hybrids, and we have thus also provided basis for identifying parents which can be crossed to produce heterotic hybrids.
This invention differs from previous studies involving transcriptome analysis of hybrids, since those earlier studies did not identify any relationship between the transcriptomes of hybrids and the degree of heterosis observed in those hybrids. As discussed above, earlier studies showed that transcript levels of some genes differ in hybrids compared with the parents from which those hybrids were derived, and differences between hybrid and parent transcriptome were suggested to contribute to phenotypic differences including heterosis. However, the previous investigators did not compare transcriptome remodelling in a range of non-heterotic hybrids and heterotic hybrids, and did not show whether transcriptome remodelling correlates with heterosis.
We have recognised that most differences in the hybrid transcriptome are due to hybrid formation, not heterosis. We found that, in fact, transcriptome remodelling involving transcript abundance fold-changes of 2 or more occurs to a similar extent in all hybrids relative to their parents, regardless of the degree of heterosis observed in the hybrids. Accordingly, the overall degree of transcriptome remodelling in a hybrid is not an indicator of the degree of heterosis in that hybrid.
Therefore, earlier studies involving limited numbers of hybrids were not able to identify genes whose transcript abundance correlated with heterosis. The vast majority of differences in transcript abundance observed in earlier studies would have been due only to hybrid formation itself, and would not show any correlation with heterosis. Nor was any such correlation even looked for in the prior art, since it was not recognised that a correlation might exist.
However, despite showing that the overall degree of transcriptome remodelling in a hybrid is not related to heterosis, we found that transcriptome analysis can nevertheless be used to reveal features of the hybrid transcriptome that are predictive of the degree of heterosis in a hybrid. Through transcriptome analysis of a wide range of hybrids we have unexpectedly shown that transcript abundance of a proportion of genes correlates with heterosis. As described herein, we studied 13 different heterotic hybrids of Arabidopsis thaliana, and identified features of the hybrid transcriptome that are characteristic of heterotic interactions. We identified 70 genes whose transcript abundance in the hybrid transcriptome correlated with the degree of heterosis in the Arabidopsis hybrids. We then successfully used the transcript abundance of that defined set of 70 genes to quantitatively predict the magnitude of heterosis observed in 3 untested hybrid combinations. Transcript abundance of two additional genes, At1g67500 and At5g45500, was also shown to have a significant negative correlation with heterosis. Transcript abundance of each of these genes successfully predicted heterosis in further hybrids.
Further, we identified a larger set of genes whose transcript abundance in the transcriptome of Arabidopsis inbred lines correlated with the degree of heterosis in hybrid progeny produced by crossing those lines. We successfully used the transcript abundance of that set of genes to quantitatively predict the magnitude of heterosis in 3 hybrids produced from those lines. Transcript abundance of At3g11220 was found to be negatively correlated with heterosis in a highly significant manner and transcript abundance of this gene in the parental transcriptome was found to be predictive of heterosis in hybrid offspring.
Heterosis in hybrids of Arabidopsis thaliana may be predicted on the basis of the transcript abundance of these identified Arabidopsis genes. Moreover, since heterosis is a widely observed phenomenon, and is not restricted to Arabidopsis or even to plants, but is also observed in animals, it is to be expected that many of the same genes whose transcript abundance correlates with heterosis in Arabidopsis will also correlate with heterosis in other organisms. Transcript abundance of orthologues of those genes in other species may thus correlate with heterosis.
However, prediction of heterosis need not be based on genes selected from the sets of genes disclosed herein, since one aspect of the invention is use of transcriptome analysis to identify the particular genes whose transcript abundance correlates with heterosis in any population of hybrids that is of interest. Once identified, those genes may then be used for prediction of heterosis or other trait in the particular hybrids of interest. Whilst the identified genes may include at least some genes, or orthologues thereof, from the set of genes identified in Arabidopsis, they need not do so.
The invention enables hybrids likely to exhibit high levels of heterosis to be identified and selected, while hybrids likely to exhibit lower degrees of heterosis may be discarded. Notably, the invention may be used to predict the level of heterosis in a hybrid at an early stage in the life of the hybrid, for example in a seedling, before it would be possible to directly observe differences between heterotic and non-heterotic hybrids. Thus, the invention may be used in a hybrid whose degree of heterosis is not yet determinable from its phenotype. The invention thus provides significant benefits to a breeder, since it allows a breeder to determine which particular hybrids in a potentially vast array of different hybrids should be retained and grown. For example, a breeder may use transcript abundance data from seedlings to decide which plant hybrids to grow or test in yield/performance trials.
Furthermore, we have shown that regulation of transcript abundance underlies not only heterosis but also other traits. These may include all genetically complex traits in hybrid, inbred or recombinant plants and animals, e.g. flowering time or seed composition in plants. Accordingly, the invention also relates to determining features of plant or non-human animal transcriptomes (e.g. transcriptomes of hybrids and/or inbred or recombinant plants or animals) for prediction of other traits in the plant or animal or offspring thereof. Where the invention relates to traits other than heterosis, the plant or animal may be a hybrid or alternatively it may be inbred or recombinant. Examples of traits that may be predicted using the invention are yield, flowering time, seed oil content and seed fatty acid ratios in plants, especially plant hybrids, e.g. accessions of A. thaliana. These and other traits may also be predicted in the plant or non-human animal (e.g. hybrid, inbred or recombinant plant or animal) before those traits are manifested in the phenotype. Thus, for example, we demonstrate herein that the invention allows seed oil content of inbred plants to be accurately predicted by analysis of plants that have not yet flowered. The invention thus confers significant predictive, cost and workload reductive advantages, particularly for traits manifested at a relatively late stage, since it means that it is not necessary to wait until a plant or animal reaches a particular (often late) stage of development before being able to know the magnitude or properties of the trait that will be exhibited by a given plant or animal.
Other aspects of the invention allow prediction of traits in plants or animals based on characteristics of their parents, and thus traits of plants or animals may be predicted and selected for even before those plants or animals are produced. As noted above, the trait may be heterosis in a plant or animal hybrid. Therefore, in accordance with the invention, features of plant or animal transcriptomes may be identified that allow the degree of heterosis of plants or animals produced by crossing those plants or animals to be predicted. The invention can be used to predict one or more traits, such as the degree of heterosis observed in plants or animals produced by crossing different combinations of parental germplasms. This is potentially as valuable or even more valuable than being able to predict heterosis and other traits in plants and animals that have already been produced, since it avoids producing under-performing plants or animals and therefore allows significant savings in logistics, costs and time. Particular plants or animals may thus be selected for breeding, with an increased chance that their progeny will be heterotic hybrids, or possess other traits, compared with if the parents were selected at random. Thus, the methods of the invention allow prediction in terms of the level of heterosis or of other traits produced by any particular cross between different parents, and allow particular parents to be selected accordingly. For example in agricultural crop plant breeding the invention reduces the need to make large numbers of different crosses in order to obtain new heterotic hybrids, since the invention can be used to identify in advance which particular crosses will be most productive.
Remarkably, methods of the invention may be used to predict traits based on transcript abundance in tissues in which the trait is not exhibited or which have no apparent relevance to the trait. For example, traits such as flowering time or seed composition may be predicted in plants based on transcript abundance data from non-flowering tissue, such as leaf tissue. Thus, the invention allows generation of statistical correlations between one or more traits and abundance of one or more gene transcripts. There is no requirement for the tissue sampled for transcriptome analysis to be the same as that used for trait measurement. It may be preferable that the tissue sampled for transcriptome analysis is, in terms of evolution, be a more ancient origin—hence the transcriptome in leaves can be used to predict more recently evolved characteristics of plants, such as flowering time or seed composition.
Based on the extensive transcriptome remodelling in hybrids of Arabidopsis thaliana disclosed herein, including some combinations that are heterotic for vegetative biomass and some combinations that are non-heterotic, it is evident that the methods of the invention may be applied to advantage in crops of economic importance.
Maize is currently bred as a hybrid crop, with its cultivation in the UK being for silage from the whole plant. Biomass yield is therefore paramount, and heterosis underpins this yield. In the USA maize is primarily grown for corn production, for which kernel weight represents the productive yield, and this yield is also dependent on heterosis. The ability to efficiently select for hybrid performance at an early stage of the hybrid parent breeding process provided by the method of this invention greatly accelerates the development of hybrid plant lines to increase yields and introduce a range of “sustainability” traits from exotic germplasm without loss of yield. Oilseed rape hybrids hold much potential, but their exploitation is limited as heterosis is often restricted to vegetative vigour, with little improvement in seed dry weight yield. The ability to select for specific performance traits at early stages of growth similarly accelerates the development of more productive and sustainable varieties. There is great potential for hybrid breeding of bread wheat (already a hexaploid, so benefits from some “fixed” heterosis) which, like oilseed rape, is supported by a breeding community based in the UK. In addition, hybrid varieties are important for a large number of vegetable species cultivated in the UK (such as cabbages, onions, carrots, peppers, tomatoes, melons), which are grown for enhancement of crop uniformity, appearance and general quality. Use of the invention to define a predictive marker for heterosis and other performance traits thus has the potential to revolutionise both the breeding process and the performance of crops for the farmer.
As demonstrated in the Examples, we identified relationships between gene expression in glasshouse-grown seedlings of maize inbreds and phenotypes (grain yield) in related plants at a later developmental stage and after growth under different environmental conditions.
In summary, the invention involves use of transcriptome analysis of plants or animals, e.g. hybrids and/or inbred or recombinant plants or animals, for:
(i) identifying genes involved in the manifestation of heterosis and other traits; and/or
(ii) predicting and producing plants or animals of improved heterosis and other traits by selecting plants or animals for breeding, wherein the plants or animals which exhibit enhanced transcriptome characteristics with respect to a selected set of genes relevant to the transcriptional regulatory networks present in potential parental breeding partners; and/or
(iii) predicting a range of trait characteristics for plants and animals based on transcriptome characteristics.
The invention also relates to plant and animal hybrids of improved heterosis, and to hybrids, inbreds or recombinants with improved traits as produced or predicted by the methods of the invention.
The results disclosed herein provide evidence for a link between heterosis and growth repression that is a consequence of stress tolerance mechanisms. We identified a number of genes which are highly predictive of heterosis, and which showed a significant negative correlation between gene expression and heterotic performance. As discussed in the Examples herein, these genes may represent key genetic loci that are downregulated in heterotic hybrids, leading to decreased expression of stress-avoidance genes and thus allowing better hybrid performance under favourable conditions. This raises the possibility that heterosis, at least for vegetative biomass, is at least partly a consequence of genetic interactions that lead to a reduction in repression of growth, rather than direct promotion of growth. However, whatever the molecular mechanism underlying heterosis, we have established that certain genes and sets of genes predictive of heterosis may be identified and successfully used in accordance with the present invention for predicting heterosis.
A hybrid is offspring of two parents of differing genetic composition. Thus, a hybrid is a cross between two differing parental germplasms. The parents may be plants or animals. A hybrid is typically produced by crossing a maternal parent with a different paternal parent. In plants, the maternal parent is usually, though not necessarily, impaired in male fertility and the paternal parent is a male fertile pollen donor. Parents may for example be inbred or recombinant.
An inbred plant or animal typically lacks heterozygosity. Inbred plants may be produced by recurrent self-pollination. Inbred animals may be produced by breeding between animals of closely related pedigree.
Recombinant plants or animals are neither hybrid nor inbred. Recombinants are themselves derived by the crossing of genetically dissimilar progenitors and may contain extensive heterozygosity and novel combinations of alleles. Most samples in germplasm collections of plant breeding programmes are recombinant.
The invention may be used with plants or animals. In some embodiments the invention preferably relates to plants. For example, the plants may be crop plants. The crop plants may be cotton, sugar beet, cereal plants (e.g. maize, wheat, barley, rice), oil-seed crops (e.g. soybeans, oilseed rape, sunflowers), fruit or vegetable crop plants (e.g. cabbages, onions, carrots, peppers, tomatoes, melons, legumes, leeks, brassicas e.g. broccoli) or salad crop plants e.g. lettuce [35]. The invention may be applied to hardwood timber trees or alder trees [36]. All species grown as crops could benefit from the invention, irrespective of whether they are currently cultivated extensively as hybrids.
Other embodiments relate to non-human animals e.g. mammals, birds and fish, including farm animals for example cattle, pigs, sheep, birds or poultry (e.g. chickens), goats, and farmed fish e.g. salmon, and other animals such as sports animals e.g. racehorses, racing pigeons, greyhounds or camels. Heterosis has been described in a variety of different animals including for example pigs [37], sheep [38, 39], goats [39], alpaca [39], Japanese quail [40] and salmon [41], and the invention may be applied to these and to other animals.
The invention can most conveniently be used in relation to organisms for which the genome sequence or extensive collections of Expressed Sequence Tags are available and in which microarrays are preferably also available and/or resources for transcriptome analysis have been developed.
In one aspect, the invention is a method comprising:
analysing the transcriptomes of plants or animals in a population of plants or animals;
measuring a trait of the plants or animals in the population; and
identifying a correlation between transcript abundance of one or more, preferably a set of, genes in the plant or animal transcriptomes and the trait in the plants or animals.
Thus the invention provides a method of identifying an indicator of a trait in a plant or animal.
The population may comprise e.g. at least 5, 10, 20, 30, 40, 50 or 100 plants or animals. Use of a large population to obtain trait measurements from many different plants or animals may allow increased accuracy of trait predictions based on correlations identified using the population.
The invention may thus be used to generate a model (e.g. a regression, as described in detail elsewhere herein) for predicting the trait based on transcript abundance of the one or more genes e.g. a set of genes.
One or more traits may be determined or measured, and thus correlations may be identified, and models may be generated, for a plurality of traits.
The plant or animal may be a hybrid, or it may be inbred or recombinant. In a preferred embodiment the plant or animal is a hybrid. A preferred trait is heterosis.
Plants or animals in a population may or may not be related to one another. The population may comprise plants or animals, e.g. hybrids, having different maternal and/or paternal parents. In some embodiments, all plants or animals, e.g. hybrids, in the population have the same maternal parent, but may have different paternal parents. In other embodiments, all plants or animals, e.g. hybrids, in the population have the same paternal parent, but may have different maternal parents. Parents may be inbred or recombinant, as explained elsewhere herein.
Methods for determining heterosis, for transcriptome analysis and for identifying statistical correlations are described in detail elsewhere herein.
Determining or measuring heterosis or other trait can be performed once the relevant phenotype is apparent e.g. once the heterosis can be calculated, or once the trait can be measured.
Transcriptome analysis may be performed at a time when the degree of heterosis or other trait of the plant or animal can be determined. Transcriptome analysis may be performed after, normally directly after, measurements are taken for determining or measuring heterosis or other trait in the plant or animal. This is suitable e.g. when measurements are taken for determining heterosis for fresh weight in hybrids.
However, we have demonstrated herein that it is possible to use transcriptome analysis of plants at a relatively early developmental stage, e.g. before flowering, to identify genes whose transcript abundance correlates with traits that only occur later in development, e.g. traits such as the time of flowering and aspects of the composition of seeds produced by plants. Accordingly, transcriptome analysis may be performed when the degree of heterosis or other trait is not yet determinable from the phenotype. This is suitable e.g. when measuring aspects of performance other than fresh weight, such as yield, for determining heterosis. For example, transcriptome analysis may be performed when plants are in vegetative phase or when animals are pre-adolescent, in order to predict heterosis for characteristics that are evident later in development, or to predict other traits that are evident later in development. For example, heterosis for seed or crop yields, or traits such as flowering time, seed or crop yields or seed composition, may be predicted using transcriptome data from vegetative phase plants.
Correlations between traits and transcript abundance represent models that may be used to predict traits in further plants or animals by determining transcript abundance in those plants or animals.
Thus, in another aspect, the invention is a method comprising:
determining transcript abundance of one or more, preferably a set of, genes in a plant or animal, wherein the transcript abundance of the one or more genes, or set of genes, in the transcriptome of the plant or animal correlates with a trait in the plant or animal; and
thereby predicting the trait in the plant or animal.
The analysis of transcript abundance is predictive of the trait in a plant or animal of the same genotype as the plant or animal in which transcript abundance was determined. Thus, in some embodiments the method may be used for the purpose of predicting a trait in the actual plant or animal whose transcript abundance is determined, and in other embodiments the method may be used for the purpose of predicting a trait in another plant or animal that is genetically identical to the plant or animal whose transcript abundance was sampled. For example the method may be used for predicting a trait in a genetically identical plant or animal that may be grown or produced subsequently, and indeed the decision whether to grow or produce the plant or animal may be informed by the trait prediction.
Methods of the invention may comprise determining transcript abundance of one or more genes, preferably a set of genes, in a plurality of plants or animals, and thus predicting one or more traits in the plurality of plants or animals. Thus, the invention may be used to predict a rank order for the trait in those plants or animals, which allows selection of plants or animals that are predicted to exhibit the highest or lowest trait (e.g. longest or shortest time to flowering, highest seed oil content, highest heterosis).
The plant or animal may be a hybrid, or it may be inbred or recombinant. In a preferred embodiment the plant or animal is a hybrid. A preferred trait is heterosis, and thus the method may be for predicting the magnitude of heterosis in a hybrid.
A method of the invention may comprise:
determining transcript abundance of one or more, preferably a set of, genes in a plant or animal, e.g. a hybrid, wherein transcript abundance of the one or more genes, or set of genes, correlates with a trait in a population of plants or animals, e.g. a population of hybrids; and
thereby predicting the trait in the plant or animal.
Plants or animals in the population may or may not be related to one another. The population typically comprises plants or animals, e.g. hybrids, having different maternal and/or paternal parents. In some embodiments, all plants or animals in the population have the same maternal parent, but may have different paternal parents. In other embodiments, all plants or animals in the population have the same paternal parent, but may have different maternal parents. Where plants or animals in the population share a common maternal parent or a common paternal parent, the plant or animal in which the trait is predicted may share the same common maternal or paternal parent, respectively.
