The present invention relates to concrete forms. More specifically, the present invention is concerned with prefabricated concrete wall formwork modules that can be assembled like bricks to form a mold into which concrete is poured. Once assembled and filled with concrete, the modules are left in place thereby providing a concrete wall with panels on both of its sides.
A formwork for casting a concrete wall is traditionally assembled on the premises using two wood or metal panels maintained in spaced parallel relationship by tie-wires and other appropriate connection means at their ends. Such formwork is expensive since its mounting and dismounting are time consuming.
U.S. Pat. No. 4,888,931 issued to Meilleur on Dec. 26, 1989 and entitled “Insulating Formwork for Casting a Concrete Wall” discloses an insulating formwork for casting a concrete wall, which is made of foam panels connectable to each other in parallel relationship by means of tie-rods. Once assembled, the panels define a concrete formwork into which concrete can be poured.
Even though the assembly of this formwork is simplified by the configuration of the panels, the formwork must still be completely assembled on the premises, thereby requiring time and manual dexterity.
U.S. Pat. No. 6,070,380 also issued to Meilleur on Jun. 6, 2000 and entitled “Concrete Wall Formwork Module” discloses a prefabricated concrete formwork module that may be assembled with other similar modules in the manner of a brick wall to form a mould into which concrete is poured. Even though Meilleur's module solves the above-mentioned problem of the assembly, it presents the new drawback that it is cumbersome, takes a lot of space and is therefore costly to transport.
U.S. Pat. No. 8,276,340 issued to Polycrete International Inc. on Oct. 2, 2012 and titled “Concrete Wall Formwork Module” teaches a collapsible formwork module having wall panels that are movable between a retracted parallel relationship and a spaced apart parallel relationship. The panels are reinforced by the inclusion of wire meshes that are hingedly assembled by attaching spacer rods to both panels therebetween. This module solves the space problem while remaining easy to install. However, a drawback of these modules is that they are configured with an inherent horizontal directionality that renders tedious their positioning and assembly vertically. Moreover, their side by side assembly is not locked until adjacent modules are attached.
The problem of the directionality of a deployable concrete wall formwork module from the prior art is solved by providing both lateral and both longitudinal opposite side edges of the modules with complementary shapes that lock in place two laterally or longitudinally adjacent modules when they are deployed. For example, the opposite side edges of adjacent modules interlock in one direction and are configured for adjoining according to a shiplap arrangement in the other direction.
According to an illustrated embodiment, there is provided a concrete wall formwork module comprising first and second panels that are connected for movement between a fold up parallel relationship and a spaced apart parallel relationship; each of the first and second panels including lateral side edges, each configured for coupling with an opposite lateral side edge of the corresponding first or second panel of an identical module; each of the first and second panels further including longitudinal side edges, each configured for coupling with an opposite longitudinal side edge of the corresponding first or second panel of the identical module.
According to another embodiment, there is provided a formwork for a concrete wall including a plurality of modules as recited above that are interconnected side by side and/or one on top of the other.
According to still another embodiment, there is provided a deployable concrete wall formwork module including lateral side edges, each being configured for interlocking with one of the lateral side edges of an identical module only when both modules are deployed.
Other objects, advantages and features will become more apparent upon reading of the following non-restrictive description of illustrative embodiments thereof, given by way of example only with reference to the accompanying drawings.
In the appended drawings:
In the following description, similar features in the drawings have been given similar reference numerals, and in order not to weigh down the figures, some elements are not referred to in some figures if they were already identified in a precedent figure.
The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification may mean “one”, but it is also consistent with the meaning of “one or more”, “at least one”, and “one or more than one”. Similarly, the word “another” may mean at least a second or more.
As used in this specification and claim(s), the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “include” and “includes”) or “containing” (and any form of containing, such as “contain” and “contains”), are inclusive or open-ended and do not exclude additional, unrecited elements.
A prefabricated formwork module 10 for casting a concrete wall will now be described with reference to
The module 10 comprises two panels 12 that are attached so as to remain in a parallel relationship via a plurality of connectors 14 of same length.
Each panel 12 includes a plurality of metal strips 16 embedded therein. As will be described hereinbelow in more detail, each strip 16 supports a plurality of aligned lugs 18 along its length. The strips 16 and lugs 18 are configured, sized and positioned within the panels 12 so that the lugs 18 stand out of the panels 12 in a direction towards the other panels 12.
As will be described hereinbelow in more detail, the connectors 14 hingedly interconnect the two panel structures to allow relative movement thereof along the longitudinal direction between a fold up parallel relationship to a spaced apart parallel relationship (both shown in
The panels 12 are made of plastic foam having a high insulating ability such as polyurethane and expanded or extruded polystyrene. Other materials can also be used including, without limitations, another polymeric material, wood, fiberglass, etc. Moreover, the two panels 12 need not to be made from the same material.
