The present invention relates to a prefabricated roof plate element of the type indicated in the preamble to claim 1.
The invention also relates to a prefabricated load carrying girder preferably for use in prefabricated roof plate elements according to the invention.
Furthermore, the invention relates to a method for the production of prefabricated roof plate elements according to the invention.
Prefabricated roof girders and roof plate elements, respectively, of this kind can be made totally from inorganic materials, which is very significant to durability and maintenance. Besides, it is of great significance that the roof plate elements in question can have a free span of up to 22 metres, i.e. one single roof plate element may cover in the order of about 80 m2, which of course is very essential with regard to reducing of the construction time and costs.
EP2145056A1 (WO2008/125109A1) discloses a prefabricated roof plate element, including one or more longitudinal box-shaped roof girders that each consists of two predominantly U-shaped steel sections which at mutually facing, open sides are interconnected along narrow outwards bent lateral edges, the roof girders being connected at upper and lower narrow sides corrugated in longitudinal direction with steel plates corrugated in transverse direction and having approximately the same width as the roof plate element, the roof girders/support girders and roof plate element, respectively, designed with reduced height at an end part intended to form eaves.
WO2012/113406A discloses a roof girder consisting of two predominantly U-shaped steel sections, the lower and upper sides of which face each other, and which is designed with narrow outwardly bent edges, the roof girder at opposing upper and lower narrow sides are corrugated in longitudinal direction, wherein the steel sections at the upper and lower open sides, respectively, are interconnected by means of connecting plates or partitionings which are fastened to substantial, substantially vertical sides of the steel sections in such a way that there is a spacing between the narrow outwardly bent edges of respective lower and upper steel sections.
On that background it is the purpose of the invention to provide a new and improved prefabricated plate-shaped roof element of the type indicated in the preamble to claim 1 and by which may be provided both cheaper and improved plate-shaped roof elements.
The prefabricated roof plate element according to the invention is characterised in, that vertical side walls of said steel frame parts being interconnected by longitudinal connection plates forming parts of said load carrying girders, and that said lower steel frame parts furthermore preferably being interconnected by an integral steel panel part forming the bottom of said roof plate element and a ceiling of a building, respectively. By simple provisions is hereby achieved a new and improved prefabricated roof plate element, which furthermore may be cheaper to produce.
It shall be emphasized that the fact that said lower steel frame parts being integrated with a steel panel parts forming the bottom of said roof plate element means that the production of such roof plate elements may be carried out with a minimum of manual working hours—resulting in quicker and cheaper production and minimized prices.
The prefabricated roof plate element according to the invention may preferably be such provided that it consists of a number of such uniform roof plate elements being interconnected side by side to form a wider prefabricated roof plate element, the cavities of which being filled with insulation material, and afterwards being provided with a common top plate construction and a common roof foil covering.
Appropriately, the prefabricated roof plate element according to the invention is such provided, that said common top plate construction comprises steel panel plates provided with transverse corrugations and on top thereof semi-hard insulation plates and said common roof foil covering.
Advantageously, the prefabricated roof plate element according to the invention may be such provided, that said integral steel panel part forming the bottom of said roof plate element and a ceiling of a building, respectively, being provided with a large number of perforations and possible an upper fabric cower to improve the acoustic qualities of the bottom of said roof plate element.
Alternatively, the prefabricated roof plate element according to the invention may be such provided, that said integral steel panel part forming the bottom of said roof plate element and a ceiling of a building, respectively, being provided with transverse corrugations to improve the stiffness and carrying qualities of the bottom of said roof plate element.
Additionally, in order to improve the general stiffness and carrying capacity it may be advantageous that the prefabricated roof plate element according to the invention being such provided, that said integral steel panel part forming the bottom of said roof plate element and a ceiling of a building, respectively, being provided with longitudinal corrugations to improve the general stiffness and carrying qualities of the bottom of said roof plate element.
The invention also relates to a prefabricated load carrying girder preferably for use in prefabricated roof plate elements according to the invention, said prefabricated load carrying girder consisting of longitudinal upper and lower steel frame parts being provided with longitudinal corrugations to improve the general stiffness and carrying qualities of said load carrying girders, that vertical side walls of said upper and lower steel frame parts being interconnected by longitudinal connection plates, and that preferably plate-shaped insulation material being inserted between said longitudinal connection plates.
