The present disclosure relates generally to control systems for electric motors, and specifically to control systems for permanent magnet AC motor drawworks.
While undergoing a drilling operation, a drilling rig utilizes a drawworks to raise and lower pieces of oilfield equipment. For example, the drawworks is used to raise and lower the interconnected lengths of drill pipe, casing, or the like, herein referred to as a tubular string, into and out of the wellbore. The tubular string, as well as additional connected equipment such as a top drive, travelling block, tubular elevator, etc., may be very heavy. The ability to precisely control movement of the drawworks may be critical to prevent damage to equipment as well as maintain a safe work environment for workers on the drilling rig.
Typical drawworks may be run using electric motors such as alternating current electric motors. AC electric motors rely on alternating currents passed through induction windings within the stator to cause rotation of the rotor. So-called three phase AC motors include three matched sets of windings positioned radially about the stator. By supplying sinusoidal AC power to each of the sets of windings such that each set receives an alternating current offset by 120 degrees, a continuously rotating electromagnetic field can be induced by the stator. The rotation of the electromagnetic field in turn causes rotation of the rotor.
In a permanent magnet AC motor, the rotor includes one or more permanent magnets which, in response to the rotating electromagnetic field, cause the rotor to rotate. Alternatively, if the rotor is rotated and no AC power is supplied to the windings of the stator, the movement of the magnetic field of the permanent magnets may induce voltage in the windings according to Lenz's Law.
The present disclosure provides for a predictive landing failsafe system. The predictive landing failsafe system may include an AC motor. The AC motor may be powered by one or more phases of AC power supplied through two or more terminals of the AC motor. The predictive landing failsafe system may also include a predictive landing failsafe controller. The predictive landing failsafe controller may include a contactor, the contactor having a normal operating position and a failsafe position, the contactor positioned to supply power to each phase of the AC motor when in the normal operating position and to electrically connect at least two terminals of the AC motor when in the failsafe position. The contactor may be positioned to be automatically transitioned from the normal operating position to the failsafe position in response to a selected condition.
The present disclosure also provides for a hoist. The hoist may include a drum. The hoist may also include an AC motor. The AC motor may be powered by one or more phases of AC power supplied through two or more terminals of the AC motor. The AC motor may be positioned to rotate a shaft, the shaft coupled to the drum. The hoist may also include a predictive landing failsafe controller. The predictive landing failsafe controller may include a contactor, the contactor having a normal operating position and a failsafe position, the contactor positioned to electrically couple a power source to each phase of the AC motor when in the normal operating position and to electrically connect at least two terminals of the AC motor when in the failsafe position. The contactor may be positioned to be automatically transitioned from the normal operating position to the failsafe position in response to a selected condition.
The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
In some embodiments of the present disclosure, the electrical equipment may include AC motor 111. AC motor 111 may, in some embodiments, be a permanent magnet AC motor, positioned to rotate in response to AC power supplied to AC motor 111. In some embodiments, AC power may be supplied using VFD controller 113 to control inverter 115. Inverter 115 may be positioned to provide pulse width modulated AC current to AC motor 111 as controlled by VFD controller 113. One having ordinary skill in the art with the benefit of this disclosure will understand that rectifier 107, VFD controller 113, and inverter 115 need not be used to power AC motor 111. Instead, AC power may be supplied directly from generator 101. Additionally, one having ordinary skill in the art with the benefit of this disclosure will understand that AC power may be supplied to oil rig electrical system 100 by, for example, a municipal power supply.
In some embodiments, AC motor 111 may be a single or multi-phase AC motor. As understood in the art, the number of phases of an AC motor corresponds to the number of windings or winding phase groups of AC motor. In a single phase AC motor, one phase of AC power is supplied to the windings of the AC motor through a single conductor, with a neutral conductor electrically coupled to the opposite ends of the windings. In a three-phase AC motor, such as depicted in
As depicted in
In some embodiments, when contactor 121 decouples conductors 117a-c from AC motor 111, contactor 121 is positioned to instead short between at least two terminals A, B, C of AC motor 111. If AC power is not supplied to AC motor 111, as the permanent magnets on the rotor of AC motor 111 rotate, the electromagnetic flux on each winding group varies and, according to Lenz's Law, electricity is induced into the windings. This generated electricity is known as back EMF. When at least two terminals A, B, C of AC motor 111 are shorted, the back EMF of each winding group creates a short circuit current. The magnetic field of the permanent magnets of the rotor of AC motor 111 are opposed by the induced electromagnetic field, and a resultant braking or stopping force is imparted on the rotor. This braking or stopping force is known as dynamic braking
As depicted in
In some embodiments, the short circuit current previously described may, for example, cause an abrupt and immediate stoppage of the rotor of AC motor 111. In some embodiments, as depicted in
In some embodiments of the present disclosure, predictive landing failsafe system 119 may be coupled to oil rig electrical system 100 such that when power is being supplied, contactor 121 remains in the normal operating mode. In response to a certain condition, predictive landing failsafe system 119 may be positioned to cause contactor 121 to trip into the failsafe position, thus halting the rotation of AC motor 111 immediately. In some embodiments, the certain condition may be a power outage or blackout on oil rig electrical system 100. For example, in some embodiments, contactor 121 may be held in the normal operating position by a spring-opposed electromagnet (not shown) powered by oil rig electrical system 100. If a blackout occurs, the electromagnetic attraction between the electromagnet and contactor 121 may cease, allowing the spring to move the contactor into the failsafe position. In some embodiments, the condition may be a manual override triggered by an operator, such as in an “E-stop” condition.
In some embodiments of the present disclosure, AC motor 111 may be used as part of a piece of oilfield equipment. With reference to
As depicted in
As an example, a lowering operation for tubular string 215 will be described. Once tubular string 215 is properly coupled to travelling block 211, wireline 213 may be extended by drawworks 201. As wireline 213 extends, travelling block 211 lowers, causing tubular string 215 and any other equipment such as top drive 203 to be lowered. During normal operation, predictive landing failsafe system 119 may remain in the normal operating mode. In the event of a power outage or other condition, predictive landing failsafe system 119 may trip into the failsafe mode, causing rotation of AC motor 111, and thus rotation of drawworks 201 to slow or stop. As drawworks 201 slows or stops, wireline 213′s extension is slowed or stopped, causing the descent of tubular string 215 to likewise slow or stop. By automatically triggering this slowing or stoppage of tubular string 215 without the need for additional power or operator input, damage to, for example, top drive 203, travelling block 211, or tubular string 215 and any associated components may be prevented. Additionally, damage to a wellbore or to the seabed for offshore drilling operations may likewise be prevented. Furthermore, safety of rig personnel may be increased and injuries may be prevented.
The foregoing outlines features of several embodiments so that a person of ordinary skill in the art may better understand the aspects of the present disclosure. Such features may be replaced by any one of numerous equivalent alternatives, only some of which are disclosed herein. One of ordinary skill in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. One of ordinary skill in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
This application is a non-provisional application which claims priority from U.S. provisional application No. 61/952,452, filed Mar. 13, 2014, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61952452 | Mar 2014 | US |