Predictive medication safety

Information

  • Patent Grant
  • 12001981
  • Patent Number
    12,001,981
  • Date Filed
    Tuesday, November 24, 2020
    4 years ago
  • Date Issued
    Tuesday, June 4, 2024
    7 months ago
Abstract
A system and method for facilitating safe use of a medical device is provided. In one aspect, a method includes receiving an indication that a user has entered a set of parameters into a medical device to provide a medical treatment to a patient, receiving a history of previous medical treatment provided to the patient using the medical device, generating one or more alternative parameters for providing the medical treatment to the patient based on the set of parameters and the received history of previous medical treatment, causing, based on the generating of the one or more alternative parameters, a locking of the medical device to restrict operation of the medical device until an override of the lock is received, providing a notification for display to the user regarding the alternative parameters.
Description
BACKGROUND
Field

The present disclosure generally relates to medical devices, and particularly to configuring medical devices to reduce error.


Description of the Related Art

Medication errors, that is, errors that occur in the ordering, dispensing, and administration of medications, regardless of whether those errors cause injury or not, are a significant consideration in the delivery of healthcare in the institutional setting. Additionally, adverse drug events (ADE), which are defined as injuries involving a drug that require medical intervention and are a subset of medication errors, represent some of the most serious medication errors are responsible for a number of patient injuries and death.


Healthcare facilities continually search for ways to reduce the occurrence and severity of medication errors. Various systems and methods are commonly used to reduce the frequency of occurrence and severity of preventable adverse drug events (PADE) and other medication errors. In the administration of medication, focus is typically directed to the following five “rights” or factors: the right patient, the right drug, the right route, the right amount, and the right time. Systems and methods seeking to reduce ADEs and PADEs should take these five rights into consideration.


Delivery, verification, and control of medication in an institutional setting have traditionally been areas where errors can occur. In a typical healthcare facility, a physician enters an order for a medication for a particular patient. This order may be handled either as a simple prescription slip, or it may be entered into an automated system, such as a physician order entry (POE) system. The prescription slip or the electronic prescription from the POE system is routed to the pharmacy, where the order is filled. Typically, pharmacies check the physician order against possible allergies of the patient and for possible drug interactions in the case where two or more drugs are prescribed, and also check for contraindications. Depending on the healthcare facility, the medication may be identified and gathered within the pharmacy and placed into a transport carrier for transport to a nurse station. Once at the nurse station, the prescriptions are again checked against the medications that have been identified for delivery to ensure that no errors have occurred. Each of these steps or workflows is typically captured as event data in a hospital information system. The event data is not, however, used to adjust future workflows involving medical items. For example, a medical item from a dispensing cabinet may have an associated warning related to how commonly the medical item is wasted. This information is not, however, used to adjust future workflows from reducing waste of the medical item.


SUMMARY

According to one embodiment of the present disclosure, a method for facilitating safe use of a medical item is provided. The method includes receiving a first identifier for a medical entity located in an institution. The medical entity includes at least one of a patient, medical device, medical location, or medical item. The method also includes receiving a second identifier for a first course of action associated with the medical entity. The method further includes generating, based on a history of the medical entity and the first course of action associated with the medical entity, a second course of action for the medical entity, and providing a notification to a device indicating the second course of action.


According to another embodiment of the present disclosure, a monitoring system for facilitating safe use of a medical item is provided. The system includes a memory that includes a history of a medical entity located in an institution. The medical entity includes at least one of a patient, medical device, medical location, or medical item. The system also includes a processor. The processor is configured to receive a first identifier for the medical entity and a second identifier for a first course of action associated with the medical entity, and generate, based on a history of the medical entity and the first course of action associated with the medical entity, a second course of action for the medical entity. The processor is also configured to provide a notification to a device indicating the second course of action.


According to a further embodiment of the present disclosure, a machine-readable storage medium that includes machine-readable instructions for causing a processor to execute a method for facilitating safe use of a medical item is provided. The method includes receiving a first identifier for a medical entity located in an institution. The medical entity includes at least one of a patient, medical device, medical location, or medical item. The method also includes receiving a second identifier for a first course of action associated with the medical entity. The method further includes generating, based on a history of the medical entity and the first course of action associated with the medical entity, a second course of action for the medical entity, and providing a notification to a device indicating the second course of action.


According to yet a further embodiment of the present disclosure, a method for instructing a caregiver is provided. The method includes receiving a first identity of a caregiver at an institution and a proposed course of action for a medical entity, and generating, based on a history of the caregiver within the institution, a modified course of action. The method also includes providing a notification of the modified course of action to the caregiver.


It is understood that other configurations of the subject technology will become readily apparent to those skilled in the art from the following detailed description, wherein various configurations of the subject technology are shown and described by way of illustration. As will be realized, the subject technology is capable of other and different configurations and its several details are capable of modification in various other respects, all without departing from the scope of the subject technology. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide further understanding and are incorporated in and constitute a part of this specification, illustrate disclosed embodiments and together with the description serve to explain the principles of the disclosed embodiments. In the drawings:



FIG. 1 illustrates a block diagram of a system for facilitating safe use of a medical item.



FIG. 2 is a block diagram illustrating the monitoring system and server from the architecture of FIG. 1 according to certain aspects of the disclosure.



FIG. 3 illustrates an example process for facilitating safe use of a medical item using the example monitoring system of FIG. 2.



FIG. 4 is an example illustration of a medical item, namely a medical device, associated with the example process of FIG. 3.



FIG. 5 is a block diagram illustrating an example computer system with which the clients and server of FIG. 2 can be implemented.





DETAILED DESCRIPTION

In the following detailed description, numerous specific details are set forth to provide a full understanding of the present disclosure. It will be apparent, however, to one ordinarily skilled in the art that the embodiments of the present disclosure may be practiced without some of these specific details. In other instances, well-known structures and techniques have not been shown in detail so as not to obscure the disclosure.


Each of the steps of a workflow related to a medical entity, such as a patient, medical device, medical location, or medical item, can be captured as event data in a hospital information system. The event data can be, for example, historical data related to the medical entity. The disclosed system leverages the event data for the medical entity to determine, for example, whether to suggest an alternative workflow for the medical entity. For instance, event information for a medication from a dispensing cabinet may be evaluated by the disclosed system to determine a percentage of times the medication is wasted. The disclosed system may then send a notification to a caregiver attempting to dispense the medication regarding the potential wastage, and may further restrict the caregiver from dispensing the medication until additional verification steps are taken. Similar notifications and workflow suggestions can be suggested for improving a health level of a patient, expediting dispensing of a medical item, indicating an incidence rate of illness in a medical location, or a recommending an increase of an order being placed for medical items based on a recent change in demand for the medical item. The notifications and other workflow suggestions can be specific to the caregiver specific when, for example, an abnormal utilization pattern for a medical item is specific to the caregiver.


Several examples will now be presented regarding how the disclosed system can assist a caregiver in facilitating a safe interaction with a medical entity. As one example, a notification can be sent if a certain medication is continuously used to address a certain pathology when it is shown that the patient length of stay is not improved over time using that medication. As another example, a specific nurse can be alerted to check on order information if the nurse is historically hitting safe or therapeutic limits on doses too often. As yet another example, a specific caregiver can be informed that the caregiver's level of drug waste is high on average. As a further example, a pharmacist can be informed that a certain medication may be required statim (e.g., “stat” or urgently) because the medication has historically taken a long time to be delivered to a patient.


Referring now to the drawings, FIG. 1 provides an example illustration of an integrated healthcare facility-wide information and care management system 28 in accordance with certain aspects of the present disclosure. Various subsystems of a healthcare facility's information management system are connected together by way of a facility communication system 30. The communication system 30 may include, for example, any one or more of a personal area network (PAN), a local area network (LAN), a campus area network (CAN), a metropolitan area network (MAN), a wide area network (WAN), a broadband network (BBN), the Internet, and the like. Further, the communication system 30 can include, but is not limited to, any one or more of the following network topologies, including a bus network, a star network, a ring network, a mesh network, a star-bus network, tree or hierarchical network, and the like. As shown in FIG. 1, the communication system 30 connects through various interfaces 32 to a healthcare facility information system 34, a pharmacy information system 36, a physician order entry system 38, a medical entity database 60, and a monitoring system 40.


The facility communication system 30 is not meant to be taken in a limited sense. Such a facility communication system 30 may encompass an entire healthcare facility or may be located only in a small area of the healthcare facility. It may also include a communication system in a healthcare facility other than a hospital and may have application to an alternate care facility, such as a patient's home. Additionally, the word caregiver is intended to be used in its broadest sense and is meant to include nurses, physicians, health care specialists, and others who provide care to patients.


The monitoring system 40 in accordance with an aspect of the present disclosure may be, for example, a server or other computer having sufficient memory 42 and processing capability to connect with the communication system 30 and determine a change in workflow for a healthcare process. The monitoring system 40 includes operational software or other instructions for carrying out various aspects of the present disclosure, as will be discussed more fully below, enabling communications with other hardware or networks, and data input and output and report generation and printing, among other functions. While the monitoring system 40 is shown as a separate piece of equipment, it will be understood that the monitoring system 40 and the associated memory 42 may also be incorporated into another element, such as the medical device 80.


The communication system 30 may comprise, for example, a wired or wireless Ethernet (IEEE 522.3) utilizing transmitters and receivers positioned throughout the healthcare facility and/or attached to various computers, clinical devices and other equipment used in the facility. In such a wireless system, the signals transmitted and received by the system could be radio frequency (RF), infrared (IR), or other means capable of carrying information in a wireless manner between devices having appropriate transmitters or receivers may be used. It will be immediately understood by those skilled in the art that such a system may be identical to the system set forth in FIG. 1, with the exception that no wires are required to interconnect the various aspects of the system.


In a typical healthcare facility, patient rooms, wards, or areas are typically situated in groups located near a nurse station 44, where the caregivers assigned to care for the patients in the particular area carry out the administrative functions of their duties. Typically, these functions include updating and monitoring the patients' charts, preparation of and administering medication orders, and monitoring and recording any other information deemed necessary by the facility for tracking. There is also usually a room located adjacent the nurse station that is dedicated to storage and/or the preparation of medications to be delivered to patients. This room may contain inventories of commonly used oral, IM, or IV medications. The room may also be used to formulate the contents of infusion bags in accordance with prescribed treatment regimens.


The nurse station 44 will typically include a terminal or computer system 46 connected either directly or through an interface 48 to the communication system 30, allowing users at the nurse station to enter and retrieve patient data or information from other systems, such as the healthcare facility information system 34, the pharmacy information system 36, the physician order entry system 38, or other systems used in the facility. It should be understood that not all users will be provided with access rights to each system. For example, physicians may be able to access the physician order entry system 38 from the nurse station system 44 to enter, edit, or track medication orders, but a caregiver may only be able to view such orders. Moreover, while the present disclosure is described with reference to the computer system 46 being located at a nurse station 44, the computer system 46 may also be a satellite system that is located anywhere in the care-giving facility where it is convenient or efficient to do so. Such a satellite computer system may be operably connected to the communication system 30 using either a wired or wireless network connection. A printer 50 may also be connected to the nurse station computer system 46 for printing reports, bar codes, labels, or other materials, and a bar code reader 52 may be provided for reading bar codes on medication labels, reports, or other items having bar coded labels provided for identification.


In a different embodiment where radio frequency identification (RFID) tags are used with medications, patients, equipment, or in other ways, the nurse station 44 may also include an interrogator or RFID reader (not shown) for use with the RFID tags.


