Subject matter disclosed herein pertains to the assessment and maintenance of surface markings for compliance with applicable regulations.
The use of surface markings placed on paved portions of highways and airfields to improve visibility and provide navigation guidance is well known. In the United States, the Federal Highway Administration (FHWA), a division of the U.S. Department of Transportation (USDOT) that specializes in highway transportation, oversees Federal-aid Highway Program funds used for constructing and maintaining Interstate Highways, U.S. Highways, and most state highways. The FHWA also publishes the Manual on Uniform Traffic Control Devices (MUTCD), which sets forth standards for road surface markings, traffic signs, and traffic signals, and Standard Highway Signs, which documents design specifications for pavement markings.
With respect to runway markings and other airfield markings, the Federal Aviation Authority (“FAA”) has established regulations, set forth in Title 14 of the Code of Federal Regulations (CFR), for airfield runway markings. Sections 139.1-139.343 of Title 14, often referred to simply as Part 139, requires most airports that serve aircraft with more than 30 seats to obtain an airport operating certificate indicating the airport's compliance with various FAA regulations. Notable with respect to subject matter disclosed herein, Part 139 requires each certificated airport to provide and maintain marking systems including specified runway markings, centerlines and appropriate edge markings for taxiways, holding position markings, and critical area markings for the airport's instrument landing system (ILS). See, 14 CFR § 139.311.
The FAA supplements Title 14 with an extensive volume of Advisory Circular documents setting forth the FAA's interpretation of Title 14 regulations. Advisory Circular 15/5340-1M (the “Marking Standards”) provides FAA guidance pertaining to surface marking regulations. Although compliance with the Marking Standards is not strictly required to obtain an operating certificate under Part 139, compliance with the Markings Standards constitutes compliance with the marking provisions of Part 139. In addition, compliance with the Marking Standards is mandatory for airport projects funded under one or more federal grant assistance programs including, but not limited to, the Airport Improvement Program and the Passenger Facility Charge program. Accordingly, owners and operators of certificated airports in the U.S. are understandably highly motivated to achieve and maintain compliance with the Marking Standards and, in other countries, commercial airports are generally required to provide and maintain comparable airfield markings in compliance with comparable regulations.
Unfortunately, however, conventional methods for assessing surface markings generally require the on-site acquisition of retroreflectivity data via direct measurement of retroreflectivity values taken at each of a potentially large number of surface markings. Acquiring retroreflectivity values on site is incredibly challenging. With respect to airfield markings, as an example, all but one or two of the 62 U.S. airports classified by the FAA as large hub or medium hub airports in 2017 maintains at least two operational runways and many of these maintain four or more operational runways and each operational runway may have as many as fifteen runway markings. In addition, because each of the runway markings described in the Marking Standards includes two or more reflective elements and each reflective element has a square footage “footprint” that is large, a marking's retroreflectivity compliance can rarely be satisfactorily determined with a single retroreflectivity reading and generally requires multiple readings. Moreover, because a runway on which on-site retroreflectivity assessment is being performed cannot be used for takeoff and landing operations, most such assessments must be performed during off-peak hours, further adding to the cost. Analogous issues apply to the assessment of surface markings on highways. Accordingly, it would be desirable to implement an assessment that does not necessarily require on-site measurements of the airfield's surface markings.
The following disclosure includes descriptions of exemplary and illustrative embodiments of surface marking subject matter. Unless expressly stated otherwise, descriptions of embodiments that refer to a specific type of surface marking do not preclude other embodiments that employ a different type of surface marking. As a non-limiting example, descriptions of embodiments that refer to highway markings, roadway markings, pavement markings, or the like do not preclude embodiments that employ airfield markings, runway markings, or the like. Conversely, descriptions of embodiments that refer to airfield markings, runway markings, or the like do not preclude embodiments that employ highway markings, roadway markings, pavement markings, or the like.
Subject matter disclosed herein includes, in one aspect, a predictive process for assessing surface markings and for scheduling surface marking assessments based, at least in part, on forecasted or predicted values of a conspicuity parameter such as a surface marking's retroreflectivity. The surface marking itself may include, as a non-limiting example, waterborne, epoxy, thermoplastic, or methyl methacrylate paint, embedded with glass beads applied to a paved substrate. The thickness, composition, color, and design of a surface marking may vary according to the intended use of the marking.
