PREFERENTIALLY EXPRESSED ANTIGEN IN MELANOMA (PRAME) T CELL RECEPTORS AND METHODS OF USE THEREOF

Abstract
The present invention provides isolated T cell receptors (TCRs) that specifically bind to an HLA-displayed cancer testis antigen preferentially expressed antigen in melanoma (FRAME) peptide, as well as therapeutic and diagnostic methods of using those isolated TCRs.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jan. 20, 2021, is named 118003-00520_SL.txt and is 461,085 bytes in size.


BACKGROUND

T cell receptors (TCRs) are membrane bound heterodimers comprising an α and β chain resembling an immunoglobulin variable (V) and constant (C) region. The TCR α chain includes a covalently linked V-α chain and C-α chain, whereas the β chain includes a V-β chain covalently linked to a C-β chain. The V-α and V-β chains form a pocket or cleft that can bind an antigen in the context of a major histocompatibility complex (MHC) (known in humans as an HLA complex). (Davis Ann. Rev. of Immunology 3: 537 (1985); Fundamental Immunology 3rd Ed., W. Paul Ed. New York (1993)).


TCRs are primary effectors of the immune system that have unique advantages as a platform for developing therapeutics. While antibody therapeutics are limited to recognition of pathogens in the blood and extracellular spaces, or to protein targets on the cell surface, T cell receptors can recognize antigens displayed with MHC molecules on the surface of cells, including antigens derived from intracellular proteins. Depending on the subtype of T cells that recognize displayed antigen and become activated, TCRs can participate in controlling various immune responses. For instance, T cells are involved in regulation of the humoral immune response through induction of differentiation of B cells into antibody producing cells. In addition, activated T cells act to initiate cell-mediated immune responses. Thus, TCRs can recognize additional targets not available to antibodies. In addition, TCRs have been reported to mediate cell killing, increase B cell proliferation, and impact the development and severity of various disorders including cancer, allergies, viral infections and autoimmune disorders.


In view of the function of TCRs, antigen-specific TCRs have been evaluated for use in immunotherapy for their ability to redirect T cells to tumors expressing the antigen. TCRs will bind to a small peptide, only 8-12 amino acids in length, which are bound on the surface of a target cell by the Major Histocompatibility Complex (MHC). TCRs can therefore recognize intracellular antigens derived from cancer or viral proteins because these antigens are processed and displayed as peptides in the context of the surface MHC. Hence, TCRs can recognize additional internal cell targets not available to antibodies or therapies that cannot penetrate the cell.


However, the challenge of the industry is to engineer TCRs that lack immunogenicity when administered to a patient and have fine specificity to the particular peptide antigen of interest, without cross-reacting to other peptides on MHC or similar epitopes found in the natural protein repertoire.


Preferentially expressed antigen in melanoma, or PRAME, is a well-known cancer-testis antigen (CTA) encoded on the X chromosome. It was first identified as a tumor antigen that could be recognized by HLA-A*24 restricted cytotoxic T lymphocytes in metastatic cutaneous melanoma (Ikeda H., et al. (1997) Immunity 6:199-208). PRAME has been shown to act as a repressor of retinoic acid receptor and, thus, may confer a growth advantage to cancer cells via this mechanism (see, e.g., Epping M. T., et al. (2005) Cell 122:835-847).


PRAME is abundantly re-expressed by many tumors of different histological types, including melanoma, renal cell cancer, non-small cell lung cancer (NSCLC), neuroblastoma, breast cancer, multiple myeloma, acute leukemia, chronic myeloid leukemia, multiple sarcoma subtypes, and primary and metastatic uveal melanoma but, in normal healthy adult tissues, PRAME expression is restricted to the testes.


There is an unmet need in the art for new targeting agents based on T cell receptors that specifically bind to PRAME antigens, as well as methods for producing and using such agents in therapeutic and diagnostic settings.


SUMMARY

The present invention provides T cell receptors (TCRs) that were generated against a PRAME peptide antigen in the context of MHC (HLA-A2). The unique TCR sequences identified have shown specific binding to a small peptide PRAME presented in the groove of an HLA molecule.


Accordingly, in one aspect, the present invention provides a T cell receptor (TCR) (e.g., an isolated TCR or a TCR expressed on an isolated cell) that binds specifically to an HLA-A2 presented cancer testis antigen preferentially expressed antigen in melanoma (PRAME) peptide comprising the amino acid sequence of RLDQLLRHV (SEQ ID NO:929) (PRAME 312-320) wherein the TCR comprises an alpha chain variable domain comprising a complementary determining region (CDR)3, wherein the CDR3 comprises the amino acid sequence of any one of the alpha chain variable domain CDR3 amino acid sequences set forth in Table 3.


In another aspect, the present invention provides a T cell receptor (TCR) (e.g., an isolated TCR or a TCR expressed on an isolated cell) that binds specifically to an HLA-A2 presented cancer testis antigen preferentially expressed antigen in melanoma (PRAME) peptide comprising the amino acid sequence of RLDQLLRHV (SEQ ID NO:929) (PRAME 312-320), wherein the TCR comprises a beta chain variable domain comprising a complementary determining region (CDR)3, wherein the CDR3 comprises the amino acid sequence of any one of the beta chain variable domain CDR3 amino acid sequences set forth in Table 3.