The method may comprise, as an earlier step, a method of identifying an indicator of the trait in a plant or animal, as described above.
The plant or animal in which the indicator of the trait is identified may be the same genus and/or species as the plant or animal in which transcript abundance is determined for prediction of the trait. However, as discussed elsewhere herein, predictions of traits in one species may be performed based on correlations between transcript abundance and trait data obtained in other genus and/or species.
Thus, the invention may be used to predict one or more traits in a plant or animal, typically a previously untested plant or animal. As noted above, the method is useful for predicting heterosis or other trait in a plant or animal when heterosis or other trait is not yet determinable from the phenotype of the organism at the time, age or developmental stage at which the transcriptome is sampled. In a preferred embodiment the method comprises analysing the transcriptome of a plant prior to flowering.
Suitable methods of determining transcript abundance and of predicting heterosis or other traits based on transcript abundance are described in more detail elsewhere herein.
Once genes whose levels of transcript abundance are involved in heterosis or other traits have been identified for a given plant or animal species, further aspects of the invention may involve regulation of transcript abundance, regulation of expression of one or more of those genes, or regulation of one or more proteins encoded by those genes, in order to regulate, influence, increase or decrease heterosis or another trait in a plant or animal organism.
Thus, the invention may involve increasing or decreasing heterosis or other trait in an organism, by upregulating one or more genes or their encoded proteins, wherein transcript abundance of the one or more genes correlates positively with heterosis or other trait in the organism, or by down-regulating one or more genes or their encoded proteins in an organism, wherein transcript abundance of the one or more genes correlates negatively with heterosis or other trait in the organism. Thus, heterosis and other desirable traits in the organism may be increased using the invention. The invention also extends to plants and animals in which traits are up- or down-regulated using methods of the invention. The invention may comprise down-regulating one or more genes involved in stress avoidance or stress tolerance, wherein transcript abundance of the one or more genes is negatively correlated with heterosis, e.g. heterosis for biomass.
Examples of genes whose transcript abundance correlates positively with heterosis, and examples of genes whose transcript abundance correlates negatively with heterosis, are shown in Table 1 and Table 19. Additionally, transcript abundance of genes At1g67500 and At5g45500 correlates negatively with heterosis. In a preferred embodiment the one or more genes are selected from At1g67500 and At5g45500 and/or those shown in Table 1 and/or Table 19, or are orthologues of At1g67500 and/or At5g45500 and/or of one or more genes shown in Table 1 and/or Table 19.
The invention may involve increasing or decreasing a trait in an organism, by upregulating one or more genes whose transcript abundance correlates negatively with the trait in the organism, or by downregulating one or more genes whose transcript abundance correlates positively with the trait in hybrids. Thus, undesirable traits in organisms may be decreased using the invention.
Examples of genes whose transcript abundance correlates with particular traits are shown in Tables 3 to 17, Table 20 and Table 22. Preferred embodiments of the invention relate to one or more of those traits, and preferably to one or more of the listed genes for which transcript abundance is shown to correlate with those traits, as discussed elsewhere herein. Thus, the one or more genes may be selected from the genes shown in the relevant tables, or may be orthologues of those genes. For example, flowering time (e.g. as represented by leaf number at bolting) may be delayed (time to flowering increased, e.g. leaf number at bolting increased) by upregulating expression of one or more genes in Table 3A or Table 4A. Flowering time may be accelerated (time to flowering decreased, e.g. leaf number at bolting decreased) by downregulating expression of one or more genes in Table 3B or Table 4B.
A trait may be increased by upregulating a gene for which transcript abundance correlates positively with the trait or by downregulating a gene for which transcript abundance correlates negatively with the trait. A trait may be decreased by downregulating a gene for which transcript abundance correlates positively with the trait or by upregulating a gene for which transcript abundance correlates positively with the trait.
Upregulation of a gene involves increasing its level of transcription or expression, and thus increasing the transcript abundance of that gene. Upregulation of a gene may comprise expressing the gene from a strong and/or constitutive promoter such as 35S CaMV promoter. Upregulation may comprise increasing expression of an endogenous gene. Alternatively, upregulation may comprise expressing a heterologous gene in a plant or animal, e.g. from a strong and/or constitutive promoter. Heterologous genes may be introduced into plant or animal cells by any suitable method, and methods of transformation are well known in the art. A plant or animal cell may for example be transformed or transfected with an expression vector comprising the gene operably linked to a promoter e.g. a strong and/or constitutive promoter, for expression in the cell. The vector may integrate into the cell genome, or may remain extra-chromosomal.
By “promoter” is meant a sequence of nucleotides from which transcription may be initiated of DNA operably linked downstream (i.e. in the 3′ direction on the sense strand of double-stranded DNA).
“Operably linked” means joined as part of the same nucleic acid molecule, suitably positioned and oriented for transcription to be initiated from the promoter. DNA operably linked to a promoter is under transcriptional initiation regulation of the promoter.
Downregulation of a gene involves decreasing its level of transcription or expression, and thus decreasing the transcript abundance of that gene. Downregulation may be achieved for example by antisense or RNAi, using RNA complementary to messenger RNA (mRNA) transcribed from the gene.
Anti-sense oligonucleotides may be designed to hybridise to the complementary sequence of nucleic acid, pre-mRNA or mature mRNA, interfering with the production of polypeptide encoded by a given DNA sequence (e.g. either native polypeptide or a mutant form thereof), so that its expression is reduce or prevented altogether. Anti-sense techniques may be used to target a coding sequence, a control sequence of a gene, e.g. in the 5′ flanking sequence, whereby the antisense oligonucleotides can interfere with control sequences. Anti-sense oligonucleotides may be DNA or RNA and may be of around 14-23 nucleotides, particularly around 15-18 nucleotides, in length. The construction of antisense sequences and their use is described in refs. [42] and [43].
Small RNA molecules may be employed to regulate gene expression. These include targeted degradation of mRNAs by small interfering RNAs (siRNAs), post transcriptional gene silencing (PTGs), developmentally regulated sequence-specific translational repression of mRNA by micro-RNAs (miRNAs) and targeted transcriptional gene silencing.
A role for the RNAi machinery and small RNAs in targeting of heterochromatin complexes and epigenetic gene silencing at specific chromosomal loci has also been demonstrated. Double-stranded RNA (dsRNA)-dependent post transcriptional silencing, also known as RNA interference (RNAi), is a phenomenon in which dsRNA complexes can target specific genes of homology for silencing in a short period of time. It acts as a signal to promote degradation of mRNA with sequence identity. A 20-nt siRNA is generally long enough to induce gene-specific silencing, but short enough to evade host response. The decrease in expression of targeted gene products can be extensive with 90% silencing induced by a few molecules of siRNA.
In the art, these RNA sequences are termed “short or small interfering RNAs” (siRNAs) or “microRNAs” (miRNAs) depending in their origin. Both types of sequence may be used to down-regulate gene expression by binding to complimentary RNAs and either triggering mRNA elimination (RNAi) or arresting mRNA translation into protein. siRNA are derived by processing of long double stranded RNAs and when found in nature are typically of exogenous origin. Micro-interfering RNAs (miRNA) are endogenously encoded small non-coding RNAs, derived by processing of short hairpins. Both siRNA and miRNA can inhibit the translation of mRNAs bearing partially complimentary target sequences without RNA cleavage and degrade mRNAs bearing fully complementary sequences.
The siRNA ligands are typically double stranded and, in order to optimise the effectiveness of RNA mediated down-regulation of the function of a target gene, it is preferred that the length of the siRNA molecule is chosen to ensure correct recognition of the siRNA by the RISC complex that mediates the recognition by the siRNA of the mRNA target and so that the siRNA is short enough to reduce a host response.
miRNA ligands are typically single stranded and have regions that are partially complementary enabling the ligands to form a hairpin. miRNAs are RNA genes which are transcribed from DNA, but are not translated into protein. A DNA sequence that codes for a miRNA gene is longer than the miRNA. This DNA sequence includes the miRNA sequence and an approximate reverse complement. When this DNA sequence is transcribed into a single-stranded RNA molecule, the miRNA sequence and its reverse-complement base pair to form a partially double stranded RNA segment. The design of microRNA sequences is discussed in ref. [44].
Typically, the RNA ligands intended to mimic the effects of siRNA or miRNA have between 10 and 40 ribonucleotides (or synthetic analogues thereof), more preferably between 17 and 30 ribonucleotides, more preferably between 19 and 25 ribonucleotides and most preferably between 21 and 23 ribonucleotides. In some embodiments of the invention employing double-stranded siRNA, the molecule may have symmetric 3′ overhangs, e.g. of one or two (ribo)nucleotides, typically a UU of dTdT 3′ overhang. Based on the disclosure provided herein, the skilled person can readily design of suitable siRNA and miRNA sequences, for example using resources such as Ambion's siRNA finder, see http://www.ambion.com/techlib/misc/siRNA_finder.html. siRNA and miRNA sequences can be synthetically produced and added exogenously to cause gene downregulation or produced using expression systems (e.g. vectors). In a preferred embodiment the siRNA is synthesized synthetically.
Longer double stranded RNAs may be processed in the cell to produce siRNAs (see for example ref. [45]). The longer dsRNA molecule may have symmetric 3′ or 5′ overhangs, e.g. of one or two (ribo)nucleotides, or may have blunt ends. The longer dsRNA molecules may be 25 nucleotides or longer. Preferably, the longer dsRNA molecules are between 25 and 30 nucleotides long. More preferably, the longer dsRNA molecules are between 25 and 27 nucleotides long. Most preferably, the longer dsRNA molecules are 27 nucleotides in length. dsRNAs 30 nucleotides or more in length may be expressed using the vector pDECAP [46].
Another alternative is the expression of a short hairpin RNA molecule (shRNA) in the cell. shRNAs are more stable than synthetic siRNAs. A shRNA consists of short inverted repeats separated by a small loop sequence. One inverted repeat is complimentary to the gene target. In the cell the shRNA is processed by DICER into a siRNA which degrades the target gene mRNA and suppresses expression. In a preferred embodiment the shRNA is produced endogenously (within a cell) by transcription from a vector. shRNAs may be produced within a cell by transfecting the cell with a vector encoding the shRNA sequence under control of a RNA polymerase III promoter such as the human H1 or 7SK promoter or a RNA polymerase II promoter. Alternatively, the shRNA may be synthesised exogenously (in vitro) by transcription from a vector. The shRNA may then be introduced directly into the cell. Preferably, the shRNA molecule comprises a partial sequence of the gene to be down-regulated. Preferably, the shRNA sequence is between 40 and 100 bases in length, more preferably between 40 and 70 bases in length. The stem of the hairpin is preferably between 19 and 30 base pairs in length. The stem may contain G-U pairings to stabilise the hairpin structure.
siRNA molecules, longer dsRNA molecules or miRNA molecules may be made recombinantly by transcription of a nucleic acid sequence, preferably contained within a vector. Preferably, the siRNA molecule, longer dsRNA molecule or miRNA molecule comprises a partial sequence of the gene to be down-regulated.
In one embodiment, the siRNA, longer dsRNA or miRNA is produced endogenously (within a cell) by transcription from a vector. The vector may be introduced into the cell in any of the ways known in the art. Optionally, expression of the RNA sequence can be regulated using a tissue specific promoter. In a further embodiment, the siRNA, longer dsRNA or miRNA is produced exogenously (in vitro) by transcription from a vector.
In one embodiment, the vector may comprise a nucleic acid sequence according to the invention in both the sense and antisense orientation, such that when expressed as RNA the sense and antisense sections will associate to form a double stranded RNA. In another embodiment, the sense and antisense sequences are provided on different vectors.
Alternatively, siRNA molecules may be synthesized using standard solid or solution phase synthesis techniques which are known in the art. Linkages between nucleotides may be phosphodiester bonds or alternatives, for example, linking groups of the formula P(O)S, (thioate); P(S)S, (dithioate); P(O)NR′2; P(O)R′; P(O)OR6; CO; or CONR′2 wherein R is H (or a salt) or alkyl (1-12C) and R6 is alkyl (1-9C) is joined to adjacent nucleotides through —O— or —S—.
Modified nucleotide bases can be used in addition to the naturally occurring bases, and may confer advantageous properties on siRNA molecules containing them.
For example, modified bases may increase the stability of the siRNA molecule, thereby reducing the amount required for silencing. The provision of modified bases may also provide siRNA molecules which are more, or less, stable than unmodified siRNA.
The term ‘modified nucleotide base’ encompasses nucleotides with a covalently modified base and/or sugar. For example, modified nucleotides include nucleotides having sugars which are covalently attached to low molecular weight organic groups other than a hydroxyl group at the 3′position and other than a phosphate group at the 5′position. Thus modified nucleotides may also include 2′substituted sugars such as 2′-O-methyl-; 2-O-alkyl; 2-O-allyl; 2′-S-alkyl; 2′-S-allyl; 2′-fluoro-; 2′-halo or 2; azido-ribose, carbocyclic sugar analogues a-anomeric sugars; epimeric sugars such as arabinose, xyloses or lyxoses, pyranose sugars, furanose sugars, and sedoheptulose.
Modified nucleotides are known in the art and include alkylated purines and pyrimidines, acylated purines and pyrimidines, and other heterocycles. These classes of pyrimidines and purines are known in the art and include pseudoisocytosine, N4,N4-ethanocytosine, 8-hydroxy-N-6-methyladenine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5 fluorouracil, 5-bromouracil, 5-carboxymethylaminomethyl-2-thiouracil, 5-carboxymethylaminomethyl uracil, dihydrouracil, inosine, N6-isopentyl-adenine, 1-methyladenine, 1-methylpseudouracil, 1-methylguanine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-methyladenine, 7-methylguanine, 5-methylaminomethyl uracil, 5-methoxy amino methyl-2-thiouracil, -D-mannosylqueosine, 5-methoxycarbonylmethyluracil, 5-methoxyuracil, 2 methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid methyl ester, psueouracil, 2-thiocytosine, 5-methyl-2 thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, N-uracil-5-oxyacetic acid methylester, uracil 5-oxyacetic acid, queosine, 2-thiocytosine, 5-propyluracil, 5-propylcytosine, 5-ethyluracil, 5-ethylcytosine, 5-butyluracil, 5-pentyluracil, 5-pentylcytosine, and 2,6,diaminopurine, methylpsuedouracil, 1-methylguanine, 1-methylcytosine.
Methods relating to the use of RNAi to silence genes in C. elegans, Drosophila, plants, and mammals are known in the art [47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59].
Other approaches to specific down-regulation of genes are well known, including the use of ribozymes designed to cleave specific nucleic acid sequences. Ribozymes are nucleic acid molecules, actually RNA, which specifically cleave single-stranded RNA, such as mRNA, at defined sequences, and their specificity can be engineered. Hammerhead ribozymes may be preferred because they recognise base sequences of about 11-18 bases in length, and so have greater specificity than ribozymes of the Tetrahymena type which recognise sequences of about 4 bases in length, though the latter type of ribozymes are useful in certain circumstances. References on the use of ribozymes include refs. [60] and [61].
The plant or animal in which the gene is upregulated or downregulated may be hybrid, recombinant or inbred. Thus, in some embodiments the invention may involve over-expressing genes correlated with one or more traits, in order to improve vigour or other characteristics of the transformed derivatives of inbred plants and animals.
In a further aspect, the invention is a method comprising:
analysing transcriptomes of parental plants or animals in a population of parental plants or animals;
measuring heterosis or other trait in a population of hybrids, wherein each hybrid in the population is a cross between a first plant or animal and a plant or animal selected from the population of parental plants or animals;
and
identifying a correlation between transcript abundance of one or more genes, preferably a set of genes, in the population of parental plants or animals and heterosis or other trait in the population of hybrids.
Thus, the invention provides a method of identifying an indicator of heterosis or other trait in a hybrid.
The plants or animals in the population whose transcriptomes are analysed are thus parents of the hybrids. These parents may be inbred or recombinant.
All hybrids in the population of hybrids used for developing each predictive model are the result of crossing one common parent with an array of different parents. Normally, all hybrids in the population share one common parent, which may be either the maternal parent or the paternal parent. Thus, the paternal parent of the all the hybrids in the population may be the “first parent plant or animal”, or the maternal parent of all the hybrids in the population may be the “first parent plant or animal”. For plants, a first female parent is normally crossed to a population of different male parents. For animals, a first male parent may preferably be crossed with a population of different females.
Suitable methods of determining or measuring heterosis in hybrids, of transcriptome analysis and of identifying correlations are discussed elsewhere herein.
Correlations between traits and transcript abundance represent models that may be used to predict traits in further plants or animals by determining transcript abundance in those plants or animals. The invention may thus be used to generate a model (e.g. a regression, as described in detail elsewhere herein) for predicting the trait based on transcript abundance of the one or more genes e.g. a set of genes.
Accordingly, in another aspect, the invention is a method of predicting heterosis or other trait in a hybrid, wherein the hybrid is a cross between a first plant or animal and a second plant or animal; comprising
determining the transcript abundance of one or more genes, preferably a set of genes, in the second plant or animal, wherein the transcript abundance of those one or more genes, or of the set of genes, in a population of parental plants or animals correlates with heterosis or other trait in a population of hybrids produced by crossing the first plant or animal with a plant or animal from the population of parental plants and animals; and
thereby predicting heterosis or other trait in the hybrid.
The invention may be used to predict one or more traits in hybrid offspring of parental plants or animals, based on transcript abundance in one of the parents. The parental plants or animals may be inbred or recombinant. Plants or animals may be referred to as “parents” or “parental plants or animals” even where they have not yet been crossed to produce a hybrid, since the invention may be used to predict traits in hybrids before those hybrids are produced. This is a particular advantage of the invention, in that methods of the invention may be used to predict heterosis or other trait in a potential hybrid, without needing to produce that hybrid in order to determine its heterosis or traits.