Applicable surface markings may include surface markings subject to compliance with one or more governmental regulations and standards. In the context of pavement markings on highways and other roadways, surface markings may include edge line markings, center line markings, In the context of runway markings within an airfield, surface markings may include threshold markings, landing point markings, touchdown zone markings, centerline markings, edge markings, and so forth.
Predictive assessment processes disclosed herein may determine predicted values of surface marking retroreflectivity in accordance with a retroreflectivity decay rate model that is derived as disclosed herein. In at least some implementations, a decay rate determination process begins by calculating an initial decay rate, also referred to herein as an empirical decay rate, based on a combination of time and one or more factors that contribute to retroreflectivity decay. In one non-limiting embodiment, an empirical decay rate is determined based on a traffic factor indicative of the quantity of vehicular traffic to which a marking is exposed.
In an illustrative embodiment, an initial retroreflectivity value is measured at time t1 and a subsequent retroreflectivity value is measured at time t2. If the retroreflectivity value measured at time t2 equals or approximates the minimum acceptable retroreflectivity value for the marking, such as a minimum retroreflectivity required by a statute, rule, regulation, or agency advisory, the interval of time between t1 and t2 (t1,t2) represents the empirically determined lifetime of the marking, from which an empirical decay rate may then be determined by dividing the empirically determined lifetime by the time interval (t1,t2). Alternatively, if the retroreflectivity value measured at time t2 differs from the minimum acceptable retroreflectivity value, i.e., (e.g., the marking has not yet reached its empirically determined lifetime, the empirically determined lifetime may be extrapolated or otherwise inferred from the measured retroreflectivity values before calculating the empirical decay rate.
The decay rate determination process may then proceed by identifying one or more additional or secondary factors that contribute to retroreflectivity decay. For each identified secondary factor, a factor-specific vector may then be determined or otherwise obtained. Each factor-specific vector may include two or more values associated with the corresponding secondary decay factor. As an illustrative example, if precipitation is identified as a secondary factor, a precipitation vector comprising 12 values may be obtained from historical meteorological data wherein each of the 12 values in the vector corresponds to a different calendar month and each of the 12 values is indicative of an amount of precipitation expected to fall during the corresponding month. In this example, the factor specific vector may be described as a time series of values and, while this example uses 12-value vectors based on the 12 months in a calendar year, vectors having more or fewer values corresponding to shorter or longer calendar intervals may be used. More generally, factor-specific N-dimensional arrays may be obtained for any one or more of the identified secondary factors where each element of the array corresponds to a particular combination of N components. Extending the example of precipitation as a secondary factor, a 2-dimensional array may be obtained wherein the two components of the array correspond to the amount of precipitation and the type of precipitation, e.g., rain, sleet, snow).
The factor specific vector obtained for any particular secondary factor may be used in conjunction with a marking's historical retroreflectivity data to regress or otherwise calculate factor-specific decay rate information, i.e., information indicative of a magnitude of the influence that the applicable secondary factor has on the marking's retroreflectivity decay rate. These factor-specific decay rates may then be used in combination to forecast, predict, or estimate one or more future retroreflectivity values for the marking. Future assessments of the markings may be scheduled based, at least in part, on the one or more future retroreflectivity values. In addition, each such assessment may require a significantly fewer number of on-site retroreflectivity measurements for at least two reasons. First, because the surface marking's expected retroreflectivity values have been reliably predicted, the on-site assessment may require only enough data points to confirm the validity of the predicted values. Second, because the retroreflectivity decay rate model may reveal differences in the decay rates of individual markings within a single site, assessments may selectively target only those markings nearing their expected end of life. For example, if the prevailing meteorological conditions at an airport result in non-uniform usage of the airport's runways, that phenomenon may be captured by one or more secondary factors and may produce significantly lower retroreflectivity decay rates for markings located on any lesser-used runways. Even with a single runway, the direction from which aircraft land may be heavily biased and the runway markings corresponding to the non-dominant landing direction may require less frequent assessments.
