The present invention relates to a prefabricated self-supporting construction element intended chiefly for multi-story buildings by the placing a plurality of these at the side of one another and on top of one another, and comprising at least two substantially parallel-extending walls standing upright from a substantially rectangular floor side, and a ceiling side, with an inside side surface and an outside side surface, and where the inside side surface appears as a completely finished side surface and where the outer side is profiled with protruding ribs which, in combination with facing outer sides of corresponding construction elements along the outside wall sides, ceiling sides and floor side, form a plurality of horizontally-oriented and vertically-oriented cavities (channels) intended for in-situ casting with a (flowing), hardening material (concrete) for the formation of a supporting construction (columns and beams) for the support of a multiple of construction elements placed on top of each other, and for the leading of supply pipes and cables to the building.
Such constructions are known from, among other things, GB 1 262 521, in which there are disclosed self-supporting tubular construction elements with ribs for reinforcement of the supporting capacity. What are described are thus tubular construction elements which could actually stand by themselves and support themselves. To provide the stability and jointing between the respective elements, which are placed on top of each other, there is carried out a provisional casting of some of the cavities which are formed by the ribs when the construction elements are brought at the side of one another for the formation of vertically-oriented support columns and horizontally-oriented beams, for the provision of extra lateral stability. The disadvantage of said construction is that the construction elements, after the moulding, are difficult to remove from the mould, with the result that the individual tubular construction elements become relatively short, whereby a room division which is created with said construction elements will most often come to comprise several of the same with herewith subsequent joints which must be processed afterwards in order to provide a nice finish internally. Moreover, the short construction elements will result in these coming to comprise a plurality of protruding ribs in order to make the elements torsionally stable, the consequence being that they become heavy and that the building consisting of said known construction elements will demand relatively powerful transport and lifting tackle. that a great deal of work will be required afterwards for the establishing of these at the building site after the elements have been erected.
FR 1 532 245 discloses a bell-shaped construction element without bottom, i.e. without floor, which is loose, and is laid out before the positioning of the bell-shaped construction element. The construction element comprises protruding ribs which, when a plurality of these are brought at the side of each other and on top of each other, will form channels for casting with the object of creating columns and beams for the stabilising of the building. Casting is carried out of only some of said cavities, not all, in that some are used for the leading of installations and pipes, and for aeration of the building construction itself. The construction element can also comprise sound-proofing. The disadvantage with said construction element is that the walls of the bell-shaped construction element must necessarily be sloping in order to provide the possibility of removing the elements after the moulding. Alternatively, use must be made of very costly moulding equipment, for example a telescopic mould or a mould with displaceable sides. All else being equal, this type of construction element will demand a subsequent processing of the inside surfaces of the construction element. Moreover, the construction element does not open possibilities for the casting of columns and beams at the outer sides of the building, which is inexpedient, inasmuch as the casting of columns at the outer sides provides the possibility for a considerable increase in the strength of the column, if this is desirable.
From U.S. Pat. No. 4,299,065 (FAIRGREVE) there is known a box-shaped cell of metal for building together with other similar cells which comprise side walls and ceiling. The walls have ribs on the outer side, and the ribs form cavities with the ribs of adjacent cells when they are built together. Concrete is poured in the space which arises between two cells. The concrete adheres firmly to these ribs and forms a supporting wall, which contributes to the support of further box-shaped cells which are placed on top of a relevant box-shaped cell. The construction is intended to function as a permanent cladding.
Said known constructions, however, have in common that these are relatively heavy, inasmuch as it is presupposed that a number of said prefabricated construction elements are placed on top of one another, after which the above-mentioned casting is carried out for up to several storys at a time. Moreover, with the use of the known construction elements, it is presupposed that subsequent processing is effected on the inside walls (floors) after the construction elements processing is effected on the inside walls (floors) after the construction elements have been placed on top of and at the side of one another, which means that there will continue to be a need for some degree of finishing operations after a number of the known construction elements, of which a building construction consists, will appear as fully finished internally.
The weight and size of such construction elements is very decisive, not only regarding the production costs but also for the price for the building for which such construction elements are used, in that the transport costs are increasing due to higher energy prices, as well as tax on air pollution. It is thus important that the weight of said construction elements is as low as possible, thought with regard being paid to the achieving of the necessary stability of the building in which the construction element forms part. Moreover, the weight of the elements also plays a role with regard to the ease with which they can be handled, in connection with the placing of the elements, inasmuch as the use of the construction elements of the kind disclosed demands a high degree of precision in connection with their mutual positioning. A heavy construction element will thus be difficult and slow to turn/manoeuvre hanging from a crane, whereas a construction element of light construction will be correspondingly easier to handle.
