Patients with type 1 diabetes may be treated with insulin deliveries in a number of different ways. One approach is to manually deliver a correction bolus of insulin to patients as needed. For instance, if a patient's blood glucose level is 170 mg/dL and the target blood glucose level is 120 mg/dL, a bolus of 1 U may be manually delivered to the patient (assuming a correction factor of 1:50). There are some potential problems with manually delivering such boluses to the patient. The patients may deliver improper amounts of insulin in the bolus. For instance, the user may need a significantly lower amount of insulin than the bolus amount of 1 U. The insulin that has been delivered cannot be taken back from the patient's bloodstream. As a result, the delivery of the bolus may put the patient at risk of hypoglycemia.
Another approach is for the insulin to be delivered automatically by an insulin pump system. This approach may overcome some of the problems with manual delivery of insulin boluses. The insulin pump systems may use a closed loop control system for regulating the amount of insulin delivered at fixed intervals, such as every 5 minutes. The closed loop algorithms used by the control system may employ a penalty for large insulin deliveries that is balanced in a cost function with a penalty for glucose level excursions. The use of the cost function typically results in smaller insulin deliveries that are delivered more frequently than the manually delivered boluses. The closed loop system may reassess a patient's need more often than a manual approach. These systems, however, may be error prone and may not account for all relevant factors.
In accordance with an exemplary embodiment, a method is performed by a processor. Per the method, an actual blood glucose concentration history for a user is obtained. The actual blood glucose concentration history contains actual blood glucose concentration values and indications of when the actual blood glucose concentration values were obtained. A predicted blood glucose concentration history for the user is obtained. The predicted blood glucose concentration history contains predicted blood glucose concentration values and indications of when the predicted blood glucose concentration values were obtained. The predicted blood glucose concentration values in the blood glucose concentration history are generated using a model of glucose and insulin interactions. Residual values are calculated between values in the actual blood concentration history with like times in the predicted blood glucose concentration history over a time window. A rate of change of the residual values for groups of residual values for consecutive times in the time window is calculated. At least one calculated rate of change of the residual values for at least one of the groups is identified as having a magnitude that exceeds a threshold and that is positive. Based on the identifying, it is determined that the user has ingested a meal, and it is designating in the model that a meal was ingested by the user.
The method may further include delivering insulin to the user in response to designation of the meal event. The method may include delivering a bolus of insulin via drug delivery device. The delivering may comprise delivering a larger dosage of insulin during a basal insulin delivery. The threshold may be tailored to the insulin sensitivity of the user. The threshold may be set based on an empirical blood glucose response of the user to ingesting a meal.
In accordance with an exemplary embodiment, a method is performed by a processor. An actual blood glucose concentration history for a user is obtained. The actual blood glucose concentration history contains actual blood glucose concentration values and indications of when the actual blood glucose concentration values were obtained. Predicted blood glucose concentration history for the user is obtained. The predicted blood glucose concentration history contains predicted blood glucose concentration values and indications of when the predicted blood glucose concentration values were obtained. The predicted blood glucose concentration values in the blood glucose concentration history are generated by a model of glucose and insulin interactions. Residual values are calculated between values in the actual blood concentration history with like times in the predicted blood glucose concentration history over a time window. A rate of change of the residual values for groups of residual values for consecutive time times in the time window is calculated. At least one calculated rate of change of the residual values for at least one of the groups is identified as having a magnitude that exceeds a negative threshold and that is negative. Based on the identifying, it is determined that the user has exercised, and an exercise event by the user is designated in the model.
The method may further entail suspending basal delivery of insulin to the user from a drug delivery device in response to the designation of an exercise event. The drug delivery device may be a wearable insulin pump. The method may further entail reducing a basal delivery dosage of insulin from a drug delivery device in response to the designation of an exercise event. The threshold may be tailored to the user. The threshold may be based on empirical blood glucose concentration response of the user to exercise.
In accordance with an exemplary embodiment, a device for controlling delivery of insulin to a user via a drug delivery device includes a storage for storing an actual blood glucose concentration history for a user, a predicted blood glucose concentration history for the user, a model of glucose insulin interactions for the user and a control application for controlling a drug delivery device for delivering insulin to the user. The actual blood glucose concentration history contains actual blood glucose concentration values and indications of when the actual blood glucose concentration values were obtained, and the predicted blood glucose concentration history contains predicted blood glucose concentration values and indications of when the predicted blood glucose concentration values were obtained. The predicted blood glucose concentration values in the blood glucose concentration history are generated by the model of glucose and insulin interactions. The device also includes a processor for executing instructions causing the processor to calculate residual values between values in the actual blood concentration history with like times in the predicted blood glucose concentration history over a time window. The instructions also cause the processor to calculate a rate of change of the residual values for groups of residual values for consecutive time times in the time window and identify at least one calculated rate of change of the residual values for at least one of the groups that has a magnitude that exceeds a positive threshold and that is positive or identify at least one calculated rate of change of the residual values for at least one of the groups that has a magnitude that exceeds a negative threshold and that is negative. Where it is identified that at least one calculated rate of change of the residual values for at least one of the groups has a magnitude that exceeds the positive threshold and is positive, it is determined that the user has ingested a meal, and a meal event by the user is designated in the model. Where it is identified that at least one calculated rate of change of the residual values for at least one of the groups has a magnitude that exceeds the negative threshold and is negative, it is determined that the user has exercised, and an exercise event by the user is designated in the model.
The processor may also cause remedial measures to be taken by the drug delivery device in response to designating a meal event or an exercise event. The remedial measures may comprise at least one of delivering a bolus of insulin to the user, increasing dosage of a basal insulin delivered to the user, suspending delivery of insulin to the user or decreasing dosage of a basal insulin delivered to the user. At least one of the positive threshold or the negative threshold may be customized to the user. The device may be an insulin pump device or the device may be a separate device that controls an insulin pump device.
The exemplary embodiments address some of the limitations of some conventional insulin delivery system control systems. Exemplary embodiments provide an approach to predicting meal and/or exercise events for an insulin delivery system that otherwise does not otherwise identify such events. The insulin delivery system may use a model of glucose insulin interactions that projects estimated future glucose values based on the history of glucose values and insulin deliveries for the user. The predictions of meal events and/or exercise events may be based on residuals between actual glucose values and predicted glucose values. The exemplary embodiments may calculate a rate of change of the residuals over a period of time (such as over a fifteen minute period) and compare the rate of change to thresholds to determine whether there likely has been a meal event or an exercise event. For instance, if the rate of change is positive and the rate is above a first threshold, it is indicative of a meal event, and such a meal event may be designated. On the other hand, if the rate of change is negative and the rate of change is below a second threshold, it is indicative of an exercise event, and such an event may be designated. The drug delivery system may then take measures to account for the meal or exercise by the user.
The drug delivery device 102 may include a controller 110. The controller 110 may be implemented in hardware, software, or any combination thereof. The controller 110 may, for example, be a microprocessor, a logic circuit, a field programmable gate array (FPGA), an application specific integrated circuit (ASIC) or a microcontroller coupled to a memory. The controller 110 may maintain a date and time as well as other functions (e.g., calculations or the like). The controller 110 may be operable to execute an algorithm stored in the storage 112 that enables the controller 110 to direct operation of the drug delivery device 102. In addition, the controller 110 may be operable to receive data or information. The storage 112 may include both primary memory and secondary memory. The storage 112 may include random access memory (RAM), read only memory (ROM), optical storage, magnetic storage, removable storage media, solid state storage or the like.
The drug delivery device 102 may include an insulin reservoir 114 for storing insulin for delivery to the user 108 as warranted. A pump 115 may be provided for pumping the insulin out of the insulin reservoir 114 to the user 108. A needle deployment component 116 may be provided to control deployment of needles or cannulas from the drug delivery device 102 to the user 108. The needle deployment component 116 may, for example, include a needle, a cannula and/or any other fluid path components for coupling the stored liquid drug in the insulin reservoir 114 to the user 108. The cannula may form a portion of the fluid path component coupling the user to the insulin reservoir 114. After the needle deployment component 116 has been activated, a fluid path to the user is provided, and the pump 115 may expel the liquid drug from the reservoir 114 to deliver the liquid drug to the user via the fluid path. The fluid path may, for example, include tubing coupling the drug delivery device 102 to the user 108 (e.g., tubing coupling the cannula to the reservoir 114).
The communications interface 117 may provide a communications link to one or more management devices physically separated from the drug delivery device 102 including, for example, a management device 104 of the user and/or a caregiver of the user. The communication link provided by the communications interface 117 may include any wired or wireless communication link operating according to any known communications protocol or standard, such as Bluetooth®, Wi-Fi, a near-field communication standard, a cellular standard, or any other wireless protocol. The drug delivery device 102 may also include a user interface 118, such as an integrated display device for displaying information to the user 108 and in some embodiments, receiving information from the user 108. The user interface 118 may include a touchscreen and/or one or more input devices, such as buttons, knob or a keyboard.
The drug delivery system 100 may include a sensor 104 for sensing the blood glucose concentration levels of the user 108. The sensor 104 may be a glucose monitor that provides periodic blood glucose concentration measurements, such as a continuous glucose monitor (CGM), or another type of device or sensor that provides blood glucose measurements. The sensor 104 may be physically separate from the drug delivery device 102 or may be an integrated component thereof. The sensor 104 may provide the controller 110 with data indicative of measured or detected blood glucose levels of the user 108. The sensor 104 may be coupled to the user by, for example, adhesive or the like and may provide information or data on one or more medical conditions and/or physical attributes of the user 108. The information or data provided by the sensor 104 may be used to adjust drug delivery operations of the drug delivery device 102.