The identification and selection of the secondary factors for which factor-specific vectors are obtained may be an important and non-trivial aspect of the process. Non-limiting examples of factors that may be evaluated for inclusion in the retroreflectivity decay rate model include various meteorological factors such as a solar factor indicative of a marking's exposure to direct sunlight, one or more thermal factors indicative of ambient temperatures in proximity to the markings, which may include a high temperature factor and a sub-freezing or other low temperature factor, one or more precipitation factors indicative of rain, sleet, snow, a plowing factor indicative of how frequently a runway marking was plowed for snow, and a wind factor corresponding to a wind exposure of the marking. Other secondary factors that may be employed include a position factor indicative of a position of a marking relative to a reference point, one or more factors indicative of an orientation, altitude, length, and composition of the applicable roadway or runway, a rubber accumulation factor corresponding to tire rubber buildup on each marking, and so forth. The factors may still further include one or more factors indicative of a composition and type of marking, including one or more factors indicative of paint composition, thickness, and application method and one or more glass bead factors indicative of glass bead type, spacing or density, deposition method, and so forth. Additional secondary factors may include factors indicative of maintenance activity associated with each markings, such as rubber removal operations etc.
In at least some embodiments, the scheduling of future assessments may include determining a predicted lifetime of a particular runway marking based on one or more future retroreflectivity values relative to a threshold retroreflectivity value, e.g., a minimum acceptable value of retroreflectivity specified by an applicable regulatory agency, body, or organization. In addition, as previously suggested, the scheduling of one or more future assessments may include scheduling future assessments for a first group of one or more surface markings and a second group of one or more surface markings for different dates in accordance with different expected lifetimes of the markings based on different factor-specific decay rates associated with the markings.
In some embodiments, factor-specific vectors determined for one surface marking may be re-used when predicting future retroreflectivity values of other surface markings. These embodiments may be inherently faster and less costly to implement because the influence of the secondary factors is quantified for a single marking only. In other embodiments, factor specific vectors may be determined for each individual surface markings or for small or large groups of markings. While this approach may be more time consuming and costly, it may produce a more accurate decay rate model that could potentially more than compensate for the additional time required by scheduling fewer assessments.
The determination of empirical decay rate and factor specific vectors described in the preceding paragraphs may be referred to herein as a rule-based determination of decay rate. While some embodiments may end the retroreflectivity decay rate determination process after performing rule-based determination, other embodiments may be include additional operations including, as an example, executing a machine learning algorithm to further refine the decay model. In at least one such embodiment, a machine learning algorithm may include a principal component analysis to identify a set of linearly independent principal components.
The following detailed description, in conjunction with the accompanying drawings, in which like reference numbers indicate like features, provide a more complete understanding of disclosed subject matter and advantages thereof, wherein:
Methods and systems suitable for accurately predicting retroreflectivity values of surface markings applied to paved substrates are disclosed herein. Retroreflectivity values may be predicted based on a retroreflectivity decay rate model developed as described further below. Although the following description illustrates disclosed subject matter with references to retroreflectivity decay for paint-and-glass-bead markings applied to a paved substrate, such as a highway or runway, disclosed methods and systems for modeling retroreflectivity decay extend to substantially any suitable retroreflective surface marking.
The ability to accurately and reliably model retroreflectivity decay rates for surface markings as disclosed herein is commercially significant for a number of reasons. Conventional assessments of surface markings in which trained personnel, vehicles, and equipment are transported to potentially distant sites, is costly and includes many logistical challenges. In contrast, marking assessment methods disclosed herein, which can remotely generate reliable forecasts of retroreflectivity values for many surface markings, can potentially reduce assessment costs and improve assessment turnaround.
Accurately modeling reflectivity decay rates may include the identification and quantification of factors, also sometimes referred to herein as inputs, that contribute most significantly to the retroreflectivity decay of surface markings. Table 1 identifies an exemplary yet non-limiting list of potentially significant factors that may influence retroreflectivity decay rates for surface markings. Table 1 further indicates whether each factor may be more applicable to airfield markings or roadway markings.
