Prefabricated panel with protective film

Information

  • Patent Application
  • 20080000172
  • Publication Number
    20080000172
  • Date Filed
    June 13, 2007
    17 years ago
  • Date Published
    January 03, 2008
    16 years ago
Abstract
Panel (1) comprising, in succession, a first rigid board forming the back of the panel, a first thermally insulating layer (3) borne by the said backboard, an impervious covering (4) covering the said first thermally insulating layer, a second thermally insulating layer (5) which partially covers the said impervious covering and a second rigid board (6) covering the said second thermally insulating layer, characterized in that it comprises a film (8) which covers at least part of the said impervious covering which is not covered by the said second thermally insulating layer, the said film comprising at least one protective portion (9) and at least one spew portion (11) adjacent to the said protective portion, the said protective portion and the said spew portion being able to be detached from the said impervious covering independently of one another.
Description

The invention will be better understood and other objects, details, features and advantages thereof will become more clearly apparent in the course of the following description of a number of particular embodiments of the invention which are given solely by way of non-limiting illustration with reference to the attached drawings. In these drawings:



FIG. 1 is a perspective view of two adjacent prefabricated panels according to an embodiment of the invention;



FIG. 2 depicts a detail of the panels of FIG. 1 and shows how the film can be removed from the panels; and



FIG. 3 depicts a detail of the panels of FIG. 1 during the spew test.






FIG. 1 depicts two prefabricated panels 1 fixed adjacent to one another on the bearing structure (not depicted) of a tank for transporting liquefied natural gas by sea.


Each panel 1 comprises a rigid backboard 2, for example made of plywood, and a first layer of thermal insulation 3, for example made of glass fibre reinforced polyurethane foam, which covers the backboard 2. The backboard 2 and the first layer of thermal insulation 3 together form a secondary thermally insulating barrier element. An impervious covering 4 is stuck to the first layer of thermal insulation 3 on the opposite side to the backboard 2. The impervious covering 4 may be rigid or flexible and comprises three layers, namely a sheet of aluminium about 0.1 mm thick, surrounded with fibreglass fabric and constitutes a secondary sealing barrier element. A second layer of thermal insulation 5, for example made of glass fibre-reinforced polyurethane foam, is bonded to the impervious covering 4, and a top board 6, for example made of plywood, covers the second layer of thermal insulation 5. The second layer of thermal insulation 5 and the top board 6 together form a primary thermally insulating barrier element.


In plan view, the backboard 2, the first layer of thermal insulation 3 and the impervious covering 4 have the shape of a first rectangle. The second layer of thermal insulation 5 and the top board 6 have the shape of a second rectangle with the same centre as the first but of a smaller size. Thus, the impervious covering 4 has a peripheral edge which is not covered by the second layer of thermal insulation 5.


The peripheral edge of the impervious covering 4 is covered by a film 8, as can be seen in FIG. 2. In the embodiment depicted, the film 8 completely covers the peripheral edge of the impervious covering 4. In another embodiment, the film 8 leaves uncovered a narrow region of the impervious covering 4 adjacent to the second layer of thermal insulation 5. The film 8 comprises two protective portions 9 each of which extends along a long side of the impervious covering 4, and two spew portions 11, each of which extends adjacent to these protective portions 9. The film 8 also comprises two other protective portions 9 each of which extends along a short side of the impervious covering 4, between the aforementioned two spew portions 11, and two other spew portions 11, each of which extends adjacent to these other protective portions 9. FIG. 2 depicts protective portions 9 and spew portions 11 which have been partially removed from the impervious covering 4.


In the embodiment depicted, the film 8 consists of a single sheet, for example a sheet of polyethylene or of card material, bonded to the impervious covering 4, and which has precuts 12 dividing the various protective portions 9 and spew portions 11 from one another. In a variant, a reinforcing layer, for example a fibreglass fabric, is provided on the spew portions 11. In another embodiment, the protective portions 9 and the spew portions 11 of the film 8 are made of different materials and/or have different thicknesses.


The adhesive of the film 8 which sticks it to the impervious covering 4 is, for example, an adhesive of the acrylic or rubber type. These types of adhesive have the advantage of leaving no traces on the impervious covering 4 once the film has been removed, or at least of not leaving any traces detrimental to the bonding of the strip of impervious covering 13 described hereinbelow. In addition, this type of adhesive allows the panels 1 to be stored for relatively long periods, for example of several months, without the properties of the adhesive degrading, for example as a result of the action of ultraviolet radiation, temperature or humidity.


By fixing a plurality of rectangular prefabricated panels 1, and possibly panels of a similar structure that are trapezoidal or some other shape, to the bearing structure of a tank, most of the secondary thermally insulating barrier, of the secondary sealing barrier and of the primary thermally insulating barrier of the tank is formed in a single step. Next, the continuity of these barriers between the panels 1 is established and the primary sealing barrier is fitted. The operations of fixing the panels 1 to the bearing structure, establishing the continuity of the secondary and primary thermally insulating barriers, and of positioning the primary sealing barrier can be performed using techniques known to those skilled in the art, for example as described in documents FR-A-2 724 623 mentioned hereinabove and FR-A-2 781 557. The continuity of the secondary sealing barrier can be established using the technique described hereinbelow.


Having fixed the panels 1 to the bearing structure and established the continuity of the secondary thermally insulating barrier, the protective portions 9 which cover two adjacent edges of two adjacent panels 1 between which there is a space 7 are removed. This then uncovers two regions for bonding 10 of the panels 1. At this stage, the other protective portions 9 of the panels 1 are not removed, so as to continue to protect the bonding regions that they cover.