The drug delivery system 100 may also include the management device 106. The management device 106 may be a special purpose device, such as a personal diabetes manager (PDM). The management device 106 may be a programmed general purpose device, such as any portable electronic device including, for example, a dedicated controller, such as processor, a smartphone, or a tablet. The management device 106 may be used to program or adjust operation of the drug delivery device 102 and/or the sensor 104. The management device 106 may be any portable electronic device including, for example, a dedicated controller, a smartphone, or a tablet. In the depicted example, the management device 106 may include a processor 120, a storage 124, and a communication interface 126. Processor 120 may execute processes to manage a user's blood glucose levels and for control the delivery of the drug or therapeutic agent to the user 108. The processor 120 may also be operable to execute programming code stored in the management storage 124. For example, the storage may be operable to store one or more control applications for execution by the processor 120. The communication interface 126 may include a receiver, a transmitter, or a transceiver that operates according to one or more radio-frequency protocols. For example, the communication interface 126 may include a cellular transceiver and a Bluetooth transceiver that enables the management device 106 to communicate with a data network via the cellular transceiver and with the sensor 104 and the drug delivery device 102. The respective transceivers of communication interface 126 may be operable to transmit signals containing information useable by or generated by an application or the like. The communication interfaces 117 and 126 of respective wearable drug delivery device 102 and sensor 104, respectively, may also be operable to transmit signals containing information useable by or generated by an application or the like.
The management device 106 may include a user interface 122 for communicating with the user 108. The user interface 122 may include a display, such as a touchscreen, for displaying information. The touchscreen may also be used to receive input when it is a touch screen. The user interface 122 may also include input elements, such as a keyboard, button, knobs or the like.
As was mentioned above, the exemplary embodiments embellish the model 304 to account for meals by the user and exercise by the user. The exemplary embodiments may identify meals or exercise by looking at residuals between the actual blood glucose concentration values for the user and predicted blood glucose concentration values. The difference between the actual values and the predicted values provide a magnitude of error for the predictions. Such error may come from multiple sources. In order to identify the error as originating from an unaccounted meal or exercise, the exemplary embodiments may look for significant enough residuals that change substantially between successive readings in a time interval. For example, when a user ingests a meal, the blood glucose concentration for the user will increase fairly rapidly after ingestion and will continue to increase as the remaining portions of the meal are digested. The predicted blood glucose level will not anticipate such an increase in blood glucose concentration. Thus, a rapid increase in the residuals is indicative of the user ingesting a meal. When a user exercises, the blood glucose concentration level will drop fairly rapidly until the user stops exercising. The predicted blood glucose level will not anticipate such a decrease in blood glucose concentration level. Hence, the rate of change of the residuals also may be indicative of exercise in some instances.
Gp(k)=b1G(k−1)+b2G(k−2)+ . . . bnG(k−n)+l(k−1)+l(k−2)+l(k−n)
Where Gp(k) is the predicted glucose value at cycle k; G(k) is an actual blood glucose concentration value at cycle k; bx is a weight assigned to the past coefficient where x is an index value ranging from 1 to n; and I(k) is an insulin action for a dosage amount (i.e., how much the dosage of insulin will reduce the blood glucose concentration) delivered at cycle k.
The difference for cycle k may be calculated by subtracting the predicted blood glucose concentration value from the actual blood glucose concentration value (406). If this is the last cycle of interest (see 408), then the process is complete. If not, the cycle index is incremented (410) and the process is repeated beginning at (402).
The prediction residual for each cycle may be calculated by comparing the actual blood glucose concentration values to the predicted blood glucose concentration values over cycles k to k+m and summing those differences (412) as follows:
Where R(k+m) is the residual for the cycle k+m; and q is an index ranging from 0 to m.
As was mentioned above, it is not the residuals for successive cycles alone that are or interest but rather the rate of change of the residuals over multiple successive cycles that is of interest.
Where ROC3(k+m) is the rate of change of the residual over three successive cycles spanning cycles k through m and R(i) is the residual for cycle i.
The rates of change of the residuals may then be analyzed to identify meal events or exercise events.
The positive threshold for determining meal events and the negative threshold for determining exercise events may be customized for the user. For example, data may be gathered for the user for actual meal events and the residuals and residual rate of change may be calculated for those actual meal events. Based on the actual data, the positive threshold may be set to distinguish meal events from other phenomena. Similarly, empirical data regarding actual exercise events concerning the residuals and the rate of change of the residuals for actual exercise events may be used to set the negative threshold.
Multiple thresholds can also be generated to define different degrees or types of meal events and exercise events. For example, the magnitudes of residuals and residual rate of change can be varying in tandem or independently depending on the type of a meal, where a slow absorbing meal may exhibit a slower increase in glucose and thus a smaller residual versus a fast-absorbing meal. A larger meal of the same type may simply exhibit a similar error for a longer period, and the residual threshold can be set higher if the goal is to detect larger meals only. Similarly, a fast-absorbing meal may exhibit a temporarily rapid increase in glucose, and thus the residual rate of change threshold can also be set higher to detect such a meal. Similarly, aerobic and anaerobic exercises can exhibit different patterns of residuals versus predictions. Short, intense bouts of exercise may indicate high rates of change but not a significant increase in thresholds, while leisurely, longer acting activities may result in lower rates of change but persistent increases over time. Therefore, the combination of residual thresholds and residual rate of change thresholds can be tuned differently, or tuned for multiple instances, to allow for detection of both event types and different degrees of meals and exercise.
If it is determined that the rate of change is positive (see 622), it may be an indication that the user has eaten. A check is made whether the rate of change is greater than a large meal threshold (636). If so, a large meal event is designated (638). If not, a check is made whether the rate of change is above a moderate meal threshold (640). If so, a moderate meal event is designated (642). If not, a check is made whether the rate of change is above a small meal threshold (646). If so, a small meal event is designated (648). If not, no meal event is designated.
In another variant, as mentioned above, both the magnitude of the residual and the rate of change of the residual may be used to determine meal or exercise event designations of different degrees.
Another approach is to relate a user's total insulin delivery (TDI) for a day and relate it to the user's insulin to carbohydrate ratio that identifies how much insulin is required to offset a specified amount of carbohydrates. These values may be related by heuristic rules, such as the 800 rule, which looks at 800/TDI to determine the ratio of a carbohydrate ingestion amount that may be offset by 1 unit of insulin. The correction factor may specify how much of a drop in glucose is realized by one unit of insulin, through heuristics such as the 1800 rule (1800/TDI). A combination of these rules can be utilized to estimate the quantity and presence of the user's events. For instance, it may be desired that the system would detect a meal event with carbohydrate quantity above a certain threshold, such as 30 grams. These 30 grams of carbohydrates can be converted into the estimated amount of insulin that would be needed to compensate for the event. If the user's TDI is 50 U, then the 800 rule (800/TDI) means 1 U of insulin would compensate for 16 g, and the 30 grams of carbohydrates require 1.875 U of insulin. This can also be correlated to expected glucose rise, based on the user's correction factor, which through the 1800 rule (1800/TDI) would mean 1 U of insulin reduces glucose by 36 mg/dL, and 1.875 U of insulin would reduce insulin by 67.5 mg/dL. Therefore, the threshold can be designed in such a way that an unexpected rise in glucose rise by more than 67.5 mg/dL would be detected.
The drug delivery system 100 may respond to the designation of a meal event and/or an exercise event.
In an alternative embodiment, the values of the residuals are not used; rather the summed square of the residuals are used. The summed square of residuals RSSR can be expressed as an extension to the equation in 0031 where
This helps to reduce the effect of outliers using the previously described approach. The signs of the residuals must be maintained as the squaring will make all the squares positive. One option is to set all of the residuals of an undesired sign (i.e., the sign not of interest when comparing to a particular threshold) to zero.
While the present invention has been described with reference to exemplary embodiments thereof, it should be appreciated that various changes in form and/or detail may be made without departing from the intended scope of the present invention as defined in the appended claims. For example, the residuals may also be used to identify other unknown system events, such as error produced by pressure-induced sensor attenuation. Pressure-induced sensor attenuations may result in sudden reduction in glucose concentrations similar to immediate glucose outcomes following exercise events, and may be detected in a similar manner by observing sudden unexpected accumulation of negative residual values versus predictions.