A plurality of plants or animals may be tested by determining transcript abundance using the method of the invention, each plant or animal representing the second parent for crossing to produce a hybrid, in order to identify a suitable plant or animal to use for breeding to produce a hybrid with a desired trait. A parent may then be selected for breeding based on the predicted trait for a hybrid produced by crossing that parent. Thus, in one example a germplasm collection, which may comprise a population of recombinants, may be screened for plants that may be suitable for inclusion in breeding programmes.
Following prediction of the trait in the hybrid, the inbred or recombinant plant or animal may be selected for breeding to produce a hybrid, e.g. as discussed further below. Alternatively, if the hybrid for which the trait is predicted has already been produced, that hybrid may be selected e.g. for further cultivation.
The method of predicting the trait may comprise, as an earlier step, a method of identifying an indicator of the trait in a hybrid, as described above.
When the method is used for predicting heterosis in hybrids based upon parental transcriptome data, for example data from inbred plants or animals, the one or more genes may comprise At3g112200 and/or one or more of the genes shown in Table 2, or one or more orthologues thereof.
When the method is used for predicting yield, e.g. grain yield, in hybrids based on parental transcriptome data, for example data from inbred plants or animals, e.g. maize, the one or more genes may comprise one or more of the genes shown in Table 22, or one or more orthologues thereof. For example, transcript abundance of one or more genes, e.g. a set of genes, from Table 22 may be determined in a maize plant and used for predicting yield in a hybrid cross between that maize line and B73.
Genes with transcript abundance correlating with other traits are shown in Tables 3 to 17 and Table 20, and transcript abundance of one or more of those genes in parental plants or animals may be used to predict those traits in accordance with hybrid offspring of those plants or animals, in accordance with this aspect of the invention. Alternatively, the invention may be used to identify other genes with transcript abundance in parental plants or animals correlating with those traits in their hybrid offspring.
By predicting heterosis and other traits in hybrids produced by crossing parental germplasm, whether they be inbred or recombinant, the invention allows selection of inbred or recombinant plants and animals that can be crossed to produce hybrids with high or improved levels of heterosis and desirable or improved levels of other traits.
Inbred or recombinant plants and animals may thus be selected on the basis of heterosis or other trait predicted in hybrids produced by crossing those plants and animals.
Accordingly, one aspect of the invention is a method comprising:
determining transcript abundance of one or more genes, preferably a set of genes, in parental plants or animals, wherein the transcript abundance of the one or more genes in a population of parental plants or animals correlates with heterosis or other trait in hybrid crosses between a first parental plant or animal and plants or animals from the population of parental plants or animals;
selecting one of the parental plants or animals; and
producing a hybrid by crossing the selected plant or animal and a different plant or animal, e.g. by crossing the selected plant or animal and the first plant or animal.
Thus, one or more traits may be predicted for hybrid crosses between the parental plants or animals, and then a parental plant or animal predicted to produce a hybrid with a desired trait e.g. late flowering, high heterosis, and/or high yield, and/or with a reduced undesirable trait, may be selected. Methods for predicting traits are discussed in more detail elsewhere herein.
Genes whose transcript abundance correlates with heterosis or other trait in hybrids produced by crossing a first plant or animal and other plants or animals are referred to elsewhere herein, and may be At3g112200 and/or one or more genes selected from the genes in Table 2, or orthologues thereof. Genes with transcript abundance correlating with other traits are shown in Tables 3 to 17 and Table 20, as described elsewhere herein.
Hybrids produced by methods of the invention may be raised or cultivated, e.g. to maturity or breeding age. The invention also extends to hybrids produced using methods of the invention.
The invention may be applied to any trait of interest. For example, traits to which the invention applies include, but are not limited to, heterosis, flowering time or time to flowering, seed oil content, seed fatty acid ratios, and yield. Examples genes whose transcript abundance correlates with certain traits are shown in the appended Tables. For animals, preferred traits are heterosis, yield and productivity. Traits such as yield may be underpinned by heterosis, and the invention may relate to modelling and/or predicting yield and other traits, and/or modelling and/or predicting heterosis for yield and other traits, based on transcript abundances of genes.
Genes in Tables shown herein are identified by AGI numbers, Affymetrix Probe identifier numbers and/or GenBank database accession numbers. AGI numbers can be used to identify the gene from TAIR (The Arabidopsis Information Resource), available on-line at http://www.arabidopsis.org/index.jsp, or findable by searching for “TAIR” and/or “Arabidopsis information resource” using an internet search engine. Affymetrix Probe identifier numbers can be used to identify sequences from Netaffx, available on-line at http://www.affymetrix.com/analysis/index.affx, or findable by searching for “netaffx” and/or “Affymetrix” using an internet search engine. It is now possible to convert between the two identifier formats using the converter, from Toronto university, currently available at http://bbc.botany.utoronto.ca/ntools/cgi-bin/ntools—agi_converter.cgi, or findable by searching for “agi converter” using an internet search engine. GenBank accession numbers can be used to obtain the corresponding sequence from GenBank, available at http://www.ncbi.nlm.nih.gov/Genbank/index.html or findable using any internet search engine.
A set of genes may comprise a set of genes selected from the genes shown in a table herein.
In methods of the invention relating to heterosis, the one or more genes may comprise one or more of the 70 genes listed in Table 1 or one or more orthologues thereof, and/or may comprise one or more of the genes listed in Table 19 or one or more orthologues thereof.
In methods relating to traits other than heterosis, the trait may for example be a trait referred for Tables 3 to 17, Table 20 or Table 22, and the one or more genes may comprise one or more of the genes shown in the relevant tables, or one or more orthologues thereof. Preferably, the genes in Tables 3 to 17, 20 and/or 22 are used for predicting or influencing (increasing or decreasing) traits in inbred plants or animals. However, the genes may also be used for predicting, increasing or decreasing traits in recombinants and/or hybrids.
When the trait is flowering time, or time to flowering, in plants, e.g. as represented by leaf number at bolting, the one or more genes may comprise one or more genes shown in Table 3 or Table 4, or orthologues thereof. Table 3 shows genes for which transcript abundance was shown to correlate with flowering time in vernalised plants, and Table 4 shows genes for which transcript abundance was shown to correlate with flowering time in unvernalised plants. These may be used for predicting flowering time in vernalised or unvernalised plants, respectively. However, as discussed elsewhere herein, transcript abundance of genes which correlates with a trait in vernalised plants may also correlate (normally according to a different model or equation) with the trait in unvernalised plants. Thus, transcript abundance of genes in either Table 3 or Table 4 may be used to predict flowering time in either vernalised or unvernalised plants, using the appropriate correlation for vernalised or unvernalised plants respectively.
Whilst the transcript abundance data of the genes listed in many of the Tables herein were used in our example for predicting traits in vernalised plants, these data could also be used to predict traits in unvernalised plants. Thus, a first correlation may be identified between transcript abundance and the trait in vernalised plants, and a second correlation may be identified between transcript abundance and the trait in unvernalised plants. The appropriate model may then be used to predict the trait in vernalised or unvernalised plants respectively, based on transcript abundance of one or more of those genes, or orthologues thereof.
Oil content is a useful trait to measure in plants. This is one of the measures used to determine seed quality, e.g. in oilseed rape.
When the trait is oil content of seeds, e.g. as represented by % dry weight, the one or more genes may comprise one or more genes shown in Table 6, or orthologues thereof.
Seed quality may also be represented by the proportion, percentage weight or ratio of certain fatty acids.
Normally, seed traits are predicted for vernalised plants, e.g. oilseed rape in the UK is grown as a Winter crop and will therefore be vernalised at the time of trait expression (seed production in this example). However, predictions may be for either vernalised or unvernalised plants.
When the trait is ratio of 18:2/18:1 fatty acids in seed oil, the one or more genes may comprise one or more genes selected from the genes shown in Table 7, or orthologues thereof.
When the trait is ratio of 18:3/18:1 fatty acids in seed oil, the one or more genes may comprise one or more genes selected from the genes shown in Table 8, or orthologues thereof.
When the trait is ratio of 18:3/18:2 fatty acids in seed oil, the one or more genes may comprise one or more genes selected from the genes shown in Table 9, or orthologues thereof.
When the trait is ratio of 20C+22C/16C+18C fatty acids in seed oil, the one or more genes may comprise one or more genes selected from the genes shown in Table 10, or orthologues thereof.
When the trait is ratio of polyunsaturated/monounsaturated+saturated 18C fatty acids in seed oil, the one or more genes may comprise one or more genes selected from the genes shown in Table 12, or orthologues thereof.
When the trait is % 16:0 fatty acid in seed oil, the one or more genes may comprise one or more genes selected from the genes shown in Table 14, or orthologues thereof.
When the trait is % 18:1 fatty acid in seed oil, the one or more genes may comprise one or more genes selected from the genes shown in Table 15, or orthologues thereof.
When the trait is % 18:2 fatty acid in seed oil, the one or more genes may comprise one or more genes selected from the genes shown in Table 16, or orthologues thereof.
When the trait is % 18:3 fatty acid in seed oil, the one or more genes may comprise one or more genes selected from the genes shown in Table 17, or orthologues thereof.
It may be desirable to predict responsiveness of a plant trait to vernalisation, and this may be measured for example as the ratio of a trait measurement in vernalised plants to the trait measurement in unvernalised plants.
For example, responsiveness of flowering time to vernalisation may be measured as the ratio of leaf number at bolting in vernalised plants to leaf number at bolting in unvernalised plants. Genes whose transcript abundance correlates with this ratio are shown in Table 5. Thus, in embodiments of the invention where the trait is responsiveness of plant flowering time to vernalisation, the one or more genes may comprise one or more genes shown in Table 5, or orthologues thereof.
Responsiveness to vernalisation of the ratio of 20C+22C/16C+18C fatty acids in seed oil may be measured as the ratio of (ratio of 20C+22C/16C+18C fatty acids in seed oil in vernalised plants) to (ratio of 20C+22C/16C+18C fatty acids in seed oil in unvernalised plants). Genes whose transcript abundance correlates with this ratio are shown in Table 11. Thus, in embodiments of the invention where the trait is responsiveness of this ratio to vernalisation, the one or more genes may comprise one or more genes shown in Table 11, or orthologues thereof.
Responsiveness to vernalisation of the ratio of polyunsaturated/monounsaturated+saturated 18C fatty acids in seed oil may be measured as the ratio of (ratio of polyunsaturated/monounsaturated+saturated 18C fatty acids in seed oil in vernalised plants) to (ratio of polyunsaturated/monounsaturated+saturated 18C fatty acids in seed oil in unvernalised plants). Genes whose transcript abundance correlates with this ratio are shown in Table 13. Thus, in embodiments of the invention where the trait is responsiveness of this ratio to vernalisation, the one or more genes may comprise one or more genes shown in Table 13, or orthologues thereof.
When the trait is yield, the one or more genes may comprise one or more of the genes shown in Table 20 or Table 22, or orthologues thereof.
Genes in Tables 1 to 17 are from Arabidopsis thaliana, and may be used in embodiments of the invention relating to A. thaliana or to another organism, such as for predicting or increasing heterosis in a plant or animal (genes of Tables 1 and 2, or orthologues thereof), or for predicting, increasing or decreasing another trait in A. thaliana or other plant. Genes in Tables 19, and 22 are from maize, and may be used in embodiments of the invention relating to maize or to another organism, such as for predicting or increasing heterosis in a plant or animal (genes of Table 19 or orthologues thereof) or for predicting, increasing or decreasing another trait in maize or other plant.
We have demonstrated that transcript abundance in plants of genes shown in Tables 1, 3 to 17, 20 and 22 is predictive of the described traits in those plants. In some embodiments of the invention relating to use of parental transcriptome data for prediction of traits in hybrids, transcript abundance in plants of genes shown in Tables 1, 3 to 17, 20 and 22 or orthologues thereof may be used to predict the described traits in hybrid offspring of those plants.
Preferably, in embodiments of the invention relating to use of parental transcriptome data for prediction of heterosis in hybrids, transcript abundance in plants of At3g112200 and/or of genes shown in Table 2, or orthologues thereof, is used to predict the magnitude of heterosis in hybrid offspring of those plants.
In embodiments of the invention relating to use of parental transcriptome data for prediction of yield, e.g. grain yield, in hybrids, transcript abundance in plants of one or more genes shown in Table 22 is used to predict the yield in hybrid offspring of those plants.
Heterosis or other trait is normally determined quantitatively. As noted above, heterosis may be described relative to the mean value of the parents (Mid-Parent Heterosis, MPH) or relative to the “better” of the parents (Best-Parent Heterosis, BPH).
Heterosis may be determined on any suitable measurement, e.g. size, fresh or dry weight at a given age, or growth rate over a given time period, or in terms of some measure of yield or quality. Heterosis may be determined using historical data from the parental and/or hybrid lines.
Heterosis may be calculated based on size, for which size measurements may for example be taken of the maximum length and width of the plant or animal, or of a part of the plant or animal, e.g. using electronic callipers. For plants, heterosis may be calculated based on total aerial fresh weight of the plants, which may be determined by cutting off all above soil plant material, quickly removing any soil attached, and weighing.
In preferred embodiments, heterosis is heterosis for yield (e.g. in plants or animals, yield of harvestable product), or heterosis for fresh weight (e.g. fresh weight of aerial parts of a plant).
The magnitude of heterosis may thus be determined, and is normally expressed as a % value. For example, mid parent heterosis for fresh weight can be presented as a percentage figure calculated as (weight of the hybrid−mean weight of the parents)/mean weight of the parents. Best parent heterosis for fresh weight can be presented as a percentage figure calculated as (weight of the hybrid−weight of the heaviest parent)/weight of the heaviest parent.
For other traits, an appropriate measurement can be determined by the skilled person. Some traits can be directly recorded as a magnitude, e.g. seed oil content, weight of plant or animal, or yield. Other traits would be determined with reference to another indicator, e.g. flowering time may be represented by leaf number at bolting. The skilled person is able to select an appropriate way to quantify a particular trait, e.g. as a magnitude, ratio, degree, volume, time or rate, and to measure suitable factors representative of the relevant trait.
A transcript is messenger RNA transcribed from a gene. The transcriptome is the contribution of each gene in the genome to the mRNA pool. The transcriptome may be analysed and/or defined with reference to a particular tissue, as discussed elsewhere herein. Analysis of the transcriptome may thus be determination of transcript abundance of one or more genes, or a set of genes.
Transcriptome analysis or determination of transcript abundance is normally performed on tissue samples from the plants or animals. Any part of the plant or animal containing RNA transcripts may be used for transcriptome analysis. Where an organism is a plant, the tissue is preferably from one or more, preferably all, aerial parts of the plant, preferably when the plant is in the vegetative phase before flowering occurs. In some embodiments, transcriptome analysis may be performed on seeds. Methods of the invention may involve taking tissue samples from the plants or animals. In methods of predicting the heterosis or other trait, the sampled organism may remain viable after the tissue sample has been taken. Where prediction is to be performed for genetically identical plants or animals, which may be grown on a different occasion, tissues may include all parts or all aerial plants or a whole seed (for plants) or the whole embryo (for animals). Where prediction is to be performed for the exact plant sampled, a subset of the leaves of the plant may be sampled. However, there is no requirement for the organism to remain viable, since sampling of one or more individuals for transcriptome analysis that results in loss of viability may be used for the prediction of heterosis or other traits in hybrid, inbred or recombinant organisms of similar or identical genetic composition grown on either the same or a different occasion and under the same or different environmental conditions.
Typically, transcriptome analysis is performed on RNA extracted from the plant or animal. The invention may comprise extracting RNA from a tissue sample of the hybrid or inbred plant or animal. Any suitable methods of RNA extraction may be used, e.g. see the protocol set out in the Examples.
Transcriptome analysis comprises determining the abundance of an array of RNA transcripts in the transcriptome. Where oligonucleotide chips are used for transcriptome analysis, the numbers of genes potentially used for model development are the numbers of probes on the GeneChips—ca. 23,000 for Arabidopsis and ca. 18,000 for the present maize Chip. Thus, while in some embodiments, the transcript abundance of each gene in the genome is assessed, normally transcript abundance of a selected array of genes in the genome is assessed.
Various techniques are available for transcriptome analysis, and any suitable technique may be used in the invention. For example, transcriptome analysis may be performed by bringing an RNA sample into contact with an oligonucleotide array or oligonucleotide chip, and detecting hybridisation of RNA transcripts to oligonucleotides on the array or chip. The degree of hybridisation to each oligonucleotide on the chip may be detected. Suitable chips are available for various species, or may be produced. For example, Affymetrix GeneChip array hybridisation may be used, for example using protocols described in the Affymetrix Expression Analysis Technical Manual II (currently available at http://www.affymetrix.com/support/technical/manuals.affx. or findable using any internet search engine). For detailed examples of transcriptome analysis, please see the Examples below.
Transcript abundance of one or more genes, e.g. a set of genes, may be determined, and any of the techniques above may be employed. Alternatively, reverse transcriptase may be used to synthesise double stranded DNA from the RNA transcript, and quantitative polymerase chain reaction (PCR) may be used for determining abundance of the transcript.
Transcript abundance of a set of genes may be determined. A set of genes is a plurality of genes, e.g. at least 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 genes. The set may comprise genes correlating positively with a trait and/or genes correlating negatively with the trait. As noted below, preferably, the set of genes is one for which transcript abundance of that set of genes allows prediction of heterosis or other trait. The skilled person may use methods of the invention to determine which genes are most useful for predicting heterosis or other traits in hybrids, and therefore to determine which genes can most usefully be assessed for transcript abundance in accordance with the invention. Additionally, examples of sets of genes for prediction of heterosis and other traits are shown herein.
Preferably, analysis of transcript abundance is performed in the same way for the plants or animals used to generate a model or correlation with a trait “model organism” as for the plants or animals in which the trait is predicted based on that model “test organism”. Preferably, the model and test organisms are raised under identical conditions and transcriptome analysis is performed on both the model and test organisms at the same age, time of day and in the same environment, in order to maximise the predictive value of the model based on transcriptome data from the model organisms.