It is thus the object of the invention to provide a construction element of the kind disclosed which fulfils the demand regarding least possible weight, and which is consequently easy to handle and to position in a consecutive building construction.
This object is achieved with a construction element of the kind disclosed, which is characteristic in that the external side surfaces (14) comprise insulating material (18) which, when brought together with corresponding side surfaces, forms a stable element which constitutes a permanent insulating cladding (16, 18) for the later in-situ-moulded supporting structure.
There is hereby achieved a light construction element, in that the walls do not need to be constructed in such a manner that these can support a number of construction elements placed on top of one another, but are intended merely to be able to function as a permanent cladding together with construction elements placed at the side of said construction element. In the construction of multi-story buildings, there is thus first carried out a casting of the cavities which are formed between two facing sides for the formation respectively of columns and beams for embodiments according to the invention which are placed at the side of one another, after which there is again carried out a casting of the cavities created between two facing sides for the formation respectively of columns and beams for supporting of the story/storys lying above, and this is thus continued until the building has reached the planned height. After the casting of columns and beams, the building is more or less finished, since all of the construction elements forming the internal sides will appear as fully finished, containing electricity, water and other installations for the building.
With the object of achieving an appropriate inner climate and noise suppression in the building constructed with construction elements according to the invention, the external side surfaces can comprise insulating material.
It is hereby achieved that the construction element can be used for the construction of buildings in cooler regions, inasmuch as the insulation safeguards against too much heat loss and herewith against a high consumption of energy. Conversely, the insulation can also serve to insulate the rooms in the building against strong heat influences where the construction element forms part of buildings constructed in warmer regions. Moreover, the presence of insulation material between the individual construction elements suppresses noise between the elements.
With the object of reducing the costs in connection with the production of the construction elements as prefabricated construction elements, the ribs on the external side surface can be formed by profiling and ribs in the insulation material.
It is hereby achieved that the insulation material can be used as “moulding underlay” in connection with the casting of the side surfaces of the construction element, while at the same time the opposite side, the external side, can be used as permanent cladding in connection with the casting of the building's supporting structures (columns and beams).
With the object of ensuring parallelism and spacing, and compensation for irregularities between the inner side and outer side of the construction element, the one side of the insulation can be configured with holes, grooves or outwardly-facing fields which can be pressed into the unhardened material of the inner wall to absorb irregularities and height differences and, moreover, the side of the insulation facing towards the outer side of the construction element is configured with profiles which make possible the mounting of installations in both the vertical, horizontal and inclined plane, at the same time that the ribs form insulated casting channels for the supporting structure.
It is hereby achieved that the thickness of the insulation can be tailor-made to the desired or required degree of insulation, and by casting/bringing together with the wall material form a unit which both sound- and temperature-wise insulates the construction elements from each other without cold bridges. At the same time, the ribs can be configured in such a manner that parts of the rib can be removed (broken, cut, milled, ground off or flame-cut), and the installations (electricity, water drainage and the like) can be sunk into the rib and possibly secured with a plastic clip. The back (rear side) of the ribs can be configured in a stepped manner, which provides a visual cutting line when installations of different diameters shall be secured manually in to the rib. Moreover, this opens the possibility of meeting the demand that empty, closed, unfilled channels in the insulation shall be able to be aired to avoid the formation of condensation in the cavities.
With the object of easing the placing and securing of reinforcing rods during the production of the construction element, the insulation can comprise holes/recesses for the mounting of clips for securing of the reinforcement rods during casting.
The advantage is hereby achieved that the reinforcement does not need to consist of welded net (Rionet), but can be secured in both the vertical and horizontal plane as individual reinforcement rods. This provides the possibility for the use of reinforcement such as rolled-up wire, straightened and shortened to relevant length, and hereby avoid wastage and joints.
Clips can be mounted through the insulation from the outer side, and secured in position via step-formed hold-down elements and hold-down wings which swing out during assembly.
Insulation for a whole wall side can thus be stored in separate holders/fixtures where it can be secured with vacuum, clips are mounted as required and reinforcement is clamped firmly in the plastic clips.
The whole insulation side is turned/lowered down into the unhardened concrete where it is pressed/vibrated into place.