This application claims the benefit of the filing date of U.S. Provisional Application Ser. No. 62/957,620, filed Jan. 6, 2020, the entire contents of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
303013 | Horton | Aug 1884 | A |
2797149 | Skeggs | Jun 1957 | A |
3631847 | Hobbs | Jan 1972 | A |
3634039 | Brondy | Jan 1972 | A |
3812843 | Wootten et al. | May 1974 | A |
3841328 | Jensen | Oct 1974 | A |
3963380 | Thomas, Jr. et al. | Jun 1976 | A |
4055175 | Clemens et al. | Oct 1977 | A |
4146029 | Ellinwood, Jr. | Mar 1979 | A |
4151845 | Clemens | May 1979 | A |
4245634 | Albisser et al. | Jan 1981 | A |
4368980 | Aldred et al. | Jan 1983 | A |
4373527 | Fischell | Feb 1983 | A |
4403984 | Ash et al. | Sep 1983 | A |
4464170 | Clemens et al. | Aug 1984 | A |
4469481 | Kobayashi | Sep 1984 | A |
4475901 | Kraegen et al. | Oct 1984 | A |
4526568 | Clemens et al. | Jul 1985 | A |
4526569 | Bernardi | Jul 1985 | A |
4529401 | Leslie et al. | Jul 1985 | A |
4559033 | Stephen et al. | Dec 1985 | A |
4559037 | Franetzki et al. | Dec 1985 | A |
4573968 | Parker | Mar 1986 | A |
4624661 | Arimond | Nov 1986 | A |
4633878 | Bombardieri | Jan 1987 | A |
4657529 | Prince et al. | Apr 1987 | A |
4685903 | Cable et al. | Aug 1987 | A |
4731726 | Allen, III | Mar 1988 | A |
4743243 | Vaillancourt | May 1988 | A |
4755173 | Konopka et al. | Jul 1988 | A |
4781688 | Thoma et al. | Nov 1988 | A |
4781693 | Martinez et al. | Nov 1988 | A |
4808161 | Kamen | Feb 1989 | A |
4854170 | Brimhall et al. | Aug 1989 | A |
4886499 | Cirelli et al. | Dec 1989 | A |
4900292 | Berry et al. | Feb 1990 | A |
4919596 | Slate et al. | Apr 1990 | A |
4925444 | Orkin et al. | May 1990 | A |
4940527 | Kazlauskas et al. | Jul 1990 | A |
4975581 | Robinson et al. | Dec 1990 | A |
4976720 | Machold et al. | Dec 1990 | A |
4981140 | Wyatt | Jan 1991 | A |
4994047 | Walker et al. | Feb 1991 | A |
5007286 | Malcolm et al. | Apr 1991 | A |
5097834 | Skrabal | Mar 1992 | A |
5102406 | Arnold | Apr 1992 | A |
5109850 | Blanco et al. | May 1992 | A |
5125415 | Bell | Jun 1992 | A |
5134079 | Cusack et al. | Jul 1992 | A |
5153827 | Coutre et al. | Oct 1992 | A |
5165406 | Wong | Nov 1992 | A |
5176662 | Bartholomew et al. | Jan 1993 | A |
5178609 | Ishikawa | Jan 1993 | A |
5207642 | Orkin et al. | May 1993 | A |
5232439 | Campbell et al. | Aug 1993 | A |
5237993 | Skrabal | Aug 1993 | A |
5244463 | Cordner, Jr. et al. | Sep 1993 | A |
5257980 | Van Antwerp et al. | Nov 1993 | A |
5273517 | Barone et al. | Dec 1993 | A |
5281808 | Kunkel | Jan 1994 | A |
5299571 | Mastrototaro | Apr 1994 | A |
5308982 | Ivaldi et al. | May 1994 | A |
5342298 | Michaels et al. | Aug 1994 | A |
5377674 | Kuestner | Jan 1995 | A |
5380665 | Cusack et al. | Jan 1995 | A |
5385539 | Maynard | Jan 1995 | A |
5389078 | Zalesky | Feb 1995 | A |
5411889 | Hoots et al. | May 1995 | A |
5421812 | Langley et al. | Jun 1995 | A |
5468727 | Phillips et al. | Nov 1995 | A |
5505709 | Funderburk et al. | Apr 1996 | A |
5505828 | Wong et al. | Apr 1996 | A |
5507288 | Bocker et al. | Apr 1996 | A |
5533389 | Kamen et al. | Jul 1996 | A |
5558640 | Pfeiler et al. | Sep 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5584813 | Livingston et al. | Dec 1996 | A |
5609572 | Lang | Mar 1997 | A |
5665065 | Colman et al. | Sep 1997 | A |
5678539 | Schubert et al. | Oct 1997 | A |
5685844 | Marttila | Nov 1997 | A |
5685859 | Kornerup | Nov 1997 | A |
5693018 | Kriesel et al. | Dec 1997 | A |
5697899 | Hillman et al. | Dec 1997 | A |
5700695 | Yassinzadeh et al. | Dec 1997 | A |
5703364 | Rosenthal | Dec 1997 | A |
5714123 | Sohrab | Feb 1998 | A |
5716343 | Kriesel et al. | Feb 1998 | A |
5722397 | Eppstein | Mar 1998 | A |
5741228 | Lambrecht et al. | Apr 1998 | A |
5746217 | Erickson et al. | May 1998 | A |
5755682 | Knudson et al. | May 1998 | A |
5758643 | Wong et al. | Jun 1998 | A |
5800405 | McPhee | Sep 1998 | A |
5800420 | Gross et al. | Sep 1998 | A |
5801057 | Smart et al. | Sep 1998 | A |
5804048 | Wong et al. | Sep 1998 | A |
5817007 | Fodgaard et al. | Oct 1998 | A |
5820622 | Gross et al. | Oct 1998 | A |
5823951 | Messerschmidt | Oct 1998 | A |
5840020 | Heinonen et al. | Nov 1998 | A |
5848991 | Gross et al. | Dec 1998 | A |
5851197 | Marano et al. | Dec 1998 | A |
5858005 | Kriesel | Jan 1999 | A |
5865806 | Howell | Feb 1999 | A |
5871470 | McWha | Feb 1999 | A |
5879310 | Sopp et al. | Mar 1999 | A |
5902253 | Pfeiffer et al. | May 1999 | A |
5931814 | Alex et al. | Aug 1999 | A |
5932175 | Knute et al. | Aug 1999 | A |
5935099 | Peterson et al. | Aug 1999 | A |
5947911 | Wong et al. | Sep 1999 | A |
5971941 | Simons et al. | Oct 1999 | A |
5993423 | Choi | Nov 1999 | A |
5997501 | Gross et al. | Dec 1999 | A |
6017318 | Gauthier et al. | Jan 2000 | A |
6024539 | Blomquist | Feb 2000 | A |
6032059 | Henning et al. | Feb 2000 | A |
6036924 | Simons et al. | Mar 2000 | A |
6040578 | Malin et al. | Mar 2000 | A |
6049727 | Crothall | Apr 2000 | A |
6050978 | Orr et al. | Apr 2000 | A |
6058934 | Sullivan | May 2000 | A |
6066103 | Duchon et al. | May 2000 | A |
6071292 | Makower et al. | Jun 2000 | A |
6072180 | Kramer et al. | Jun 2000 | A |
6077055 | Vilks | Jun 2000 | A |
6090092 | Fowles et al. | Jul 2000 | A |
6101406 | Hacker et al. | Aug 2000 | A |
6102872 | Doneen et al. | Aug 2000 | A |
6115673 | Malin et al. | Sep 2000 | A |
6123827 | Wong et al. | Sep 2000 | A |
6124134 | Stark | Sep 2000 | A |
6126637 | Kriesel et al. | Oct 2000 | A |
6128519 | Say | Oct 2000 | A |
6142939 | Eppstein et al. | Nov 2000 | A |
6143164 | Heller et al. | Nov 2000 | A |
6157041 | Thomas et al. | Dec 2000 | A |
6161028 | Braig et al. | Dec 2000 | A |
6162639 | Douglas | Dec 2000 | A |
6196046 | Braig et al. | Mar 2001 | B1 |
6200287 | Keller et al. | Mar 2001 | B1 |
6200338 | Solomon et al. | Mar 2001 | B1 |
6214629 | Freitag et al. | Apr 2001 | B1 |
6226082 | Roe | May 2001 | B1 |
6244776 | Wiley | Jun 2001 | B1 |
6261065 | Nayak et al. | Jul 2001 | B1 |
6262798 | Shepherd et al. | Jul 2001 | B1 |
6270455 | Brown | Aug 2001 | B1 |
6271045 | Douglas et al. | Aug 2001 | B1 |
6280381 | Malin et al. | Aug 2001 | B1 |
6285448 | Kuenstner | Sep 2001 | B1 |
6309370 | Haim et al. | Oct 2001 | B1 |
6312888 | Wong et al. | Nov 2001 | B1 |
6334851 | Hayes et al. | Jan 2002 | B1 |
6375627 | Mauze et al. | Apr 2002 | B1 |
6379301 | Worthington et al. | Apr 2002 | B1 |
6402689 | Scarantino et al. | Jun 2002 | B1 |
6470279 | Samsoondar | Oct 2002 | B1 |
6475196 | Vachon | Nov 2002 | B1 |
6477901 | Tadigadapa et al. | Nov 2002 | B1 |
6484044 | Lilienfeld-Toal | Nov 2002 | B1 |
6491656 | Morris | Dec 2002 | B1 |
6512937 | Blank et al. | Jan 2003 | B2 |
6525509 | Petersson et al. | Feb 2003 | B1 |
6528809 | Thomas et al. | Mar 2003 | B1 |
6540672 | Simonsen et al. | Apr 2003 | B1 |
6544212 | Galley et al. | Apr 2003 | B2 |
6546268 | Ishikawa et al. | Apr 2003 | B1 |
6546269 | Kurnik | Apr 2003 | B1 |
6553841 | Blouch | Apr 2003 | B1 |
6554798 | Mann et al. | Apr 2003 | B1 |
6556850 | Braig et al. | Apr 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6560471 | Heller et al. | May 2003 | B1 |
6561978 | Conn et al. | May 2003 | B1 |
6562001 | Lebel et al. | May 2003 | B2 |
6562014 | Lin et al. | May 2003 | B2 |
6569125 | Jepson et al. | May 2003 | B2 |
6572542 | Houben et al. | Jun 2003 | B1 |
6572545 | Knobbe et al. | Jun 2003 | B2 |
6574490 | Abbink et al. | Jun 2003 | B2 |