Accordingly, predicting a trait in a test plant or animal may comprise determining transcript abundance of one or more genes in the test plant or animal at a particular age, wherein transcript abundance of the one or more genes in the transcriptome of model plants or animals at that age conditions correlates with the trait. Thus, preferably transcript abundance in the organism (i.e. plant or non-human animal) is determined when the organism is at the same age as the organisms in the population on which the correlation between transcript abundance and heterosis or other trait was determined. Thus, predicting the degree of a trait in an organism may comprise determining the abundance of transcripts of one or more genes, preferably a set of genes, in the organism at a selected age, and determining the transcript abundance of one or more genes, preferably a set of genes, wherein the transcript abundance of those one or more genes or set of genes in the transcriptome of organisms at the said age correlates with heterosis or other trait in the organism.
As noted elsewhere herein, the age at which transcript abundance is determined may be earlier than the age at which the trait is expressed, e.g. where the trait is flowering time the transcriptome analysis may be performed when plants are in vegetative phase.
Preferably, transcriptome analysis and determination of transcript abundance is determined on plant or animal material sampled at a particular time of day. For example, plant tissue samples may be taken at the middle of the photoperiod (or as close as practicable). Thus, when predicting a trait by determining the transcript abundance of one or more genes (e.g. set of genes) whose transcript abundance correlates with that trait, the transcript abundance data for making the prediction are preferably determined at the same time of day as the transcript abundance data used to generate the correlation.
Some aspects of the invention relate to plants, such as cereals, that require vernalisation before flowering. Vernalisation is a period of exposure to cold, which promotes subsequent flowering. Plants requiring vernalisation do not flower the same year when sown in Spring, but continue to grow vegetatively. Such plants (“winter varieties”) require vernalisation over Winter, and so are planted in the Autumn to flower the following year. In the present invention, plants may be vernalised or unvernalised.
Transcriptome data may be obtained from plants when vernalised or unvernalised, and those data may be used to identify a correlation between transcript abundance and a trait measured in vernalised plants and/or a correlation between transcript abundance and the trait measured in unvernalised plants. Thus, surprisingly, we have shown that transcriptome data from vernalised plants can be used to develop a model for predicting traits in unvernalised plants, as well as being useful to develop a model for predicting traits in vernalised plants.
In methods of the invention, comparisons and predictions are preferably between plants or animals of the same genus and/or species. Thus, methods of predicting heterosis or other trait in a plant or animal may be based on correlations obtained in a population of hybrids, inbreds or recombinants of that species of plant or animal. However, as discussed elsewhere herein, correlations obtained in one species may be applied to other species, e.g. to other plants or other animals in general, or to both plants and animals, especially where the other species exhibit similar traits. Thus, the test organism in which the trait is predicted need not be of the same species as the model organisms in which the correlation for prediction of the trait was developed.
Determination of transcript abundance for prediction of a trait is normally performed on the same type of tissue as that in which the correlation between the trait and transcript abundance was determined. Thus, predicting the degree of heterosis in a hybrid may comprise determining transcript abundance in tissue in or from the hybrid, and determining the transcript abundance of one or more genes, preferably a set of genes, wherein the transcript abundance of those one or more genes in the transcriptome of the said tissue in hybrids correlates with heterosis or other trait in hybrids.
Data may be compiled, the data comprising:
(i) a value representing the magnitude of heterosis or other trait in each plant or animal;
(ii) transcriptome analysis data in each plant or animal, wherein the transcriptome analysis data represents the abundance of each of an array of gene transcripts.
For determination of a correlation, data should be obtained from a plurality of plants or animals. In methods of the invention it is thus preferable that transcriptome analyses are performed and traits are determined for at least three plants or animals, more preferably at least five, e.g. at least ten. Use of more plants or animals, e.g. in a population, can lead to more reliable correlations and thus increase the quantitative accuracy of predictions according to the invention.
Any suitable statistical analysis may be employed to identify a correlation between transcript abundance of one or more genes in the transcriptomes of the plants or animals and the magnitude of heterosis or other trait. The correlation may be positive or negative. For example, it may be found that some transcripts have an abundance correlating positively with heterosis or other trait, while other transcripts have an abundance correlating negatively with heterosis or other trait.
Data from each plant or animal may be recorded in relation to heterosis and/or multiple other traits. Accordingly, the invention may be used to identify which genes have a transcript abundance correlating with which traits in the organism. Thus, a detailed profile may be compiled for the relationship between transcript abundance and heterosis and other traits in the population of organisms.
Typically, an analysis is performed using linear regression to identify the relationship between transcript abundance and the magnitude of heterosis (MPH and/or BPH) or other trait. An F-value may then be calculated. The F value is a standard statistic for regression. It tests the overall significance of the regression model. Specifically, it tests the null hypothesis that all of the regression coefficients are equal to zero. The F value is the ratio of the mean regression sum of squares divided by the mean error sum of squares with values that range from zero upward. From this we get the F Prob (the probability that the null hypothesis that there is no relationship is true). A low value implies that at least some of the regression parameters are not zero and that the regression equation does have some validity in fitting the data, indicating that the variables (gene expression level) are not purely random with respect to the dependent variable (trait value at that point).
Preferably a correlation identified using the invention is a statistically significant correlation. Significance levels may be determined as F statistics from the regression Mean Square in the analysis of variance tables of the linear regression analysis. Statistical significance may be indicated for example by F<0.05, or <0.001.
Other potential relationships exist between gene expression and plant phenotype, besides simple linear relationships. For example, relationships may fall on a logistic curve. A computer model (e.g. GenStat) may be used to fit the data to a logistic curve.
Non-linear modelling covers those expression patterns that form any part of a sigmoidal curve, from exponential-type patterns, to threshold and plateau type patterns. Non-linear methods may also cover many linear patterns, and thus may preferentially be used in some embodiments of the invention.
Normally a computer program is used to identify the correlation or correlations. For example, as described in more detail in the Examples below, linear regression analysis may be performed using GenStat, e.g. Program 3 below is an example of a linear regression programme to identify linear regressions between the hybrid transcriptome and MPH.
More generally, each of the methods of the above aspects may be implemented in whole or in part by a computer program which, when executed by a computer, performs some or all of the method steps involved. The computer program may be capable of performing more than one of the methods of the above aspects.
Another aspect of the invention provides a computer program product containing one or more such computer programs, exemplified by a data carrier such as a compact disk, DVD, memory storage device or other non-volatile storage medium onto which the computer program(s) is/are recorded.
A further aspect of the invention is a computer system having a processor and a display, wherein the processor is operably configured to perform the whole or part of the method of one or more of the above aspects, for example by means of a suitable computer program, and to display one or more results of those methods on the display. Typically the computer will be a general purpose computer and the display will be a monitor. Other output devices may be used instead of or in addition to the display including, but not limited to, printers.
Preferably, a set of genes, e.g. less than 1000, 500, 250 or 100 genes, is identified for which transcript abundance correlates with heterosis or other trait, wherein transcript abundance of that set of genes allows prediction of heterosis or other trait. A smaller set of genes that remains predictive of the trait may then be identified by iterative testing of the precision of predictions by progressively reducing the numbers of genes in the models, preferentially retaining those with the best correlation of transcript abundance with heterosis or the other trait, e.g. genes with the most significant (e.g. p<0.001) correlations between transcript abundance and traits. Thus, methods of the invention may comprise identifying a correlation between a trait and transcript abundance of a set of genes in transcriptomes, and then identifying a smaller set or sub-set of genes from within that set, wherein transcript abundance of the smaller set of genes is predictive of the trait. Preferably the smaller set of genes retains most of the predictive power of the set of genes.
The magnitude of heterosis or other trait may be predicted from transcript abundance of one or more genes, preferably of a set of genes as noted above, based on a correlation of the transcript abundance with heterosis or other trait (e.g. a linear regression as described above).
Thus, the equation of the linear regression line (linear or non-linear) for each of the gene transcripts showing a correlation with magnitude of heterosis or other trait may be used to calculate the expected magnitude of heterosis or other trait from the transcript abundance of that gene. The aggregate of the predicted contributions for each gene is then used to calculate the trait value (e.g. as the sum of the contribution from each gene transcript, normalised by the coefficient of determination, r2.
Table 1: Genes in Arabidopsis thaliana hybrids, transcripts of which correlate with magnitude of heterosis in the hybrids
Table 2: Genes in Arabidopsis thaliana inbred lines, transcripts of which correlate with magnitude of heterosis in hybrids produced by crossing those lines with Ler ms1. (A: positive correlation; B: negative correlation)
Table 3: Genes in Arabidopsis thaliana inbred lines, showing correlation in transcript abundance with leaf number at bolting in vernalised plants (A: positive correlation; B: negative correlation)
Table 4: Genes in Arabidopsis thaliana inbred lines showing correlation in transcript abundance with leaf number at bolting in unvernalised plants (A: positive correlation; B: negative correlation)
Table 5: Genes in Arabidopsis thaliana inbred lines showing correlation in transcript abundance with ratio of leaf number at bolting (vernalised plants)/leaf number at bolting (unvernalised plants). (A: positive correlation; B: negative correlation)
Table 6: Genes in Arabidopsis thaliana inbred lines showing correlation between transcript abundance and oil content of seeds, % dry weight in vernalised plants (A: positive correlation; B: negative correlation)
Table 7: Genes in Arabidopsis thaliana inbred lines showing correlation between transcript abundance and ratio of 18:2/18:1 fatty acids in seed oil in vernalised plants (A: positive correlation; B: negative correlation)
Table 8: Genes in Arabidopsis thaliana inbred lines showing correlation between transcript abundance and ratio of 18:3/18:1 fatty acids in seed oil in vernalised plants (A: positive correlation; B: negative correlation)
Table 9: Genes in Arabidopsis thaliana inbred lines showing correlation between transcript abundance and ratio of 18:3/18:2 fatty acids in seed oil in vernalised plants (A: positive correlation; B: negative correlation)
Table 10: Genes in Arabidopsis thaliana inbred lines showing correlation between transcript abundance and ratio of 20C+22C/16C+18C fatty acids in seed oil in vernalised plants (A: positive correlation; B: negative correlation)
Table 11: Genes in Arabidopsis thaliana inbred lines showing correlation between transcript abundance and ratio of (ratio of 20C+22C/16C+18C fatty acids in seed oil (vernalised plants))/(ratio of 20C+22C/16C+18C fatty acids in seed oil (unvernalised plants)) (A: positive correlation; B: negative correlation)
Table 12: Genes in Arabidopsis thaliana inbred lines showing correlation between transcript abundance and ratio of polyunsaturated/monounsaturated+saturated 18C fatty acids in seed oil in vernalised plants (A: positive correlation; B: negative correlation)
Table 13: Genes in Arabidopsis thaliana inbred lines showing correlation between transcript abundance and ratio of (ratio of polyunsaturated/monounsaturated+saturated 18C fatty acids in seed oil (vernalised plants))/(ratio of polyunsaturated/monounsaturated+saturated 18C fatty acids in seed oil (unvernalised plants)) (A: positive correlation; B: negative correlation)
Table 14: Genes in Arabidopsis thaliana inbred lines showing correlation between transcript abundance and % 16:0 fatty acid in seed oil in vernalised plants (A: positive correlation; B: negative correlation)
Table 15: Genes in Arabidopsis thaliana inbred lines showing correlation between transcript abundance and % 18:1 fatty acid in seed oil (vernalised plants)
(A: positive correlation; B: negative correlation)
Table 16: Genes in Arabidopsis thaliana Inbred Lines Showing correlation between transcript abundance and % 18:2 fatty acid in seed oil (vernalised plants) (A: positive correlation; B: negative correlation)
Table 17: Genes in Arabidopsis thaliana inbred lines showing correlation between transcript abundance and % 18:3 fatty acid in seed oil (vernalised plants) (A: positive correlation; B: negative correlation)
Table 18: Prediction of complex traits in inbred lines (accessions) using models based on accession transcriptome data
Table 19: Genes in maize for prediction of heterosis for plant height. Data were obtained in plants at CLY location only (model from 13 hybrids). Representative public ID shows GenBank accession numbers. (A: positive correlation; B: negative correlation)
Table 20: Genes in maize for prediction of average yield. Data were obtained in plants across 2 sites, MO and L (model from 12 hybrids to predict 3). Representative public ID shows GenBank accession numbers. (A: positive correlation; B: negative correlation)
Table 21: Pedigree and seedling growth characteristics of maize inbred lines used in Example 6a
Table 22: Maize genes for which transcript abundance in inbred lines of the training dataset is correlated (P<0.00001) with plot yield of hybrids with line B73. A negative value for the slope indicates a negative correlation between abundance of the transcript and yield, and a positive value indicates a positive correlation.
Table 23: Maize plot yield data for Example 6a.
Our initial studies employed Arabidopsis thaliana. We conducted all of our heterosis analyses in F1 hybrids between accessions of A. thaliana, which can be considered inbred lines due to their lack of heterozygosity. The genome sequence of A. thaliana is available [62] and resources for transcriptome analysis in this species are well developed [63]. A. thaliana also shows a wide range of magnitude of hybrid vigour [7, 64, 65].
The null hypothesis is that all parental alleles contribute to the transcriptome in an additive manner, i.e. if alleles differ in their contribution to transcript abundance, the observed value in the hybrid will be the mean of the parent values. There are six patterns of transcript abundance in hybrids that depart from this expected additive effect of contrasting parental alleles [28]:
(i) transcript abundance in the hybrid is higher than either parent;
(ii) transcript abundance in the hybrid is lower than either parent;
(iii) transcript abundance in the hybrid is similar to the maternal parent and both are higher than the paternal parent;
(iv) transcript abundance in the hybrid is similar to the paternal parent and both are higher than the maternal parent;
(v) transcript abundance in the hybrid is similar to the maternal parent and both are lower than the paternal parent;
(vi) transcript abundance in the hybrid is similar to the paternal parent and both are lower than the maternal parent.
When using quantitative analytical methods, the terms “higher than”, “lower than” and “similar to” can be defined by specific fold-difference criteria. Although differences in the contributions to the transcriptome of divergent alleles in maize hybrids has been reported as common [29, 66] the lack of absolute quantitative analysis of transcript abundance in parental inbred lines means that it is not possible to determine whether the observed effects are due to allelic interaction in the hybrid or simply the expected additive effects of alleles with differing transcript abundance characteristics. We would not consider such additive effects as components of transcriptome remodelling.
We produced reciprocal hybrids between A. thaliana accessions Kondara and Br-0, and between Landsberg er ms1 and Kondara, Mz-0, Ag-0, Ct-1 and Gy-0, with Landsberg er ms1 as the maternal parent. Hybrids and parents were grown under identical environmental conditions and heterosis calculated for the fresh weight of the aerial parts of the plants after 3 weeks growth (see Materials and Methods). The heterosis observed for each combination was recorded (BPH (%) and MPH (%))
RNA was extracted from the same material and the transcriptome was analysed using ATH1 GeneChips. Plants were grown in three replicates on three successive occasions. RNA was pooled from the three replicates for analysis of gene expression levels on each occasion.
Transcript abundance values in A. thaliana hybrids were compared over all experimental occasions and genes showing differences, at defined fold-levels from 1.5 to 3.0, corresponding to the six patterns indicative of transcriptome remodelling, were identified. Genes with transcript abundance differing between the parents by the same defined fold-level were also identified. The number of genes that appeared consistently in each of these 8 categories across all 3 experimental occasions was counted. To assess whether the number of genes classified into each category differed from that expected by chance, permutation analysis (bootstrapping) was used to calculate an expected value under the null hypothesis of no remodelling.
The significance of the experimental results was assessed, for each category independently, using Chi square tests. The results of the analysis, summarised in Table 1 for 2-fold differences, show that transcriptome remodelling occurred in all of the hybrids analysed, with most individual observations showing highly significant (p<0.001) divergence from the null hypothesis. Similar analyses were conducted for 1.5- and 3-fold differences, with extensive remodelling also being identified. Based on the analysis of gene ontology information, there were no obvious functional relationships of the remodelled genes in the hybrids.
Further analysis of selected genes from these categories were conducted using additional GeneChip hybridisation experiments and by quantitative RT-PCR, and confirmed the transcript abundance patterns. GeneChip hybridization was also performed using genomic DNA from accessions Kondara, Br-0 and Landsberg er ms1, to assess the proportion of differences between parental transcriptomes attributable to sequence polymorphisms that would prevent accurate reporting of transcript abundance by the arrays. We found that ca. 20% of the differences between parental transcriptomes may be attributable to sequence variation. However, this does not affect the remodelling analysis, as additivity of allelic contributions to the mRNA pool in hybrids where one parental allele failed to report accurately on the array would result in intermediate signal strength, so would not be assigned to any of the remodelled classes.
The relationship of transcriptome remodelling with hybrid vigour was assessed by carrying out linear regression of the number of genes remodelled in each hybrid combination, at the 1.5, 2 and 3-fold levels, on the magnitude of heterosis observed. This revealed a strong relationship between heterosis and the transcriptome remodelling at the 1.5-fold level (r+0.738, coefficient of determination r2=0.544 for MPH; r=+0.736, r2=0.542 for BPH). The correlation was more modest between heterosis and the transcriptome remodelling involving higher fold level changes (r2=0.213 and 0.270 for MPH and BPH, respectively, for 2-fold changes; r2=0.300 and 0.359 for MPH and BPH, respectively, for 3-fold changes). There was extensive remodelling, at all fold changes, even in the hybrid combinations showing the least heterosis. Consequently, the majority of remodelling events identified that result in transcript abundance changes of 2-fold or greater, even in strongly heterotic hybrids, are likely to be unrelated to heterosis. The most highly enriched class in heterotic hybrids is those genes showing 1.5-fold differential abundance, which is below the threshold usually set in transcriptome analysis experiments.