As suggested by
Identifying one or more factors as airfield-specific factors may be significant at least because the existing body of research into retroreflectivity decay rates has focused primarily on roadway markings where some factors potentially important to airfield marking decay were dismissed or not considered. Any factor that influences one or more takeoff or landing parameters may have an impact on the retroreflectivity of airfield markings. It is well known, for example, that higher elevations require longer minimum runways, which may result in a different decay rate distributionism for the corresponding markings. This is an example of a decay rate mechanism that one of ordinary skill in the field of roadway markings would not have been likely to consider.
Acknowledging the possibility of decay rate factors that may be specific to airfield markings, there may still be important similarities in the retroreflectivity decay of roadway and highway markings. Accordingly, disclosed subject matter encompasses, in at least some embodiments, any suitable type of surface marking and any suitable type of corresponding paved surface.
The inclusion or exclusion of a particular factor from the exemplary factors listed in Table 1 is not intended to be dispositive or suggestive of a factor's potential influence on retroreflectivity decay rate. Moreover, some factors that are considered good candidates for influencing retroreflectivity decay rates may be omitted from consideration because of difficulties in assessing the factor. For example, the environmental conditions that prevailed when a marking was applied to the applicable surface may be known to influence the marking's useful lifetime, but it may be impractical if not impossible to obtain reliable inputs indicative of this parameter.
The accuracy or reliability of any forecasting model is highly influenced by the quantity and accuracy of training data, i.e., data points used to develop the model. In the context of disclosed methods for forecasting retroreflectivity values, it may be particular important to obtain data indicative of each marking's age (time since last painting), the type of glass beads, the paint application process used, and the resulting parameters of the markings base including thickness, composition, uniformity, hardness, brittleness, etc.
Developing a retroreflectivity decay model that encompasses airfield markings may be an iterative process which can initial results are refined as more data is available. In such cases, each iteration may produce commercially significant and valuable decay rate information.
Referring to the figures,
Visual reporting may be done by trained, qualified and experienced technicians 14 who perform a visual evaluation of the current condition of the airfield markings 12. The technician 14 may note deficiencies, critical needs, and opportunities for improvement and record it. It is anticipated that a vehicle 18 connected display 20 will provide information to the technician 14 such as an indication that the mobile unit 18 has recognized and is tracking a marking 12, directional, and positioning information. The detection unit 16, locating unit 39, and recording unit 40 make up a retroreflectivity module. The data collected is recorded in a computer memory.
A detailed report can be generated utilizing data collected from both visual inspections done by technicians combined with reflectivity testing done by detection units 16 from mobile units 18.
The benefits of visual inspections combined with the benefits of reflectivity testing provide an overview of the current condition of the airfield markings 12.
The output of a maintenance model for a section of airport marking utilizes the data collected for the report from technicians 14 and mobile units 16, an airport marking maintenance plan can be generated based upon priority and critical needs. It is anticipated that software could be used to develop models for planning future maintenance to ensure markings compliance. Such a system allows the airport administration to track deteriorating markings, and help develop long-term, such as multi-year, airfield maintenance plans. Such plans, when followed, could help the airport save money, extend pavement and marking lifecycles, enhance overall airfield safety, while keeping the airfield markings in compliance with applicable standards.
Although the graph of
The graph of
A benefit of the described system is that it is reproducible and data driven. As a practical matter, reducing marking maintenance costs by lengthening marking maintenance cycles for certain stretches of markings on airports or runways is only possible if the FAA approves the proposed lengthening of the marking maintenance cycle for different portions of different runways.
The system using data from numerous equivalent markings at equivalent runways at equivalent airports provides the robust historical numerical support needed to obtain such FAA approval.
Further, the described system of visually presenting its preventive maintenance, particularly in maps and graphs, will help airport procurement officers budget maintenance and obtain FAA approvals.
The first step 102 is, at a Time T−1, obtain and record the first runway's markings measurements at location L1. The next step I04 is to move the measurement module to additional locations along the marking and repeat the tests and obtain and record the measurements. The next step 106 is to return to the marking at a later time, whether a month later, 6 months later, a year later or years later and repeat the tests and obtain and record the measurements. The next step 110 is to extrapolate or plot a best fit line of the measurements over time for each of the markings locations were measurements were making. The next step 112 is to use the projections or extrapolated best fit lines in a comparison with the FAA's requirements or other requirements to determine when the markings at each separate marking location will fail to comply with the FAA's requirements or other requirements. The next step 114 is to compare the first airport runway's data and projections with other similar airport runway's historical data. The next step 116 is to determine the other runways historical deterioration paths toward and past the FAA requirements. The next step 120 is to adjust the first runway's projections to take into account the deterioration paths of the other similar runways marking measurements. This may be done by averaging, clustering, at best-fit line projection or other grouping analysis which takes advantage of the fact that deterioration of similar markings on similar airport runways are likely to have some similarities in their deterioration pathways over time when relevant factors such as use, local weather, type of aircraft etc. are factored in.