6575905 | Knobbe et al. | Jun 2003 | B2 |
6580934 | Braig et al. | Jun 2003 | B1 |
6618603 | Varalli et al. | Sep 2003 | B2 |
6633772 | Ford et al. | Oct 2003 | B2 |
6645142 | Braig et al. | Nov 2003 | B2 |
6653091 | Dunn et al. | Nov 2003 | B1 |
6662030 | Khalil et al. | Dec 2003 | B2 |
6669663 | Thompson | Dec 2003 | B1 |
6678542 | Braig et al. | Jan 2004 | B2 |
6699221 | Vaillancourt | Mar 2004 | B2 |
6718189 | Rohrscheib et al. | Apr 2004 | B2 |
6721582 | Trepagnier et al. | Apr 2004 | B2 |
6728560 | Kollias et al. | Apr 2004 | B2 |
6740059 | Flaherty | May 2004 | B2 |
6740072 | Starkweather et al. | May 2004 | B2 |
6751490 | Esenaliev et al. | Jun 2004 | B2 |
6758835 | Close et al. | Jul 2004 | B2 |
6780156 | Haueter et al. | Aug 2004 | B2 |
6810290 | Lebel et al. | Oct 2004 | B2 |
6837858 | Cunningham et al. | Jan 2005 | B2 |
6837988 | Leong et al. | Jan 2005 | B2 |
6846288 | Nagar et al. | Jan 2005 | B2 |
6862534 | Sterling et al. | Mar 2005 | B2 |
6865408 | Abbink et al. | Mar 2005 | B1 |
6890291 | Robinson et al. | May 2005 | B2 |
6936029 | Mann et al. | Aug 2005 | B2 |
6949081 | Chance | Sep 2005 | B1 |
6958809 | Sterling et al. | Oct 2005 | B2 |
6989891 | Braig et al. | Jan 2006 | B2 |
6990366 | Say et al. | Jan 2006 | B2 |
7008404 | Nakajima | Mar 2006 | B2 |
7009180 | Sterling et al. | Mar 2006 | B2 |
7016713 | Gardner et al. | Mar 2006 | B2 |
7018360 | Flaherty et al. | Mar 2006 | B2 |
7025743 | Mann et al. | Apr 2006 | B2 |
7025744 | Utterberg et al. | Apr 2006 | B2 |
7027848 | Robinson et al. | Apr 2006 | B2 |
7043288 | Davis, III et al. | May 2006 | B2 |
7060059 | Keith et al. | Jun 2006 | B2 |
7061593 | Braig et al. | Jun 2006 | B2 |
7096124 | Sterling et al. | Aug 2006 | B2 |
7115205 | Robinson et al. | Oct 2006 | B2 |
7128727 | Flaherty et al. | Oct 2006 | B2 |
7139593 | Kavak et al. | Nov 2006 | B2 |
7139598 | Hull et al. | Nov 2006 | B2 |
7144384 | Gorman et al. | Dec 2006 | B2 |
7171252 | Scarantino et al. | Jan 2007 | B1 |
7190988 | Say et al. | Mar 2007 | B2 |
7204823 | Estes et al. | Apr 2007 | B2 |
7248912 | Gough et al. | Jul 2007 | B2 |
7267665 | Steil et al. | Sep 2007 | B2 |
7271912 | Sterling et al. | Sep 2007 | B2 |
7278983 | Ireland et al. | Oct 2007 | B2 |
7291107 | Hellwig et al. | Nov 2007 | B2 |
7291497 | Holmes et al. | Nov 2007 | B2 |
7303549 | Flaherty et al. | Dec 2007 | B2 |
7303622 | Loch et al. | Dec 2007 | B2 |
7303922 | Jeng et al. | Dec 2007 | B2 |
7354420 | Steil et al. | Apr 2008 | B2 |
7388202 | Sterling et al. | Jun 2008 | B2 |
7402153 | Steil et al. | Jul 2008 | B2 |
7404796 | Ginsberg | Jul 2008 | B2 |
7429255 | Thompson | Sep 2008 | B2 |
7460130 | Salganicoff | Dec 2008 | B2 |
7481787 | Gable et al. | Jan 2009 | B2 |
7491187 | Van Den Berghe et al. | Feb 2009 | B2 |
7500949 | Gottlieb et al. | Mar 2009 | B2 |
7509156 | Flanders | Mar 2009 | B2 |
7547281 | Hayes et al. | Jun 2009 | B2 |
7569030 | Lebel et al. | Aug 2009 | B2 |
7608042 | Goldberger et al. | Oct 2009 | B2 |
7651845 | Doyle, III et al. | Jan 2010 | B2 |
7680529 | Kroll | Mar 2010 | B2 |
7734323 | Blomquist et al. | Jun 2010 | B2 |
7766829 | Sloan et al. | Aug 2010 | B2 |
7785258 | Braig et al. | Aug 2010 | B2 |
7806854 | Damiano et al. | Oct 2010 | B2 |
7806886 | Kanderian, Jr. et al. | Oct 2010 | B2 |
7918825 | OConnor et al. | Apr 2011 | B2 |
7946985 | Mastrototaro et al. | May 2011 | B2 |
7972296 | Braig et al. | Jul 2011 | B2 |
8221345 | Blomquist | Jul 2012 | B2 |
8251907 | Sterling et al. | Aug 2012 | B2 |
8449524 | Braig et al. | May 2013 | B2 |
8452359 | Rebec et al. | May 2013 | B2 |
8454576 | Mastrototaro et al. | Jun 2013 | B2 |
8467980 | Campbell et al. | Jun 2013 | B2 |
8478557 | Hayter et al. | Jul 2013 | B2 |
8547239 | Peatfield et al. | Oct 2013 | B2 |
8597274 | Sloan et al. | Dec 2013 | B2 |
8622988 | Hayter | Jan 2014 | B2 |
8810394 | Kalpin | Aug 2014 | B2 |
9061097 | Holt et al. | Jun 2015 | B2 |
9171343 | Fischell et al. | Oct 2015 | B1 |
9233204 | Booth et al. | Jan 2016 | B2 |
9486571 | Rosinko | Nov 2016 | B2 |
9579456 | Budiman et al. | Feb 2017 | B2 |
9743224 | San Vicente et al. | Aug 2017 | B2 |
9907515 | Doyle, III et al. | Mar 2018 | B2 |
9980140 | Spencer et al. | May 2018 | B1 |
9984773 | Gondhalekar et al. | May 2018 | B2 |
10248839 | Levy et al. | Apr 2019 | B2 |
10335464 | Michelich et al. | Jul 2019 | B1 |
10583250 | Mazlish et al. | Mar 2020 | B2 |
10737024 | Schmid | Aug 2020 | B2 |
10987468 | Mazlish et al. | Apr 2021 | B2 |
11197964 | Sjolund et al. | Dec 2021 | B2 |
11260169 | Estes | Mar 2022 | B2 |
20010021803 | Blank et al. | Sep 2001 | A1 |
20010034023 | Stanton, Jr. et al. | Oct 2001 | A1 |
20010034502 | Moberg et al. | Oct 2001 | A1 |
20010051377 | Hammer et al. | Dec 2001 | A1 |
20010053895 | Vaillancourt | Dec 2001 | A1 |
20020010401 | Bushmakin et al. | Jan 2002 | A1 |
20020010423 | Gross et al. | Jan 2002 | A1 |
20020016568 | Lebel et al. | Feb 2002 | A1 |
20020040208 | Flaherty et al. | Apr 2002 | A1 |
20020123740 | Flaherty et al. | Sep 2002 | A1 |
20020128543 | Leonhardt | Sep 2002 | A1 |
20020147423 | Burbank et al. | Oct 2002 | A1 |
20020155425 | Han et al. | Oct 2002 | A1 |
20020161288 | Shin et al. | Oct 2002 | A1 |
20030023148 | Lorenz et al. | Jan 2003 | A1 |
20030050621 | Lebel et al. | Mar 2003 | A1 |
20030060692 | L. Ruchti et al. | Mar 2003 | A1 |
20030086074 | Braig et al. | May 2003 | A1 |
20030086075 | Braig et al. | May 2003 | A1 |
20030090649 | Sterling et al. | May 2003 | A1 |
20030100040 | Bonnecaze et al. | May 2003 | A1 |
20030130616 | Steil et al. | Jul 2003 | A1 |
20030135388 | Martucci et al. | Jul 2003 | A1 |
20030144582 | Cohen et al. | Jul 2003 | A1 |
20030163097 | Fleury et al. | Aug 2003 | A1 |
20030195404 | Knobbe et al. | Oct 2003 | A1 |
20030208113 | Mault et al. | Nov 2003 | A1 |
20030208154 | Close et al. | Nov 2003 | A1 |
20030212379 | Bylund et al. | Nov 2003 | A1 |
20030216627 | Lorenz et al. | Nov 2003 | A1 |
20030220605 | Bowman, Jr. et al. | Nov 2003 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040034295 | Salganicoff | Feb 2004 | A1 |
20040045879 | Shults et al. | Mar 2004 | A1 |
20040051368 | Caputo et al. | Mar 2004 | A1 |
20040064259 | Haaland et al. | Apr 2004 | A1 |
20040097796 | Berman et al. | May 2004 | A1 |
20040116847 | Wall | Jun 2004 | A1 |
20040122353 | Shahmirian et al. | Jun 2004 | A1 |
20040133166 | Moberg et al. | Jul 2004 | A1 |
20040147034 | Gore et al. | Jul 2004 | A1 |
20040171983 | Sparks et al. | Sep 2004 | A1 |
20040203357 | Nassimi | Oct 2004 | A1 |
20040204868 | Maynard et al. | Oct 2004 | A1 |
20040215492 | Choi | Oct 2004 | A1 |
20040220517 | Starkweather et al. | Nov 2004 | A1 |
20040241736 | Hendee et al. | Dec 2004 | A1 |
20040249308 | Forssell | Dec 2004 | A1 |
20050003470 | Nelson et al. | Jan 2005 | A1 |
20050020980 | Inoue et al. | Jan 2005 | A1 |
20050022274 | Campbell et al. | Jan 2005 | A1 |
20050033148 | Haueter et al. | Feb 2005 | A1 |
20050049179 | Davidson et al. | Mar 2005 | A1 |
20050065464 | Talbot et al. | Mar 2005 | A1 |
20050065465 | Lebel et al. | Mar 2005 | A1 |
20050075624 | Miesel | Apr 2005 | A1 |
20050105095 | Pesach et al. | May 2005 | A1 |
20050137573 | McLaughlin | Jun 2005 | A1 |
20050171503 | Van Den Berghe et al. | Aug 2005 | A1 |
20050182306 | Sloan | Aug 2005 | A1 |
20050192494 | Ginsberg | Sep 2005 | A1 |
20050192557 | Brauker et al. | Sep 2005 | A1 |
20050197621 | Poulsen et al. | Sep 2005 | A1 |
20050203360 | Brauker et al. | Sep 2005 | A1 |