Heterosis shows an inconsistent relationship with the degree of relatedness of parental lines, with an absence of correlation reported between heterosis and genetic distance in A. thaliana [7]. We estimated the genetic distance between the accessions used in the hybrid combinations we have analysed, and these are shown in Table 1. To assess the relationship of transcriptome remodelling with genetic distance, we regressed the number of genes classified as having remodelled transcript abundance in each hybrid combination against genetic distance. We found that transcriptome remodelling is associated with genetic distance in the higher-fold remodelling classes (r2=0.351 and 0.281 for 2 and 3-fold changes respectively), but not for 1.5-fold remodelling (r2=0.030). We found no relationship between heterosis and genetic distance, in accordance with previous reports in A. thaliana (r2=0.024 and 0.005 for MPH and BPH, respectively, against relative genetic distance). We conclude that the formation of hybrids between divergent inbred lines results in transcriptome remodelling, with the extent of remodelling increasing with the degree of genetic divergence of those lines. This result is consistent with the expected effects of allelic variation on transcriptional regulatory networks. The relationship between transcriptome remodelling and heterosis can be interpreted as meaning that heterosis is likely to require transcriptome remodelling to occur, but that much of this involves low magnitude remodelling of the transcript abundance of a large number of genes.
The results of the above experiments indicate that the conventional approach to the analysis of the transcriptome in the hybrid, i.e. studying one or very few hybrid combinations, is unlikely to result in the identification of genes involved specifically in heterosis.
We carried out an analysis using linear regression to identify the relationship between transcript abundance in a range of hybrids and the strength of heterosis (both MPH and BPH) shown by those hybrids. Significance levels were determined as F statistics from the regression Mean Square in the analysis of variance tables of the linear regression analysis. For this, we used the heterosis measurements and hybrid transcriptome data from the combinations described above with Landsberg er ms1 as the maternal parent, and from additional hybrids between Landsberg er ms1, as the maternal parent, and Columbia, Wt-1, Cvi-0, Sorbo, Br-0, Ts-5, Nok3 and Ga-0. Transcriptome data from 32 GeneChips, representing between 1 and 3 replicates from each of these 13 hybrid combinations of accessions, were used in this study. Nine genes were identified that showed highly significant (F<0.001) regressions (all positive) of transcript abundance in the hybrid on the magnitude of both MPH and BPH. Thirty-four genes showed highly significant regressions (F<0.001; 22 positive, 12 negative) of transcript abundance in the hybrid on MPH and significant regressions (F<0.05) on BPH. Twenty-seven genes showed highly significant regressions (F<0.001; 23 positive, 4 negative) of transcript abundance in the hybrid on magnitude of BPH and significant (F<0.05) regression on MPH. The genes are shown in Table 1 below. Based on gene ontology information, there are no obvious functional relationships between these 70 genes and no excess representation of genes involved in transcription.
The ability to identify a set of genes that show highly significant correlation of transcript abundance and magnitude of heterosis across 13 hybrids indicates that transcriptome-level events are predominant in the manifestation of heterosis. To confirm that this is correct, and that the genes we have identified are indicative of the transcript abundance characteristics that are important in heterosis, we utilized these discoveries to predict the strength of heterosis in new hybrid combinations based on the transcript abundance of the 70 defined genes. We built a mathematical model using the equations of the linear regression lines recalculated for each of the 70 genes against both MPH and BPH, to calculate the expected heterosis as the sum of the contribution from each gene, normalised by the coefficient of determination, r2. The model operates as a Microsoft Excel spreadsheet, which is available as supplementary materials on Science Online. The spreadsheet also contained the normalised transcriptome data for the 70 genes from each of the hybrids studied. The model was validated by “predicting” the heterosis in the training set of 32 hybrids from which transcriptome data were used for its construction. It predicted heterosis across the full range of magnitude observed, for both MPH and BPH, with a very high correlation between predicted and observed values for individual samples (r2=0.768 for MPH, r2=0.738 for BPH). Three new hybrid combinations were produced, between the maternal parent Landsberg er ms1 and accessions Shakdara, Kas-1 and Ll-0. These were grown, in a “blind” experiment, under the same environmental conditions as the training set for the model, heterosis for fresh weight was measured and the transcriptomes analysed. The transcript abundance data for the 70 genes of the model were extracted for each of the new hybrids and entered into the heterosis prediction model. The results, as summarised below, confirmed that the model produced excellent quantitative predictions of heterosis, particularly MPH, confirming that transcriptome-level events were, indeed, predominant in the manifestation of heterosis.
Mid parent heterosis for fresh weight is presented as a percentage figure calculated as (weight of the hybrid−mean weight of the parents)/mean weight of the parents.
Best parent heterosis for fresh weight is presented as a percentage figure calculated as (weight of the hybrid−weight of the heaviest parent)/weight of the heaviest parent.
In a further experiment to identify specific genes that show transcript abundance (gene expression) patterns in hybrids correlated with heterosis, we conducted an additional analysis based upon linear regression. For this we used a “training” dataset consisting of hybrid combinations between Landsberg er ms1 and Ct-1, Cvi-0, Ga-0, Gy-0, Kondara, Mz-0, Nok-3, Ts-5, Wt-5, Br-0, Col-0 and Sorbo. For each individual gene represented on the array, the transcript abundance in hybrids was regressed on the magnitude of heterosis exhibited by those hybrids. Twenty one genes showed highly significant (p<0.001) correlation, but this is no more than is expected by chance, as data for almost 23,000 genes were analysed. However, the exceptionally high significance for the two genes showing the greatest correlation (r2=0.457, P=6.0×10−6 for gene At1g67500; r2=0.453, P=6.9×10−6 for gene At5g45500) is highly unlikely to have occurred by chance. In both cases the correlation was negative, i.e. expression is lower in more strongly heterotic hybrids.
We tested whether the expression characteristics of these genes could be used for the prediction of heterosis. This was conducted by removing one hybrid from the dataset, formulating the regression line and using this relationship to predict the expected heterosis corresponding to the gene expression measured for the hybrid that had been removed. The analysis was repeated by the removal and prediction of heterosis in each of the 12 hybrids in turn. Three untested hybrids were developed (Landsberg er ms1 crossed with Ll-0, Kas-1 and Shakdara) as a “test” dataset, grown and assessed for heterosis as for the lines of the training dataset, and their transcriptomes analysed using ATH1 GeneChips. Using formulae derived by regression using all 12 hybrids in the training dataset, the expression data for genes At1g67500 and At5g45500 in the hybrids of the test dataset were used to predict the heterosis in these test hybrids. Both showed very high correlation between predicted and measured heterosis. Overall, predicted heterosis based on the expression of At1g67500 are better correlated with measured heterosis (r2=0.708) than those based on the expression of At5g45500 (r2=0.594). However, removal of one anomalous prediction in the training dataset (that of the heterosis shown by the hybrid Landsberg er ms1×Nok-3) improves the latter to r2=0.773. Nevertheless, the predictions of heterosis in all three hybrids of the test dataset based on the expression of At5g45500, in particular, are remarkably accurate.
Hybrids that show greater heterosis tend to be heavier than hybrids that show little heterosis. As expected, we identified such a correlation between the magnitude of heterosis we measured and weight for the 15 hybrids of our training and test datasets (r2=0.492). In order to assess whether the expression of genes At1g67500 and At5g45500 are specifically predicting heterosis, we assessed the possibility of correlation between gene expression and the weight of the plants in which expression is being measured. For this, we used the plant weight and gene expression data from the 12 parental lines in the training dataset. We found the expression of At1g67500 to show weak negative correlation with the weight of the plants (r2=0.321), but there was no correlation for At5g45500 (r2<0.001). We conclude that the transcript abundance of At5g45500 is indicative specifically of heterosis, but that of At1g67500 is likely to be influenced also by the weight of hybrid plants. This conclusion is consistent with the errors in prediction of heterosis in the test dataset using the expression of At1g67500: the prediction of heterosis in the hybrid Landsberg er ms1×Kas-1 (which is unusually heavy for the heterosis it shows) is over-estimated, whereas the prediction of heterosis in the hybrid Landsberg er ms1×Ll-0 (which is unusually light for the heterosis it shows) is underestimated.
Gene At5g45500 is annotated as encoding “unknown protein”, so its functions in the process of heterosis cannot be deduced based upon homology. The function of gene At1g67500 is known: it encodes the catalytic subunit of DNA polymerase zeta and the locus has been named AtREV3 due to the homology of the corresponding protein with that of yeast REV3 [67]. REV3 is important in resistance to UV-B and other stresses that result in DNA damage as its function is in translesion synthesis, which is required to repair forms of damage to DNA that blocks replication. Studies have shown no differential expression for At1g67500 in response to UV-B or other stresses [68]. However, the expression of At5g45500 is increased in aerial parts that were subjected to UV-B, genotoxic and osmotic stresses [68]. Thus both of the genes with expression correlated with heterosis in hybrid plants have potential roles in stress resistance. As the expressions of both are negatively correlated with heterosis, one hypothesis is that greater expression of these genes might be related to increased resilience to specific stresses, but this has a repressive effect on growth under favourable conditions. This resembles the situation where biomass and seed yield penalties were found to be associated with R-gene-mediated pathogen resistance to Pseudomonas syringae [69]. Heterosis, at least for vegetative biomass, may therefore be the consequence of genetic interactions that lead to a reduction in repression of growth, rather than direct promotion of growth.
We carried out separate analyses using linear regression to identify the relationship between transcript abundance in the parental lines and the strength of MPH shown by their respective hybrids with Landsberg er ms1. Significance levels were determined as F statistics from the regression Mean Square in the analysis of variance tables of the linear regression analysis.
In total, 272 genes were identified that showed highly significant (F<0.00) regressions of transcript abundance in the parent on the magnitude of MPH. See Table 2 below. Based on gene ontology information, there are no obvious functional relationships between these genes and no excess representation of genes involved in transcription.
The invention permits use of transcriptome characteristics of inbred lines as “markers” to predict the magnitude of heterosis in new hybrid combinations.
We built mathematical models, using the equations of the linear regression lines for each of the genes, to calculate the expected heterosis. These models operate as programmes within the Genstat statistical analysis package [70]. The results, as summarised in the table below, confirmed that the model successfully predicted the heterosis observed in the untested combinations using transcriptome characteristics of the inbred parents as markers.
We conducted an additional analysis based upon linear regression to identify genes that show expression patterns in inbred parents correlated with heterosis shown by the hybrids. For each individual gene represented on the array, transcript abundance in paternal parent lines was regressed on the magnitude of heterosis exhibited by the corresponding hybrids with accession Landsberg er ms1 in the training dataset.
The expression of one gene, At3g11220, showed an exceptionally high correlation (r2=0.649; P=2.7×10−8). The correlation was negative, i.e. expression is lower in parental lines that produce more strongly heterotic hybrids. We assessed the utility of using the expression of this gene in parental lines to predict the heterosis that would be shown by the corresponding hybrids with accession Landsberg er ms1. This was conducted for both training and test datasets, as for the predictions based on the expression of At1g67500 and At5g45500 in hybrids. The heterosis predicted was well correlated with the measured heterosis (r2=0.719) and the predicted values for two of the three hybrids in the test dataset were very accurate. However, heterosis was substantially overestimated for the hybrid Landsberg er ms1×Kas-1, despite there being no correlation between the expression of At3g11220 in parental accessions and the weight of those accessions (r2<0.001).
Gene At3g11220 is annotated as encoding “unknown protein”, so its function in the process of heterosis cannot be deduced based upon homology.
We used the methodology as described for the prediction of heterosis using parental transcriptome data to develop models for the prediction of additional traits in accessions. The transcriptome data set used for the construction of the models was that obtained for 11 accessions: Br-0, Kondara, Mz-0, Ag-0, Ct-1, Gy-0, Columbia, Wt-1, Cvi-0, Ts-5 and Nok3, as previously described. Trait data had previously been obtained from these, and accessions Ga-0 and Sorbo. Transcriptome data from accessions Ga-0 and Sorbo were used for trait prediction in these accessions. The lists of genes incorporated into the models relating to the 15 measured traits are listed in Tables 3 to 17. The predicted trait values for Ga-0 and Sorbo were compared with measured trait values for these accessions, to assess the performance of the models.
As the models developed for the prediction of additional traits were developed using only 11 accessions, we expected them to contain some false components. These would tend to shift trait predictions towards the average value of the trait across the set of accessions used for the construction of the models. Therefore, our criterion for success of each model was whether or not it ranked the accessions Ga-0 and Sorbo correctly. The results, as summarised in Table 18, show that the models were able to successfully predict flowering time, seed oil content and seed fatty acid ratios. As expected, the values produced by the models were between the measured value for the trait in the respective accessions and the average value of the trait across all accessions. Only the models to predict the absolute seed content of a subset of specific fatty acids were unsuccessful. This lack of success in the experiment we conducted may have been due to the relative lack of precision of the data for these traits and/or insufficient numbers of genes with transcript abundance correlated with the trait to overcome the effects of false components in the models developed using the data sets available at the time. We believe that models based on more extensive data sets would be able to successfully predict these traits.
The ability to use transcriptome data from an early stage of plant growth under specific environmental conditions (i.e. aerial parts of vegetative-phase plants after 3 weeks growth in a controlled environment room under 8 hour photoperiod) to predict characteristics that appear later in the development of plants grown in different environmental conditions (flowering time, details of seed composition and vernalisation responses of plants grown in a glasshouse under 16 hour photoperiod) is remarkable. We interpret this as evidence of extensive interconnection and multiplicity of gene function, regulated, as for heterosis, largely at the level of transcript abundance. The results presented here indicate that our methodology will allow the use of specific characteristics of the transcriptomes of organisms, including both plants and animals, early in their life cycle as “markers” to predict many complex traits later in their life cycle, and to increase our understanding of the underlying biological processes.
The accessions used for the studies underlying this disclosure were obtained from the Nottingham Arabidopsis Stock Centre (NASC): Kondara, Cvi-0, Sorbo, Ag-0, Br-0, Col-0, Ct-1, Ga-0, Gy-0, Mz-0, Nok-3, Ts-5, Wt-5 (catalogue numbers N916, N902, N931, N936, N994, N1092, N194, N1180, N1216, N1382, N1404, N1558 and N1612, respectively). A male sterile mutant of Landsberg erecta (Ler ms1) was also obtained from NASC (catalogue number N75).
Seeds of parental accessions and hybrids were sown into pots containing A. thaliana soil mix (as described in O'Neill et al [71]) and Intercept (Intercept 5GR). The pot was then watered, and sealed to retain moisture, before being placed at 4° C. for 6 weeks to partially normalize flowering time. At the end of this time period the pot was placed in a controlled environment room (heated at 22° C. and lit for 8 hours per day). Gradually the seal was removed in order to acclimatise the plants to the reduced air moisture. When the first true leaves appeared the plants were transplanted to individual pots, which were again sealed and returned to the controlled environment rooms. Again the seal was gradually removed over the next few days. The positions of A. thaliana plants in controlled environment rooms was determined using a complete randomised block design, with the trays of plants being regularly rotated and moved in order to reduce environmental effects.
Hybrids were produced by crossing accessions Kondara and Br-0 by selecting a raceme of the maternal plant, removing all branches and siliques, leaving only the inflorescence. All immature and open buds were removed, along with the apical meristem, leaving 5-6 mature closed buds. From these buds the sepals, petals, and stamens were removed leaving only a complete pistil. For crosses involving Ler ms1 as the maternal parent, only enough tissue was removed, from unopened buds, to allow access to the stigma. Buds of all plants were then pollinated by removing a stamen from the pollen donor plant, and rubbing the anther against the stigma. This was repeated until the stigma was well coated with pollen when viewed under the microscope. The pollinated buds were then protected from additional pollination by being enclosed in a ‘bubble’ of Clingfilm, which was removed after 2-3 days.
The total aerial fresh weight of the plants was determined by cutting off all above soil plant material, quickly removing any soil attached, and weighing on electronic scales (Ohaus Corp. New. Jersey. USA). The plant material was then frozen in liquid nitrogen. All plant harvesting and weight measurements were taken as close as practicable to the middle of the photoperiod. Where trait data were combined for replicate sets of plants grown at different time, the data were weighted to correct for differences in absolute growth rates between the replicates caused by environmental effects. The mean weight for each of the 14 parent accessions and 13 hybrids was calculated for each of the three growth replicates. These were then normalised to the first replicate mean, to take account of any between-occasion variation in the growth conditions. This was done by dividing each replicate mean by the first replicate mean and then multiplying by itself (for example [a/b]*b) in order to obtain the adjusted mean.
RNA Extraction and Hybridisation
200 mg of plant tissue were ground to a fine powder using liquid nitrogen in a baked pre-cooled mortar, and using a chilled spatula, transferred to labelled chilled 1.5 ml tube. To these tubes 1 ml of TRI Reagent (Sigma-Aldrich, Saint Louis USA) was added, then shaken to suspend the tissue. After a 5 minute incubation at room temperature 0.2 ml of chloroform was added, and thoroughly mixed with the TRI Reagent by inverting the tubes for around 15 seconds, followed by 2-3 minutes incubation at room temperature. The tubes were centrifuged at 12000 rpm for 15 minutes and the upper aqueous phase transferred to a clean, labelled tube. 0.5 ml of isopropanol was then added to the tubes, which were inverted repeatedly for 30 seconds to precipitate the RNA, followed by a10 minutes incubation at room temperature. The tubes were then were centrifuged at 12000 rpm for 10 minutes at 4° C., revealing a white pellet on the side of the tube. The supernatant was poured off of the pellet, and the lip of the tube gently blotted with tissue paper. 1 ml 75% ethanol was added and the tubes shaken to detach the pellet from the side of the tube, followed by centrifugation at 7500 rpm for 5 minutes. Again the supernatant was poured off of the pellet, which was quickly spun down again and any remaining liquid removed using a pipette. The pellet was then dried in a laminar flow hood, before 50 μl DEPC treated water (Severn Biotech Ltd. Kidderminster, UK) was added to dissolve the pellet.