In accordance with aspects of the present disclosure, a medical entity database 60 stores information related to medical entities, such as patients, medical devices, medical locations, and medical items. Various types of information may be stored in the memory of the medical entity database 60, including medical item history and course of action information (e.g., orders, history of use, caregivers associated with the item, etc.). Databases can also be stored in the database 60 that contain information about drug interactions and possible contraindications and/or side-effects of medications, and established guidelines for the administration of various medications. For example, the guidelines may include institutionally-established guidelines or limits on drug administration parameters, such as dosage, frequency of administration, and other delivery related information such as, for example, appropriate flow rates and infusion durations for programming infusion pumps. Additionally, the guidelines may encompass guidelines for providing drug administration appropriate to a particular patient or to treatment areas having different sets of delivery parameters for similar medications, such as medication administration directed to geriatric, pediatric, and oncology patients. Guidelines may also be included that are directed to particular therapy regimens, such as chemotherapy regimens or regimens for treating chronic infection or pain. The term database as used herein will be understood by those skilled in the art to be used as is commonly understood. That is, the term database refers to a collection of values or information organized, formatted, and stored in such a manner as to be capable of being retrieved and analyzed using an appropriate program contained in software or other form.


The medications guidelines database 60 may be stored on a device, such as a server. The healthcare facility may also or alternatively have the medical entity database 60 centrally located in the memory 42 of the monitoring system 40. The medical entity database 60 includes medication information, medical item history, and course of action information, and/or databases or libraries, including institutionally generated guidelines for the delivery of medication to a patient, as well as drug interaction information or information concerning possible drug side-effects. The medications guidelines database 60 may also have a storage capability and technology for interfacing with a computer system or network so that information may be communicated between the medications guidelines database 60 and other devices, such as computers, medication administration devices, clinical devices such as vital signs monitoring devices and the like. A general concept embodied in the medications guidelines database 60 is to provide safe medication guidelines for dispensing, administering, or otherwise providing medication a patient using, for example, a medical device 80 such as an infusion pump.


In accordance with aspects of the present disclosure, the monitoring system 40 is configured to obtain medical entity information from the medical entity database 60. The medical entity database 60 is configured to obtain device information from the medical device 80, previous medical item history and course of action information (e.g., orders, history of use, caregivers associated with the item, etc.) from physician order entry system 38, the pharmacy information system 36, and the healthcare facility information system 34. Information may be retrieved information from the medical device 80 prior to actual medication administration. Monitoring system 40 can determine, based on a history of a medical entity and a current course of action for the medical entity, whether an alternative course of action should be taken for the medical entity. If the determination indicates an alternative course of action should be taken, then the monitoring system 40 is configured to transmit a notification to a relevant caregiver or device indicating the alternative course of action. The monitoring system 40 may also restrict or otherwise inhibit the current course of action from being taken (e.g., by locking a device).


For example, physician order system 38 may indicate that a certain medication is to be provided to a patient, and the pharmacy information system 36 may indicate how often the medication has been dispensed to the patient in the past. Based on this information, the monitoring system 40 may determine that dispensing the medication to the patient is harmful according to certain medical guidelines (e.g., from medical entity database 60). The monitoring system may then prevent a medical device 80 from dispensing the medication by locking the medical device 80 and possibly requiring a manual override of the lock in order to dispense the medication to the patient.


As another example, the pharmacy information system 36 may indicate that an order for 30 doses of a medication is to be placed, and the healthcare facility information system 34 may indicate that an incidence of an illness (e.g., with reference to patient laboratory data) that is treated by the medication has increased sharply in the past 24 hours. Based on the order and incidence information, the monitoring can send a notification to the pharmacy information system 36 to increase the number of doses being ordered, and may provide a suggested amount based on the incidence information.


As yet a further example, the healthcare facility information system 34 may include a caregiver's history regarding medication and medical device usage, and the medical entity database 60 may indicate an appropriate amount of a medication the caregiver has given in the past. The monitoring system 40 may determine that the amount of the medication the caregiver has given in the past has been inadequate, and send a notification to the medical device 80 or another device of the caregiver indicating that the medication amount provided by the caregiver should be increased.


While specific examples of a monitoring system 40 are set forth herein, it will be understood that the monitoring system 40 is meant to include any device that carries out the basic concept of the disclosure. That is, a device that receives an identification of a medical entity, such as a patient, medical device, medical location, or medical item, and an identification of a course of action associated with the medical entity, and has a processor that generates, based on a history of the medical entity and the course of action associated with the medical entity, a second (e.g., alternative) course of action for the medical entity, and provides a notification to a device (e.g., device of a caregiver, medical device 80, physician order entry system 38, pharmacy information system 36, healthcare facility information system 34) indicating the second course of action.


One particular mode of operation of the present disclosure will now be described. A patient entering a healthcare facility is provided with a wrist band, necklace, ankle band, or other band, chain, or device designed to remain affixed to or embedded in the patient during the patient's entire stay in the healthcare facility (the “patient ID”). The patient ID is designed to remain affixed in a manner so that the patient can be identified even if unconscious or otherwise unresponsive. The patient ID is used to identify specific patient data, such as the patient's name and other information that the facility has determined is important, such as age, allergies, or other vital information. The patient identifying device may comprise a bar code, written information, or an electronic information storage device, such as an RF transponder (e.g., RFID tag), that contains the information, or other device affixed to the patient. In the case where the patient-specification information may also include the patient's medication administration record (MAR). This would allow for consistent documentation and also checks against drug interaction in the medical entity database 60.


Such RFID tags, barcodes, and other technologies useful in identification, may be applied to others and to other things in providing healthcare to patients. For example, physicians, nurses, and other caregivers, as well as others who have access to patients and facilities, may also have an RFID tag that can be read anywhere in the healthcare facility. The medical fluid containers may contain RFID tags having information about the contents of the container as well as the patient for whom they have been prepared, the pharmacist who prepared them, and the physician who prescribed them. The infusion pumps and other healthcare instruments and devices may have RFID tags useful for inventory control. Even though the instruments may be connected to the healthcare facility communication system 30, RFID tags can be useful for manual inventory purposes as well as for other purposes. Their low cost makes them attractive as a backup support system.


After the patient is admitted and situated in a bed within the facility, the patient is typically evaluated by a physician and a course of treatment is prescribed. The physician prescribes a course of treatment by preparing an order that may request a series of laboratory tests or the administration of a particular medication to the patient. In some cases, the physician prepares the order by filling in a form or writing the order on a slip of paper to be entered into the healthcare facility system for providing care. In other cases, the physician may enter the medication order directly into a physician order entry system 38 or may instruct a nurse or other care-giving professional to do so. In yet another case, the physician may use the Internet to forward and enter a prescription for the patient into the pharmacy system. Depending on the arrangement at the healthcare facility, the physician's order or prescription may directly reach a website for the pharmacy information system 36 or may go to a website for the healthcare facility where it may then be routed to the pharmacy information system 36. In certain aspects, the monitoring system 40 may review the prescribed course of treatment for the patient and the history of prescriptions by the physician or other physicians, and propose an alternative treatment for the patient to the physician for review.


Pharmacy information systems 36 may enable a safer physician medication order process. The pharmacy information system 36 may provide the physician with a list of available drugs from which the physician may select. The pharmacy information system 36 may contain a drug library having the list of available drugs but may also contain and present to the physician the drug names associated with recommended dosages and dose limits that have been established or adopted by the healthcare facility. In such a case where the physician need only select items from the computer screen rather than having to manually type in drug names and drug administration numbers (such as infusion rates, times, etc.) associated with administration of the medication, a more accurate medication process should result.


If the order is for administration of a particular medication regimen, the order will be transmitted to the facility's pharmacy information system 36. The pharmacy reviews the order. In certain aspects, the monitoring system 40 may, for example, review the particular medication regimen for the patient and the history of medication regimens for the patient or similar patients, and then propose an medication regiment for the patient to the pharmacist (or physician) for review.


The pharmacy prepares the medication according to the requirements of the physician. Typically, the pharmacy packages the medication in a container, and a copy of the order, or at a minimum the patient's name, the drug name, and the appropriate treatment parameters are represented on a label or other device that is affixed to the drug container. This information may be represented by a bar code, or it may be stored in a smart label, such as a label having an embedded computer, or in a passive device such as an RFID tag discussed above.


Once the order has been prepared, the order is sent to the nurse station 44 for matching with the appropriate patient. Alternatively, if the medication is for a commonly or routinely prescribed medication, the medication may be included in an inventory of medications that is stored in a secure cabinet adjacent the nurse station 44. In such a case, the nurse station 44 will receive a list of orders from the pharmacy information system 36 that may be drawn from the inventory adjacent the nurse station 44. The caregiver will enter a unique identifier at the cabinet to gain access in accordance with standard practice. The caregiver or other professional assigned the task of gathering medications will then match the orders received from the pharmacy information system 60 to the medications stored in the inventory and pull those medications that are to be delivered to specific patients. These procedures are carried out whether the medication to be delivered is an oral medication or a medication that is to be delivered intramuscularly or through an infusion. In certain aspects, the monitoring system 40 may review the medication orders to determine, for example, whether the caregiver has a particularly high level of waste for the medication order being dispensed. If such a determination is made, the monitoring system 40 may send a notification to the nurse station 44 for the caregiver to view. The notification can state, for example, the caregiver's recorded history of waste and either remind the caregiver to be careful in dispensing the medication order, or propose an alternative workflow to dispensing the medication order.


In certain circumstances, a pharmacy dispenses a vial of a medication (a “multidose vial”) that includes more than the specific dose of the medication required for a patient, one advisory that we should give the nurse is exactly how to prepare the medication. A nurse or other caregiver may then be tasked calculating an appropriate dose of the medication for the patient based on the total amount of medication included in the vial. For example, a physician may order that a 65 kg patient receive a 40 unit/kg bolus dose, and the administration of the medication should be at a rate not to exceed 400 units/minute. The vial of the medication contains 1000 units/mL. The nurse must manually calculate the total dose of the vial, namely, that the vial contains 2600 units of the medication. The nurse must then determine that this is 2.6 mL of the 1000 units/mL, and then calculate the dose injection for a minimum time of 6.5 minutes. The disclosed monitoring system 40 may advantageously provide this information to the nurse so that the nurse, such as a notification to remove 2.6 mL of the 1000 units/mL medication and administer at 0.4 Ml/min, and further provide the syringe label complete with patient, drug, dose and bar code to the nurse.


When the prescribed time for delivery of the medication or medications arrives, the medications are carried to the patient's area and administered to the patient by the caregiver. In the case of drugs to be delivered via infusion, the caregiver hangs the infusion bag and prepares the infusion line, attaches the bag to an infusion pump 80, and sets up the infusion pump to deliver the medication by programming the pump with values for various parameters that are used by the pump to control delivery of the medication to the patient. When the medication delivery parameters are entered into the pump, the pump communicates the entered parameters to the medical entity database 60. In certain aspects, the monitoring system 40 may, for example, review the medication delivery parameters and a history of previous medication delivery parameters entered into the infusion pump 80 to deliver the medication or similar medications, and determine that alternative medication delivery parameters should be used. If such a determination is made, the monitoring system 40 may send a notification to the infusion pump 80 for the caregiver to view. The notification can propose, for example, alternative medication delivery parameters and a reason for proposing the alternative medication delivery parameters. If the alternative medication delivery parameters for the infusion pump 80 are accepted, or alternatively manually overridden, the monitoring system 40 can send a signal to the infusion pump 80 to begin infusion of the medication.



FIG. 2 is a block diagram 200 illustrating an example monitoring system 40 and server 130 from the architecture of FIG. 1 according to certain aspects of the disclosure. The control system 40, a device 160 (e.g., such as medical device 80), and the server 130 are connected over the network 30 via respective communications modules 210, 156, and 138. The communications modules 210, 156, and 138 are configured to interface with the network 30 to send and receive information, such as data, requests, responses, and commands to other devices on the network. The communications modules 210, 156, and 138 can be, for example, modems or Ethernet cards and communicate over a wired or wireless connection.