20050203461 | Flaherty et al. | Sep 2005 | A1 |
20050238507 | Dilanni et al. | Oct 2005 | A1 |
20050261660 | Choi | Nov 2005 | A1 |
20050272640 | Doyle, III et al. | Dec 2005 | A1 |
20050277912 | John | Dec 2005 | A1 |
20060009727 | OMahony et al. | Jan 2006 | A1 |
20060079809 | Goldberger et al. | Apr 2006 | A1 |
20060100494 | Kroll | May 2006 | A1 |
20060134323 | OBrien | Jun 2006 | A1 |
20060167350 | Monfre et al. | Jul 2006 | A1 |
20060173406 | Hayes et al. | Aug 2006 | A1 |
20060189925 | Gable et al. | Aug 2006 | A1 |
20060189926 | Hall et al. | Aug 2006 | A1 |
20060197015 | Sterling et al. | Sep 2006 | A1 |
20060200070 | Callicoat et al. | Sep 2006 | A1 |
20060204535 | Johnson | Sep 2006 | A1 |
20060229531 | Goldberger et al. | Oct 2006 | A1 |
20060253085 | Geismar et al. | Nov 2006 | A1 |
20060264895 | Flanders | Nov 2006 | A1 |
20060270983 | Lord et al. | Nov 2006 | A1 |
20060276771 | Galley et al. | Dec 2006 | A1 |
20060282290 | Flaherty et al. | Dec 2006 | A1 |
20070016127 | Staib et al. | Jan 2007 | A1 |
20070060796 | Kim | Mar 2007 | A1 |
20070060869 | Tolle et al. | Mar 2007 | A1 |
20070060872 | Hall et al. | Mar 2007 | A1 |
20070083160 | Hall et al. | Apr 2007 | A1 |
20070106135 | Sloan et al. | May 2007 | A1 |
20070116601 | Patton | May 2007 | A1 |
20070118405 | Campbell et al. | May 2007 | A1 |
20070129690 | Rosenblatt et al. | Jun 2007 | A1 |
20070142720 | Ridder et al. | Jun 2007 | A1 |
20070173761 | Kanderian et al. | Jul 2007 | A1 |
20070173974 | Lin et al. | Jul 2007 | A1 |
20070179352 | Randlov et al. | Aug 2007 | A1 |
20070191716 | Goldberger et al. | Aug 2007 | A1 |
20070197163 | Robertson | Aug 2007 | A1 |
20070225675 | Robinson et al. | Sep 2007 | A1 |
20070244381 | Robinson et al. | Oct 2007 | A1 |
20070249007 | Rosero | Oct 2007 | A1 |
20070264707 | Liederman et al. | Nov 2007 | A1 |
20070282269 | Carter et al. | Dec 2007 | A1 |
20070287985 | Estes et al. | Dec 2007 | A1 |
20070293843 | Ireland et al. | Dec 2007 | A1 |
20080033272 | Gough et al. | Feb 2008 | A1 |
20080051764 | Dent et al. | Feb 2008 | A1 |
20080058625 | McGarraugh et al. | Mar 2008 | A1 |
20080065050 | Sparks et al. | Mar 2008 | A1 |
20080071157 | McGarraugh et al. | Mar 2008 | A1 |
20080071158 | McGarraugh et al. | Mar 2008 | A1 |
20080078400 | Martens et al. | Apr 2008 | A1 |
20080097289 | Steil et al. | Apr 2008 | A1 |
20080132880 | Buchman | Jun 2008 | A1 |
20080161664 | Mastrototaro et al. | Jul 2008 | A1 |
20080172026 | Blomquist | Jul 2008 | A1 |
20080177165 | Blomquist et al. | Jul 2008 | A1 |
20080183060 | Steil | Jul 2008 | A1 |
20080188796 | Steil et al. | Aug 2008 | A1 |
20080200838 | Goldberger et al. | Aug 2008 | A1 |
20080206067 | De Corral et al. | Aug 2008 | A1 |
20080208113 | Damiano et al. | Aug 2008 | A1 |
20080214919 | Harmon et al. | Sep 2008 | A1 |
20080228056 | Blomquist et al. | Sep 2008 | A1 |
20080249386 | Besterman et al. | Oct 2008 | A1 |
20080269585 | Ginsberg | Oct 2008 | A1 |
20080269714 | Mastrototaro et al. | Oct 2008 | A1 |
20080269723 | Mastrototaro et al. | Oct 2008 | A1 |
20080287906 | Burkholz et al. | Nov 2008 | A1 |
20090006061 | Thukral et al. | Jan 2009 | A1 |
20090018406 | Yodfat et al. | Jan 2009 | A1 |
20090030398 | Yodfat et al. | Jan 2009 | A1 |
20090036753 | King | Feb 2009 | A1 |
20090043240 | Robinson et al. | Feb 2009 | A1 |
20090054753 | Robinson et al. | Feb 2009 | A1 |
20090069743 | Krishnamoorthy et al. | Mar 2009 | A1 |
20090069745 | Estes et al. | Mar 2009 | A1 |
20090069787 | Estes et al. | Mar 2009 | A1 |
20090099521 | Gravesen et al. | Apr 2009 | A1 |
20090105573 | Malecha | Apr 2009 | A1 |
20090131861 | Braig et al. | May 2009 | A1 |
20090156922 | Goldberger et al. | Jun 2009 | A1 |
20090156924 | Shariati et al. | Jun 2009 | A1 |
20090163781 | Say et al. | Jun 2009 | A1 |
20090198350 | Thiele | Aug 2009 | A1 |
20090221890 | Saffer et al. | Sep 2009 | A1 |
20090228214 | Say et al. | Sep 2009 | A1 |
20090318791 | Kaastrup | Dec 2009 | A1 |
20090326343 | Gable et al. | Dec 2009 | A1 |
20100057042 | Hayter | Mar 2010 | A1 |
20100114026 | Karratt et al. | May 2010 | A1 |
20100121170 | Rule | May 2010 | A1 |
20100137784 | Cefai et al. | Jun 2010 | A1 |
20100152658 | Hanson et al. | Jun 2010 | A1 |
20100174228 | Buckingham et al. | Jul 2010 | A1 |
20100211003 | Sundar et al. | Aug 2010 | A1 |
20100228110 | Tsoukalis | Sep 2010 | A1 |
20100262117 | Magni et al. | Oct 2010 | A1 |
20100262434 | Shaya | Oct 2010 | A1 |
20100295686 | Sloan et al. | Nov 2010 | A1 |
20100298765 | Budiman et al. | Nov 2010 | A1 |
20110021584 | Berggren et al. | Jan 2011 | A1 |
20110028817 | Jin et al. | Feb 2011 | A1 |
20110054390 | Searle et al. | Mar 2011 | A1 |
20110054399 | Chong et al. | Mar 2011 | A1 |
20110124996 | Reinke et al. | May 2011 | A1 |
20110144586 | Michaud et al. | Jun 2011 | A1 |
20110160652 | Yodfat et al. | Jun 2011 | A1 |
20110178472 | Cabiri | Jul 2011 | A1 |
20110190694 | Lanier, Jr. et al. | Aug 2011 | A1 |
20110202005 | Yodfat et al. | Aug 2011 | A1 |
20110218495 | Remde | Sep 2011 | A1 |
20110230833 | Landman et al. | Sep 2011 | A1 |
20110251509 | Beyhan et al. | Oct 2011 | A1 |
20110313680 | Doyle et al. | Dec 2011 | A1 |
20110316562 | Cefai et al. | Dec 2011 | A1 |
20120003935 | Lydon et al. | Jan 2012 | A1 |
20120010594 | Holt et al. | Jan 2012 | A1 |
20120030393 | Ganesh et al. | Feb 2012 | A1 |
20120053556 | Lee | Mar 2012 | A1 |
20120078067 | Kovatchev et al. | Mar 2012 | A1 |
20120078161 | Masterson et al. | Mar 2012 | A1 |
20120078181 | Smith et al. | Mar 2012 | A1 |
20120101451 | Boit et al. | Apr 2012 | A1 |
20120123234 | Atlas et al. | May 2012 | A1 |
20120136336 | Mastrototaro et al. | May 2012 | A1 |
20120190955 | Rao et al. | Jul 2012 | A1 |
20120203085 | Rebec | Aug 2012 | A1 |
20120203178 | Tverskoy | Aug 2012 | A1 |
20120215087 | Cobelli et al. | Aug 2012 | A1 |
20120225134 | Komorowski | Sep 2012 | A1 |
20120226259 | Yodfat et al. | Sep 2012 | A1 |
20120232520 | Sloan et al. | Sep 2012 | A1 |
20120238851 | Kamen et al. | Sep 2012 | A1 |
20120271655 | Knobel et al. | Oct 2012 | A1 |
20120277668 | Chawla | Nov 2012 | A1 |
20120282111 | Nip et al. | Nov 2012 | A1 |
20120295550 | Wilson et al. | Nov 2012 | A1 |
20130030358 | Yodfat et al. | Jan 2013 | A1 |
20130158503 | Kanderian, Jr. et al. | Jun 2013 | A1 |
20130178791 | Javitt | Jul 2013 | A1 |
20130231642 | Doyle et al. | Sep 2013 | A1 |
20130253472 | Cabiri | Sep 2013 | A1 |
20130261406 | Rebec et al. | Oct 2013 | A1 |
20130296823 | Melker et al. | Nov 2013 | A1 |
20130317753 | Kamen et al. | Nov 2013 | A1 |
20130338576 | OConnor et al. | Dec 2013 | A1 |
20140005633 | Finan | Jan 2014 | A1 |
20140066886 | Roy et al. | Mar 2014 | A1 |
20140074033 | Sonderegger et al. | Mar 2014 | A1 |
20140121635 | Hayter | May 2014 | A1 |
20140128839 | Dilanni et al. | May 2014 | A1 |
20140135880 | Baumgartner et al. | May 2014 | A1 |
20140146202 | Boss et al. | May 2014 | A1 |
20140180203 | Budiman et al. | Jun 2014 | A1 |
20140180240 | Finan et al. | Jun 2014 | A1 |
20140200426 | Taub et al. | Jul 2014 | A1 |
20140200559 | Doyle et al. | Jul 2014 | A1 |
20140230021 | Birthwhistle et al. | Aug 2014 | A1 |
20140276554 | Finan et al. | Sep 2014 | A1 |
20140276556 | Saint et al. | Sep 2014 | A1 |
20140278123 | Prodhom et al. | Sep 2014 | A1 |
20140309615 | Mazlish | Oct 2014 | A1 |
20140316379 | Sonderegger et al. | Oct 2014 | A1 |
20140325065 | Birtwhistle et al. | Oct 2014 | A1 |