The next step 122 is to use the adjusted projections to determine when the first airport's individual runway locations will fail to continue to comply with the FAA's requirements. The next step 124 is to determine and compare cost-effective preventive maintenance programs which include removal and replacement of early failure runway markings locations before later failure runway marking locations. The next step 126 is to select an appropriate preventive maintenance program and apply it to runway locations which the described method has determined are likely to fail before other runway locations.
Applying this described method keeps the airport's runways in compliance with FAA regulations at a substantially reduced cost relative to the cost of removing and replacing all of the airports runways or the runway whenever any portion of the airports runways or the runway ceases to be in compliance with FAA standards.
In an embodiment, the detection unit records individual data points and the individual data points are identified on a GPS overlay to include retroreflectivity, latitude and longitude locate location. The runway markings are correlated and mapped with feature runway areas such as taxiing area, landing area, turn area etc. The captured runway marking data points, past and present, are correlated with past and present data points of similar portions of similar runways to produce runway marking measurement projections which incorporate historical relationships at other similar runways and featured areas. An algorithm for predictive modeling based on the features and characteristics project and extrapolate with required runway marking requirements to produce projected time periods for required repair and maintenance of runway markings, which projections are unique for different runway zones appropriate for maintenance and repair. Work plans are developed from the measurements, correlated measurements and relationship based extrapolations that identify and prioritize maintenance needs based on the assessment measurements to create optimal beneficial impact work plans, cost estimates and projections for runway marking maintenance activities.
After an assessment, a report can be prepared and delivered to the user regarding key findings and proposed maintenance schedules. The report includes long-term work plans developed to prioritize maintenance needs. The data may be compiled using mobile retroreflectivity measuring units on all longline and runway markings to ensure short closure times and minimize interruptions to airport operations.
In an embodiment, keeping a runway's markings compliant with airfield runway and taxiway marking retroreflectivity requirements is accomplished by a technician using a retroreflectivity module. “Retroreflectivity” refers to the property of an airfield marking to reflect light back to a pilot or aircraft operator. Retroreflective markings are used to increase the markings' visibility—particularly at night. Maintaining marking retroreflectivity is important for airfield safety. The retroreflectivity module is made up of a detection unit for measuring retroreflectivity of runway markings, a location unit for identifying the position of measured runway markings, and a recording unit for recording the retroreflectivity measurements and the position measurements. As used herein, a “location unit” can be any of devices or methods that are known in the art to determine location such as, but not limited to, a GPS unit, cellular signals, Wi-Fi geolocation, Spot-Fi, and Geolocation APL
Numerous characteristics of a marking are measured and recorded when testing an airfield's markings. The quantity and types of beads in a paint stripe produce different radiographic signatures. The width of airport runway markings are many times larger than most markings on most highways, making most highway marking recording devices inappropriate.
Airport runway hold bars are tens of feet wide. The color of each marking is recorded on the color spectrum. The width of a marking's paint may vary from the width of the markings reflected beads. The thickness and other significant characteristics of the marking are checked by the FAA.
These two widths must be recorded separately. Each of the FAA's many requirements for airport markings must be measured, located on the runway, correlated with the location, recorded, compared with past and future recordings of that airport markings measurement of that marking characteristic at that location, compared with past and future recordings of other equivalent airport markings measurements of that marking characteristic at equivalent locations, and the results projected and extrapolated to produce a predictive maintenance program with that particular marking at that location in the context of the airport's marking removal and replacement requirements generally. These measurements are collected and used in different statistical analyses to quantify a predictive maintenance program which will cost less to sufficiently maintain compliance with FAA requirements.