With the object of easing the placing of the reinforcement with the establishing of a structure in which the construction element is used, the insulation material can comprise moulded holes/recesses for receiving and securing of the reinforcement for strengthening of concrete which is applied to it or the cavities which are formed by combination of said relevant facing profiles.
The possibility is hereby achieved for a quick and precise positioning of the necessary and adequate reinforcement of the columns which are cast by the pouring of concrete into the cavities. Moreover, it is ensured that the reinforcement sits exactly as it should, which is possible with prefabrication of the construction elements according to the invention with the reinforcement rods inserted/anchored in the insulation material/the wall below.
With the object of rendering the placing of the reinforcement in the side walls of the construction element even more effective, towards the casting side of the insulation material it can comprise protrusions/raised parts with end surfaces which comprise a cruciform slot for receiving of reinforcement rods, which are pressed into said slots.
The possibility is hereby achieved of saving time which is involved in the insertion of clips for the fastening of the reinforcement, in that the reinforcement rods can be placed and secured in the correct position by the pressing of these into the slots.
With the object of ensuring a precise height and horizontal positioning of the construction elements which are placed on top of already positioned elements, and to facilitate a quick placing of the construction elements on top of each other, the ceiling side of the construction element can comprise a number of recesses for insertion of a number of vertically-oriented, adjustable and lockable guide pins extending from the outer side of the ceiling side, said guide pins cooperating with recesses in the external downwardly-facing side of the construction element (the earlier floor side).
With the object of further ensuring a correct positioning of the construction element according to the invention, above and between the upright guide pins on facing sides of adjoining construction elements there can be a distance piece with a circular opening (a round hole) for receiving (for placing over) the one guide pin, and an elongated hole for placing over the second guide pin with a scale along at least the one straight side for reading of tolerances in the erection of the construction elements.
It is hereby ensured partly that the mutual distance between the construction elements can be kept within a certain tolerance, and also that within this to be able the control whether the construction element tapers or opens, i.e. whether the levelling at the guide pins is effected correctly.
With the object of providing the possibility for quick and easy guiding of a construction element into the correct position, between the upstanding guide pins above the distance piece there is provided a bow-shaped, upwardly-directed guide arrangement.
In a specially preferred embodiment, the bow-shaped upwardly-directed guide element has the form of an inverted V-shaped profile, the free ends of the respective legs of which comprise a mutually parallel extent, each of the parallel extents comprising an angle-bent part bluntly extending away from the centre transverse plane of the V-profile, where the bluntly extending part comprises a circular cut-out/hole.
The possibility is hereby achieved of ensuring a precise positioning of a construction element according to the invention by means of a building crane, so that the external insulation is not damaged, and also for matters of security, inasmuch as it is not necessary for persons to come close to the construction element during the mounting, but personnel can merely “roughly control” the element with ropes or staves at a safe distance.
In a further preferred embodiment, the bow-shaped upwardly-directed guide element and the distance piece can be integrated, where the one of the bluntly extending parts comprises a circular cut-out/hole, and the second of the bluntly extending parts comprises an elongated or circular cut-out which is placed above the elongated cut-out/hole in the distance piece. It is hereby achieved that the distance piece and the bow-shaped upwardly-directed guide element become easier to handle and position during erection of the structure in which the construction element forms part, while at the same time it is possible to carry out a control of the extent to which the mutual placing between two consecutive construction elements is correct.
With the object of ensuring as good a tightening as possible between protruding ribs in connection with the formation of sealed channels intended for casting with the view of establishing an integrated supporting structure in a building comprising construction elements 6 according to the invention, the protruding ribs can have end surfaces with integrated extending lists of rubber.
With the object of easing the construction of those sides which form part of a construction element according to the invention, the wall sides can be built up as moulded frame constructions, with beams along the outer edges, and where the area demarcated by the frame is cast with light-weight concrete.
In the following, the invention is explained in more detail with reference to the drawing, where
In
In
In
In
As also appears most clearly in
As will also appear from
As also appears from
In
In
In
As further indicated in
As will appear from
The inverted U-shaped element 54 comprises feet 70, 70′ in the form of a part 72, 72′ bent at an angle at each end, and in the embodiment shown in
In
In
In
In
In
In
In
In
In
With the construction element 6 according to the invention, the possibility is provided for the establishing of cheaper constructions of better quality, inasmuch as the individual construction elements 6 in light construction can be delivered to a building site direct from the factory, with finished internal side surfaces and containing the necessary supply conduits and installations, and with external ribs 16 in the insulation material 18 which, when the construction elements are placed side by side with free ends 96 of the ribs in contact with one another, form vertically-oriented channels 60 in which the supporting structure of the building can be cast with reinforced concrete 92.