The monitoring system 40 includes a processor 212, the communications module 210, and a memory 42 that includes a monitoring application 208. The monitoring application 208 includes instructions for the processor 212 to obtain, from the processor 136 of the server 130, information from the medical entity database 62 over the network 30 using respective communications modules 210 and 138 of the monitoring system 40 and the server 130. The information received from the medical entity database 62 includes identification information for a medical entity, courses of action associated with the medical entity, and a history of the medical entity. The medical entity can be, for example, a patient, medical device 80, medical location (e.g., hospital or area within a hospital, such as an Intensive Care Unit), or medical item such as a medication or medical. For example, identification information for a medical entity can be a name or unique identifier for a patient. A course of action associated with a medical entity can be providing a prescribed amount of medication to a patient. A history of a medical entity can be a listing of medications administered using a medical device 80.


The processor 212 of the monitoring system 40 is configured to execute instructions, such as instructions physically coded into the processor 212, instructions received from software in memory 42, or a combination of both. For example, the processor 212 of the monitoring system 40 executes instructions from the monitoring application 208 to receive a first identifier for a medical entity located in an institution and a second identifier for a first course of action associated with the medical entity. The first and second identifiers can be received from the medical entity database 62 over the network 30. The processor 212 of the monitoring system is also configured to generate, based on a history of the medical entity and the first course of action associated with the medical entity, a second course of action for the medical entity, and provide a notification to the device 160 indicating the second course of action. The second course of action can be, for example, an alternative to the first course of action selected in order to promote a safe or efficient interaction with the medical entity. The device 160 can be, for example, a caregiver's mobile device, a medical device 80 at or near a patient's bedside, a display at a nurse station 44, or a display of the healthcare facility information system 34, pharmacy information system 36, physician order entry system 38, or monitoring system 40. The notification can include a message indicating a purpose for indicating the second course of action. For example, a notification can be displayed using display device 214 on a caregiver's mobile device 160 indicating a prescribed amount of medication for the patient is too high based on the patient's physiological history relative to administration of the medication, and further indicate an alternative amount of medication that is appropriate to the patient based on the patient's physiological history relative to administration of the medication. The caregiver may then be asked to confirm or override the alternative amount using an input device 216 of the mobile device 160.


The first identifier, the second identifier, or the history of the medical entity can be received from an external data system (e.g., server 130) in a native message format of the external data system, and the processor 212 of the monitoring system 40 can be configured to convert the first identifier, the second identifier, or the history of the medical entity into an internal messaging format configured for use with the monitoring system 40. The processor 212 can be configured to perform the conversion according to the system and method of converting messages being sent between data systems using different communication protocols and message structures described in U.S. patent application Ser. No. 13/421,776, entitled “Scalable Communication System,” and filed on Mar. 15, 2012, the disclosure of which is hereby incorporated by reference in its entirety for all purposes. The memory 42 of the monitoring system 40 can include, for example, an interface module for communicating with the server 130. The interface module can include information on the communication protocol and data structure used by the server 130 and is configured to both receive messages from and transmit messages to the server 130.


In certain aspects where the medical entity is or otherwise includes a medical item, the history of the medical entity can include a number of times the medical item has been dispensed. For example, the history of the medical entity can indicate that the psychoactive drug alprazolam has been dispensed by a specific caregiver over ten times in the past twenty four hours. The first course of action associated with the medical item alprazolam may indicate an instruction to dispense alprazolam for a specific patient, and the second course of action can indicate an instruction to restrict dispensing of alprazolam (e.g., by locking the device 160 for dispensing alprazolam), for example, due to the specific caregiver's abnormally high rate of dispensing of alprazolam. A notification can be sent to the device 160 for dispensing alprazolam or the caregiver's mobile device 160 indicating that dispensing of alprazolam has been restricted based on the caregiver's abnormally high rate of dispensing of alprazolam. Alternatively, the alprazolam may be removed from the listing of available medications to the caregiver (e.g., “unprofiling” the medication) until a pharmacist or other authorized caregiver takes appropriate action, such as contacting the physician or repeating a lab test.


In certain other aspects where the medical entity is or otherwise includes a medical item, the processor 212 of the monitoring system 40 may be configured to receive a third identifier for a caregiver (e.g., from the medical entity database 62 over the network 30) in the institution. The history of the medical item can include a level of waste of the medical item by the caregiver. For example, the history of the medical item can indicate that it is an antihypertensive that is wasted (e.g., dispensed but never used) by the caregiver on average 22% of the times it is dispensed by the caregiver. The waste may occur due to, for example, resolution of the condition for which the medication was prescribed, patient-perceived ineffectiveness, prescription changes by the physician, and patient-perceived adverse effects. The abnormally high rate of wastage by the caregiver may be due to the caregiver being prone to not checking a patient's record before dispensing a medication. The first course of action associated with the antihypertensive medication may indicate an instruction to the caregiver to dispense a ten count of the antihypertensive medication, and the second course of action can indicate an instruction to decrease the dispensing count of the antihypertensive medication to two, or restrict dispensing altogether, for example, based on the caregivers history of wasting the antihypertensive medication. A notification can be sent to the device 160 for dispensing the antihypertensive medication or the caregiver's mobile device 160 indicating that dispensing of the antihypertensive medication has been reduced or restricted due to the caregiver's history of wasting the antihypertensive medication.


In certain further aspects where the medical entity is or otherwise includes a medical item, the history of the medical entity can include an average amount of time between dispensing of the medical item and the medical item being administered to a patient. For example, the average amount of time for dispensing a solution of adrenaline in an institution is 45 minutes, and a first course of action associated with the solution of adrenaline is to dispense the solution of adrenaline according to normal procedures. The second course of action associated with the dispensing solution can be to dispense the solution of adrenaline statim (e.g., according to expedited procedures) because adrenaline is commonly needed urgently to administer to a patient and an average wait time of 45 minutes for the solution is not acceptable. A notification can be sent to the pharmacy information system 36, nurse station 44, or other device 160 indicating the expedited need for the adrenaline solution.


In certain aspects where the medical entity is or otherwise includes a medical location, such as a ward in a hospital, the hospital itself, or a campus of multiple hospitals, the history of the medical location can include, for example, a rate of improvement of patients associated with the medical location. For example, the history of the medical location such as a pediatric intensive care unit (PICU) may indicate a sharp decline in immunity levels of patients in the PICU. The first course of action associated with the medical location may indicate an instruction to order a small amount of a macrolide antibiotic, azithromycin, to treat immunity deficiency in the PICU, and the second course of action can indicate an instruction to recommend an increase in the amount of azithromycin being ordered for the PICU, for example, due to the sharp decline in patient immunity levels. A notification can be sent to the pharmacy information system 36, nurse station 44, or other device 160 indicating the recommendation for the increased need for azithromycin.


In certain other aspects where the medical entity is or otherwise includes a medical location, the history of the medical entity can include an incidence rate of illness associated with the medical location. For example, the history of a specific hospital may indicate that the incidence of the influenza virus has dramatically increased over the past seven days from an average of three new influenza cases per day to over twenty influenza cases per day. The first course of action associated with the specific hospital may indicate an instruction to order a small amount of an antiviral drug, oseltamivir, to treat influenza, and the second course of action can indicate an instruction to increase the amount of oseltamivir being ordered for the specific hospital, for example, due to the sharp increase in daily incidence of influenza. A notification can be sent to the pharmacy information system 36, nurse station 44, or other device 160 indicating an increased need for oseltamivir.


In certain aspects, the processor 212 of the monitoring system 40 is configured to receive a first identity of a caregiver at an institution and a proposed course of action for a medical entity, generate, based on a history of the caregiver within the institution, a modified course of action, and provide a notification of the modified course of action to the caregiver. For example, the history of the caregiver can indicate a level of waste of a medical item by the caregiver, and the modified course of action can include an indication of an action to decrease a level of waste of the medical item by the caregiver. The indicated action can be, for example, an instruction to reduce the number of the medical items being dispensed. As another example, the history of the caregiver can include an identification of one or many error made by the caregiver with a medical item or patient, and the modified course of action can include an indication of an action to decrease a likelihood of the error with the medical item, the patient, another medical item, or another patient. The indicated action can be, for instance, an instruction to not perform a certain action with a patient or medical item, or a suggestion for additional training.



FIG. 3 illustrates an example process 300 for facilitating safe use of a medical item using the example monitoring system 40 of FIG. 2. While FIG. 3 is described with reference to FIG. 2, it should be noted that the process steps of FIG. 3 may be performed by other systems. The process 300 begins by proceeding from beginning step 301 when a request is initiated to perform an action associated with a medical entity, to step 302 when a first identifier for a medical entity located in an institution and a second identifier for a first course of action associated with the medical entity are received. The medical entity can include at least one of a patient, medical device, medical location, or medical item. Next, in step 303, a second course of action for the medical entity is generated based on a history of the medical entity and the first course of action associated with the medical entity. Finally, in step 304, a notification is provided to a device 160 indicating the second course of action. The process 300 then ends in step 305.



FIG. 3 set forth an example process 300 for facilitating safe use of a medical item using the example monitoring system 40 of FIG. 2. An example will now be described using the example process 300 of FIG. 3, a medical entity that is a medication, a device 160 that is an infusion pump (e.g., infusion pump 80), and an error-prone caregiver.


The process 300 begins by proceeding from beginning step 301 when the caregiver enters parameters into the infusion pump 160 to administer a medication, to step 302 when a monitoring system 40 receives a first identifier identifying the medication and a second identifier identifying a first course of action, namely, certain parameters entered by the caregiver into the infusion pump 160 in order to administer the medication. Next, in step 303, a second course of action, namely, a requirement to confirm the medication parameters before administration, is generated based on a history of the medication and the entered parameters for administering the medication. Specifically, the history of the medication indicates that the caregiver has previously administered the medication incorrectly 20% of the time. Finally, as provided in the example illustration of FIG. 4, in step 304, a notification 482 requiring confirmation from the caregiver is provided for display on the infusion pump 160. The process 300 then ends in step 305.



FIG. 5 is a block diagram illustrating an example computer system 500 with which the monitoring system 40, the device 160, and the server 130 of FIG. 2 can be implemented. In certain aspects, the computer system 500 may be implemented using hardware or a combination of software and hardware, either in a dedicated server, or integrated into another entity, or distributed across multiple entities.


Computer system 500 (e.g., monitoring system 40, the device 160, and the server 130) includes a bus 508 or other communication mechanism for communicating information, and a processor 502 (e.g., processor 212, 154, and 136) coupled with bus 508 for processing information. By way of example, the computer system 500 may be implemented with one or more processors 502. Processor 502 may be a general-purpose microprocessor, a microcontroller, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA), a Programmable Logic Device (PLD), a controller, a state machine, gated logic, discrete hardware components, or any other suitable entity that can perform calculations or other manipulations of information.


Computer system 500 can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them stored in an included memory 504 (e.g., memory 42, 152, or 132), such as a Random Access Memory (RAM), a flash memory, a Read Only Memory (ROM), a Programmable Read-Only Memory (PROM), an Erasable PROM (EPROM), registers, a hard disk, a removable disk, a CD-ROM, a DVD, or any other suitable storage device, coupled to bus 508 for storing information and instructions to be executed by processor 502. The processor 502 and the memory 504 can be supplemented by, or incorporated in, special purpose logic circuitry.