At a first time, or Time a, the technician drives a vehicle with the mounted detection unit along the runway using the retroreflectivity module to sequentially record multiple individual retroreflectivity measurements from paint markings on an airport runway and individual runway position measurements. The readings are recorded at a multiplicity of specified positions. The position of the detection unit is also noted at each individual retroreflectivity measurement. For Time a, the multiple individual retroreflectivity measurements and their corresponding multiple runway position measurements are paired at location a. As used herein when referring to corresponding marking and position measurements, “corresponding” means measurements taken at approximately the same location. Thus, a record for Time a is created, correlating the runway's markings' retroreflectivity measurements, or a retroreflectivity measurement, with each retroreflectivity measurement's runway position measurement, or a location. The pairing and storing of the Time a digital record of the correlated runway's markings' retroreflectivity measurements and their runway position measurements may be done in a general-purpose or special-purpose computer. The runway's Time a correlated markings' retroreflectivity measurements are compared with FAA or similar airport runway marking retroreflectivity requirements, where it can then be determined which, if any, of the runway's Time a markings' retroreflectivity measurements indicate runway markings which require greater retroreflectivity to be compliant with the FAA or similar airport runway marking retroreflectivity requirements.
At a later date, or Time b, anticipated to be at least six months after Time a, a technician again moves a retroreflectivity module along the runway (or taxiway). As the retroreflectivity module moves along the runway (or taxiway), it is again used to sequentially record multiple individual retroreflectivity measurements, or b retroreflectivity measurements, from paint markings along the airport runway or taxiway along with corresponding individual position measurements, or b locations, so the position of each retroreflectivity measurement is known.
Because the positions from all of the retroreflectivity measurements from both Time a and Time b are known, individual retroreflectivity measurements at specific locations for both Time a and Time b are paired with their corresponding multiple Time a individual runway position measurements. Effectively, there is an a retroreflectivity measurement and a b retroreflectivity measurement taken at each location a. It is anticipated that this can be done on a general-purpose or special-purpose computer, creating a digital record of multiple Time b correlated runway's markings' retroreflectivity measurements and their Time b runway position measurements. The runway's Time b correlated markings' retroreflectivity measurements can be compared with FAA or similar airport runway marking retroreflectivity requirements to determine if any of the markings require retroreflectivity to be added at certain positions.
The Time a and Time b records of the correlated runway's markings' retroreflectivity measurements and their runway position measurements are compared and paired so records from Time a of the location a retroreflectivity measurements and their corresponding location a positions and from Time b of the location b retroreflectivity measurements and their corresponding a positions (records are paired by location, so pairings are where the a positions are the same or about the same as the location b positions). The changes in the retroreflectivity measurements from Time a to Time b at the various a positions can be used to help determine the amount of degradation, if any, of the runway's markings has occurred in the past and is likely to occur in the future. It is anticipated that retroreflectivity measurements will be taken at positions at intervals over the entire airfield. The amount of time between Time a and Time b and the amount of degradation of the markings at a given position can be used to determine a degradation to time relationship. The degradation to time relationship can be used to determine which locations of the markings are degrading faster, and thus are more likely to need greater retroreflectivity to be compliant with the FAA or similar airport runway marking retroreflectivity requirements in the future and how long into the future. Or, the relationships between the Time a correlated markings' retroreflectivity measurements with the Time b correlated markings' retroreflectivity measurements and the temporal difference between Time a and Time b′ are used to determine the runway's markings' retroreflectivity degradation to time relationship. The runway's markings' retroreflectivity degradation to time relationship is used to predict how long the runway's markings' retroreflectivity will be compliant with the FAA or similar airport runway marking retroreflectivity requirements.
It is also anticipated that handheld detection units and location units can be used to acquire retroreflectivity measurements and locations in order to supplement retroreflectivity modules (which are comprised of a detection unit for measuring retroreflectivity of the marking, a location unit for identifying the location of the measured runway marking, and a recording unit for recording the retroreflectivity measurement and the runway position measurement). The measurement modules may be located on a mobile platform, such as a vehicle, drone, wheeled or slidable wagon, a handheld unit or other platform which can hold the measurement modules and be moved along pavement markings.