The method of production also offers the further advantage that both sound-proofing and heat insulation can be effected between the rooms. The degree of insulation can be changed in the element during the production, so that more insulation can be effected in the outer walls where the heat loss is greatest.
Since the production of concrete elements takes place in moulds, there will naturally appear a smooth/finished side, which is formed against the mould, and a rough upper side. Some work will be required on the upper side/rear side afterwards for it to appear smooth and even. With the traditional production of an element, it is considerably more time-consuming to mould installations for e.g. switches into both sides of an element.
By the moulding of two thinner elements, and later placing them together to form one wall, it is only the smooth mould sides that will be seen in the finished construction.
In principle there are moulded two half-elements with insulation on the rear side. In the insulation there shall be cavities/channels which function as cladding for the supporting columns and beams, which are cast in the space after the element is mounted.
Since the element is not required to support the weight of the overlying storys, but only itself and to serve as cladding, it will weigh considerably less than a solid supporting element.
Electric cables, water and heat supply lines and the like will easily be able to be led through the insulation to installation shafts 60, whereby connection is made easier.
The installation-demanding rooms, such as kitchens and bathrooms, will often be of a size which makes it possible to produce them assembled at the factory with all the elements and installations finished.
With regard to transport, large rooms such as living rooms should be able to be transported to the building site as individual elements, and here assembled before being mounted. The transport will be less exposed to damages since the elements have insulation moulded into the one side. The assembly will be able to take place at ground level, after which the elements which are now assembled to form complete rooms can be mounted with a crane.
The production will be able to be optimised with regard to material quality, precision regarding measurements and angles, alignment, surfaces and pre-mounting of installations. Shoddy workmanship will be able to be detected and rectified before the construction elements 6 leave the factory.
The production entails a great deal of repetition. With careful planning of the individual production and mounting stages, the aspects from the safety point of view will be able to be optimised at each individual step. Security will be able to be built into the processes in accordance with current rules. For example, it will be possible to mould retainers for safety shields and railings into the elements, and also eyes for the securing of safety lines. Railings will thus be able to be mounted on the assembled elements before they are raised into place with a crane.
Many time studies of various construction processes have been carried out. Common to them all is that with the traditionally-produced structures there is wasted a disproportionately great deal of work time with, among other things, reading of drawings, waiting for/moving of material, waiting for other workers, holding meetings and postponements due to the weather. Investigations have shown that that the time wasted is up to 70% of the working hours. Since the material cost and material consumption is more or less the same per unit regardless of the form of production, a considerable saving lies in the optimisation and simplification of the production in the manner which is achieved by the construction element according to the invention. The construction of multi-story buildings will require considerably fewer erection man-hours at the building site. The new system will mean a general extension of the building season, since the erection work will be less dependent on the weather than is the case with the present methods of construction.
The user will experience an improved quality in several areas. Construction errors will be detected before the building is taken over. In contrast to conventional construction elements, the user will experience a significant reduction in the structure-borne noise. This means that as opposed to singe-wall constructions with massive elements, there will be insulation against noise from the neighbours.
The possibility of the degree of insulation being tailor-made to current standards will mean a considerable reduction in the consumption of heat to the benefit of the environment. By incorporating the latest techniques for the recovery of heat, and configuring parts of the façade and the roof for mounting of solar heating systems and solar cells, the need for supplied energy can be significantly reduced.
Building and construction companies are influenced by great fluctuations in market conditions, with subsequent periodic unemployment. Market sensitivity will be able to be greatly reduced by drawing up a building system with construction elements 6 as disclosed in the above.
Since the production and the mounting of elements differs greatly from the present methods, it must be expected that all development and production workers shall be specifically trained. Both through external courses within security, such as crane and truck drivers and scaffold erectors, and internal training in the actual production.
The production process involves that the elements are moved with cranes/trucks, and that there are not many heavy manual lifting tasks. Therefore, there will be good possibilities for an equal division of male/female employment in the overall concern. This also involves a greater basis for the recruiting of both skilled and unskilled personnel.
All in all, with the construction element according to the invention, the possibility is presented of providing better, cheaper and more environmentally-defensible building operations.
Number | Date | Country | Kind |
---|---|---|---|
PA 2008 00394 | Mar 2008 | DK | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DK2009/050057 | 3/13/2009 | WO | 00 | 9/8/2010 |