Hereby it becomes possible to build up plate-shaped roof elements according to the invention in situ by means of a number of prefabricated load carrying girders and by mounting said steel panel part forming the bottom of said plate-shaped roof element and a ceiling of a building, respectively. Preferable, the in situ mounted combined button and ceiling plates may be provided with longitudinal or transverse corrugations to improve the general stiffness and carrying qualities of said bottom of said plate-shaped roof element.
Afterwards, the upwardly open central hollowness of the in situ build up plate-shaped roof element is filled with a suitable insulation material, before the plate-shaped roof element is closed upwardly by means of transversely corrugated steel panels, and finally upper semi-hard insulation plates and an uppermost roof foil covering being mounted on the corrugated steel panels.
Furthermore, the invention relates to a method for the production of prefabricated roof plate elements comprising the following method steps:
a thin steel blank having a total width similar to that of the summarised partial width of the respective wall parts of a lower steel plate frame part to be bend up is continuously unrolled from a supply roll as the middle part of said thin steel blank adapted to form a central lower bottom part of said lower steel plate frame and a ceiling in a building,
opposed end parts of said steel blank being continuously bend up to form at least lower longitudinal corrugations and lower, vertical side panels,
a thin steel blank having the total width similar to that of upper steel plate side frame parts to be bend up is continuously unrolled from another supply roll,
opposed end parts of said last mentioned steel blank being continuously bend up to form at least upper longitudinal corrugation and upper, vertical side panels,
longitudinal vertical connection plate members being situated in said longitudinal corrugation and being interconnected between said upper and lower vertical side panels to form an upwardly open girder-like construction,
more of such upwardly open girder-like constructions may be interconnected side by side to create a wider roof plate element of which the upwardly open cavities are filled with insulation material,
said wider roof plate element being closed upwardly by means of transverse corrugated steel panels and on top thereof by means of common semi-hard insulation plates and a common roof foil covering.
Alternatively the method according to the invention may comprise further method steps:
a thin steel blank having a total width similar to that of the steel plate frame part to be bend up is continuously unrolled from a supply roll as the middle part of said thin steel blank adapted to form a central lower bottom part of said steel plate frame being provided with a large number of perforations, said lower bottom part at a side facing upwards being provided with an upper fabric cower to improve the acoustic qualities of the bottom of said roof plate element as well as a steam tight membrane.
According to a further alternative the inventive method could comprise further method step:
that said interconnection between said vertical side panels of the respective upper and lower steel plate frame and said longitudinal, vertical connections plate panels is carried out by one or more of the following connecting means or methods: Screws, clinching, gluing, assembling of combined sealing lips and profiles or welding.
A still further method according to the invention may comprise the further method steps:
a thin steel blank having a total width similar to that of the steel plate frame part to be bend up is continuously unrolled from a supply roll as the middle part of said thin steel blank adapted to form a central lower bottom part of said steel plate frame being provided with longitudinal corrugations to improve the free span carrying capacity of a roof plate element provided by interconnection side by side a number of such upwardly open steel plate frame parts etc.
The prefabricated roof plate element according to the invention is described in more details in the accompanying drawing—in which:
The total width of said steel blank 2 corresponds to the summarised lengths of the respective partial wall parts of at least a longitudinal lower steel frame part 8.
From a narrow thin steel blank are upper left and right hand side plate-shaped frame parts 10 and 12 continuously bend-up, before longitudinal narrow bend-in edges 14 being interconnected with similar longitudinal narrow bend-in edges 16 of said lower steel frame part 8.
In order to prevent or reduce thermal bridges between said narrow bend-in edges 14, 16 special sealant tapes may be positioned between said narrow bend-in edges 14, 16 before said interconnection of these parts.
According to an important aspect the building-up of the plate-shaped roof element 2 may be provided in a mobile factory arranged in one or more containers.
In order to maintain correct vapour barrier effect of such build together frame parts 8 special sealant tapes may be used between the lower external side parts of said lower frame parts 8. Such special sealant tapes may furthermore comprise electric leads for activation the adhesive effect of said special sealant tapes between said lower external side parts of the frame parts 8.