While the vehicle mounted retroreflectivity modules are efficient for long line markings, hand-held modules may be more efficient for use on short markings and indicators such as numbers or letters. Thus, the method herein anticipates using one or both of handheld and vehicle mounted retroreflectivity modules.
Predictions of how long specific positions of the runway's individual markings' retroreflectivity will be compliant with the FAA or similar airport runway marking retroreflectivity requirements can be used to create a markings retroreflectivity maintenance program which identifies first individual portions of the runway markings which will require retroreflectivity maintenance within a given time period (such as a year) to be compliant with FAA or similar airport runway marking retroreflectivity requirements. The predictions can further identify second individual portions of the runway markings which are predicted to not require retroreflectivity maintenance within that same time period.
Airfields similar to the subject airfield for which a maintenance program is being prepared can be identified. Markings which are similar to the markings evaluated at airfields which are similar to the subject airfield can be identified. It is anticipated that the retroreflectivity maintenance program of similar airfields and similar markings may be used to predict future maintenance for the other similar airfields and similar markings. Similarity can include size, local weather, proximity to geographical features that can affect markings, amount of air traffic, types of aircraft that use the airfield, type of runway, location on the runway, type of use, type of pavement, type of paint, type of maintenance etc. Similar markings could be determined by their type, location on the airfield, amount of traffic, and types of aircraft that contact the markings.
Another use of the prediction maintenance program of how long the runway's individual markings' retroreflectivity will be compliant with the FAA or similar airport runway marking retroreflectivity requirements is to create a long range (or multi-time period, or multi-year) runway marking retroreflectivity maintenance program.
A method to keep a marking on a runway compliant with an airfield's runway marking retroreflectivity requirements is by creating a map of the airfield with indicators at the multiple a positions on the map illustrating whether or not the marking at each individual a position requires greater retroreflectivity to be compliant with the airfield's runway marking retroreflectivity requirement. To make the map more useful for users, the indicators may be color coded. For example, green for positions that do not need greater retroreflectivity to be compliant, yellow for areas that are predicted to need greater retroreflectivity to be compliant within a given time period, such as six months or a year, and red for locations that currently need greater retroreflectivity to be compliant.
It is anticipated that in order to fully integrate the data recovered by the collection and testing, software would be used to evaluate such data recorded on a specific airfield. Additionally, other factors unique to the specific airfield can be incorporated using constants consistent among airfields to help evaluate the airfield. In order to develop a predictive maintenance plan, software could be used that directs data collection as well as evaluate it. However, whether software is used or not, a system of temporally evaluating the data in order to generate predictive maintenance plans could be implemented affected. Such predictive maintenance plans allow the airport's administration to know when and where specific areas of the airport markings need maintenance. This allows for improved budgeting and significant cost savings by focusing maintenance on areas of the airfield markings with critical needs while eliminating unnecessary and wasteful remarking of the entire airfield.
Referring now to
Once the retroreflectivity decay model is sufficiently refined through one or more iterations, the resulting decay model is used in conjunction with appropriate inputs to forecast or predict future retroreflectivity values for one or more markings. In some embodiments, retroreflectivity values for a marking may be forecasted up to until a forecasted value for a marking fails to satisfy a criterion such as a minimum acceptable retroreflectivity specified by the FAA, ICAO, or another regulatory body.
With specific reference now to the predicative maintenance method 200 illustrated in
Information indicative of a traffic volume associated with the marking is then obtained (operation 204). In the case of an airfield making, the traffic volume information may be indicative of aircraft traffic taking off from or landing on the runway in which the applicable marking is located. Traffic volume data may be acquired from flight logs or another suitable source of regularly maintained airport records. Preferably, runway identification information is available in the traffic data. If, however, the traffic volume information does not indicate runway information for each departure and arrival, the traffic volume information for a particular marking may be approximated based upon a suitable apportionment method. If, as an example, an airport has two parallel runways, each being used approximately equally, half of the total takeoffs and landings may be used as the traffic volume information for the marking. As another example, an airport with two non-parallel runways may use one of the runways, on average, for approximately 70% of takeoffs and landings based on the characteristics of prevailing winds. In this example, a traffic volume may be attributed to the surface marking based 70% of the total number of takeoffs and landings. These examples are intended to be illustrative and expressly not limiting of how a traffic parameter might be associated with a particular surface marking.