20150018633 | Kovachev et al. | Jan 2015 | A1 |
20150025329 | Amarasingham et al. | Jan 2015 | A1 |
20150025495 | Peyser | Jan 2015 | A1 |
20150120317 | Mayou et al. | Apr 2015 | A1 |
20150134265 | Kohlbrecher et al. | May 2015 | A1 |
20150165119 | Palerm et al. | Jun 2015 | A1 |
20150173674 | Hayes et al. | Jun 2015 | A1 |
20150213217 | Amarasingham et al. | Jul 2015 | A1 |
20150217052 | Keenan et al. | Aug 2015 | A1 |
20150217053 | Booth et al. | Aug 2015 | A1 |
20150265767 | Vazquez et al. | Sep 2015 | A1 |
20150306314 | Doyle et al. | Oct 2015 | A1 |
20150351671 | Vanslyke et al. | Dec 2015 | A1 |
20150366945 | Greene | Dec 2015 | A1 |
20160015891 | Papiorek | Jan 2016 | A1 |
20160038673 | Morales | Feb 2016 | A1 |
20160038689 | Lee et al. | Feb 2016 | A1 |
20160051749 | Istoc | Feb 2016 | A1 |
20160082187 | Schaible et al. | Mar 2016 | A1 |
20160089494 | Guerrini | Mar 2016 | A1 |
20160175520 | Palerm et al. | Jun 2016 | A1 |
20160228641 | Gescheit et al. | Aug 2016 | A1 |
20160243318 | Despa et al. | Aug 2016 | A1 |
20160256087 | Doyle et al. | Sep 2016 | A1 |
20160287512 | Cooper et al. | Oct 2016 | A1 |
20160302054 | Kimura et al. | Oct 2016 | A1 |
20160331310 | Kovatchev | Nov 2016 | A1 |
20160354543 | Cinar et al. | Dec 2016 | A1 |
20170049386 | Abraham et al. | Feb 2017 | A1 |
20170143899 | Gondhalekar et al. | May 2017 | A1 |
20170143900 | Rioux et al. | May 2017 | A1 |
20170156682 | Doyle et al. | Jun 2017 | A1 |
20170173261 | O'Connor et al. | Jun 2017 | A1 |
20170189625 | Cirillo et al. | Jul 2017 | A1 |
20170281877 | Marlin et al. | Oct 2017 | A1 |
20170296746 | Chen et al. | Oct 2017 | A1 |
20170311903 | Davis et al. | Nov 2017 | A1 |
20170348482 | Duke et al. | Dec 2017 | A1 |
20180036495 | Searle et al. | Feb 2018 | A1 |
20180040255 | Freeman et al. | Feb 2018 | A1 |
20180075200 | Davis et al. | Mar 2018 | A1 |
20180075201 | Davis et al. | Mar 2018 | A1 |
20180075202 | Davis et al. | Mar 2018 | A1 |
20180092576 | O'Connor et al. | Apr 2018 | A1 |
20180126073 | Wu et al. | May 2018 | A1 |
20180169334 | Grosman et al. | Jun 2018 | A1 |
20180200434 | Mazlish et al. | Jul 2018 | A1 |
20180200438 | Mazlish et al. | Jul 2018 | A1 |
20180200441 | Desborough et al. | Jul 2018 | A1 |
20180204636 | Edwards et al. | Jul 2018 | A1 |
20180277253 | Gondhalekar et al. | Sep 2018 | A1 |
20180289891 | Finan et al. | Oct 2018 | A1 |
20180296757 | Finan et al. | Oct 2018 | A1 |
20180342317 | Skirble et al. | Nov 2018 | A1 |
20180369479 | Hayter et al. | Dec 2018 | A1 |
20190076600 | Grosman et al. | Mar 2019 | A1 |
20190240403 | Palerm et al. | Aug 2019 | A1 |
20190290844 | Monirabbasi et al. | Sep 2019 | A1 |
20190336683 | O'Connor et al. | Nov 2019 | A1 |
20190336684 | O'Connor et al. | Nov 2019 | A1 |
20190348157 | Booth et al. | Nov 2019 | A1 |
20200046268 | Patek et al. | Feb 2020 | A1 |
20200101222 | Lintereur et al. | Apr 2020 | A1 |
20200101223 | Lintereur et al. | Apr 2020 | A1 |
20200101225 | O'Connor et al. | Apr 2020 | A1 |
20200219625 | Kahlbaugh | Jul 2020 | A1 |
20200342974 | Chen et al. | Oct 2020 | A1 |
20210050085 | Hayter et al. | Feb 2021 | A1 |
20210098105 | Lee et al. | Apr 2021 | A1 |
20220023536 | Graham et al. | Jan 2022 | A1 |
Number | Date | Country |
---|---|---|
2015200834 | Mar 2015 | AU |
2015301146 | Mar 2017 | AU |
1297140 | May 2001 | CN |
19756872 | Jul 1999 | DE |
0341049 | Nov 1989 | EP |
0496305 | Jul 1992 | EP |
0549341 | Jun 1993 | EP |
1491144 | Dec 2004 | EP |
0801578 | Jul 2006 | EP |
1281351 | May 2008 | EP |
2666520 | Oct 2009 | EP |
2139382 | Jan 2010 | EP |
2397181 | Dec 2011 | EP |
2695573 | Feb 2014 | EP |
2830499 | Feb 2015 | EP |
2943149 | Nov 2015 | EP |
3177344 | Jun 2017 | EP |
3314548 | May 2018 | EP |
1571582 | Apr 2019 | EP |
2897071 | May 2019 | EP |
3607985 | Feb 2020 | EP |
2992826 | Jan 2023 | EP |
2443261 | Apr 2008 | GB |
51125993 | Nov 1976 | JP |
02131777 | May 1990 | JP |
2006175227 | Jul 2006 | JP |
2004283378 | Oct 2007 | JP |
2008545493 | Dec 2008 | JP |
2010523167 | Jul 2010 | JP |
2017127653 | Jul 2017 | JP |
2017525451 | Sep 2017 | JP |
2018153569 | Oct 2018 | JP |
2019525276 | Sep 2019 | JP |
2019530489 | Oct 2019 | JP |
200740148 | Oct 2007 | TW |
M452390 | May 2013 | TW |
9800193 | Jan 1998 | WO |
9956803 | Nov 1999 | WO |
0030705 | Jun 2000 | WO |
0032258 | Jun 2000 | WO |
0172354 | Oct 2001 | WO |
2002015954 | Feb 2002 | WO |
0243866 | Jun 2002 | WO |
02082990 | Oct 2002 | WO |
03016882 | Feb 2003 | WO |
03039362 | May 2003 | WO |
03045233 | Jun 2003 | WO |
2004043250 | May 2004 | WO |
04092715 | Oct 2004 | WO |
2005051170 | Jun 2005 | WO |
2005082436 | Sep 2005 | WO |
05110601 | Nov 2005 | WO |
2005113036 | Dec 2005 | WO |
2006053007 | May 2006 | WO |
2007064835 | Jun 2007 | WO |
2007078937 | Jul 2007 | WO |
2008024810 | Feb 2008 | WO |
2008029403 | Mar 2008 | WO |
2008094249 | Aug 2008 | WO |
2008133702 | Nov 2008 | WO |
2009045462 | Apr 2009 | WO |
2009049252 | Apr 2009 | WO |
2009066287 | May 2009 | WO |
2009066288 | May 2009 | WO |
2009098648 | Aug 2009 | WO |
2009134380 | Nov 2009 | WO |
2010053702 | May 2010 | WO |
2010132077 | Nov 2010 | WO |
2010138848 | Dec 2010 | WO |
2010147659 | Dec 2010 | WO |
2011095483 | Aug 2011 | WO |
2012045667 | Apr 2012 | WO |
2012108959 | Aug 2012 | WO |
2012134588 | Oct 2012 | WO |
2012177353 | Dec 2012 | WO |
2012178134 | Dec 2012 | WO |
2013078200 | May 2013 | WO |
2013134486 | Sep 2013 | WO |
20130149186 | Oct 2013 | WO |
2013177565 | Nov 2013 | WO |
2013182321 | Dec 2013 | WO |
2014109898 | Jul 2014 | WO |
2014110538 | Jul 2014 | WO |
2014194183 | Dec 2014 | WO |
2015056259 | Apr 2015 | WO |
2015061493 | Apr 2015 | WO |
2015073211 | May 2015 | WO |
2015081337 | Jun 2015 | WO |
2015187366 | Dec 2015 | WO |
2016004088 | Jan 2016 | WO |
2016022650 | Feb 2016 | WO |
2016041873 | Mar 2016 | WO |
2016089702 | Jun 2016 | WO |
2016141082 | Sep 2016 | WO |
2016161254 | Oct 2016 | WO |
2017004278 | Jan 2017 | WO |
2017091624 | Jun 2017 | WO |
2017105600 | Jun 2017 | WO |
2017184988 | Oct 2017 | WO |
2017205816 | Nov 2017 | WO |
2018009614 | Jan 2018 | WO |
2018067748 | Apr 2018 | WO |
2018120104 | Jul 2018 | WO |
2018136799 | Jul 2018 | WO |
2018204568 | Nov 2018 | WO |
2019077482 | Apr 2019 | WO |
2019094440 | May 2019 | WO |
2019213493 | Nov 2019 | WO |
2019246381 | Dec 2019 | WO |
2020081393 | Apr 2020 | WO |
2021011738 | Jan 2021 | WO |
Entry |
---|
US 5,954,699 A, 09/1999, Jost et al. (withdrawn) |
Kohdaei et al., “Physiological Closed-Loop Contol (PCLC) Systems: Review of a Modern Frontier in Automation”, IEEE Access, IEEE, USA, vol. 8, Jan. 20, 2020, pp. 23965-24005. |
E. Atlas et al., “MD-Logic Artificial Pancreas System: A pilot study in adults with type 1 diabetes”, Diabetes Care, vol. 33, No. 5, Feb. 11, 2010, pp. 1071-1076. |
Anonymous: “Fuzzy control system”, Wikipedia, Jan. 10, 2020. URL: htlps://en.wikipedia.org/w/index.php?title=Fuzzy_conlrol_system&oldid=935091190. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/022694, dated Jun. 25, 2021, 13 pages. |
Unger, Jeff, et al., “Glucose Control in the Hospitalized Patient,” Emerg. Med 36(9):12-18 (2004). |
Glucommander FAQ downloaded from https://adaendo.com/GlucommanderFAQ.html on Mar. 16, 2009. |
Finfer, Simon & Heritier, Stephane. (2009). The Nice-Sugar (Normoglycaemia in Intensive Care Evaluation and Survival Using Glucose Algorithm Regulation) Study: statistical analysis plan. Critical care and resuscitation : journal of the Australasian Academy of Critical Care Medicine. 11. 46-57. |