The instructions may be stored in the memory 504 and implemented in one or more computer program products, i.e., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, the computer system 500, and according to any method well known to those of skill in the art, including, but not limited to, computer languages such as data-oriented languages (e.g., SQL, dBase), system languages (e.g., C, Objective-C, C++, Assembly), architectural languages (e.g., Java, .NET), and application languages (e.g., PHP, Ruby, Perl, Python). Instructions may also be implemented in computer languages such as array languages, aspect-oriented languages, assembly languages, authoring languages, command line interface languages, compiled languages, concurrent languages, curly-bracket languages, dataflow languages, data-structured languages, declarative languages, esoteric languages, extension languages, fourth-generation languages, functional languages, interactive mode languages, interpreted languages, iterative languages, list-based languages, little languages, logic-based languages, machine languages, macro languages, metaprogramming languages, multiparadigm languages, numerical analysis, non-English-based languages, object-oriented class-based languages, object-oriented prototype-based languages, off-side rule languages, procedural languages, reflective languages, rule-based languages, scripting languages, stack-based languages, synchronous languages, syntax handling languages, visual languages, wirth languages, embeddable languages, and xml-based languages. Memory 504 may also be used for storing temporary variable or other intermediate information during execution of instructions to be executed by processor 502.


A computer program as discussed herein does not necessarily correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, subprograms, or portions of code). A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network. The processes and logic flows described in this specification can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output.


Computer system 500 further includes a data storage device 506 such as a magnetic disk or optical disk, coupled to bus 508 for storing information and instructions. Computer system 500 may be coupled via input/output module 510 to various devices. The input/output module 510 can be any input/output module. Example input/output modules 510 include data ports such as USB ports. The input/output module 510 is configured to connect to a communications module 512. Example communications modules 512 (e.g., communications module 210, 156, and 138) include networking interface cards, such as Ethernet cards and modems. In certain aspects, the input/output module 510 is configured to connect to a plurality of devices, such as an input device 514 (e.g., input device 216) and/or an output device 516 (e.g., display device 214). Example input devices 514 include a keyboard and a pointing device, e.g., a mouse or a trackball, by which a user can provide input to the computer system 500. Other kinds of input devices 514 can be used to provide for interaction with a user as well, such as a tactile input device, visual input device, audio input device, or brain-computer interface device. For example, feedback provided to the user can be any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile feedback; and input from the user can be received in any form, including acoustic, speech, tactile, or brain wave input. Example output devices 516 include display devices, such as a LED (light emitting diode), CRT (cathode ray tube), or LCD (liquid crystal display) screen, for displaying information to the user.


According to one aspect of the present disclosure, the monitoring system 40, the device 160, and the server 130 can be implemented using a computer system 500 in response to processor 502 executing one or more sequences of one or more instructions contained in memory 504. Such instructions may be read into memory 504 from another machine-readable medium, such as data storage device 506. Execution of the sequences of instructions contained in main memory 504 causes processor 502 to perform the process steps described herein. One or more processors in a multi-processing arrangement may also be employed to execute the sequences of instructions contained in memory 504. In alternative aspects, hard-wired circuitry may be used in place of or in combination with software instructions to implement various aspects of the present disclosure. Thus, aspects of the present disclosure are not limited to any specific combination of hardware circuitry and software.


Various aspects of the subject matter described in this specification can be implemented in a computing system that includes a back end component, e.g., as a data server, or that includes a middleware component, e.g., an application server, or that includes a front end component, e.g., a client computer having a graphical user interface or a Web browser through which a user can interact with an implementation of the subject matter described in this specification, or any combination of one or more such back end, middleware, or front end components. The components of the system can be interconnected by any form or medium of digital data communication, e.g., a communication network. The communication network (e.g., network 30) can include, for example, any one or more of a personal area network (PAN), a local area network (LAN), a campus area network (CAN), a metropolitan area network (MAN), a wide area network (WAN), a broadband network (BBN), the Internet, and the like. Further, the communication network can include, but is not limited to, for example, any one or more of the following network topologies, including a bus network, a star network, a ring network, a mesh network, a star-bus network, tree or hierarchical network, or the like. The communications modules can be, for example, modems or Ethernet cards.


Computing system 500 can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other. Computer system 500 can be, for example, and without limitation, a desktop computer, laptop computer, or tablet computer. Computer system 500 can also be embedded in another device, for example, and without limitation, a mobile telephone, a personal digital assistant (PDA), a mobile audio player, a Global Positioning System (GPS) receiver, a video game console, and/or a television set top box.


The term “machine-readable storage medium” or “computer readable medium” as used herein refers to any medium or media that participates in providing instructions or data to processor 502 for execution. Such a medium may take many forms, including, but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media include, for example, optical disks, magnetic disks, or flash memory, such as data storage device 506. Volatile media include dynamic memory, such as memory 504. Transmission media include coaxial cables, copper wire, and fiber optics, including the wires that comprise bus 508. Common forms of machine-readable media include, for example, floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM, a FLASH EPROM, any other memory chip or cartridge, or any other medium from which a computer can read. The machine-readable storage medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more of them.


As used herein, the phrase “at least one of” preceding a series of items, with the terms “and” or “or” to separate any of the items, modifies the list as a whole, rather than each member of the list (i.e., each item). The phrase “at least one of” does not require selection of at least one item; rather, the phrase allows a meaning that includes at least one of any one of the items, and/or at least one of any combination of the items, and/or at least one of each of the items. By way of example, the phrases “at least one of A, B, and C” or “at least one of A, B, or C” each refer to only A, only B, or only C; any combination of A, B, and C; and/or at least one of each of A, B, and C.


Furthermore, to the extent that the term “include,” “have,” or the like is used in the description or the claims, such term is intended to be inclusive in a manner similar to the term “comprise” as “comprise” is interpreted when employed as a transitional word in a claim.


A reference to an element in the singular is not intended to mean “one and only one” unless specifically stated, but rather “one or more.” The term “some” refers to one or more. All structural and functional equivalents to the elements of the various configurations described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and intended to be encompassed by the subject technology. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the above description.


While this specification contains many specifics, these should not be construed as limitations on the scope of what may be claimed, but rather as descriptions of particular implementations of the subject matter. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.


Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the aspects described above should not be understood as requiring such separation in all aspects, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products.


The subject matter of this specification has been described in terms of particular aspects, but other aspects can be implemented and are within the scope of the following claims. For example, the actions recited in the claims can be performed in a different order and still achieve desirable results. As one example, the processes depicted in the accompanying figures do not necessarily require the particular order shown, or sequential order, to achieve desirable results. In certain implementations, multitasking and parallel processing may be advantageous. Other variations are within the scope of the following claims.


These and other implementations are within the scope of the following claims.

Claims
  • 1. A medical device monitoring system, comprising: one or more processors; anda non-transitory computer-readable memory storing instructions thereon that, when executed, cause the one or more processors to execute a monitoring application and perform operations comprising: receiving an indication that a user has entered a set of parameters into a medical device to provide a medical treatment to a patient;receiving, from a system remote from the medical device, responsive to the indication and prior to providing the medical treatment to the patient, a history of previous medical treatment provided to the patient using the medical device;generating one or more alternative parameters for providing the medical treatment to the patient based on the set of parameters entered into the medical device and the received history of previous medical treatment provided to the patient using the medical device; andcausing, based on the generating of the one or more alternative parameters, a locking of the medical device to restrict operation of the medical device until an override of the lock is received;providing a notification for display to the user regarding the alternative parameters;receiving a confirmation of the alternative parameters and the override of the lock; andcausing, when the confirmation of the alternative parameters and the override of the lock are received, the medical device to begin providing the medical treatment to the patient according to the alternative parameters.
  • 2. The medical device monitoring system of claim 1, wherein the medical device is an infusion device, and the medical treatment is an administration of a medication by the infusion device, and the one or more alternative parameters are medication delivery parameters for delivering the medication to the patient.
  • 3. The medical device monitoring system of claim 2, wherein the history of previously medical treatment comprises medication delivery parameters previously entered into the infusion device.
  • 4. The medical device monitoring system of claim 2, wherein the operations further comprise: receiving, from the system remote from the medical device, responsive to the indication and prior to providing the medical treatment, a history of the user with regard to usage of the infusion device and an amount of the medication previously administered by the user.
  • 5. The medical device monitoring system of claim 1, wherein the operations further comprise: receiving, from the system remote from the medical device, responsive to the indication and prior to providing the medical treatment, a history of the user with regard to medical treatment provided to the patient, or use of the medical device.
  • 6. The medical device monitoring system of claim 5, wherein the history of the user comprises an identification of one or more errors made by the user with the medical device or the patient.
  • 7. The medical device monitoring system of claim 1, further comprising a memory storing a list of drugs and drug recommendations, wherein the operations further comprise: receiving patient information for the patient;receiving a selection of a drug from the list of drugs;reviewing a respective recommendation for the selected drug of the list of drugs, relative to the patient information for the patient; andproviding an additional recommendation for administration of the selected drug based on the review, the additional recommendation including a drug dosage, dosage limit, infusion rate, or infusion time.
  • 8. The medical device monitoring system of claim 1, further comprising: an information system communicatively coupled to a medication order system, wherein the information system is configured to store a list of drugs and to provide a subset of the list of drugs together with a recommendation for administration for each drug in the subset of the list of drugs to the medication order system.
  • 9. A non-transitory machine-readable storage medium comprising machine-readable instructions for causing a processor to execute a method, the method comprising: receiving an indication that a user has entered a set of parameters into a medical device to provide a medical treatment to a patient;receiving, from a system remote from the medical device, responsive to the indication and prior to providing the medical treatment to the patient, a history of previous medical treatment provided to the patient using the medical device;generating one or more alternative parameters for providing the medical treatment to the patient based on the set of parameters entered into the medical device and the received history of previous medical treatment provided to the patient using the medical device; andcausing, based on the generating of the one or more alternative parameters, a locking of the medical device to restrict operation of the medical device until an override of the lock is received;providing a notification for display to the user regarding the alternative parameters;receiving a confirmation of the alternative parameters and the override of the lock; andcausing, when the confirmation of the alternative parameters and the override of the lock are received, the medical device to begin providing the medical treatment to the patient according to the alternative parameters.
  • 10. The non-transitory machine-readable storage medium of claim 9, wherein the medical device is an infusion device, and the medical treatment is an administration of a medication by the infusion device, and the one or more alternative parameters are medication delivery parameters for delivering the medication to the patient.
  • 11. The non-transitory machine-readable storage medium of claim 10, wherein the history of previously medical treatment comprises medication delivery parameters previously entered into the infusion device.
  • 12. The non-transitory machine-readable storage medium of claim 10, wherein the method further comprises: receiving, from the system remote from the medical device, responsive to the indication and prior to providing the medical treatment, a history of the user with regard to usage of the infusion device and an amount of the medication previously administered by the user.
  • 13. The non-transitory machine-readable storage medium of claim 9, wherein the method further comprises: receiving, from the system remote from the medical device, responsive to the indication and prior to providing the medical treatment, a history of the user with regard to medical treatment provided to the patient, or use of the medical device.
  • 14. The non-transitory machine-readable storage medium of claim 13, wherein the history of the user comprises an identification of one or more errors made by the user with the medical device or the patient.
  • 15. The non-transitory machine-readable storage medium of claim 9, further comprising a memory storing a list of drugs and drug recommendations, wherein the method further comprises: receiving patient information for the patient;receiving a selection of a drug from the list of drugs;reviewing a respective recommendation for the selected drug of the list of drugs, relative to the patient information for the patient; andproviding an additional recommendation for administration of the selected drug based on the review, the additional recommendation including a drug dosage, dosage limit, infusion rate, or infusion time.
  • 16. A method, comprising: receiving an indication that a user has entered a set of parameters into a medical device to provide a medical treatment to a patient;receiving, from a system remote from the medical device, responsive to the indication and prior to providing the medical treatment to the patient, a history of previous medical treatment provided to the patient using the medical device;generating one or more alternative parameters for providing the medical treatment to the patient based on the set of parameters entered into the medical device and the received history of previous medical treatment provided to the patient using the medical device; andcausing, based on the generating of the one or more alternative parameters, a locking of the medical device to restrict operation of the medical device until an override of the lock is received;providing a notification for display to the user regarding the alternative parameters;receiving a confirmation of the alternative parameters and the override of the lock; andcausing, when the confirmation of the alternative parameters and the override of the lock are received, the medical device to begin providing the medical treatment to the patient according to the alternative parameters.
  • 17. The method of claim 16, further comprising: receiving patient information for the patient;receiving a selection of a drug from a list of drugs;reviewing a respective recommendation for the selected drug of the list of drugs, relative to the patient information for the patient; andproviding an additional recommendation for administration of the selected drug based on the review, the additional recommendation including a drug dosage, dosage limit, infusion rate, or infusion time.
  • 18. The method of claim 16, wherein the medical device is an infusion device, and wherein the method further comprises: receiving, from the system remote from the medical device, responsive to the indication and prior to providing the medical treatment, a history of the user with regard to usage of the infusion device and an amount of a medication previously administered by the user.
  • 19. The method of claim 16, further comprising: receiving, from the system remote from the medical device, responsive to the indication and prior to providing the medical treatment, a history of the user with regard to medical treatment provided to the patient, or use of the medical device.
  • 20. The method of claim 19, wherein the history of the user comprises an identification of one or more errors made by the user with the medical device or the patient.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of priority under 35 U.S.C. § 120 as a continuation of U.S. patent application Ser. No. 15/682,428, entitled “Predictive Medication Safety,” filed Aug. 21, 2017, now U.S. Pat. No. 10,867,265, which is a continuation of U.S. patent application Ser. No. 13/802,683, entitled “Predictive Medication Safety,” filed Mar. 13, 2013, now U.S. Pat. No. 9,741,001, issued on Aug. 22, 2017, the disclosures of which are hereby incorporated by reference in their entirety for all purposes.