Sample concentrations were determined using an Eppendorf BioPhotometer (Eppendorf UK Limited. Cambridge. UK), and RNA quality was determined by running out 111 on a 1% agarose gel for 1 hour. RNA from replicated plants were then pooled according concentration in order to ensure an equal contribution of each replicate.
The pooled samples were then cleaned using Qiagen Rneasy columns (Qiagen Sciences. Maryland. USA) following the protocol on page 79 of the Rneasy Mini Handbook (06/2001), before again determining the concentrations using an Eppendorf BioPhotometer, and running out 111 on a 1% agarose gel.
Affymetrix GeneChip array hybridisation was carried out at the John Innes Genome Lab (http://www.jicgenomelab.co.uk). All protocols described can be found in the Affymetrix Expression Analysis Technical Manual II (Affymetrix Manual II http://www.affymetrix.com/support/technical/manual.affx.)
Following clean up, RNA samples, with a minimum concentration of 1 μg, μl-1, were assessed by running 1 μl of each RNA sample on Agilent RNA6000 nano LabChips® (Agilent Technology 2100 Bioanalyzer Version A.01.20 SI211). First strand cDNA synthesis was performed according to the Affymetrix Manual II, using 10 μg of total RNA. Second strand cDNA synthesis was performed according to the Affymetrix Manual II with the following minor modifications: cDNA termini were not blunt ended and the reaction was not terminated using EDTA. Instead Double-stranded cDNA products were immediately purified following the “Cleanup of Double-Stranded cDNA” protocol (Affymetrix Manual II). cDNA was resuspended in 22 μl of RNase free water.
cRNA production was performed according to the Affymetrix Manual II with the following modifications: 11 μl of cDNA was used as a template to produce biotinylated cRNA using half the recommended volumes of the ENZO BioArray High Yield RNA Transcript Labelling Kit. Labelled cRNAs were purified following the “Cleanup and Quantification of Biotin-Labelled cRNA” protocol (Affymetrix Manual II). cRNA quality was assessed by on Agilent RNA6000 nano LabChips® (Agilent Technology 2100 Bioanalyzer Version A.01.20 SI211). 20 μg of cRNA was fragmented according to the Affymetrix Manual II.
High-density oligonucleotide arrays (either Arabidopsis ATH1 arrays, or AT Genomel arrays, Affymetrix, Santa Clara, Calif.) were used for gene expression detection. Hybridisation overnight at 45° C. and 60 RPM (Hybridisation Oven 640), washing and staining (GeneChip® Fluidics Station 450, using the EukGEws2—450 Antibody amplification protocol) and scanning (GeneArray® 2500) was carried out according to the Affymetrix Manual II.
Microarray suite 5.0 (Affymetrix) was used for image analysis and to determine probe signal levels. The average intensity of all probe sets was used for normalization and scaled to 100 in the absolute analysis for each probe array. Data from MAS 5.0 was analysed in GeneSpring® software version 5.1 (Silicon Genetics, Redwood City, Calif.).
Identification of Genes with Non-Additive Transcript Abundance in Hybrids
Analysis of the normalised transcript abundance data was performed using GenStat [70]. This was undertaken using a script of directives programmed in the GenStat command language (see below), and used to identify the set of defined patterns of transcript abundance. Briefly, each hybrid transcript abundance data set was compared to its appropriate parental data sets, for each gene, for each of the particular expression patterns of interest. Those genes showing a particular pattern in each data set were given a test value. Once completed all of these values were added together and only those data sets with a combined test value equal to a given a critical value (equivalent to the value if all data sets displayed that pattern) were counted. Once this had been completed for the experimental data, the results were checked by hand against the source data.
Program 1 below is an example of the pattern recognition programme. This example identifies patterns in the KoBr hybrid and its parents, for three replicates of each at the two-fold threshold criteria.
Due to the relatively limited replication within the experiment and the large number of genes assayed on the GeneChips it is expected that a proportion of the genes displaying defined patterns will have occurred by chance. It is therefore essential to use appropriate statistical analysis of the data to determine the significance of the results. In order to determine this, random permutation analysis (bootstrapping) was used to generate expected values for random occurrences of defined abundance patterns of the data. Pseudoreplicate data sets were generated by randomly sampling the original data within individual arrays, and using a rotating ‘seed number’ in order to create random data sets of the same size, and variance, as the original. The same pattern recognition directives were then used for this random data set as were used on the original data and the resulting numbers of probes were recorded.
In order to get a statistically significant number of randomized replicates, this randomization and analysis of the data was repeated 250 times. The average numbers of probes identified for each pattern were then used as the value that would be expected to arise by random chance for that pattern. It was determined that 250 cycles was a sufficiently large random data set, for this experiment by comparing the expected random averages of the defined patterns at 1.5 fold, at 50 cycles and at 250 cycles. Comparisons between higher numbers of cycles (500-1000 cycles) exhibited very little difference between the means except that the longer runs served to reduce the standard errors. A Wilcoxon matched-pairs two-tailed t-test on the means of the two repetition levels (50 cycles and 250 cycles) gave a P-value of 0.674, suggesting very strongly that the means are not statistically different from each other. Based on this it was assumed that the average random values will not change significantly with increased replication, and that 250 cycles is a significantly large number of replicates to generate this mean random value in this case.
Program 2 below is an example of the bootstrapping programme. This example bootstraps the KoBr hybrid at the two-fold threshold criteria, for 250 repetitions.
Fold changes in themselves are not statistical tests, and cannot be used alone to designate a confidence level of the reported differences in expression. The average numbers of probes identified for each pattern after permutation analysis represent the number expected to arise by random chance for that pattern. Once this expected value has been determined it can be used in a maximum likelihood Chi square test, under the null hypothesis of no difference between observed and expected, in order to determine whether the observed patterns differ significantly from random chance. This was undertaken using the “Chi-Square goodness of fit” option of GenStat, and testing the difference between the mean number of genes observed fitting a given expression pattern, and the mean number of genes expected to fit that same pattern (as calculated above), with a single degree of freedom. Significant relationships, fitting the alternative hypotheses of significant differences between the two mean values, were considered to be those exhibiting P values of 0.05 or less.
Transcriptome remodelling was calculated, normalised for the divergence of the transcriptomes of the parental accessions, using the equation:
NT=R
T/(Rp/Rpm)
Where NT=normalised level of transcriptome remodelling of a cross
RT=total number of genes summed across all 6 classes indicative of remodelling for the specific hybrid, at the appropriate fold-level
Rp=total number of genes with transcript abundance differing between the parental accessions of the specific hybrid, at the appropriate fold-level.
Rpm=Mean number of genes with transcript abundance differing between the parental accessions across all combinations analysed, at the appropriate fold-level.
In order to develop a measure of the Relative Genetic Distance (RGD) between accession Ler and the 13 accessions crossed with it to produce hybrids the following method was used. A set of 216 loci were selected that were polymorphic for the 14 main accessions studied in this thesis. These were downloaded from the web site of the NSF 2010 project DEB-0115062 (http://walnut.usc.edu/2010/). Loci were selected to cover the genome by defining 500 kb intervals throughout the genome, starting at base pair 1 on each chromosome, and selecting the polymorphic locus with the lowest base pair coordinate that has a complete set of sequence data for all 14 accessions, if any, in each interval. The number of polymorphisms across these 216 loci between each accession and Ler were determined and normalised relative to the polymorphism rate observed between Ler and Columbia (with 45 polymorphisms, the most similar to Ler) to give the RGD.
Regression Analysis to Identify Genes with Transcript Abundance in Hybrid Lines Correlated with the Strength of Heterosis
In order to identify genes showing a significant linear relationship between strength of heterosis and transcript abundance in hybrid lines, regression analysis was undertaken using a script of directives programmed in the GenStat command language. This programme conducted a linear regression, for the transcript abundance of each probe, against the phenotypic value for 32 GeneChips. There were three replicate GeneChips for each of the hybrids LaAg, LaCt, LaCv, LaGy, LaKo, and LaMz, and two replicates each for LaBr, LaCo, LaGa, LaNo, LaSo, LaTs, and LaWt, each representing the pooled RNA of three individual hybrid plants. The results of these regressions were presented as F-values. Once this had been completed for the experimental data, significant results were checked by hand against the source data.
Program 3 below is an example of the linear regression programme. This example identifies linear regressions between the hybrid transcriptome and MPH.
Once this had been completed for the transcription data, permutation analysis was used to determine how often particular regression line would arise by random chance. The data was randomised within individual arrays, using a rotating ‘seed number’ and the regression analyses were repeated for this random data, using the same directives used for the original data. In order to get a statistically significant number of random replicates, this randomisation and analysis of the data was repeated 1000 times. Following this, the 1000 regression values for each gene were ranked according to the probability of a relationship between the phenotypic values and random expression values, and the F values of the first, tenth and fiftieth values (corresponding to the 0.1%, 1% and 5% significance values) were recorded. The probabilities of the actual and randomised samples were then compared and only those genes where the probability of occurring randomly is less than in the actual data at one of the three significance values were counted as showing a significant relationship.
Program 4 below is an example of the linear regression bootstrapping programme. This example randomises linear regressions between the hybrid transcriptome and MPH. Due to the size of the outputs, the files are saved into intermediary files that can be read by the computer but not opened visually.
Program 5 below is an example of the programme written to extract the significant values out of the bootstrapping intermediary data files, into a file that can be manipulated in excel. Again this example handles linear regression data between the hybrid transcriptome and MPH.
Regression Analysis to Identify Genes with Transcript Abundance in Parental Lines Correlated with the Strength Of Heterosis
In order to identify genes showing a significant linear relationship between strength of heterosis and transcript abundance in parental lines, regression analysis was undertaken as described for the identification of genes with transcript abundance in hybrids correlated with the strength of heterosis.
The experimental design uses a series of 15 different hybrid maize lines, all with line B73 as the maternal parent. The hybrids and parental lines were grown in replicated trials at three locations (two in North Carolina and one in Missouri) in 2005, and data were collected for heterosis and a range of other traits, as listed below. All 31 lines (15 hybrids and 16 parents) were grown for 3 weeks and aerial tissues cut, weighed and frozen in liquid nitrogen. RNA was prepared and Affymetrix maize GeneChips were used to analyse the transcriptome in 2 replicates of each. The methods successfully developed in Arabidopsis, as described above, were used to (i) identify genes with transcript abundance correlated with the magnitude of heterosis, (ii) develop predictive models using the transcriptome data from 12 or 13 hybrids and the corresponding parents and (iii) test the ability of the models to “predict” the performance of additional hybrids, based only upon their transcriptome characteristics.
Genes whose transcript abundance was shown to correlate with heterosis in maize are shown in Table 19. Heterosis was calculated for plant height, for plants at CLY location (Clayton, N.C.) only (model from 13 hybrids).
These data were used to develop a model for prediction of heterosis in two further hybrids. All of the genes used in producing the calibration line were have been used in the prediction, both for the model development and the further “test” plants.
Prediction of Heterosis for Plant Height, CLY Location Only (Model from 13 Hybrids to Predict 2):
The same procedures can be used to develop predictive models for each of the additional traits for which complete data sets are available. For maize, the data from 14 inbred lines (used as parents of the hybrids described above) can be used to develop models for prediction of traits in further inbred lines.
The following traits may be measured in maize: yield; grain moisture; plant height; flowering time; ear height; ear length; ear diameter; cob diameter; seed length; seed width; 50 kernel weight; 50 kernel volume.
Genes with transcript abundance correlating with yield, measured as harvestable product, are shown in Table 20. Average yield was calculated for 12 plants across 2 sites, MO and L.
These genes were used to develop a model for prediction of yield in three further hybrids. All of the genes used in producing the calibration line were have been used in the prediction, both for the model development and the further “test” plants.
Rank order of yield was successfully predicted in these hybrids, and the magnitude was accurate for 2 out of the 3 hybrids, shown below. With improved trait data, accurate predictions would be expected for all hybrids.
Prediction of Average Yield Across 2 Sites, MO and L (Model from 12 Hybrids to Predict 3)
We used linear regression to identify genes for which expression levels in a training dataset of 20 genetically diverse inbred lines (B97, CML52, CML69, CML228, CML247, CML277, CML322, CML333, IL14H, Ki11, Ky21, M37W, Mo17, Mo18W, NC350, NC358, Oh43, P39, Tx303, Tzi8) was correlated with the plot yield of the corresponding hybrids with line B73. Pedigrees and phylogenetic grouping 72 of the maize lines used in our studies are summarised in Table 21.
Using a stringent cut-off for significance (P<0.00001), correlations (0.288<r2<0.648) were identified for 186 genes. These are listed in Table 22. In the majority of cases (129), gene expression in the inbred lines was negatively correlated with yield of the hybrids. We were able to discount the possibility that these correlations were artefacts of differing proportions of cell types in different sizes of plants, which may have arisen if the sizes of the inbred seedlings were indicative of the performance of the corresponding hybrids, as we found no correlation between plot yield and either the weight (r2=0.039) or the height (r2=0.001) of the sampled seedlings of the corresponding parental lines.
To assess whether gene expression characteristics may be used successfully for the prediction of yield, each hybrid in turn was removed from the training dataset and models developed based upon a regression conducted with the remaining lines. This was conducted as for A. thaliana, except that the mean of the predictions for all of the genes with highly significant correlation (P<0.00001) was used as the overall prediction of heterosis for the excluded line. The numbers of genes exceeding this significance threshold varied from 84 (with P39 excluded) to 262 (with NC350 excluded). Gene expression data for a test dataset of four additional inbred lines (CML103, Hp301, Ki3, OH7B) was then used to predict the heterosis that would be shown by the corresponding hybrids with B73, by averaging the predictions from each of the 186 genes identified by regression analysis using the complete training dataset. The results showed that the predicted plot yield is strongly correlated with the measured plot yield (r2=0.707), demonstrating that gene expression characteristics can, indeed, be used for the prediction of heterosis, as quantified by yield. Although the relationship was non-linear, with reduced ability to quantitatively predict yields at the higher end of the range studied, the method was able to correctly resolve the two highest yielding hybrids in the test dataset from the two lowest yielding hybrids. The poor yield performance of hybrids including the popcorn (HP301) and the two sweet corns (IL14H and P39) were correctly predicted, but the exceptionally high yield of the hybrid NC350×B73 was not predicted. We conclude that maternal effects are minor, as the analysis was based on a mixture of crosses with B73 as the maternal parent (15 hybrids) and as the paternal parent (9 hybrids).
Plants used for transcriptome analysis were grown from seeds for 2 weeks. Maize seeds were first imbibed in distilled water for 2 days in glasshouse conditions to break dormancy, before transfer to peat and sand P7 pots. They were grown in long day glass house conditions (16 hours photoperiod) at 22° C. Aerial parts above the coleoptiles were excised, weighed and frozen in liquid nitrogen. All plant harvesting and weight measurements were taken as close as practicable to the middle of the photoperiod. Plants for yield trials were grown in field conditions in Clayton, N.C. in 2005. Forty plants of each hybrid were grown in duplicate 0.0007 hectare plots. Yield was calculated as pounds of grain harvested per plot, corrected to 15% moisture, as shown in Table 23.
The experimental design uses a series of 14 different hybrid oilseed rape restorer lines, all with line MSL 007 C (which is a male sterile winter line and has been used for commercial hybrid production) as the maternal parent. The hybrids and parental lines were grown in Hohenlieth and Hovedissen in Germany and Wuhan in China in 2004/5, and data for heterosis and a range of other traits, as listed below, were collected. All 29 lines (14 hybrids and 15 parents) are grown for 3 weeks and aerial tissues cut, weighed and frozen in liquid nitrogen. RNA is prepared and Affymetrix Brassica GeneChips are used to analyse the transcriptome in 3 replicates of each. The methods successfully developed in Arabidopsis are used to (i) identify genes with transcript abundance correlated with the magnitude of heterosis, (ii) predictive models are developed using the transcriptome data from 12 hybrids and the corresponding parents and (iii) the ability of the models to “predict” the performance of the 2 additional hybrids, based only upon their transcriptome characteristics, is demonstrated.
Traits measured in oilseed rape: Seed yield, seed weight, seed oil content, seed protein content; seed glucosinolates; establishment; Winter hardiness; Spring development; flowering time; plant height; standing ability.
Upon completion of heterosis modelling, the same procedures are used to develop predictive models for each of the additional traits for which complete data sets are available. For oilseed rape, the data from 12 inbred lines (used as parents of the hybrids described above) is used to develop models, which is used to “predict” the traits in 2 further inbred lines. The performance of the models is validated.
The models developed in Arabidopsis utilize linear regression approaches. However, non-linear approaches may enable the identification of more comprehensive gene sets and, hence, more precise models. Non-linear approaches are therefore incorporated into the model development protocols. Additional opportunities for refinement include weighting of the contribution of individual genes and data transformations.
Although approaches based on the use of GeneChips or microarrays may continue to be the preferred analytical platform for commercialization, there are other methods available for the quantitative determination of transcript abundance. Quantitative PCR methods can be reliable and are amenable to some automation. However, when such approaches are to be used, it is desirable to identify a subset of genes (ideally under 10) that retain most of the predictive power of the sets of genes used to date in the models (70 for prediction of heterosis based on hybrid transcriptomes, typically >150 for prediction of heterosis or other traits based on inbred transcriptomes). Therefore, a limited set of genes is identified by iterative testing of the precision of predictions by progressively reducing the numbers of genes in the models, preferentially retaining those with the best correlation of transcript abundance with the trait.
This section provides detailed guidance for development and use of predictive models using the program GenStat [70].
The following GenStat programmes may be used in accordance with the invention and are suitable for analysing any Affymetrix based expression data.
These standard operating procedures are designed to enable the undertaking of gene expression analysis studies, from RNA extraction through to advanced prediction.
The procedures are divided into 4 workflows, depending on the type of analyses you wish to undertake. See
Workflow a) follows the basic first steps, common to all analyses (methods 1-3), to the stage of predicting traits based upon transcription profiles.