Letters to the Editor regarding “Glucose Control in Critically Ill Patients,” N Engl J Med 361: 1, Jul. 2, 2009. |
“Medtronic is Leading a Highly Attractive Growth Market,” Jun. 2, 2009. |
Davidson, Paul C., et al. “Glucommander: An Adaptive, Computer-Directed System for IV Insulin Shown to be Safe, Simple, and Effective in 120,618 Hours of Operation,” Atlanta Diabetes Associates presentation Nov. 16, 2003. |
Davidson, Paul C., et al. “Pumpmaster and Glucommander,” presented at the MiniMed Symposium, Atlanta GA, Dec. 13, 2003. |
Kanji S., et al. “Reliability of point-of-care testing for glucose measurement in critically ill adults,” Critical Care Med, vol. 33, No. 12, pp. 2778-2785, 2005. |
Krinsley James S., “Severe hypoglycemia in critically ill patients: Risk factors and outcomes,” Critical Care Med, vol. 35, No. 10, pp. 1-6, 2007. |
Samadi Sediqeh et al., “Automatic Detection and Estimation of Unannouced Meals for Multivariable Artificial Pancreas System”, Diabetis Technology & Therapeutics, vol. 20m No. 3, Mar. 1, 2018, pp. 235-246. |
Farkas et al. ““Single-Versus Triple-Lumen Central Catheter-Related Sepsis: A Prospective Randomized Study in a Critically Ill Population”” The American Journal of Medicine September 1992vol. 93 p. 277-282. |
Davidson, Paul C., et al., A computer-directed intravenous insulin system shown to be safe, simple, and effective in 120,618 h of operation, Diabetes Care, vol. 28, No. 10, Oct. 2005, pp. 2418-2423. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/016283, dated Jun. 2, 2021, 15 pages. |
Gorke, A. “Microbial contamination of haemodialysis catheter connections.” EDTNA/ERCA journal (English ed.) vol. 31,2 (2005): 79-84. doi:10.1111/j.1755-6686.2005.tb00399.x. |
Lovich et al. “Central venous catheter infusions: A laboratory model shows large differences in drug delivery dynamics related to catheter dead volume” Critical Care Med 2007 vol. 35, No. 12. |
Van Den Berghe, Greet, M.D., Ph.D., et al., Intensive Insulin Therapy in Critically Ill Patients, The New England Journal of Medicine, vol. 345, No. 19, Nov. 8, 2001, pp. 1359-1367. |
Templeton et al, “Multilumen Central Venous Catheters Increase Risk for Catheter-Related Bloodstream Infection: Prospective Surveillance Study” Infection 2008; 36: 322-327. |
Wilson, George S., et al., Progress toward the Development of an Implantable Sensor for Glucose, Clin. Chem., vol. 38, No. 9, 1992, pp. 1613-1617. |
Yeung et al. “Infection Rate for Single Lumen v Triple Lumen Subclavian Catheters” Infection Control and Hospital Epidemiology, vol. 9, No. 4 (Apr. 1988) pp. 154-158 The University of Chicago Press. |
International Search Report and Written Opinion, International Application No. PCT/US2010/033794 dated Jul. 16, 2010 (OPTIS.247VPC). |
International Search Report and Written Opinion in PCT/US2008/079641 (Optis.203VPC) dated Feb. 25, 2009. |
Berger, ““Measurement of Analytes in Human Serum and Whole Blood Samples by Near-Infrared Raman Spectroscopy,”” Ph.D. Thesis, Massachusetts Institute of Technology, Chapter 4, pp. 50-73, 1998. |
Berger, “An Enhanced Algorithm for Linear Multivariate Calibration,” Analytical Chemistry, vol. 70, No. 3, pp. 623-627, Feb. 1, 1998. |
Billman et al.,“Clinical Performance of an in line Ex-Vivo Point of Care Monitor: A Multicenter Study,” Clinical Chemistry 48: 11, pp. 2030-2043, 2002. |
Widness et al., “Clinical Performance on an In-Line Point-of-Care Monitor in Neonates”; Pediatrics, vol. 106, No. 3, pp. 497-504, Sep. 2000. |
Finkielman et al., “Agreement Between Bedside Blood and Plasma Glucose Measurement in the ICU Setting”; retrieved from http://www.chestjournal.org; Chest/127/5/May 2005. |
Fogt, et al., “Development and Evaluation of a Glucose Analyzer for a Glucose-Controlled Insulin Infusion System (Biostator)”; Clinical Chemistry, vol. 24, No. 8, pp. 1366-1372, 1978. |
Vonach et al., “Application of Mid-Infrared Transmission Spectrometry to the Direct Determination of Glucose in Whole Blood,” Applied Spectroscopy, vol. 52, No. 6, 1998, pp. 820-822. |
Muniyappa et al., “Current Approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage,” AJP-Endocrinol Metab, vol. 294, E15-E26, first published Oct. 23, 2007. |
R Anthony Shaw, et al., “Infrared Spectroscopy in Clinical and Dianostic Analysis,” Encyclopedia of Analytical Chemistry, ed. Robert A. Meyers, John Wiley & Sons, Ltd., pp. 1-20, 2000. |
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2019/053603, dated Apr. 8, 2021, 9 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2019/053603, dated Jan. 7, 2020, 16 pages. |
Dassau et al., “Detection of a meal using continuous glucose monitoring: Implications for an artificial [beta]-cell.” Diabetes Care, American Diabetes Association, Alexandria, VA, US, 31(2):295-300 (2008). |
Cameron et al., “Probabilistic Evolving Meal Detection and Estimation of Meal Total Glucose Appearance Author Affiliations”, J Diabetes Sci and Tech,vol., Diabetes Technology Society ;(5):1022-1030 (2009). |
Lee et al., “A closed-loop artificial pancreas based on model predictive control: Human-friendly identification and automatic meal disturbance rejection”, Biomedical Signal Processing and Control, Elsevier, Amsterdam, NL, 4(4):1746-8094 (2009). |
Montaser Eslam et al., “Seasonal Local Models for Glucose Prediction in Type 1 Diabetes”, IEE Journal of Biomedical and Health Informatics, IEEE, Piscataway, NJ, USA, vol. 24, No. 7, Jul. 2020, pp. 2064-2072. |
An Emilia Fushimi: “Artificial Pancreas: Evaluating the ARG Algorithm Without Meal Announcement”, Journal of Diabetes Science and Technology Diabetes Technology Society, Mar. 22, 2019, pp. 1025-1043. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/017441, dated May 25, 2021, 12 pages. |
International Search Report and Written Opinion for the InternationalPatent Application No. PCT/US2021/017664, dated May 26, 2021, 16 pages. |
Mirko Messori et al: “Individualized model predictive control for the artificial pancreas: In silico evaluation of closed-loop glucose control”, IEEE Control Systems, vol. 38, No. 1, Feb. 1, 2018, pp. 86-104. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/017662, dated May 26, 2021, 14 pages. |
Anonymous: “Reservoir Best Practice and Top Tips” Feb. 7, 2016, URL: https://www.medtronic-diabetes.co.uk/blog/reservoir-best-practice-and-top-tips, p. 1. |
Gildon Bradford: “InPen Smart Insulin Pen System: Product Review and User Experience” Diabetes Spectrum, vol. 31, No. 4, Nov. 15, 2018, pp. 354-358. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/016050, dated May 27, 2021, 16 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2020/065226, dated May 31, 2021, 18 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/017659, dated May 31, 2021, 13 pages. |
Samadi Sediqeh et al., “Meal Detection and Carbohydrate Estimation Using Continuous Glucose Sensor Data” IEEE Journal of Biomedical and Health Informatics, IEEE, Piscataway, NJ, USA, vol. 21, No. 3, May 1, 2017, pp. 619-627. |
Khodaei et al., “Physiological Closed-Loop Contol (PCLC) Systems: Review of a Modern Frontier in Automation”, IEEE Access, IEEE, USA, vol. 8, Jan. 20, 2020, pp. 23965-24005. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2020/052125, dated Aug. 12, 2020, 15 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2020/050332, dated Sep. 12, 2020, 12 pages. |