Alternatively, said longitudinal narrow bend-in edges 14, 16 may be substituted by narrow bend-out edges such that said interconnections are placed at the outside of said plate-shaped element 6 and the interior longitudinal joints would be quite plane without disturbing projecting parts such that it would be possible to make use of interior longitudinal connection plate members 36 as described by later embodiments according to the invention.
Furthermore, outermost of said longitudinal connection plate members 36 are positively connected with the respective vertical side walls panels 22, 24 and 30, 32, while innermost of said longitudinal connection plate members 36 being situated in innermost upper and lower corrugations of the respective upper and lower wall parts 42 and 44 of said longitudinal carrying steel frame 20.
Furthermore, innermost narrow, vertical side wall panels 46 and 48 of said upper left and right hand side steel frame parts 28 and 30 may be positively connected along the interior upper side edges of said innermost of said longitudinal connection plate members 36.
Said positive connections between said vertical side panels of the respective upper and lower steel plate frame and said longitudinal, vertical connection plate members 36 including said interconnection of said inwardly bended short edges are carried out by one or more of the following connecting means or methods: Screws, clinching, gluing, assembling of combined sealing lips and profiles or welding.
Furthermore,
Advantageously, said connection plate members 36 may exist of so-called Power Board® consisting of inorganic, fireproof composite material such as Perlite (MgO) reinforced with more layers of glass fibre netting. Said Power Board® being available in standard size of 1220×2440 mm, from which said connection plate members 36 may be cut with suitable height and lengths.
By the mounting of said connecting plate members 36 vertical joints between adjoining connecting plate members are mutually displaced and the connection plate members are connected to each others and to vertical plate portions of said inverted steel plate profiles 64 and the respective side parts of said longitudinal corrugations 68—preferably by gluing. Between said longitudinal connection plate members 36 is by gluing interconnected a layer of semi-hard insulation material.
According to an alternative embodiment said longitudinal plate member 36 may be substituted by other plate material having low thermal conductivity—such as stainless steel.
This alternative girder-like construction 63 may be built-in between longitudinal carrying steel frames 20 according to the invention in order to provide for an alternative manner of improving the carrying capacity and length of free span of prefabricated roof plate elements 6 according to the invention.
Furthermore, said alternative girder-like construction 63 may be used as a standard carrying girder in order to substitute more expensive laminated wooden girders or the like.
The general width of each of said longitudinal steel plate frames 8, 20, 34, 54 is between 500 and 1500 mm, whereby the total width of three interconnected longitudinal steel plate frames may vary from 1500 and 4500 mm, normally the maximum with allowed for road transportation may vary from 3000-3600 mm
The height of the side panels of the lower steel plate frame 8 comprising the longitudinal bend-in edges 14, 16 (
The height of the side panels 30, 32 of the upper longitudinal steel plate frames 26, 28 (
As mentioned above a prefabricated roof plate element 6, as shown in
At the ends of said three lines predetermines lengths of said longitudinal steel plate frames 20 are moved transversely against each other for said interconnection side by side by gluing or by other connecting means, before mounting said transverse metal profiles 70 on top of the already interconnected longitudinal steel plate frames 20 to form a plate-shaped roof plate element 6. Then semi-hard insulation plate members 72 and finally on top thereof is mounted a roof foil covering 74.
Afterwards, said girders—possible in situ—being interconnected with a lower bottom plate member 114 formed the ceiling in the building in question, and finally the hollowness between the load carrying girders 104 being filled with a suitable insulation material, before the plate-shaped roof element 102 being closed upwardly by means of possible profiled steel plates and a suitable roof foil covering.
Preferably, said connections between said vertical edges 105, 107 and the rigid connection plates 110 being made by suitable gluing.
Then the rigid connection plates 110 at both sides of a semi-hard plate-shaped insulation material 112 are assembled with the upper and lower corrugated frame profiles 106, 108 by means of suitable gluing (
As mentioned above an important aspect of the present invention is the possibility that the in situ production of both load carrying girders 104 and the assembling of prefabricated plat-shaped roof elements may be organized by means of a mobile productions plan build-up in one or more containers.
Number | Date | Country | Kind |
---|---|---|---|
PA 2013 70097 | Feb 2013 | DK | national |
Number | Date | Country | |
---|---|---|---|
Parent | 14769642 | Aug 2015 | US |
Child | 16023913 | US |