The panels 12 are rectangular shaped, are forced in a parallel relationship by the connectors 14 and are relatively positioned so that one of the two (2) modules is pivoted 180 degrees relative to the other module about an axis perpendicular to both planes defined by the panels 12.
Each panel 12 has two interlockable opposite lateral edges 20 and 22. It results that each lateral edges 20 or 22 of each panel 12 are interlockable with the opposite end 22 or 20 of a similar panel 12 of another concrete wall formwork module 10. The interlocking of the edges 20-22 of two panels 12 yields a side by side alignment of the two adjoined panels 12.
The interlockable edges 20 and 22 are defined by a respective groove 24 and 26, each defining a respective tongue 28 and 30 at the distal end of portions 20 and 22. The pair of interlockable edges 20 defines a female connecting portion 29 and the pair of interlockable edges 22 define a male connecting portion 31
As can be seen for example in
Moreover, when one panel 12 of a first module 10 is locked in place in the corresponding panel 12 of an already deployed second module 10 (see for example the right most module 10 in
As can be also seen in
Illustrated embodiments of a concrete wall formwork module are not limited to the tongue portions 28 being at the very end of the panels 12, which can be at other distances from the end. Also, the tongue and groove portions can have other configurations allowing coupling of two panels.
The transversal edges 36 and 38 of the panels 12 are also configured for complementary engagement. More specifically, the edge portions 36 and 38 are provided with respective grooves 40 and 42 positioned on same side in a shiplap arrangement. Other engagement means, including tongues and grooves can alternatively be provided on the top and bottom edge portions 36 and 38.
While the pair of panels 12 from a module 10 according to the first illustrated embodiment are relatively movable between the fold up parallel relationship to the spaced apart parallel relationship along the longitudinal direction, a module according to another embodiment (not shown) may be configured for relative movement of its panels along the lateral direction.
Modules 10 can be made in different size and/or having different configuration. Also, the configuration and size of the panels 12 in a module 10 are not limited to the illustrated embodiment. The modules 10 can be configured for interlocking on their longitudinal or transversal side edges. In other words, the modules 10 can be configured for interlocking vertically or horizontally.
A plurality of parallel metal strips 16 are embedded in each panel 12. The ensemble of the panel 12 with strips 16 will be referred to as a panel structure.
According to the first embodiment, the adjacent strips 16 are positioned every 8.375 inches (21.27 cm) along the length of the panel 12 and are oriented perpendicularly to the length of the panel 12. According to other embodiments (not shown), the distance between adjacent strips 16 is more or less than 8.375 inches.
With references to
The pair of panels 12 of a module 10 are attached together and maintained in a parallel relationship via the connectors 14, which are secured to the panels 12 via the lugs 18. More specifically, the connectors 14 are secured to the lugs 18 by closing a loop thereabout. The attachment of the connectors 14 to the lugs 18 is such that the panels 12 are movable between a retracted or collapse or fold up parallel relationship and a spaced apart parallel or opened relationship. The parallel relationship is forced by the rigidity and equal length of the connectors 14 and lugs 18.
The fact that the modules 10 are collapsible is advantageous for their storing and handling, and also for their assembly side-by-side to form a formwork (see for example
The lugs 18 are not limited to the illustrated shape and can be of any other configuration and size that allow receiving a hook or the like. According to another embodiment (not shown), the lugs 18 are arc-shaped member welded or fastened to the strip 16.
In order to add rigidity and force to the module 10 and/or reinforcement to a concrete wall or structure formed therewith, a rod 50 is secured to connectors 14 (see
According to another embodiment, the rod 50 is differently shaped or omitted.
It is to be noted that the module 10 is intended to be manufactured off construction site. Considering that its structural and functional characteristics are retained in both its collapse and opened configurations, it can be easily transported from a manufacturing site to a construction site.
Other characteristics and features of the module 10 will become more apparent upon reading the following description of a use thereof with reference to
As already mentioned, it can be advantageous to transport and store the modules in a collapse configuration as shown with the right most module 10 in
In starting a formwork or any other construction assembly, a first module 10 is rightly positioned and opened. We will refer to such a module as being installed. Since ground preparation and any other preliminary steps are believed to be well known in the art, they will not be described herein in more detail.
A further module 10′ is positioned contiguous to one already installed, while this further module 10′ is in the collapse or partially collapse position. The connecting end 22 of the male connector portion 31 of the added module 10′ is coupled to the connecting end 20 of the female connector portion 29 of the already installed module 10. This arrangement is shown in the two right-most modules in
The two panels 12 of the module 10′ are then moved away from each other while the partial interconnection between the two modules 10-10′ is preserved. When the new module 10′ is fully opened, the interconnection of the second connecting end 22 of the male connector portion 31 of the module 10′ with the second female connector portion 24 of the already installed module 10 is automatic and the two adjacent modules 10-10′ are then firmly connected. This procedure is repeated with other modules 10 having the same or different dimensions as required.