Workflow b) follows the recommended analysis procedure (based on the latest analysis developments). It culminates in the prediction of traits based on a subset of best predictor genes.
Workflow c) follows an alternative analysis procedure, used to generate the prediction reported in my thesis, and includes a bootstrapping step.
Workflow d) describes to methods for analysing the degree of transcriptome remodelling between hybrids and their parent lines.
All of these workflows are designed to be ‘worked through’ and contain step-by-step instruction on how to complete the analysis.
This stage results in the production of good quality total RNA at a concentration of between 0.2-1 μg μl−1 for hybridisation to Affymetrix GeneChips. These methods are the same for both Arabidopsis and Maize chips, for other species, contact Affymetrix for their recommended methods.
200 mg of plant tissue were ground to a fine powder using liquid nitrogen in a baked pre-cooled mortar, and using a chilled spatula, transferred to labelled chilled capped tube. To these tubes 1 ml of TRI REAGENT (Sigma-Aldrich, Saint-Louis USA) was added and shaken to suspend the tissue. After a 5 minute incubation at room temperature 0.2 ml of chloroform was added, and thoroughly mixed with the TRI REAGENT by inverting the tubes for around 15 seconds, followed by 2-3 minutes incubation at room temperature. The tubes were centrifuged at 12000 rpm for 15 minutes and the upper aqueous phase transferred to a clean, labelled tube.
0.5 ml of isopropanol was then added to the tubes, which were inverted repeatedly for 30 seconds to precipitate the RNA, followed by 10 minutes incubation at room temperature. The tubes were then centrifuged at 12000 rpm for 10 minutes at 4° C., revealing a white pellet on the side of the tube. The supernatant was poured off the pellet, and the lip of the tube gently blotted with tissue paper. 1 ml 75% ethanol was added and the tubes shaken to detach the pellet from the side of the tube, followed by centrifugation at 7500 rpm for 5 minutes. Again the supernatant was poured off the pellet, which was quickly spun down again and any remaining liquid removed using a pipette. The pellet was then dried in a laminar flow-hood; before 50 μl DEPC treated water (Severn Biotech Ltd. Kidderminster, UK) was added to dissolve the pellet.
RNA samples were cleaned up using RNeasy® mini columns (Qiagen Ltd, Crawly, UK), according to the protocol given in the RNeasy® Mini Handbook (3rd edition 06/2001 pages 79-81). Due to the maximum binding capacity, no more than 100 μg of RNA could be loaded on to each column. In order to obtain as high a concentration as possible during the elution step, 40 μl was used and the elute run through the column twice. This was followed by a second 40 μl volume of DEPC treated water in order to remove any remaining RNA, which could be used to increase the amount of clean RNA available, should further concentration be required.
If the concentration of the clean RNA was less than 1 μg μl−1 a further precipitation and dissolution can be performed using an Affymetrix recommended method which can be found in the Affymetrix Expression Analysis Technical Manual II (http://www.affymetrix.com/support/technical/manuals.affx).
5 μl 3 M NaOAc, pH 5.2 (or one tenth of the volume of the RNA sample) was added to the RNA sample requiring concentrating, together with 250 μl of 100% ethanol (or two and a half volumes of the RNA sample). These were mixed and incubated at −20° C. for at least 1 hour. The samples were centrifuged at 12000 rpm in a micro-centrifuge (MSE, Montana, USA) for 20 minutes at 4° C., and the supernatant poured off leaving a white pellet. This pellet was washed twice with 80% ethanol (made up with DEPC treated water), and air-dried in a laminar flow hood. Finally the pellet was re-suspended in DEPC treated water, to a volume appropriate to the required concentration.
Affymetrix GeneChip array hybridisation was carried out at the John Innes Genome Lab (http://www.jicgenomelab.co.uk). All protocols described can be found in the Affymetrix Expression Analysis Technical Manual II (Affymetrix Manual II http://www.affymetrix.com/support/technical/manuals.affx.)
Following clean up, RNA samples, with a concentration of between 0.2-1 μg, μl−1, were assessed by running 1 μl of each RNA sample on Agilent RNA6000 nano LabChips® (Agilent Technology 2100 Bioanalyzer Version A.01.20 SI211). First strand cDNA synthesis was performed according to the Affymetrix Manual II, using 10 μg of total RNA. Second strand cDNA synthesis was performed according to the Affymetrix Manual II with the following minor modifications:
cDNA termini were not blunt ended and the reaction was not terminated using EDTA. Instead Double-stranded cDNA products were immediately purified following the “Cleanup of Double-Stranded cDNA” protocol (Affymetrix Manual II). cDNA was re-suspended in 22 μl of RNase free water.
cRNA production was performed according to the Affymetrix Manual II with the following modifications:
11 μl of cDNA was used as a template to produce biotinylated cRNA using half the recommended volumes of the ENZO BioArray High Yield RNA Transcript Labelling Kit. Labelled cRNAs were purified following the “Cleanup and Quantification of Biotin-Labelled cRNA” protocol (Affymetrix Manual II). cRNA quality was assessed by on Agilent RNA6000 nano LabChips® (Agilent Technology 2100 Bioanalyzer Version A.01.20 SI211). 20 μg of cRNA was fragmented according to the Affymetrix Manual II.
High-density oligonucleotide arrays were used for gene expression detection. Hybridisation overnight at 45° C. and 60 RPM (Hybridisation Oven 640), washing and staining (GeneChip® Fluidics Station 450, using the EukGEws2—450 Antibody amplification protocol) and scanning (GeneArray® 2500) was carried out according to the Affymetrix Manual II.
Microarray suite 5.0 (Affymetrix) was used for image analysis and to determine probe signal levels. The average intensity of all probe sets was used for normalization and scaled to 100 in the absolute analysis for each probe array. Data from MAS 5.0 was analysed in GeneSpring® software version 5.1 (Silicon Genetics, Redwood City, Calif.).
Files were saved as .txt files, for further analysis.
This section describes the methods used to load the expression data into GeneSpring, how to normalise the data, and how to save it in excel for further analysis. These instructions are best followed while carrying out the analysis. A GeneSpring course is recommended if further analysis is required using this programme.
3.1 Loading Data into GeneSpring
Open GeneSpring, >File>Import data>select the first of the data files you wish to load>click Open
Choose file format—Affy pivot table
(Create new genome—if you don't want to go into an existing one)
Select genome—Arabidopsis, Maize, etc, or create a new genome following instructions on screen
Import data: selected files—select any remaining files you want to analyse
Import data: sample attributes—this is where you can enter the MIAME info
Import data: create experiment—yes. Save new experiment—give it a name, it will appear in the experiment folder in the navigator toolbar.
These 4 factors should be completed in turn, to ensure that the data is properly normalised. This will impact upon all of the subsequent analyses. Generally the defaults or recommended orders should be used.
Click on ‘use recommended order’ and check that the following is included:
Data transformation: measurements less than 0.01 to 0.01 Per chip: 50th %
Per gene: normalise to median, cut off=10 in raw signal
Here we define the names of the expression data. Depending upon the labelling of the expression files, changes may not be required here. If changes are required:
Click on ‘New custom’ Type the name of each sample.
Delete other parameters to avoid confusion.
No changes needed for this experiment
Define Error model
No changes needed for this experiment
Once the data is normalised it can be transferred into an excel spreadsheet.
To do this, click on the relevant data in the experiment tree (on the far left of the main GeneSpring screen)
Click View>view as spreadsheet
select all>copy all>paste into Excel spreadsheet.
This forms the master Excel chart.
These instructions describe the basic regression method. This regression forms the basis of the subsequent prediction methods.
To create a data file for use in GenStat. Open the master Excel file (with normalised expression data from GeneSpring)>Copy the relevant data columns (the data for those accessions that will form the ‘training data set’ from which significant predictive genes will be selected) into a new chart>add a column of “:” at the far end>save chart as .txt file>close file
Open the text file in GenStat>Enclose any title names in speech marks (“ ”), this should have the effect of turning the titles green>Find and replace (ctrl R)* with blanks>Replace all>Save file again
Open ‘basic regression programme’ (GenStat Programme 1˜Basic Regression Programme) in GenStat
Check that the input data filename is correct, and is opening to channel 2
Check that the output data file is going to the correct destination and is opening to channel 3. These input and output file names should be RED
Check that the phenotypic trait data are correct for the trait under investigation. Use “\” to go on to new lines, these backslashes will turn GREEN.
Check that the number of genes to be investigated is set to the correct value (usually 22810 for Arabidopsis, or 17734 for Maize).
If the R2, Slope, and Intercept are required remove the “ ” from the appropriate analysis section, and from the print command, both will turn BLACK from green.
To run the programme, ensure that both the programme window and output windows are open (to tile horizontally Alt+Shift+F4). Select the programme window and press Ctrl+W. This will set the programme running, check that the GenStat server icon (histogram symbol, in taskbar at bottom right-hand corner of the screen) has changed colour to red.
To cancel the programme right click on the server icon and choose interrupt
Once complete the GenStat icon will change colour back to green
To analyse the data, first open it in Excel, select “delimited”>next>tick the “Tab” and “Space”>Finish
Add a new row at the far left-hand side of the sheet, and label the appropriate columns “value” “Df” and “R square” “Slope” and “Intercept” if these were included in the analysis
Add a new column to the beginning and label it “ID”
Fill the remaining cells of the ID column with a series 1-22810 for Arabidopsis or 1-17734 for Maize (edit>fill>series>OK)
Delete the column “Df”
Select all of the data columns>Data>Sort>P value ascending
Select all of the rows where the P value are less than or equal to 0.05. Colour these cells using the “paint” option, and record the number in this list. These are the genes significant at the 5% level
Select all of the rows where the P value are less than or equal to 0.01. Colour these cells an alternative colour using the “paint” option, and record the number in this list. These are the genes significant at the 1% level
Select all of the rows where the P value are less than or equal to 0.001. Colour these cells a third colour using the “paint” option, and record the number in this list. These are the genes significant at the 0.1% level
These three values are the number of OBSERVED significant probes in the data set
These observed significant probes, can be used as ‘prediction probes’ for the prediction of traits in other accessions, or hybrid combinations.
These instructions describe the basic prediction method. All subsequent prediction methods are a variation on this.
Using the list of identified prediction probes; create a specific prediction sub-set gene list. This can be done by copying your ID and P-value columns (sorted by ID to return the data to its original order) in to a new excel sheet along with the expression data of your training line accessions. You can then sort by P-value and delete those genes that do not appear in the relevant significance (usually 0.1%) list. Remember to sort by ID again to return the file to its correct order, then delete the ID and Sig0.1% columns you added. Save this file under a new file name as a .txt file (for example trainingsetdata.txt).
Check that the input file is the one that you have just created
Check that the output file is named correctly (calibration output file)
Check that the number of genes is correct (for example the 0.1% significant genes)
Check that the bin values are appropriate for the trait data. These values should cover the range of the data and a little way either side.
Save the file and run the programme (Ctrl+W)
To make the predictions use the identified prediction probes, and the expression data of the ‘unknown lines’ for which we are making the prediction of heterosis. Using the list of identified prediction probes, create a specific prediction sub-set gene list, as was done when generating the file for the calibration curves (section 5.1). This can be done by copying your ID and P-value columns (sorted by ID to return the data to its original order) in to a new excel sheet along with the expression data of your training line accessions. You can then sort by P-value and delete those genes that do not appear in the relevant significance (usually 0.1%) list. Remember to sort by ID again to return the file to its correct order, then delete the ID and Sig0.1% columns you added. Save this file under a new file name as an Excel spread sheet.
In this file add two blank columns between each of the data columns. In the first column, next to the first unknown line's expression measurement, insert a number series from 1 to however long the list on gene measurements is. In the next column, list the identifier for those measurements (the best identifier would be the parent name, for instance Kas, B73 etc.).
In the first column next to the second data list type the command “=B2+0.0” Then copy this down the column. This will have the effect of giving a number series that is 0.01 greater than its equivalent for the first parent. In the next column, list the identifier for those measurements again
Repeat this process for any remaining parent data sets. Each number series should always be 0.01 greater than its equivalent in the previous series.
Starting with the second set of data columns, cut all of the genes, number series and identifies, and add them to the bottom of first set of data columns. Be sure to use Edit>Paste Special>Values so as not to upset your commands. Repeat this for the remaining columns. You should now have three long columns with all of the data in.
Select all of the data. Click Data>Sort>Column B (or whichever is the column with the number sequence in). After sorting, you should have all of your parental data mixed together, with all of the same genes next to each other (for example, with three parents your number sequence should read 1, 1.1, 1.2, 2, 2.1, 2.2 etc. and the identifier column should read Kas, Sha, Ll-0, Kas, Sha, Ll-0 etc. or equivalent) save the file. This is your identifier file.
Copy only the column with the expression data into a new work book. Delete all headings and add a column of colons “:”. Save the file as a .txt file. This is your ‘Tester’ data file. Ensure that you close this file, as GenStat will not recognise the file if open in Excel.
Open this file in GenStat press Ctrl+R and in the ‘Find What’ box type * leave the ‘Replace With’ box blank. Click ‘Replace All’ then save this file. This is your test expression file.
Check the variate “mpadv” these are the X-axis values for the calibration lines. Ensure that these are the same as the bin values entered earlier (section 5.1).
Check the first input file. This should be the expression data of your Tester lines (section 5.2).
Check the second input file. This should be the output file from your calibration line (calibration output file—section 5.1).
Check that the “ntimes” command is the number of test genes multiplied by the number of parents, therefore the total number of genes in your test expression file.
Check that the “calc Z=Z+3” command is correct for your number of Tester lines, for example, for four Tester lines this should read “calc Z=Z+4”.
Check that your “if (estimate)” commands are appropriate for the range of your trait data. This is for the ‘capped’ prediction. These should be set at 2 ‘bin sizes’ beyond and below the bin range, if appropriate.
Run the programme (Ctrl+W). This programme prints to the output window, which should be saved as an output (.out) file.
Note it is normal for there to be error messages, if all of the previous steps have been followed ignore these.
Open your saved output file in Excel. Choose Delimited>Next and tick the Tab and Space buttons.
Delete the writing found in the file until you reach the first data point. Usually the first 60 lines.
Name the columns “No.” “Cap” “Raw”
Scroll to the bottom and delete all of the messages you see there.
Select all and sort by “No” ascending.
Check that you have the correct number of rows remaining. This should equal the ntimes value from the Prediction Extraction Programme (the number of prediction genes you have generated, multiplied by the number of Tester lines you are predicting for). Scroll to the bottom and delete all of the non-relevant information you see there (for example “regvr=regms/resms” “code CA” etc)
Delete any remaining warning messages, to the left and right of the ‘useful data.’
Open the identifier .xls file you generated earlier. Copy the Number series and Identifier columns in to your output file.
Select all (Ctrl+A) and sort by Identifier, this should separate the data by parent name.
Cut and paste all of the parents into neighbouring columns (so that they are next to each other).
Scroll to the bottom of the list under the cap column enter the command “=AVERAGE(B2:B203)” (Note, this command is based on 202 predictive genes, you should adjust this command to cover the number of predictions for your gene set).
Copy this command to the bottom of all of your lists. You should now have two predictions for each of your Tester lines, the CAPPED and RAW prediction values.
These predictions can be used individually, or they can be averaged between replicates of the same accessions.
These instructions describe the first steps of the recommended prediction protocol. The N-1 model is a modification to the basic regression method, and using the same GenStat programme, however this regression is repeated for each accession in the training set.
To undertake the N-1 model, prepare an expression file containing all of the accessions you wish to use in your training set.
Run a basic regression (GenStat Programme 1-Basic Regression Programme) using all but one of these accessions. If you have multiple replicates of the same accession, ensure that all are removed.
Using the genes identified from this experiment, undertake a prediction as described in Method 5, using the removed accession as the tester line. Record the ID list of the predictive genes (section 4.4), and the results of the RAW prediction for each gene (as listed in section 5.4) for each replicate.
Repeat this process for all of the accession in the training set, until you have predicted each accession against a training set containing all of the other accessions. These data can be used to assess the overall accuracy of these predictions by plotting the ACTUAL trait values against the predicted, or they can be used for the later ‘Best Predictor’ prediction method.
This programme calculates which genes consistently predict well over a wide range of accessions and phenotypes. You can also use the output to investigate the frequency of genes appearing in the predictive lists, and thereby identify many noise genes.
To create the data file first open a new Excel spreadsheet. In the first column, paste the list of predictive gene IDs (the numbers assigned at the regressions stage) from the first of the N-1 accessions (section 6.1). In the next column paste the list of predictions for these genes for this accession, as generated in the prediction stage for that accession in the N-1 model. In the third column at each stage paste the accession name, repeated next to each gene in the list. In the fourth column type the replicate number for that accession, if there is only one replicate type 1. In the fifth type the actual trait value for that accession.
Open the ‘Basic Best Predictor Programme’ (GenStat Programme 4) Check that the names of the accessions are correctly listed.
Check that the number of replicates is correct (note these should be written [values=‘chip 1’,‘chip 2’] and so on for however many replicates there are).
Check that the Input file name is correct.
Run the programme (Ctrl+W). This programme prints to the output window, which should be saved as an output (.out) file.
Open your saved output file in Excel. Choose Delimited>Next and tick the Tab and Space buttons.
Delete the copy of the programme in the output (first 31 lines or so) at the top of the file, and the programme information at the bottom of the file (last 8 lines).
Only the first 4 columns (gene, number, Delta, and se_delta) are at the top of the file. Scroll half way down the sheet; there are 3 further columns (a repeat of gene, Ratio, and se_ratio) copy these columns next to the 4 columns at the top of the sheet.
Ensure that the column names are gene, number, Delta, and se_delta, gene, Ratio, se_ratio; respectively.
Delete the second ‘gene’ column.
Save the file. This file is your Best Predictor file
The information in the Best Predictor file is:
Gene Gene is the gene ID list of the predictive genes (section 4.4).