US Referenced Citations (517)
Number Name Date Kind
2141006 Marinsky Dec 1938 A
3724455 Unger Apr 1973 A
3831006 Chaffin, III et al. Aug 1974 A
3848112 Weichselbaum et al. Nov 1974 A
3872448 Mitchell, Jr. Mar 1975 A
3898984 Mandel et al. Aug 1975 A
3910260 Sarnoff et al. Oct 1975 A
3921196 Patterson Nov 1975 A
3970996 Yasaka et al. Jul 1976 A
4051522 Healy et al. Sep 1977 A
4135241 Stanis et al. Jan 1979 A
4164320 Irazoqui et al. Aug 1979 A
4216462 McGrath et al. Aug 1980 A
4237344 Moore Dec 1980 A
4315309 Coli Feb 1982 A
4321461 Walter, Jr. et al. Mar 1982 A
4360125 Martindale et al. Nov 1982 A
4373527 Fischell Feb 1983 A
4476381 Rubin Oct 1984 A
4604847 Moulding, Jr. et al. Aug 1986 A
4636950 Caswell et al. Jan 1987 A
4674652 Aten et al. Jun 1987 A
4676776 Howson Jun 1987 A
4688026 Scribner et al. Aug 1987 A
4695954 Rose et al. Sep 1987 A
4696671 Epstein et al. Sep 1987 A
4731726 Allen, III Mar 1988 A
4733364 Yamagata Mar 1988 A
4741732 Crankshaw et al. May 1988 A
4756706 Kerns et al. Jul 1988 A
4778449 Weber et al. Oct 1988 A
4785969 McLaughlin Nov 1988 A
4803625 Fu et al. Feb 1989 A
4810243 Howson Mar 1989 A
4828545 Epstein et al. May 1989 A
4831562 McIntosh et al. May 1989 A
4835372 Gombrich et al. May 1989 A
4839806 Goldfischer et al. Jun 1989 A
4847764 Halvorson Jul 1989 A
4850009 Zook et al. Jul 1989 A
4853521 Claeys et al. Aug 1989 A
4855909 Vincent et al. Aug 1989 A
4857713 Brown Aug 1989 A
4857716 Gombrich et al. Aug 1989 A
4865584 Epstein et al. Sep 1989 A
4882575 Kawahara Nov 1989 A
4899839 Dessertine et al. Feb 1990 A
4916441 Gombrich et al. Apr 1990 A
4918604 Baum Apr 1990 A
4925444 Orkin et al. May 1990 A
4942544 McIntosh et al. Jul 1990 A
4950246 Muller Aug 1990 A
4967928 Carter Nov 1990 A
4970669 McIntosh et al. Nov 1990 A
4978335 Arthur, III Dec 1990 A
5001630 Wiltfong Mar 1991 A
5006699 Felkner et al. Apr 1991 A
5036462 Kaufman et al. Jul 1991 A
5036852 Leishman Aug 1991 A
5041086 Koenig et al. Aug 1991 A
5072383 Brimm et al. Dec 1991 A
5077666 Brimm et al. Dec 1991 A
5078683 Sancoff et al. Jan 1992 A
5088056 McIntosh et al. Feb 1992 A
5088981 Howson et al. Feb 1992 A
5100380 Epstein et al. Mar 1992 A
5126957 Kaufman et al. Jun 1992 A
5142484 Kaufman et al. Aug 1992 A
5153416 Neeley Oct 1992 A
5153827 Coutre et al. Oct 1992 A
5164575 Neeley et al. Nov 1992 A
5166498 Neeley Nov 1992 A
5171977 Morrison Dec 1992 A
5181910 Scanlon Jan 1993 A
5190522 Wojcicki et al. Mar 1993 A
5207642 Orkin et al. May 1993 A
5235507 Sackler et al. Aug 1993 A
5256157 Samiotes et al. Oct 1993 A
5258906 Kroll et al. Nov 1993 A
5265010 Evans-Paganelli et al. Nov 1993 A
5267174 Kaufman et al. Nov 1993 A
5291399 Chaco Mar 1994 A
5292029 Pearson Mar 1994 A
5307263 Brown Apr 1994 A
5312334 Hara et al. May 1994 A
5314243 McDonald et al. May 1994 A
5315505 Pratt et al. May 1994 A
5317506 Coutre et al. May 1994 A
H1324 Dalke et al. Jun 1994 H
5331547 Laszlo Jul 1994 A
5356378 Doan Oct 1994 A
5367555 Isoyama Nov 1994 A
5368554 Nazarian et al. Nov 1994 A
5371692 Draeger et al. Dec 1994 A
5374813 Shipp Dec 1994 A
5376070 Purvis et al. Dec 1994 A
5378231 Johnson et al. Jan 1995 A
5382232 Hague et al. Jan 1995 A
5390238 Kirk et al. Feb 1995 A
5401059 Ferrario Mar 1995 A
5404384 Colburn et al. Apr 1995 A
5408443 Weinberger Apr 1995 A
5412372 Parkhurst et al. May 1995 A
5412564 Ecer May 1995 A
5416695 Stutman et al. May 1995 A
5456691 Snell Oct 1995 A
5460605 Tuttle et al. Oct 1995 A
5465082 Chaco Nov 1995 A
5472614 Rossi Dec 1995 A
5502944 Kraft et al. Apr 1996 A
5515426 Yacenda et al. May 1996 A
5522798 Johnson et al. Jun 1996 A
5533079 Colburn et al. Jul 1996 A
5536084 Curtis et al. Jul 1996 A
5538006 Heim et al. Jul 1996 A
5542420 Goldman et al. Aug 1996 A
5544649 David et al. Aug 1996 A
5544661 Davis et al. Aug 1996 A
5547470 Johnson et al. Aug 1996 A
5561412 Novak et al. Oct 1996 A
5562232 Pearson Oct 1996 A
5564803 McDonald et al. Oct 1996 A
5573506 Vasko Nov 1996 A
5582593 Hultman Dec 1996 A
5583758 Mcllroy et al. Dec 1996 A
5592374 Fellagara et al. Jan 1997 A
5594786 Chaco Jan 1997 A
5597995 Williams et al. Jan 1997 A
5601445 Schipper et al. Feb 1997 A
5622429 Heinze Apr 1997 A
5628309 Brown May 1997 A
5630710 Tune et al. May 1997 A
5633910 Cohen May 1997 A
5643212 Coutre et al. Jul 1997 A
5644778 Burks et al. Jul 1997 A
5645531 Thompson et al. Jul 1997 A
5651775 Walker et al. Jul 1997 A
5655118 Heindel et al. Aug 1997 A
5657236 Conkright Aug 1997 A
5658250 Blomquist et al. Aug 1997 A
5672154 Sillen et al. Sep 1997 A
5681285 Ford et al. Oct 1997 A
5683367 Jordan et al. Nov 1997 A
5685844 Marttila Nov 1997 A
5689229 Chaco et al. Nov 1997 A
5692640 Caulfield et al. Dec 1997 A
5699038 Ulrich et al. Dec 1997 A
5700998 Palti Dec 1997 A
5703786 Conkright Dec 1997 A
5704352 Tremblay et al. Jan 1998 A
5710551 Ridgeway Jan 1998 A
5712913 Chaum Jan 1998 A
5713856 Eggers Feb 1998 A
5721913 Ackroff et al. Feb 1998 A
5733259 Valcke et al. Mar 1998 A
5737539 Edelson et al. Apr 1998 A
5738102 Lemelson Apr 1998 A
5752235 Kehr et al. May 1998 A
5758095 Albaum et al. May 1998 A
5758096 Barsky et al. May 1998 A
5760704 Barton et al. Jun 1998 A
5764034 Bowman et al. Jun 1998 A
5772585 Lavin et al. Jun 1998 A
5774865 Glynn Jun 1998 A
5781442 Engelson et al. Jul 1998 A
5790409 Fedor et al. Aug 1998 A
5795327 Wilson et al. Aug 1998 A
5803906 Pratt et al. Sep 1998 A
5807321 Stoker et al. Sep 1998 A
5807336 Russo et al. Sep 1998 A
5819229 Boppe Oct 1998 A
5822418 Yacenda et al. Oct 1998 A
5822544 Chaco et al. Oct 1998 A
5832488 Eberhardt Nov 1998 A
5833599 Schrier et al. Nov 1998 A
5842173 Strum et al. Nov 1998 A
5842976 Williamson Dec 1998 A
5845253 Rensimer et al. Dec 1998 A
5845254 Lockwood et al. Dec 1998 A
5845255 Mayaud Dec 1998 A
5845264 Nellhaus Dec 1998 A
5848593 McGrady et al. Dec 1998 A
5850344 Conkright Dec 1998 A
5852408 Christiansen et al. Dec 1998 A
5855550 Lai et al. Jan 1999 A
5867821 Ballantyne et al. Feb 1999 A
5871465 Vasko Feb 1999 A
5883806 Meador et al. Mar 1999 A
5885245 Lynch et al. Mar 1999 A
5894273 Meador et al. Apr 1999 A
5895371 Levitas et al. Apr 1999 A
5985371 Fujioka et al. Apr 1999 A
5899998 McGauley et al. May 1999 A
5903211 Flego et al. May 1999 A
5905653 Higham et al. May 1999 A
5907490 Oliver May 1999 A
5911132 Sloane Jun 1999 A
5911687 Sato et al. Jun 1999 A
5912818 McGrady et al. Jun 1999 A
5920054 Uber, III Jun 1999 A
5920263 Huttenhoff et al. Jul 1999 A
5928329 Clark et al. Jul 1999 A
5930145 Yuyama et al. Jul 1999 A
5935099 Peterson et al. Aug 1999 A
5941710 Lampotang et al. Aug 1999 A
5942986 Shabot et al. Aug 1999 A
5950630 Portwood et al. Sep 1999 A
5950632 Reber et al. Sep 1999 A
5953099 Walach Sep 1999 A
5954641 Kehr et al. Sep 1999 A
5957885 Bollish et al. Sep 1999 A
5961036 Michael et al. Oct 1999 A
5961446 Beller et al. Oct 1999 A
5971593 McGrady Oct 1999 A
5995077 Wilcox et al. Nov 1999 A
5995937 DeBusk et al. Nov 1999 A
6000828 Leet Dec 1999 A
6003006 Colella et al. Dec 1999 A
6009333 Chaco Dec 1999 A
6017318 Gauthier et al. Jan 2000 A
6021392 Lester et al. Feb 2000 A
6024699 Surwit et al. Feb 2000 A
6032155 de la Huerga Feb 2000 A
6039251 Holowko et al. Mar 2000 A
6047203 Sackner et al. Apr 2000 A
6048087 Laurent et al. Apr 2000 A
6053887 Levitas et al. Apr 2000 A
6063026 Schauss et al. May 2000 A
6082776 Feinberg Jul 2000 A
6112182 Akers et al. Aug 2000 A
RE36871 Epstein et al. Sep 2000 E
6112502 Frederick et al. Sep 2000 A
6134582 Kennedy Oct 2000 A
6135949 Russo et al. Oct 2000 A
6202923 Boyer et al. Mar 2001 B1
6228057 Vasko May 2001 B1
6241704 Peterson et al. Jun 2001 B1
6269340 Ford et al. Jul 2001 B1
6282441 Raymond et al. Aug 2001 B1
6290681 Brown Sep 2001 B1
6292698 Duffin et al. Sep 2001 B1
6302844 Walker et al. Oct 2001 B1
6312378 Bardy Nov 2001 B1
6314556 DeBusk et al. Nov 2001 B1
6319200 Lai et al. Nov 2001 B1
6322502 Schoenberg et al. Nov 2001 B1
6338007 Broadfield et al. Jan 2002 B1
6339732 Phoon et al. Jan 2002 B1
6406426 Reuss et al. Jun 2002 B1
6409684 Wilk Jun 2002 B1
6421650 Goetz et al. Jul 2002 B1
6493747 Simmon et al. Dec 2002 B2
6519569 White et al. Feb 2003 B1
6529892 Lambert Mar 2003 B1
6540672 Simonsen et al. Apr 2003 B1
6558352 Hogan May 2003 B1
6571128 Lebel et al. May 2003 B2
6581606 Kutzko et al. Jun 2003 B2
6671563 Engelson et al. Dec 2003 B1
6745764 Hickle Jun 2004 B2
6757898 Ilsen et al. Jul 2004 B1
6785589 Eggenberger et al. Aug 2004 B2
6796956 Hartlaub et al. Sep 2004 B2
6799149 Hartlaub Sep 2004 B2
6847861 Lunak et al. Jan 2005 B2
6856247 Wallace Feb 2005 B1
6873268 Lebel et al. Mar 2005 B2
6993402 Klass et al. Jan 2006 B2