A person skilled in the art will appreciate that a new module 10 is secured to adjacent modules in both the lateral and longitudinal direction at the same time by the unique movement of the new module from its fold up to its spaced apart configuration.
A tension rod 52 can be mounted to adjacent modules 10 therebetween to add cohesion to the assembly. For such purpose, the rod 52 is provided with a hook 54 at one end, and the rod 52 is positioned through the connector 14 to better secure the interlocking of the panels 12.
With reference to
As illustrated in
Contrarily to formwork modules from the prior art, the length of the module 10 can be modified easily, for example on the construction site, by cutting the panels 12 between two adjacent strips 16 thereof using for example a hot wire (when the panels 12 are made of polystyrene) or else. This is allowed by the structure of the panels 12 that do not include a reinforcement mesh embedded therein.
As shown in
With reference to
According to another illustrating embodiment, a corner assembly 68 is formed using two modules 10, having only their inner panels 12′ cut at a 45 degrees angle. A square-shaped element 70, which is made for example of the same insulating material than the panels 12, is secured to both exterior panels 12″, using glue or another fastening means, in the outer gap formed thereby. Similarly to the embodiment shown in the previous Figure, the inner joint can be left unattached prior to installation of the assembly 68.
Similarly the modules 10 can be cut at other angles or assembled differently than described hereinabove so as to allow forming a corner assembly at other degree angle than 90 degrees.
The thickness and material used for the strips 16 as well as their number and position within the panels 12 are selected so that the resulting panel 12 and module 10 is able to withstand the thrust force of concrete poured in a formwork assembled using modules 10.
The strips 16 can be made of steel, wood, plywood, a polymeric material, or else, or a combination thereof. The strips 16 can further be used to act as or to mount furring strips.
Returning now to
To secure the scaffolding assembly 74, beams, such as without limitations a 2″×4″ (5.08 cm×10.16 cm) wood beams 75, are secured to the assembly 72. A ground base 76 is also shown in
According to the embodiment illustrated in
As mentioned hereinabove, the modules 10 can be cut longitudinally and/or transversally as required by the construction project. For example, the upper portion of the modules 10 in the wall portion from the left has been cut to allow the mounting of a concrete floor assembly (not shown),
Also, in some applications, a 2″×10″ (5.08 cm×10.40 cm) wood panel (not shown) is used in place of the upper beams 75 to form a wood plate that is provided to support a floor assembly (not shown).
The walls are formed with modules 10 assembled in staggered rows. This arrangement provides good continuity in the wall dimensions from one floor level to the next. The wall assembly 74 is however not limited to such an arrangement of modules 10.
Also, as shown in
Since scaffolding assembly, lineage and concrete pouring are believed to be well known in the art, they will not be described herein in more detail.
It is to be noted that other modifications could be made to the modules 10 or 60 described hereinabove and illustrated in the appended drawings. For example:
Although a concrete wall formwork panel has been described hereinabove by way of illustrated embodiments thereof, it can be modified. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that the scope of the claims should not be limited by the preferred embodiment, but should be given the broadest interpretation consistent with the description as a whole.
This application is a continuation of International Application PCT/CA2015/000417, filed Jun. 25, 2015, which claims the benefit of U.S. Provisional Application No. 62/020,985, filed on Jul. 3, 2014, the contents of each of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2335303 | Olsen | Nov 1943 | A |
3827205 | Barbera | Aug 1974 | A |
4194337 | Fischer | Mar 1980 | A |
4742659 | Meilleur | May 1988 | A |
4888931 | Meilleur | Dec 1989 | A |
4901494 | Miller | Feb 1990 | A |
4967528 | Doran | Nov 1990 | A |
6070380 | Meilleur | Jun 2000 | A |
6178711 | Laird | Jan 2001 | B1 |
6240692 | Yost | Jun 2001 | B1 |
7082731 | Patz | Aug 2006 | B2 |
7347029 | Wostal | Mar 2008 | B2 |
7565777 | Sweeney | Jul 2009 | B2 |
8266859 | Harrington | Sep 2012 | B1 |
8276340 | Meilleur | Oct 2012 | B2 |
9091089 | Pfeiffer | Jul 2015 | B2 |
9175486 | Pfeiffer | Nov 2015 | B2 |
20020178676 | Yost | Dec 2002 | A1 |
20140259990 | Pfeiffer | Sep 2014 | A1 |
20140260055 | Pfeiffer | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
2 267 235 | Sep 2013 | EP |
Entry |
---|
International Search Report issued for corresponding International Patent Application No. PCT/CA2015/000417 dated Sep. 10, 2015. |
Written Opinion of the International Searching Authority issued for corresponding International Patent Application No. PCT/CA2015/000417 dated Sep. 10, 2015. |
Number | Date | Country | |
---|---|---|---|
20170107715 A1 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
62020985 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CA2015/000417 | Jun 2015 | US |
Child | 15393795 | US |