Number The number of occasions that each gene occurs in the predictive gene lists of the N-1 model. Using this we can quickly understand the distribution of this gene between gene lists from the N-1 model (section 6.1). This information can be used to quickly identify ‘noise genes’ by their low frequency in gene lists.
Delta The Absolute Difference (AD) is the mean of the differences between actual trait values and the values predicted for each line in the model. The closer the AD to 0 the closer the predictions are, on average, to the actual value. This value gives a good ‘feel’ for how close a prediction is to the actual, in relation to the trait of interest. For example, an AD of 4 might seem good if the trait was height in cm, and seem a fair tolerance for a prediction, however if the trait was plot yield in Kg, this value might be rather large.
se_delta The standard error of the Absolute Difference (seAD). This value gives a measure of the variability of the prediction, the smaller this value is the smaller the variability of the AD. An ideal predictive gene will have a small AD and seAD.
Ratio Ratio of the Difference (RD). This is the mean of the Ratio between actual trait values and the values predicted for each line in the model. This value is a more universal measure of AD, as all values are normalised to 1 (1 being a perfect match between prediction and actual), and the closer to 1 a gene is the better the gene appears to be for prediction. In theory this should allow the predictive ability of a gene can be assigned, independently of the trait value. For example, a particular gene might have an AD of −0.12 for yield weight, but an RD of 0.98. Saying that the gene is on average a 98% accurate predictor is perhaps an easier concept to understand.
se_ratio The standard error of the Ratio of the Difference (seRD). This value gives a measure of the variability of the ratio of the prediction, the smaller this value is the smaller the variability of the RD. An ideal predictive gene will have an RD close to 1 and a small seRD.
Using these parameters it is possible to generate more accurate gene list for the prediction of heterosis. This is a trial and error process at present, experimenting with different combinations of parameters will identify the best combination of genes for that trait. At present the most consistent combination of parameters for a good analysis has been a gene frequency of ALL MODELS (the predictive gene must appear in all N-1 models), and a Ratio (or RD) of >0.98 and <1.02.
In order to the gene combination with the parameters of gene frequency of all models, and an RD of >0.98 and <1.02, firstly sort (data>sort) the Best Predictor file by ‘number’ with the data descending. Before pressing ‘OK’ use the ‘THEN BY’ function to sort the data by Ratio ascending. Press OK.
This will bring all of the most consistent genes to the top of the worksheet. Select all of the genes that display an RD of between 0.98 and 1.02.
To test whether this is a good predictor list, calculate the average prediction for each accession and replicate for this best predictor gene list, and plot these predictions against the actual values for that trait.
An R2 value between 0.5 and 1 suggests that gene list contains genes that are good markers for predictions of that trait.
This method is a variation on the standard predictive method (method 5), and uses the same GenStat programmes.
The only variation of this programme is to use the best predictor gene list in place of the 0.1% P-valve list, for generating the training and tester files.
These instructions describe the first steps of the alternative prediction protocol. These methods are an addition to the basic regression method, and using the same GenStat programmes for the early stages. This Bootstrapping follows on directly from the basic regression (method 4), but prior to the prediction, and acts as an alternative method for identifying significant ‘marker’ genes. It works by generating a ‘customised T-table’ that is specific for the experiment in question.
Check that the input data filename is correct, and is opening to channel 2. This input file will be the same expression data file used for the initial regression (section 4.1)
Check that the output data files are going to the correct destinations and are opening to channels 2, 3, 4, and 5
Check that the numbers of genes to be analysed are correct for each output file (for Arabidopsis ATH-1 GeneChips this will be three files with 6000 genes and one with 4810), and that the print directives are pointing to the correct channels
To run the programme, ensure that both the programme window and output windows are open. Select the programme window and press Ctrl+W. This will set the programme running, check that the GenStat server icon (bottom right-hand corner of the screen) has changed colour to red.
To cancel the programme right click on the server icon and choose interrupt.
Once complete the GenStat icon will change colour back to green. This programme can take many days to run due to the large number calculations, and produces output files totaling up to 430 Mb, so plenty of disk space would be required. Once generated, the data for this programme needs to be extracted.
Open the ‘Basic Linear Regression Bootstrapping Data Extraction Programme’ (GenStat Programme 6) in GenStat
Check that the input files are correct (the output files from the bootstrapping programme)
Run the programme (Ctrl-W)
This programme prints to the Output window. Save this window as an .out file.
To analyse the data, first open it in Excel, select “delimited”>next>tick the “Tab” and “Space”>Finish Delete the first 32 rows, all of the gaps (after 6000, 12000, and 18000 probes), and all the text at the end of the data file. The data should be the same length as the regression file (for Arabidopsis 22810 lines long).
Add a new row, and label the columns “boot@5%” “boot@1%” and “boot@0.1%”
Add a new column to the beginning and label it “ID”
Fill the remaining cells of the ID column with a series 1-22810 (edit>fill>series>OK)
Copy all of these columns into the same sheet as the Observed significant probes data set, generated from the initial regression (section 4.4) with a one column gap
Leaving another single column gap label three further columns “sig@5%” “sig@1%” and “sig@0.1%”. In the first cell in the column “sig@5%” type “=E2−$B2”. Copy this to all of the cells in the three new columns.
Select all of the data columns>Data>Sort>Sig@5% descending Select all of the cells in this row where the value is positive. Colour these cells using the “paint” option, and record the number in this list. These are the genes significant at the 5% level
Select all of the data columns>Data>Sort>Sig@1% descending
Select all of the cells in this row where the value is positive. Colour these cells using the “paint” option, and record the number in this list. These are the genes significant at the 1% level
Select all of the data columns>Data>Sort>Sig@0.1% descending
Select all of the cells in this row where the value is positive. Colour these cells using the “paint” option, and record the number in this list. These are the genes significant at the 0.1% level
These results indicate whether or not the OBSERVED values differ significantly from random chance. These lists of significant genes can be used as markers, for the prediction of this trait as described in Method 5.
These analyses are designed to investigate the degree of difference in the transcriptome profiles between the hybrid and parental lines. There are two methods, investigating the transcriptome remodelling, and investigating the degree of dominance.
This analysis is designed to investigating the transcriptome remodelling between hybrid and parental transcriptomes.
To create a data file for use in GenStat. Open master normalised expression Excel file>Copy the relevant data columns (in the order 3 hybrid files, 3 paternal files, 3 maternal files) into a new chart>add a colon “:” at the very end of the last row>save chart as .txt file>close file
Open the text file in GenStat>Enclose any title names in speech marks (“ ”), this should have the effect of turning the titles green>Find and replace (Ctrl+R)* with blanks>Save file again
Check that the input data filename is correct, and is opening to channel 2
Check that the output data file is going to the correct destination and is opening to channel 3
Check that the ratios are set correctly for the ratio comparison under investigation.
For example, for
“if ((elem(i;k).gt.0.5).and.(elem(i;k).lt.2))”
This is set for a 2-fold ratio
For 3 fold the values would be 0.33 and 3
For 1.5 fold the values would be 0.66 and 1.5
The values are entered 3 times in the programme
Check that the ratios are set correctly for the fold change comparison under investigation. This is undertaken for all of the sections and should be set simply to the relevant fold level
To run the programme, ensure that both the programme window and output windows are open. Select the programme window and press ctrl>W. This will set the programme running, check that the GenStat server icon (bottom right-hand corner of the screen) has changed colour to red.
To cancel the programme right click on the server icon and choose interrupt
Once complete the GenStat icon will change colour back to green
To analyse the data, first open it in Excel, select “delimited”>next>tick the “Tab” and “Space”>Finish
Delete the first 266 rows in Excel, until you reach the column headers. Then delete bottom line beyond the data output
At the bottom of each column calculate the total number of significant patterns in that list. This can be done by using the directive “=SUM(C2:C22811)” in the first column and copying this into the remaining columns, ensuring that the correct data is selected.
The initial analysis is now complete. These values represent the OBSERVED data in the further analysis, following bootstrapping to generate the expected values.
This analysis is designed to investigating dominance type transcriptome remodelling between hybrid and parental transcriptomes. Significance is calculated by comparing observed values to the expected generated from random data. Note, this programme is in its early stages, and is not easy to modify.
This experiment compares the expression of the profile of the hybrid against the mean of it parents. To do this we must first calculate these mean values.
Open a new Excel worksheet. Paste in the parent expression data (both maternal and paternal) for the first replicate of the first accession.
Calculate the mean value for each gene. This can be done using typing the equation=AVERAGE(A2:B2) into the next cell along. Copy this equation all the way down this column.
Open another worksheet and paste in the expression data of the first hybrid, copy the newly generated mean parental expression value and Edit>Paste Special>Values in to the next column. Repeat this for all of the replicates and accessions. Note that this programme is designed to analyse 3 replicates of each hybrid, a total of 6 columns per accession.
Once this is complete, save the file as .txt. Open the file in GenStat>enclose the titles in “ ” which should change their colour to green. Save the file again. This is the input file.
Check the accession names (first scalar command) are correct. If you are investigating less than 8 accessions, you will need to change the numbers of these identifiers throughout the programme. Should you not wish to do this, running ‘pseudo-data’ in the remaining columns will not affect the output and can be ignored at the analysis stage.
Check the number of columns (second scalar command) is correct. It should be a 6× the number of accessions used (default is 48). Check that the out put file is correctly named and addressed.
Check that the input file is correct.
Check that the fold level is correct for the analysis you wish to under take. These values a recorded for 2 fold as
if (ratio.ge.0.5).and.(ratio.le.2) “calculates flags”
For other fold levels change the 0.5 and 2 values to the appropriate value for that fold level.
For 3 fold the values would be 0.33 and 3
For 1.5 fold the values would be 0.66 and 1.5
Run the file by pressing Ctrl+W.
To analyse the output file, first open it in Excel, select “delimited”>next>tick the “Tab” and “Space”>Finish
You will see a file filled with ‘1s’ and ‘0s.’ Scroll to the bottom of this file. Underneath the first filled column write the equation “=SUM(B1:B22810)” (ensuring that all of the data in that column is filled). Copy this equation to all of the columns.
Each set of three ‘sum values’ represent the data output for a single accession (3 replicates), in the order that the data was loaded into the programme. These values represent
Column 1=The number of genes who's hybrid expression falls within the fold level criterion of the mid-parent value, for ALL 3 replicates.
Column 2=The number of genes who's hybrid expression is greater than that of the mid-parent value, by at least the fold level criterion, for ALL 3 replicates.
Column 3=The number of genes who's hybrid expression is lower than that of the mid-parent value, by at least the fold level criterion, for ALL 3 replicates.
Record these values, as the OBSERVED for these data.
11.4 Generating the EXPECTED value.
The expected data set is generated using the ‘Dominance Permutation Programme’ (GenStat Programme 9)
Check the number of columns (second scalar command) is correct. It should be a 6× the number of accessions used (default is 48).
Check that the out put file is correctly named and addressed.
Check that the input file is correct. This is the same input file as generated previously.
Check that the fold level is correct for the analysis you wish to under take. These values a recorded for 2 fold as before (section 11.1)
Check the number in the permutation loop is correct for then number of permutations you require. A minimum of 100 is recommended (although 1000 is ideal).
Run the file by pressing Ctrl+W.
This programme may take a few days to run, depending upon how many permutations are added.
To analyse the output file, first open it in Excel, select “delimited”>next>tick the “Tab” and “Space”>Finish
You will see a file filled with numbers. Scroll to the bottom of this file. Underneath the first filled column write the equation “=SUM(B1:B123)” (ensuring that all of the data in that column is filled). Copy this equation to all of the columns.
Each set of three ‘sum values’ represent the permuted data output for a single accession (3 replicates), in the order that the data was loaded into the programme. The three values represent the ‘expected by random chance’ versions of the values calculated in section 11.3.
The calculated values at the bottom of the columns are the EXPECTED values required for this analysis. As these data are effectively random it is acceptable to combine these for comparison, if time is limiting.
The level of significance is calculated by chi square analysis, using the observed and expected data generated previously, and 1 degree of freedom.
This analysis is designed to assess the significance of fold change experiments described in Method 10. Significance is calculated by comparing observed values to expected generated from random data
Check that the input data filename is correct, and is opening to channel 2. This will be the same input file as created in section 10.1.
Check that the output data files is going to the correct destinations and is opening to channels 3
Check that the number of randomisations is set to the desired value. As few as 50 randomisations are sufficient to give valid estimates of random chance, however 1000 would be ideal, but this can take many days to obtain.
Check that the ratios are set correctly for the ratio comparison under investigation.
For example:
“if ((elem(i;k).gt.0.5).and.(elem(i;k).lt.2))”
This is set for a 2-fold ratio
For 3 fold the values would be 0.33 and 3
For 1.5 fold the values would be 0.66 and 1.
To run the programme, ensure that both the programme window and output windows are open. Select the programme window and press Ctrl>W. This will set the programme running, check that the GenStat server icon (bottom right-hand corner of the screen) has changed colour to red.
To cancel the programme right click on the server icon and choose interrupt
Once complete the GenStat icon will change colour back to green
To analyse the data, first open it in Excel, select “delimited”>next>tick the “Tab” and “Space”>Finish
Delete the first 281 rows in Excel, until you reach the first row of data. Then delete bottom line beyond the data output
Select the whole sheet and go to data>sort>sort by “Column B”. This will remove the empty rows from the data.
At the bottom of each column calculate the mean number of significant patterns in that list. This can be done by using the directive “=AVERAGE(B2:B22811)” in the first column and copying this into the remaining columns, ensuring that the correct data is selected.
This will give the EXPECTED mean value, expected by random chance in the data
Calculating the significance of the observed patterns requires the use of a maximum likelihood chi square test
Firstly open GenStat>Stats>Statistical Tests>Chi-Square Goodness of Fit
Click on “Observed data create table”>Spreadsheet
Name the table OBS>Change rows and columns to 1>OK and ignore the error message
In the new table cell type the number of the first OBSERVED column sum value
Click on “expected frequencies create table”>Spreadsheet Name the table EXP>leave rows and columns as 1>OK and ignore the error message
In the new table cell type the number of the first Expected mean column mean value
On the Chi-Square window put 1 into the degrees of freedom box and click Run
Record the Chi-Square and P value that appears in the Output window.
Type the next OBSERVED value into the OBS box and click onto the output window
Type the next EXPECTED value into the EXP box and click onto the output window
On the Chi-Square window click Run, and record the new Chi-Square and P value that appears in the Output window
This should then be undertaken for all of the remaining OBSERVED and EXPECTED values.
These results indicate whether or not the OBSERVED values differ significantly from random chance.
This section describes some of the most common problems that can occur while running these programmes. Many of these problems/solutions apply to most of the programmes and as a result this section has not been divided up along programme lines. This list is not exhaustive, but should cover the majority of problems encountered. It should be noted that the ‘fault codes’ given are only for illustration, often many fault codes can result from the same root problem.
General GenStat problems
One common method of solving general problems is to ensure that all of the input files are closed prior to running the programme. This is achieved by typing (to close channel 2) “close ch=2” and then running this directive. By repeating this for channels 3-5, you can ensure that all of the channels are closed before running your programme, and thus avoiding conflicts.
Fault 16, code VA 11, statement 4 in for loop Command: fit [print=*]mpadv Invalid or incompatible type(s) Structure mpadv is not of the required type.
Remove comma from the end of the variate list.
Fault 29, code VA 11, statement 4 in for loop Command: fit [print=*]mpadv Invalid or incompatible type(s) Structure mpadv is not of the required type
Problem with the trait-data identifier. Possibly a different or missing identifier following the trait data variates (X-axis data)
Fault # code VA 5, statement 2 in for loop Command: read [ch=2; print=*; serial=n]exp Too many values
1) Ensure that the width parameter is large enough, set to a large enough value (400 is standard)
2) Ensure that if titles are included in the data file, that they are ‘greened out’ and not being read as data
3) Ensure that the “Unit” number (at the beginning of the programme) and the number of trait “variate”s are the same
—Too Few values
Fault 13, code VA 6, statement 4 in for loop Command: fit [print=*]mpadv Too few values (including null subset from RESTRICT) Structure mpadv has 37 values, whereas it should have 38
Ensure that the “Unit” number (at the beginning of the programme) and the number of trait “variate” are the same
Warning 6, code VA 6, statement 2 in for loop Command: read [ch=2; print=*; serial=n]exp Too few values (including null subset from RESTRICT)
Ensure that the “ntimes=” number and the number of probes in the data file are the same
Fault #, code IO 25, statement 2 in for loop Command: read [ch=2; print=*; serial=n]exp Channel for input or output has not been opened, or has been terminated Input File on Channel 2
1) Input file name is incorrect
2) Input file address is incorrect
Fault 32, code IO 25, statement 12 in for loop Command: print [ch=3; iprint=*; clprint=*; rlprint=*]bin Channel for input or output has not been opened, or has been terminated Output File on Channel 3
Output file address is incorrect.
Check that the programme is not having conflicts with anti-virus software. This should be solved by the computing department, but results from anti-virus software scanning the file each time it makes a write-to-disk operation. This can often be easily changed by modifying the scanning settings.
Check that the file C:\Temp\Genstat is not filled. This can result from too many temp (.tmp) files being generated as a result of bootstrapping programmes. Deleting these files may improve the running of the programme.
Finally VSN (GenStat providers) can be contacted at ‘support@vsn-intl.com’
Ensure that the data has not ‘shifted’ at very low f-probabilities. At the regression stage (section 4.4), before creating the ID column, add an extra column to the beginning of the file. Insert the ID column, and sort by DF, if the data has shifted, this should become apparent here.
1Maternal parent listed first
2Corrected to 15% moisture
Number | Date | Country | Kind |
---|---|---|---|
0606583.3 | Mar 2006 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2007/001194 | 3/30/2007 | WO | 00 | 2/16/2009 |
Number | Date | Country | |
---|---|---|---|
60787877 | Mar 2006 | US |