The method 200 illustrated in
While this approach to determining the empirical decay rate (D) may be highly accurate because it derives the decay rate D based upon the actual measured lifetime of the marking, it may also be undesirably time consuming because retroreflectivity readings must be taken until the marking's retroreflectivity decays all the way to M. In other implementations, L may be derived from the initial retroreflectivity (I) and a second retroreflectivity value taken at an arbitrary time t2 by extrapolating the drop in decay linearly, at the decay rate observed between t1 and t2, until the total decay equals (I−M). The point in time at which the extrapolated decay line reaches the minimum acceptable retroreflectivity value is taken as the empirical lifetime (L). With this derived value of L, the decay rate (D) may then be computed according to Equation 1 from the values of I, M, L and V as explained above.
After the empirical decay rate is determined, one or more decay rate factors are selected (operation 208). In some embodiments estimates of the significance of each decay factor may be obtained, e.g., using a regression algorithm or any other suitable statistical model approach and weighting may be assigned to one or more decay factors in accordance with the weightings.
After identifying and optionally weighting the decay factors, factor-specific vectors may then be retrieved, derived, associated with, or otherwise obtained (operation 220). In at least some embodiments, each factor-specific vector comprises a time series of values associated with a corresponding decay rate factor.
Returning to
Referring now to
The storage and processing components 340 illustrated in
The data sources 310 illustrated in
The manner in which data is stored in storage and processing components 340 is an implementation detail that is generally dictated or significantly influenced by manner in which operational data 342 is utilized and the long-term analytic operations performed by data warehouse 344.
The ETL process 346 illustrated in
The predictive assessment platform 300 illustrated in
The data products 370 illustrated in
Statements concerning the described apparatus and method are sometimes made in the present tense. Use of the present tense is for simplicity, however, as some of the apparatus, methods, steps and results are anticipated apparatus, methods, steps and results rather than statements of past tests and use.
The terms “about” or “approximately” are defined as being “close to” as understood by one of ordinary skill in the art, and in one non-limiting embodiment, the terms are defined to be within 10%, preferably within 5%, more preferably within 1%, and most preferably within 0.5%.
Accordingly, unless indicated to the contrary, the numerical parameters set forth in this specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the exemplary embodiments described herein. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claim, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
The term “substantially” and its variations are defined as being largely but not necessarily wholly what is specified as understood by one of ordinary skill in the art, and in one non-limiting embodiment, substantially refers to ranges within 10%, within 5%, within 1%, or within 0.5%.
The term “effective,” as that term is used in the specification and/or claims, means adequate to accomplish a desired, expected, or intended result.
The terms “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.”
The term “each” refers to each member of a set or each member of a subset of a set.
The terms “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
In interpreting the claims appended hereto, it is not intended that any of the appended claims or claim elements invoke 35 U.S.C. 112(f) unless the words “means for” or “step for” are explicitly used in the particular claim.
It should be understood that, although exemplary embodiments are illustrated in the figures and description, the principles of the present disclosure may be implemented using any number of techniques, whether currently known or not. The present disclosure should in no way be limited to the exemplary implementations and techniques illustrated in the drawings and description herein. Thus, although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limited sense. Various embodiments may include some, none, or all of the enumerated advantages. Various modifications of the disclosed embodiments, as well as alternative embodiments of the inventions will become apparent to persons skilled in the art upon the reference to the description of the invention. It is, therefore, contemplated that the appended claims will cover such modifications that fall within the scope of the invention. Modifications, additions, or omissions may be made to the systems, apparatuses, and methods described herein without departing from the scope of the disclosure. For example, the operations of the systems and apparatuses disclosed herein may be performed by more, fewer, or other components in the methods described may include more, fewer, or other steps. Additionally, steps may be performed in any suitable order.
This application: is a continuation in part of U.S. application Ser. No. 16/045,386, filed Jul. 25, 2018, which claims priority to U.S. Provisional Application No. 62/536,759, filed Jul. 25, 2017; Each of these earlier filed applications is, in its entirety, incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62536759 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16045386 | Jul 2018 | US |
Child | 16819069 | US |