European Patent Office, “Notification of Transmittal of the ISR and the Written Opinion of the International Searching Authority, or the Declaration,” in PCT Application No. PCT/GB2015/050248, dated Jun. 23, 2015, 12 pages. |
European Search Report for the European Patent Application No. 21168591.2, dated Oct. 13, 2021, 04 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/041954, dated Oct. 25, 2021, 13 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/047771, dated Dec. 22, 2021, 11 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/052855, dated Dec. 22, 2021, 11 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2022/013470, dated May 6, 2022, 14 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2022/013473, dated May 6, 2022, 13 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2022/019079, dated Jun. 2, 2022, 14 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2022/018453, dated Jun. 2, 2022, 13 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US22/018700, dated Jun. 7, 2022, 13 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US22/019080, dated Jun. 7, 2022, 14 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US22/019664, dated Jun. 7, 2022, 14 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US21/060618, dated Mar. 21, 2022, 15 pages. |
Herrero Pau et al: “Enhancing automatic closed-loop glucose control in type 1 diabetes with an adaptive meal bolus calculator—in silicoevaluation under intra-day variability”, Computer Methods and Programs in Biomedicine, Elsevier, Amsterdam, NL, vol. 146, Jun. 1, 2017 (Jun. 1, 2017), pp. 125-131, XP085115607, ISSN: 0169-2607, DOI:10.1016/J.CMPB.2017.05.010. |
Marie Aude Qemerais: “Preliminary Evaluation of a New Semi-Closed-Loop Insulin Therapy System over the prandial period in Adult Patients with type I diabetes: the WP6. 0 Diabeloop Study”, Journal of Diabetes Science and Technology Diabetes Technology Society Reprints and permissions, Jan. 1, 2014, pp. 1177-1184, Retrieved from the Internet: URL:http://journals.sagepub.com/doi/pdf/10.1177/1932296814545668 [retrieved on Jun. 6, 2022] chapter “Functioning of the Algorithm” chapter “Statistical Analysis” p. 1183, left-hand column, line 16-line 23. |
Anonymous: “Kernel density estimation”, Wikipedia, Nov. 13, 2020 (Nov. 13, 2020), pp. 1-12, XP055895569, Retrieved from the Internet: URL:https://en.wikipedia.org/w/index.php?title=Kernel_density_estimation&oldid=988508333 [retrieved on Jun. 6, 2022]. |
Anonymous: “openaps / oref0 /lib/determine-basal-js”, openaps repository, Nov. 9, 2019 (Nov. 9, 2019), pp. 1-17, XP055900283, Retrieved from the Internet: URL:https://github.com/openaps/oref0/blob/master/lib/determine-basal/determine-basal.js [retrieved on Jun. 6, 2022] line 116-line 118, line 439-line 446. |
Anonymous: “AndroidAPS screens”, AndroidAPS documentation, Oct. 4, 2020 (Oct. 4, 2020), pp. 1-12, XP055894824, Retrieved from the Internet: URL:https://github.com/openaps/AndroidAPSdocs/blob/25d8acf8b28262b411b34f416f173ac0814d7e14/docs/EN/Getting-Started/Screenshots.md [retrieved on Jun. 6, 2022]. |
Kozak Milos et al: “Issue #2473 of AndroidAPS”, MilosKozak / AndroidAPS Public repository, Mar. 4, 2020 (Mar. 4, 2020), pp. 1-4, XP055900328, Retrieved from the Internet: URL:https://github.com/MilosKozak/AndroidAPS/issues/2473 [retrieved on Jun. 6, 2022]. |
Medication Bar Code System Implementation Planning Section I: A Bar Code Primer for Leaders, Aug. 2013. |
Medication Bar Code System Implementation Planning Section II: Building the Case for Automated Identification of Medications, Aug. 2013. |
Villareal et al. (2009) in: Distr. Comp. Art. Intell. Bioninf. Soft Comp. Amb. Ass. Living; Int. Work Conf. Art. Neural Networks (IWANN) 2009, Lect. Notes Comp. Sci. vol. 5518; S. Omatu et al. (Eds.), pp. 870-877. |
Fox, Ian G.; Machine Learning for Physiological Time Series: Representing and Controlling Blood Glucose for Diabetes Management; University of Michigan. ProQuest Dissertations Publishing, 2020. 28240142. (Year: 2020). |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2022/012896, dated Apr. 22, 2022, 15 pages. |
Anonymous: “Artificial pancreas—Wikipedia”, Mar. 13, 2018 (Mar. 13, 2018), XP055603712, Retrieved from the Internet: URL: https://en.wikipedia.org/wiki/Artificial_pancreas [retrieved on Jul. 9, 2019] section “Medical Equipment” and the figure labeled “The medical equipment approach to an artifical pancreas”. |
Kaveh et al., “Blood Glucose Regulation via Double Loop Higher Order Sliding Mode Control and Multiple Sampling Rate.” Paper presented at the proceedings of the 17th IFAC World Congress, Seoul, Korea (Jul. 2008). |
Dassau et al., “Real-Time Hypoglycemia Prediction Suite Using Contineous Glucose Monitoring,” Diabetes Care, vol. 33, No. 6, 1249-1254 (2010). |
International Search Report and Written Opinion for International Patent Application No. PCT/US17/53262, dated Dec. 13, 2017, 8 pages. |
Van Heusden et al., “Control-Relevant Models for Glucose Control using a Priori Patient Characteristics”, IEEE Transactions on Biomedical Engineering, vol. 59, No. 7, (Jul. 1, 2012) pp. 1839-1849. |
Doyle III et al., “Run-to-Run Control Strategy for Diabetes Management.” Paper presented at 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey. (Oct. 2001). |
Bequette, B.W., and Desemone, J., “Intelligent Dosing Systems”: Need for Design and Analysis Based on Control Theory, Diabetes Technology and Therapeutics 9(6): 868-873 (2004). |
Parker et al., “A Model-Based Agorithm for Blood Gucose Control in Type 1 Diabetic Patients.” IEEE Transactions on Biomedical Engineering, 46 (2) 148-147 (1999). |
International Search Report and Written Opinion for International Patent Application No. PCT/US2017/015601, dated May 16, 2017, 12 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2018/018901, dated Aug. 6, 2018, 12 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2018/052467, dated Jan. 4, 2019, 13 pages. |
“How to Create a QR Code that Deep Links to Your Mobile App”, Pure Oxygen Labs, web<https://pureoxygenlabs.com/how-to-create-a-qr-codes-that-deep-link-to-your-mobile-app/> Year:2017. |
“Read NFC Tags with an iPHone App on iOS 11”, GoToTags, Sep. 11, 2017, web <https://gototags.com/blog/read-nfc-tags-with-an-iphone-app-on-ios-11/>. (Year:2017). |
International Search Report and Written Opinion for International Patent Application No. PCT/US2016/063350, dated Mar. 27, 2017, 9 pages. |
Extended Search Report dated Aug. 13, 2018, issued in European Patent Application No. 16753053.4, 9 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US16/18452, dated Apr. 29, 2015, 9 pages. |
International Preliminary Report on Patentability dated Aug. 31, 2017, issued in PCT Patent Application No. PCT/US2016/018452, 7 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/055862, dated Mar. 11, 2020. |
International Search Report and Written Opinion for Application No. PCT/US2019/030652, dated Sep. 25, 2019, 19 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/051027, dated Jan. 7, 2022, 16 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/052372, dated Jan. 26, 2022, 15 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/046607, dated Jan. 31, 2022, 20 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/055745, dated Feb. 14, 2022, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20210205535 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
62957620 | Jan 2020 | US |