The present invention is directed to a method and apparatus for controlling an automatic transmission in a motor vehicle, based on present and future road and traveling parameters.
In conventional automatic transmissions, including those used in heavy commercial vehicles, gear selection and shifting strategy are based on the current instantaneous conditions which affect the vehicle. Principal among these are the earth's gravitational pull and current slope of the road surface. Thus, if for example the vehicle is currently traveling on a downhill grade, gravitational forces tend to cause it to accelerate, while on uphill grades, the vehicle tends to decelerate. Ordinarily, this means that the transmission shifts to a lower gear on uphill road segments, in order to accommodate the gravitational forces that oppose forward movement of the vehicle. On the other hand, on downward slopes, the transmission has two alternatives: it may shift to a lower gear in order to slow the vehicle, and prevent it from speeding; or under some circumstances, when motive force from the engine is not needed (such as in the case of gentle downward slope), the automatic transmission may shift into neutral in order to conserve fuel.
In all events, however, in conventional automatic transmission controls, decisions regarding gear selection and gear shifting are made taking into account only the current operating circumstances of the vehicle, including its speed and the gravitational force that pulls the vehicle downhill. Thus, if the vehicle enters a short, but steep, downhill segment, the transmission is likely to shift to a lower gear, only to correct its action a few meters later when the road levels out. Or if the transmission shifts into neutral on a short gentle downward slope, it may shortly thereafter shift back into gear when the current instantaneous operating conditions change (that is, the slope of the road becomes steep, the road becomes substantially level, or the vehicle enters an uphill segment). Such frequent and unnecessary shifting is wasteful in that it increases fuel costs and causes additional wear on the engine and transmission. It is also inconvenient and uncomfortable for the driver in terms of unnecessary shifting and additional noise.
A feature known as Eco-Roll™, which is currently commercially available, is described in Commercial Motor, 27 February-5 March edition. The Eco-Roll™ system is activated when the vehicle cruise control is engaged and the transmission is operated in the full auto mode. Under certain defined circumstances it effectively disengages the gear box by putting the splitter into neutral, allowing the vehicle to “free wheel” and save fuel. In particular, when the vehicle engine control unit determines that there is no current need for either motive power or engine braking (neither the brake pedal nor the accelerator pedal is depressed) and certain other conditions are met, it engages Eco-Roll™. The system is thereafter deactivated whenever the driver signals a need for engine power or braking, by depressing either the accelerator or brake pedal or engaging the vehicle engine brake. The gearbox is thus once again engaged.
As with other prior art transmission controls, however, the Eco-Roll system is responsive only to currently existing driving conditions, with decisions regarding automatic engagement or disengagement of the gear box being made based on the status of certain vehicle control inputs which are manipulated by the driver. Moreover, driver intervention is required (in the form of manipulation of the brake or accelerator pedals, etc.) in order to return the transmission gearbox from a disengaged state to an engaged state.
Published U.S. patent application No. 2004-0068359A1 discloses a predictive cruise control system which utilizes information about the terrain ahead of the vehicle in order to control its speed. For this purpose, a vehicle operating cost function is defined, based on a plurality of environmental parameters, vehicle parameters, vehicle operating parameters and route parameters. As the vehicle proceeds, an onboard computer iteratively calculates optimal vehicle parameters for controlling the vehicle throttle in such a way as to maintain the speed of the vehicle within a speed band.
One object of the present invention is to provide an automatic transmission control system which avoids unnecessary gear changes on routes with rapidly changing topography.
Another object of the invention is to improve the performance of the vehicle transmission on downhill road segments, in terms of fuel economy, wear on the transmission and brakes, and operator comfort.
Another object of the invention is to provide such an automatic transmission control system which takes into account both present and predicted vehicle operating parameters in order to select an appropriate gear and/or to control gear shifting of the transmission, especially (but not necessarily exclusively) on downhill road segments.
Still another object of the invention is to provide an automatic transmission control system that uses information regarding the road ahead of the vehicle to control gear selection and shifting.
These and other objects and advantages are achieved by the method and apparatus according to the invention, in which a vehicle simulation device uses information regarding current vehicle position and operating parameters together with map information regarding a route being traveled by the vehicle to project the dynamic longitudinal behavior of the vehicle, including vehicle velocity for the road that lies ahead. An evaluation module then utilizes speed profile information generated in this manner to develop a desired torque. Finally, a shift strategy module converts the desired torque into a desired gear and a shifting time point, such that the transmission either shifts into neutral or shifts to the appropriate gear.
As the road profile is taken into account, the action taken is appropriate for downhill. Thus, for example, if current conditions alone would call for a downshift, but the slope of the road changes substantially in a few meters, the system according to the invention would not ordinarily downshift. In this manner unnecessary gear shifting is avoided, so that fuel consumption and wear on the system are reduced, while ride comfort of downhill traveling is increased.
As is apparent to those skilled in the art, the predictive transmission control system according to the invention may be implemented as separate hardware components as shown by way of the illustrative examples herein. It may also be implemented, however, in the form of software modules which are run on either a centralized or distributed vehicle control system; or it may be implemented by a combination of hardware and software components, all of which are within the scope of the invention.
Other objects, advantages and novel features of the present invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings.
Within the predictive control module, a vehicle simulation unit 5 utilizes the current position information from the position module 2 to retrieve road information from the map module 3, based on map data stored in the RAM 4. The latter information, including road gradient for the route forward of the vehicle is then used, together with current gear data CG and current vehicle velocity information VV, to compute the vehicle velocity for the road that lies ahead as a function of the vehicle's forward movement. That is, the vehicle simulation unit 5 models the longitudinal dynamic behavior of the vehicle based on this information, using conventional and well known equations of motion. For this purpose, it is assumed that the vehicle cruise control remains operative.
Information regarding the projected vehicle dynamic behavior is then provided to an evaluation module 6 in the form of speed profile calculations SP. The evaluation module evaluates the speed profile calculations and computes a resulting desired torque DT for the road ahead for which the map information has been evaluated in the vehicle simulation unit 5.
Finally, the shift strategy module 7 used the desired torque signal DT to determine desired gear information DG and a shifting time point STP, which it sends to the automatic transmission 9 (
The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.
This application is related to co-pending U.S. patent application Ser. No. 10/264,253, filed Oct. 4, 2002.