7034691 Rapaport et al. Apr 2006 B1
7054844 Fletcher et al. May 2006 B2
7060059 Keith et al. Jun 2006 B2
7096072 Engleson et al. Aug 2006 B2
7201734 Hickle Apr 2007 B2
7204823 Estes et al. Apr 2007 B2
7215991 Besson et al. May 2007 B2
7229430 Hickle et al. Jun 2007 B2
7230529 Ketcherside, Jr. et al. Jun 2007 B2
7256708 Rosenfeld et al. Aug 2007 B2
7263492 Suresh et al. Aug 2007 B1
7379885 Zakim May 2008 B1
7384420 Dycus et al. Jun 2008 B2
7398183 Holland et al. Jul 2008 B2
7421709 Watson et al. Sep 2008 B2
7433853 Brockway et al. Oct 2008 B2
7471994 Ford et al. Dec 2008 B2
7526769 Watts, Jr. et al. Apr 2009 B2
7587415 Guarav et al. Sep 2009 B2
7612679 Fackler et al. Nov 2009 B1
7693697 Westenskow et al. Apr 2010 B2
7769601 Bleser et al. Aug 2010 B1
7771385 Eggers et al. Aug 2010 B2
7771386 Eggers et al. Aug 2010 B2
7776031 Hartlaub et al. Aug 2010 B2
7787946 Stahmann et al. Aug 2010 B2
7796045 Spear et al. Sep 2010 B2
7835927 Schlotterbeck et al. Nov 2010 B2
7847970 McGrady Dec 2010 B1
7860583 Condurso et al. Dec 2010 B2
7962544 Torok et al. Jun 2011 B2
7970550 Arakelyan et al. Jun 2011 B2
7983995 Murphy et al. Jul 2011 B2
8005688 Coffman et al. Aug 2011 B2
8024200 Jennings et al. Sep 2011 B2
8160895 Schmitt et al. Apr 2012 B2
8197437 Kalafut et al. Jun 2012 B2
8284059 Ross Oct 2012 B2
8291337 Gannin et al. Oct 2012 B2
8340792 Condurso et al. Dec 2012 B2
8630722 Condurso et al. Jan 2014 B2
8689008 Rangadass et al. Apr 2014 B2
8761906 Condurso et al. Jun 2014 B2
10192193 Glass Jan 2019 B1
10417758 Alexander Sep 2019 B1
10692207 Sandmann et al. Jun 2020 B2
20010037083 Hartlaub et al. Nov 2001 A1
20010044731 Coffman et al. Nov 2001 A1
20020010679 Felsher Jan 2002 A1
20020016568 Lebel et al. Feb 2002 A1
20020016923 Knaus et al. Feb 2002 A1
20020022973 Sun et al. Feb 2002 A1
20020026223 Riff et al. Feb 2002 A1
20020035484 McCormick Mar 2002 A1
20020038392 De La Huerga Mar 2002 A1
20020042636 Koshiol et al. Apr 2002 A1
20020046346 Evans Apr 2002 A1
20020077849 Baruch et al. Jun 2002 A1
20020087114 Hartlaub Jul 2002 A1
20020116509 Huerga Aug 2002 A1
20020120350 Klass et al. Aug 2002 A1
20020169636 Eggers et al. Nov 2002 A1
20020198624 Greenwald et al. Dec 2002 A1
20030009244 Engleson et al. Jan 2003 A1
20030036683 Kehr et al. Feb 2003 A1
20030036966 Amra et al. Feb 2003 A1
20030045858 Struys et al. Mar 2003 A1
20030051737 Hickle et al. Mar 2003 A1
20030063524 Niemiec et al. Apr 2003 A1
20030069481 Hervy et al. Apr 2003 A1
20030105389 Noonan et al. Jun 2003 A1
20030105555 Lunak et al. Jun 2003 A1
20030106553 Vanderveen Jun 2003 A1
20030114836 Estes et al. Jun 2003 A1
20030121517 McFarland Jul 2003 A1
20030129578 Mault Jul 2003 A1
20030135087 Hickle et al. Jul 2003 A1
20030135388 Martucci et al. Jul 2003 A1
20030139701 White et al. Jul 2003 A1
20030140928 Bui et al. Jul 2003 A1
20030140929 Wilkes et al. Jul 2003 A1
20030149599 Goodall et al. Aug 2003 A1
20030156143 Westenskow et al. Aug 2003 A1
20030158746 Forrester Aug 2003 A1
20030163223 Blomquist Aug 2003 A1
20030205897 Kaufman Nov 2003 A1
20030236683 Henderson et al. Dec 2003 A1
20040068229 Jansen et al. Apr 2004 A1
20040073329 Engleson et al. Apr 2004 A1
20040107118 Harnsberger et al. Jun 2004 A1
20040122702 Sabol et al. Jun 2004 A1
20040122705 Sabol et al. Jun 2004 A1
20040122719 Sabol et al. Jun 2004 A1
20040122790 Walker et al. Jun 2004 A1
20040128162 Schlotterbeck Jul 2004 A1
20040152622 Keith et al. Aug 2004 A1
20040167465 Mihai et al. Aug 2004 A1
20040167804 Simpson et al. Aug 2004 A1
20040172283 Vanderveen et al. Sep 2004 A1
20040172300 Mihai et al. Sep 2004 A1
20040172302 Martucci et al. Sep 2004 A1
20040176297 Cheung et al. Sep 2004 A1
20040188998 Henthorn Sep 2004 A1
20040193325 Bonderud Sep 2004 A1
20040193446 Mayer et al. Sep 2004 A1
20040260478 Schwamm Dec 2004 A1
20050010166 Hickle Jan 2005 A1
20050010269 Lebel et al. Jan 2005 A1
20050020996 Hartlaub et al. Jan 2005 A1
20050021297 Hartlaub Jan 2005 A1
20050022274 Campbell et al. Jan 2005 A1
20050033606 Miller Feb 2005 A1
20050049179 Davidson et al. Mar 2005 A1
20050055242 Bello et al. Mar 2005 A1
20050088296 Lee Apr 2005 A1
20050096941 Tong May 2005 A1
20050097566 Watts et al. May 2005 A1
20050107914 Engleson et al. May 2005 A1
20050108057 Cohen et al. May 2005 A1
20050113945 Engleson et al. May 2005 A1
20050119788 Engleson et al. Jun 2005 A1
20050144043 Holland et al. Jun 2005 A1
20050145010 Vanderveen et al. Jul 2005 A1
20050148890 Hastings Jul 2005 A1
20050171815 Vanderveen Aug 2005 A1
20050224083 Crass et al. Oct 2005 A1
20050278194 Holland et al. Dec 2005 A1
20060026205 Butterfield Feb 2006 A1
20060047538 Condurso et al. Mar 2006 A1
20060053036 Coffman et al. Mar 2006 A1
20060079831 Gilbert Apr 2006 A1
20060101072 Busche et al. May 2006 A1
20060122481 Sievenpiper et al. Jun 2006 A1
20060190302 Eggers et al. Aug 2006 A1
20060200369 Batch et al. Sep 2006 A1
20060206356 Vanderveen Sep 2006 A1
20060217628 Huiku Sep 2006 A1
20060218015 Walker et al. Sep 2006 A1
20060229551 Martinez et al. Oct 2006 A1
20060249423 Reijonen Nov 2006 A1
20060271401 Lassetter et al. Nov 2006 A1
20060287890 Stead et al. Dec 2006 A1
20070015972 Wang et al. Jan 2007 A1
20070043767 Osborne et al. Feb 2007 A1
20070061266 Moore et al. Mar 2007 A1
20070061393 Moore Mar 2007 A1
20070083389 Dyer et al. Apr 2007 A1
20070106457 Rosenberg May 2007 A1
20070106753 Moore May 2007 A1
20070106754 Moore May 2007 A1
20070156452 Batch Jul 2007 A1
20070156860 Nedelcu et al. Jul 2007 A1
20070168301 Eisner et al. Jul 2007 A1
20070185615 Bossi et al. Aug 2007 A1
20070208454 Forrester et al. Sep 2007 A1
20070210157 Miller Sep 2007 A1
20070286466 Heffernan et al. Dec 2007 A1
20070293843 Ireland et al. Dec 2007 A1
20080015549 Maughan Jan 2008 A1
20080025230 Patel et al. Jan 2008 A1
20080034323 Blomquist Feb 2008 A1
20080040151 Moore Feb 2008 A1
20080046292 Myers et al. Feb 2008 A1
20080141272 Borgendale et al. Jun 2008 A1
20080162254 Herger et al. Jul 2008 A1
20080164998 Scherpbier et al. Jul 2008 A1
20080169045 Tribble et al. Jul 2008 A1
20080195246 Tribble et al. Aug 2008 A1
20080272138 Ross et al. Nov 2008 A1
20080317672 Viertio-Oja Dec 2008 A1
20090012812 Rausch et al. Jan 2009 A1
20090012813 Berzansky et al. Jan 2009 A1
20090043253 Podaima Feb 2009 A1
20090054754 McMahon et al. Feb 2009 A1
20090062727 Woo Mar 2009 A1
20090099867 Newman Apr 2009 A1
20090112333 Sahai Apr 2009 A1
20090125335 Manetta et al. May 2009 A1
20090150484 Roberts Jun 2009 A1
20090210252 Silver Aug 2009 A1
20090240651 Fletcher et al. Sep 2009 A1
20090270810 DeBelser Oct 2009 A1
20090306585 Pang et al. Dec 2009 A1
20090306944 Willmann et al. Dec 2009 A1
20090319623 Srinivasan et al. Dec 2009 A1
20100037067 Rangadass et al. Feb 2010 A1
20100094653 Tribble et al. Apr 2010 A1
20100121654 Portnoy et al. May 2010 A1
20100161113 Tribble et al. Jun 2010 A1
20100169120 Herbst et al. Jul 2010 A1
20100169771 Pelegrin et al. Jul 2010 A1
20100174552 Hawkes et al. Jul 2010 A1
20100174553 Kaufman et al. Jul 2010 A1
20100179825 Hanov et al. Jul 2010 A1
20100204650 Hungerford Aug 2010 A1
20100241453 Malec Sep 2010 A1
20100241456 Miller et al. Sep 2010 A1
20100271218 Hoag et al. Oct 2010 A1
20100280840 Fukushi et al. Nov 2010 A1
20100323397 Reavy et al. Dec 2010 A1
20110015941 Backhaus Jan 2011 A1
20110046975 Hoffman Feb 2011 A1
20110060758 Schlotterbeck et al. Mar 2011 A1
20110078608 Gannon et al. Mar 2011 A1
20110119612 Gannon et al. May 2011 A1
20110179405 Dicks et al. Jul 2011 A1
20110202495 Gawlick Aug 2011 A1
20110282691 Coffman et al. Nov 2011 A1
20110288882 Halow Nov 2011 A1
20110313787 Rangadass et al. Dec 2011 A1
20120011253 Friedman et al. Jan 2012 A1
20120016215 Condurso et al. Jan 2012 A1
20120041775 Cosentino et al. Feb 2012 A1
20120053533 Butterfield et al. Mar 2012 A1
20120075060 Connor Mar 2012 A1
20120075061 Barnes Mar 2012 A1
20120136673 Presley et al. May 2012 A1
20120173264 Brush et al. Jul 2012 A1
20120173391 Korhnak et al. Jul 2012 A1
20120182939 Rajan et al. Jul 2012 A1
20120185267 Kamen et al. Jul 2012 A1
20120191052 Rao Jul 2012 A1
20120239824 Nguyen et al. Sep 2012 A1
20120247480 Varga Oct 2012 A1
20120253835 Tracy et al. Oct 2012 A1
20120265549 Virolainen Oct 2012 A1
20120310205 Lee Dec 2012 A1
20130018356 Prince et al. Jan 2013 A1
20130085771 Ghanbari et al. Apr 2013 A1
20130096444 Condurso et al. Apr 2013 A1
20130144206 Lee Jun 2013 A1
20130197927 Vanderveen et al. Aug 2013 A1
20130197928 Vanderveen et al. Aug 2013 A1
20130197929 Vanderveen et al. Aug 2013 A1
20130197930 Garibaldi et al. Aug 2013 A1
20130197931 Gupta et al. Aug 2013 A1
20130204433 Gupta et al. Aug 2013 A1