Next, the uncovered regions for bonding 10 are coated with adhesive and a strip of flexible impervious covering 13 with the same three-layer structure as the impervious covering 4 is laid in such a way that the strip 13 is bonded to the two regions for bonding 10 of the two adjacent panels 1, covering the space 7, as shown in FIG. 3. Adhesive spew 14 therefore forms on each side of the strip 13 and partially covers the spew portions 11 which were adjacent to the protective portions 9 removed.


In order to check the quality of the bonding of the strip 13, a spew test is then performed, that is to say that once the adhesive has cured, the spew portions 11 are removed, as depicted in the left-hand part of FIG. 3, and the remaining adhesive spew 14 is examined.


In an embodiment that has not been depicted, the film 8 exhibits a test portion that can be detached from the impervious covering 4 independently of the protective portions 9 and the spew portions 11. This test portion consists for example of a tab delimited by a rectangular precut on a spew portion 11. A peel test can then be performed on site, for example just before fixing the panel 1 to the bearing structure, this test consisting in peeling the tab back at 180° in order to remove it, and measuring the force required using scales. If the force required does not fall within a given range, this shows that the surface of the impervious covering 4 has been damaged or contaminated and is unsuitable for bonding. The impervious covering 4 can then be cleaned prior to bonding or the panel 1 can be scrapped.


Although the invention has been described in conjunction with a number of particular embodiments, it is quite clear that it is not in any way restricted thereto and that it comprises all technical equivalents of the means described and combinations thereof provided that these fall within the scope of the invention.

Claims
  • 1. Panel (1) comprising, in succession, a first rigid board (2) forming the back of the panel, a first thermally insulating layer (3) borne by the said backboard, an impervious covering (4) covering the said first thermally insulating layer, a second thermally insulating layer (5) which partially covers the said impervious covering and a second rigid board (6) covering the said second thermally insulating layer, characterized in that it comprises a film (8) which covers at least part of the said impervious covering which is not covered by the said second thermally insulating layer, the said film comprising at least one protective portion (9) and at least one spew portion (11) adjacent to the said protective portion, the said protective portion and the said spew portion being able to be detached from the said impervious covering independently of one another.
  • 2. Panel according to claim 1, characterized in that the said film covers all of the said impervious covering which is not covered by the said second thermally insulating layer.
  • 3. Panel according to claim 1, characterized in that the said protective portion is adjacent to one edge of the said panel.
  • 4. Panel according to claim 3, characterized in that, in plan view, it has a rectangular shape, the said film having four protective portions adjacent to the four edges of the said impervious covering and four spew portions, one adjacent to each of the four protective portions.
  • 5. Panel according to claim 1, characterized in that the said protective portion and the said spew portion consist of a single sheet which has a precut (12).
  • 6. Panel according to claim 5, characterized in that it comprises a reinforcing layer laid on the said spew portion.
  • 7. Panel according to claim 1, characterized in that the said protective portion and the said spew portion each consist of two different sheets of different materials and/or different thicknesses.
  • 8. Panel according to claim 1, characterized in that the said impervious covering comprises a flexible metal sheet and, on each side of the said metal sheet, a layer comprising a fibreglass fabric.
  • 9. Panel according to claim 1, characterized in that the said film has a test portion that can be detached from the said impervious covering independently of the said protective portion and of the said spew portion.
  • 10. Method of manufacturing a sealed and thermally insulated tank, characterized in that it comprises the steps involving: fixing panels (1) according to claim 1 to the bearing structure of the tank,removing the protective portions (9) from adjacent panels,sticking a strip of impervious covering (13) onto the regions (10) uncovered by the protective portions removed using an adhesive so as to ensure the continuity of the secondary sealing barrier,once the adhesive is cured, removing the spew portions (11) adjacent to the said uncovered regions,examining the adhesive spew (14) formed and validating the bonding of the strip of impervious covering on the strength of this examination.
  • 11. Manufacturing method according to claim 10, characterized in that the said strip of impervious covering comprises a flexible metal sheet and, on each side of the said metal sheet, a layer comprising a fibreglass fabric.
  • 12. Panel according to claim 2, characterized in that the said protective portion is adjacent to one edge of the said panel.
  • 13. Panel according to claim 2, characterized in that the said protective portion and the said spew portion consist of a single sheet which has a precut (12).
  • 14. Panel according to claim 3, characterized in that the said protective portion and the said spew portion consist of a single sheet which has a precut (12).
  • 15. Panel according to claim 4, characterized in that the said protective portion and the said spew portion consist of a single sheet which has a precut (12).
  • 16. Panel according to claim 2, characterized in that the said protective portion and the said spew portion each consist of two different sheets of different materials and/or different thicknesses.
  • 17. Panel according to claim 3, characterized in that the said protective portion and the said spew portion each consist of two different sheets of different materials and/or different thicknesses.
  • 18. Panel according to claim 4, characterized in that the said protective portion and the said spew portion each consist of two different sheets of different materials and/or different thicknesses.
  • 19. Panel according to claim 2, characterized in that the said impervious covering comprises a flexible metal sheet and, on each side of the said metal sheet, a layer comprising a fibreglass fabric.
  • 20. Panel according to claim 3, characterized in that the said impervious covering comprises a flexible metal sheet and, on each side of the said metal sheet, a layer comprising a fibreglass fabric.
Priority Claims (1)
Number Date Country Kind
06/05963 Jun 2006 FR national