20130204637 Vanderveen et al. Aug 2013 A1
20130262138 Jaskela et al. Oct 2013 A1
20140028464 Garibaldi Jan 2014 A1
20140031976 Reinhardt et al. Jan 2014 A1
20140100868 Condurso et al. Apr 2014 A1
20140278466 Simmons et al. Sep 2014 A1
20140297313 Condurso et al. Oct 2014 A1
20140350950 Jaskela et al. Nov 2014 A1
20150250948 Gupta et al. Sep 2015 A1
20160000997 Batch et al. Jan 2016 A1
20160114925 Yuyama Apr 2016 A1
20170143895 Brask May 2017 A1
Foreign Referenced Citations (93)
Number Date Country
2472098 Jul 2003 CA
2554903 Apr 2005 CA
1421810 Jun 2003 CN
1650317 Aug 2005 CN
1759398 Apr 2006 CN
1803103 Jul 2006 CN
101116077 Jan 2008 CN
101146055 Mar 2008 CN
201110955 Sep 2008 CN
101331491 Dec 2008 CN
101689320 Mar 2010 CN
101890193 Nov 2010 CN
102068725 May 2011 CN
102508877 Jun 2012 CN
102521394 Jun 2012 CN
102688532 Sep 2012 CN
102799783 Nov 2012 CN
4023785 Jan 1992 DE
0192786 Sep 1986 EP
0384155 Aug 1990 EP
0595474 May 1994 EP
0649316 Apr 1995 EP
0652528 May 1995 EP
0784283 Jul 1997 EP
0921488 Jun 1999 EP
1003121 May 2000 EP
1018347 Jul 2000 EP
1237113 Sep 2002 EP
1750573 Feb 2007 EP
2141006 Dec 1984 GB
62114562 May 1987 JP
5168708 Jul 1993 JP
11505352 May 1999 JP
2002520718 Jul 2002 JP
2003085283 Mar 2003 JP
2004287616 Oct 2004 JP
2005165442 Jun 2005 JP
2005296428 Oct 2005 JP
2006155070 Jun 2006 JP
2006521183 Sep 2006 JP
2008508616 Mar 2008 JP
2008516303 May 2008 JP
2011501311 Jan 2011 JP
2012200430 Oct 2012 JP
1020070045611 May 2007 KR
1020080013129 Feb 2008 KR
100847397 Jul 2008 KR
1020100125972 Dec 2010 KR
1020110070824 Jun 2011 KR
1020120076615 Jul 2012 KR
1020120076635 Jul 2012 KR
522631 Jul 2004 NZ
WO-1993022735 Nov 1993 WO
WO-1994005344 Mar 1994 WO
WO-1994008647 Apr 1994 WO
WO-1994013250 Jun 1994 WO
WO-1995023378 Aug 1995 WO
WO-1996020745 Jul 1996 WO
WO-1996025214 Aug 1996 WO
WO-1996036923 Nov 1996 WO
WO-1997004712 Feb 1997 WO
WO-1998013783 Apr 1998 WO
WO-1998028676 Jul 1998 WO
WO-1999009505 Feb 1999 WO
WO-1999010829 Mar 1999 WO
WO-1999010830 Mar 1999 WO
WO1999035588 Jul 1999 WO
WO-1999044167 Sep 1999 WO
WO-1999045490 Sep 1999 WO
WO-1999046718 Sep 1999 WO
WO-1999067732 Dec 1999 WO
WO-2000003344 Jan 2000 WO
WO-2000004521 Jan 2000 WO
WO-2000018449 Apr 2000 WO
WO-2000032088 Jun 2000 WO
WO-2000032098 Jun 2000 WO
WO-2001086506 Nov 2001 WO
WO-2001088828 Nov 2001 WO
WO-2002036044 May 2002 WO
WO-2002069099 Sep 2002 WO
WO-2003038566 May 2003 WO
WO-2003053503 Jul 2003 WO
WO-2003092769 Nov 2003 WO
WO-2003094091 Nov 2003 WO
WO-2004060443 Jul 2004 WO
WO-2004061745 Jul 2004 WO
WO-2002053209 Oct 2004 WO
WO-2005110208 Nov 2005 WO
WO-2008087982 May 2010 WO
WO-2010124016 Oct 2010 WO
WO-2010124328 Nov 2010 WO
WO-2012095829 Jul 2012 WO
WO-2014159280 Oct 2014 WO
Non-Patent Literature Citations (139)
Entry
Australian Office Action for Application No. 2020203449, dated Nov. 24, 2021, 3 pages.
Australian Office Action for Application No. 2020210162, dated Sep. 22, 2021, 6 pages.
Chinese Office Action for Application No. 201480015036.5, dated Sep. 24, 2021, 52 pages including translation.
Chinese Office Action for Application No. 201480015093.3, dated Nov. 1, 2021, 36 pages including translation.
Australian Office Action for Application No. 2020200812, dated Nov. 18, 2021, 4 pages.
Canadian Office Action for Application No. 2912792, dated Dec. 30, 2021, 9 pages.
Canadian Office Action for Application No. 2828898, dated Aug. 25, 2021, 5 pages.
Canadian Office Action for Application No. 2901024, dated Aug. 25, 2021, 6 pages.
Chinese Notice of Reexamination for Application No. 201480015025.7, dated Aug. 20, 2021, 29 pages including translation.
European Office Action for Application No. 20191537.8, dated Aug. 18, 2021, 10 pages.
Japanese Office Action for Application No. 2019-030891, dated Aug. 24, 2021, 4 pages including translation.
“General-Purpose Infusion Pumps,” Evaluation—Health Devices, Oct. 2002, pp. 353-387, vol. 31 (10), ECRI Institute.
“Infusion Pump Technology,” Health Devices, Apr.-May 1998, pp. 150-170, vol. 27(4-5), ECRI Institute.
“Infusion Pumps, General Purpose,” Healthcare Product Comparison System, 2007, pp. 1-54, ECRI Institute.
“Infusion Pumps, Large-Volume,” Healthcare Product Comparison System, 2010, pp. 1-51, ECRI Institute.
“Smart Infusion Pumps Join CPOE and Bar Coding as Important Ways to Prevent Medication Errors,” ISMP—Medication Safety Alert, Feb. 7, 2002, 2 pgs., Institute for Safe Medication Practices.
Anonymous, Guardrails®Safety Software-Medley TM Medication Safety System, Alaris Medical Systems XP-00234431; 2002 Alaris Medical Systems Inc. Nov. 2002, SSM @2159C.
Australia Office Action for Application No. 2014268828, dated Jul. 3, 2020, 5 pages.
Australian Examination Report No. 1 for Application No. 2016216550, dated Sep. 20, 2017, 3 pages.
Australian Office Action for Application No. 2014241019, dated Aug. 12, 2019, 4 pages.
Australian Office Action for Application No. 2014241019, dated Dec. 5, 2019, 5 pages.
Australian Office Action for Application No. 2014241019, dated Feb. 6, 2019, 3 pages.
Australian Office Action for Application No. 2014241022, dated Feb. 7, 2019, 4 pages.
Australian Office Action for Application No. 2014241022, dated Jun. 25, 2019, 3 pages.
Australian Office Action for Application No. 2014241022, dated Sep. 30, 2019, 4 pages.
Australian Office Action for Application No. 2014268828, dated Jul. 26, 2019, 4 pages.
Australian Office Action for Application No. 2014268828, dated Nov. 25, 2019, 3 pages.
Australian Office Action for Application No. 2018232958, dated Aug. 7, 2019, 3 pages.
Australian Office Action for Application No. 2020201641, dated Oct. 9, 2020, 4 pages.
Baldauf-Sobez et al., “How Siemens' Computerized Physician Order Entry Helps Prevent the Human Errors,” electromedica, vol. 71, No. 1, 2003, pp. 2-10.
Brazil Office Action for Application No. BR112015019758-2, dated Feb. 20, 2020, 5 pages.
Brazil Office Action for Application No. BR112015029135-0, dated Feb. 12, 2020, 5 pages.
Calabrese, et al., “Medication administration errors in adult patients in the ICU,” Intensive Care Med, 2001, pp. 1592-1598, vol. 27, Springer-Verlag.
Canada Office Action for Application No. 2900564, dated Jan. 28, 2020, 4 pages.
Canadian Office Action for Application No. 2512991, dated Jan. 10, 2018, 4 pages.
Canadian Office Action for Application No. 2512991, dated Mar. 2, 2017, 4 pages.
Canadian Office Action for Application No. 2551903, dated Aug. 18, 2020, 3 pages.
Canadian Office Action for Application No. 2551903, dated Mar. 28, 2017, 7 pages.
Canadian Office Action for Application No. 2551903, dated Mar. 5, 2018, 8 pages.
Canadian Office Action for Application No. 2828898, dated Dec. 3, 2019, 6 pages.
Canadian Office Action for Application No. 2828898, dated Dec. 7, 2018, 5 pages.
Canadian Office Action for Application No. 2828898, dated Jan. 11, 2018, 8 pages.
Canadian Office Action for Application No. 2828898, dated Oct. 7, 2020, 7 pages.
Canadian Office Action for Application No. 2901024, dated Jan. 27, 2020, 5 pages.
Chinese Office Action for Application No. 2 1480041362.3, dated Oct. 18, 2018, 13 pages.
Chinese Office Action for Application No. 201480015025.7, dated Jan. 23, 2018, 11 pages excluding English summary.
Chinese Office Action for Application No. 201480015025.7, dated Jun. 24, 2019, 25 pages.
Chinese Office Action for Application No. 201480015025.7, dated Nov. 12, 2019, 20 pages.
Chinese Office Action for Application No. 201480015025.7, dated Oct. 9, 2018, 27 pages.
Chinese Office Action for Application No. 201480015036.5, dated Jan. 23, 2018, 13 pages excluding English translation.
Chinese Office Action for Application No. 201480015036.5, dated Jun. 24, 2019, 20 pages.
Chinese Office Action for Application No. 201480015036.5, dated Nov. 5, 2019, 12 pages.
Chinese Office Action for Application No. 201480015036.5, dated Sep. 29, 2018, 20 pages.
Chinese Office Action for Application No. 201480015093.3, dated Apr. 25, 2019, 18 pages.
Chinese Office Action for Application No. 201480015093.3, dated Dec. 4, 2019, 17 pages.
Chinese Office Action for Application No. 201480015093.3, dated Jul. 16, 2018, 16 pages.
Chinese Office Action for Application No. 201480015147.6, dated Mar. 10, 2017, 10 pages excluding translation.
Chinese Office Action for Application No. 201480015147.6, dated May 3, 2018, 6 pages.
Chinese Office Action for Application No. 201480015147.6, dated Nov. 16, 2017, 8 pages.
Chinese Office Action for Application No. 201480041985.0, dated Apr. 3, 2019, 12 pages.
Chinese Office Action for Application No. 201480041985.0, dated May 15, 2020, 23 pages.
Chinese Office Action for Application No. 201480041985.0, dated Sep. 23, 2019, 24 pages.
Chinese Office Action for Application No. 201480041985.0, dated Sep. 3, 2020, 38 pages.
Eskew, James et al., Using Innovative Technologies To Set New Safety Standards For The Infusion Of Intravenous Medications, Hospital Pharmacy, vol. 37, No. 11, pp. 1179-1189, 2002, Facts and Comparisons.
European Communication for Application No. 14779655.1, dated Oct. 2, 2019, 12 pages.
European Communication of the Board of Appeal for Application No. 05791269.3, dated Nov. 10, 2017, 7 pages.
European Office Action for Application No. 12756903.6, dated Apr. 19, 2017, 5 pages.
European Office Action for Application No. 14772937.0, dated Apr. 19, 2018, 9 pages.
European Office Action for Application No. 14775918.7, dated Dec. 20, 2017, 8 pages.
European Office Action for Application No. 14779655.1, dated Jul. 28, 2017, 6 pages.
European Office Action for Application No. 14779655.1, dated Mar. 8, 2018, 7 pages.
European Office Action for Application No. 14801713.0, dated Dec. 11, 2019, 6 pages.
European Summons to attend oral proceedings pursuant to Rule 115(1) EPC for Application No. 14772937.0, dated Jul. 17, 2019, 12 pages.
Evans, R. S. et al., “Enhanced notification of infusion pump programming errors”, Studies in health technology and informatics, Jan. 1, 2010, pp. 734-738, XP055305644, Netherlands DOI: 10.3233/978-1-60750-588-4-734 Retrieved from the Internet: URL:http://booksonline.iospress.nl/Extern/EnterMedLine.aspx?ISSN=0926-9630&Volume=160&SPage=734 [retrieved on Sep. 26, 2016].
Extended European Search Report and Written Opinion for Application No. 14772937.0, dated Oct. 10, 2016, 9 pages.
Extended European Search Report and Written Opinion for Application No. 14775918.7, dated Sep. 13, 2016, 10 pages.
Extended European Search Report and Written Opinion for Application No. 14779139.6, dated Nov. 7, 2016, 7 pages.
Extended European Search Report for Application No. 14779655.1, dated Jul. 14, 2016, 8 pages.
Extended European Search Report for Application No. 14780320.9, dated Jul. 1, 2016, 7 pages.
Extended European Search Report for Application No. 14801713.0, dated Jan. 16, 2017, 8 pages.
Extended European Search Report for Application No. 14801726.2, dated Jan. 5, 2017, 8 pages.
Hickle, WO 2004/060443, Appartuses and Method for Automatically Assessing and Monitoring a Patient's Responsiveness, Dec. 23, 2003.
India Office Action for Application No. 2625/KOLNP/2015, dated Jul. 8, 2020, 7 pages.
India Office Action for Application No. 4041/KOLNP/2015, dated Jul. 8, 2020, 8 pages.
India Office Action for Application No. 7050/CHENP/2013, dated Sep. 18, 2019, 7 pages.
International Search Report and Written Opinion for PCT Application No. PCT/US2014/022830, dated Jun. 19, 2014, 6 pages.
International Search Report and Written Opinion for PCT Application No. PCT/US2014/022832, dated Jun. 24, 2014, 5 pages.
International Search Report and Written Opinion for PCT Application No. PCT/US2014/022835.
International Search Report and Written Opinion for PCT Application No. PCT/US2014/022837, dated Jun. 18, 2014.
International Search Report and Written Opinion for PCT Application No. PCT/US2014/022840, dated Jun. 19, 2014, 5 pages.
International Search Report and Written Opinion for PCT Application No. PCT/US2014/037577 dated Sep. 5, 2014.
Japanese Office Action for Application No. 2016-501081, dated May 7, 2019, 4 pages.
Japanese Office Action for Application No. 2016501081, dated Nov. 12, 2019, 6 pages.
Japanese Office Action for Application No. 2016-501081, dated Nov. 2, 2018, 6 pages.
Japanese Office Action for Application No. 2019-030891, dated May 27, 2020, 8 pages.
Japanese Office Action in Application No. 2016-501081, dated Feb. 9, 2018, 4 pages.
Kohn, et al., “To Err is Human—Building a Safer Health System,” National Academy Press, 2002, pp. i-287, National Academy of Sciences.
Lesar, “Recommendations for Reducing Medication Errors,” Medscape Pharmacists, posted Jul. 24, 2000, 10 pgs, vol. 1(2), Medscape Pharmacists, <http://www.medscape.com>.
Meier, “Hospital Products Get Seal of Approval at a Price,” The New York Times, Apr. 23, 2002, 5 pgs.
Memo concerning Mexican Office Action for Application No. MX/a/2015/015959, dated Sep. 21, 2017, 4 pages.
Memo concerning Mexican Office Action for Application No. MX/a/2015/015959, memo dated Mar. 2, 2018, 1 page.
Non-Final Office Action dated Oct. 14, 2014, dated U.S. Appl. No. 11/326,145.
Non-Final Office Action dated Oct. 14, 2014, dated U.S. Patetn U.S. Appl. No. 13/559,537.
Office Action for U.S. Appl. No. 13/802,433.
Office Action for United Arab Emirates Application No. UAE/P/0962/2013, dated Apr. 17, 2017, 18 pages.
Queensland Health. Use of returned or unused dispensed medicines, Jan. 5, 2005, Queensland Government. pp. 1-2.
Shabot et al., “Wireless clinical alerts for critical medication, laboratory and physiologic data,” System Sciences 2000. Proceedings of the 33rd Annual Conference on Jan. 4-7, 2000, Piscataway, NJ, IEEE, Jan. 4, 2000.
Summons to attend oral proceedings for European Application No. 14779655.1, dated Jan. 10, 2019, 9 pages.
U.S. Appl. No. 90/009,912, filed Aug. 12, 2013, Schlotterbeck et al.
U.S. Appl. No. 90/011,697, filed Aug. 12, 2013, Schlotterbeck et al.
United Arab Emirates Office Action from KIPO for Application No. UAE/P/1554/2015, first received Nov. 21, 2019, 11 pages.
U.S. Appl. No. 13/901,501, filed May 23, 2013.
Williams, et al., “Reducing the Risk of User Error with Infusion Pumps,” Professional Nurse—Safe Practice—Infusion Devices, Mar. 2000, pp. 382-384, vol. 15(6).
Yokoi, “Prevention of Errors in Injection/Drip Infusion—No excuse for ignorance!—EssentialPoints of Accident Prevention, IV Infusion Pump, Syringe-pump Accident Prevention,” JIN Special, Igaku Shoin K.K., Dec. 1, 2001, pp. 109-120, No. 70.
Canadian Office Action for Application No. 2900564, dated Nov. 19, 2020, 4 pages.
Canadian Office Action for Application No. 2901024, dated Nov. 20, 2020, 6 pages.
Extended European Search Report for Application No. 20191537.8, dated Dec. 17, 2020, 9 pages.
Japanese Office Action for Application No. 2019-030891, dated Nov. 26, 2020, 5 pages including English translation.
Australian Office Action for Application No. 2020203449, dated May 26, 2021, 5 pages.
Chinese Notice of Reexamination for Application No. 201480015036.5, dated Jul. 29, 2021, 32 pages including machine translation.
Chinese Office Action for Application No. 201480041985.0, dated Jun. 2, 2021, 4 pages including translation.
Australian Office Action for Application No. 2022201089, dated Mar. 17, 2023, 3 pages.
Chinese Office Action for Application No. 202111564727.9, dated Mar. 19, 2023, 14 pages including translation.
Extended European Search Report for Application No. 22205566.7, dated Mar. 13, 2023, 12 pages.
India Hearing Notice for Application No. 4041/KOLNP/2015, dated Apr. 6, 2023, 5 pages.
Australian Office Action for Application No. 2020200812, dated Mar. 24, 2021, 5 pages.
Australian Decision Issued for Application No. 2014268828, dated Feb. 26, 2021, 30 pages.
Canadian Office Action for Application No. 2912792, dated Mar. 1, 2021, 7 pages.
Brazilian Office Action for Application No. BR112015029135-0, dated Aug. 30, 2022, 10 pages including translation.
Canadian Office Action for Application No. 2901024, dated Jul. 20, 2022, 5 pages.
Chinese Office Action for Application No. 202111564727.9, dated Aug. 17, 2022, 14 pages including translation.
Brazilian Office Action for Application No. BR112015029135-0, dated Mar. 8, 2022, 8 pages including translation.
Chinese Office Action for Application No. 201480015093.3, dated Mar. 3, 2022, 42 pages including translation.
Chinese Office Action for Application No. 202111564727.9, dated Aug. 2, 2023, 12 pages including translation.
European Decision to Refuse for Patent Application No. 14801713.0, dated Sep. 25, 2023, 21 pages.
United Arab Emirates Office Action from KIPO for Application No. P962/2013, first received Oct. 4, 2023, 5 pages.
Australian Office Action for Application No. 2022201089, dated Jan. 31, 2024, 3 pages.
Indian Hearing Notice for Application No. 7050/CHENP/2013, dated Dec. 1, 2023, 3 pages.
Australian Office Action for Application No. 2022201089, dated Mar. 15, 2024, 4 pages.
Related Publications (1)
Number Date Country
20210103871 A1 Apr 2021 US
Continuations (2)
Number Date Country
Parent 15682428 Aug 2017 US
Child 17103828 US
Parent 13802683 Mar 2013 US
Child 15682428 US