In some embodiments, the alpha chain variable domain further comprises a CDR1 and a CDR2, wherein the CDR1 comprises any one of the alpha chain variable domain CDR1 amino acid sequences set forth in Table 3 and the CDR2 independently comprises any one of the alpha chain variable domain CDR2 amino acid sequences set forth in Table 3.


In some embodiments, the beta chain variable domain further comprises a CDR1 and a CDR2, wherein the CDR1 comprises any one of the beta chain variable CDR1 amino acid sequences set forth in Table 3 and the CDR2 independently comprises any one of the beta chain variable domain CDR2 amino acid sequences set forth in Table 3.


The TCR may include at least one TCR alpha chain variable domain and/or at least one beta chain variable domain; or the TCR may include a TCR alpha chain variable domain and a TCR beta chain variable domain.


In some embodiments, the TCR comprises alpha chain variable domain CDR1, CDR2 and CDR3 contained within any one of the alpha chain variable domain sequences listed in Table 5; and beta chain variable domain CDR1, CDR2 and CDR3 contained within any one of the beta chain variable domain sequences listed in Table 5.


In some embodiments, the TCR comprises an alpha chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the alpha chain variable domain amino acid sequences listed in Table 5.


In some embodiments, the TCR comprises a beta chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the beta chain variable domain amino acid sequences listed in Table 5.


In some embodiments, the TCR comprises (a) an alpha chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the alpha chain variable domain amino acid sequences listed in Table 5; and (b) a beta chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the beta chain variable domain amino acid sequences listed in Table 5.


In some embodiments, the TCR comprises (a) an alpha chain variable domain CDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, and 103; (b) an alpha chain variable domain CDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 74, 80, 86, 92, 98, and 104; (c) an alpha chain variable domain CDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99, and 105; (d) a beta chain variable domain CDR1 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 4, 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76, 82, 88, 94, 100, and 106; (e) a beta chain variable domain CDR2 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101, and 107; and (f) a beta chain variable domain CDR3 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, and 108.


In some embodiments, the TCR comprises an alpha chain variable domain/beta chain variable domain amino acid sequence pair selected from the group consisting of SEQ ID NOs: 217/219, 229/231, 237/239, 241/243, and 285/287.


In some embodiments, the TCR comprises an alpha chain variable domain/beta chain variable domain amino acid sequence pair selected from the group consisting of SEQ ID NOs: 217/219, 221/223, 225/227, 229/231, 233/235, 237/239, 241/243, 245/247, 249/251, 253/255, 257/259, 261/263, 265/267, 269/271, 273/275, 277/279, 281/283, and 285/287.


The present invention also provides a TCR (e.g., an isolated TCR or a TCR expressed on an isolated cell) that complete for binding to any one or more of the TCRs of the invention.


In one aspect, the present invention provides a T cell receptor (TCR) (e.g., an isolated TCR or a TCR expressed on an isolated cell) that binds specifically to an HLA-A2 presented cancer testis antigen preferentially expressed antigen in melanoma (PRAME) peptide comprising the amino acid sequence of SLLQHLIGL (SEQ ID NO:930) (PRAME 425-433), wherein the TCR comprises an alpha chain variable domain comprising a complementary determining region (CDR)3, wherein the CDR3 comprises the amino acid sequence of any one of the alpha chain variable domain CDR3 amino acid sequences set forth in Table 6.


In another aspect, the present invention provides a T cell receptor (TCR) (e.g., an isolated TCR or a TCR expressed on an isolated cell) that binds specifically to an HLA-A2 presented preferentially expressed antigen in melanoma (PRAME) peptide comprising the amino acid sequence of SLLQHLIGL (SEQ ID NO:930) (PRAME 425-433), wherein the TCR comprises a beta chain variable domain comprising a complementary determining region (CDR)3, wherein the CDR3 comprises the amino acid sequence of any one of the beta chain variable domain CDR3 amino acid sequences set forth in Table 6.


In some embodiments, the alpha chain variable domain further comprises a CDR1 and a CDR2, wherein the CDR1 comprises any one of the alpha chain variable domain CDR1 amino acid sequences set forth in Table 6 and the CDR2 independently comprises any one of the alpha chain variable domain CDR2 amino acid sequences set forth in Table 6.


In some embodiments, the beta chain variable domain further comprises a CDR1 and a CDR2, wherein the CDR1 comprises any one of the beta chain variable CDR1 amino acid sequences set forth in Table 6 and the CDR2 independently comprises any one of the beta chain variable domain CDR2 amino acid sequences set forth in Table 6.


The TCR may include at least one TCR alpha chain variable domain and/or at least one beta chain variable domain; or the TCR may include a TCR alpha chain variable domain and a TCR beta chain variable domain.


In some embodiments, the TCR comprises alpha chain variable domain CDR1, CDR2 and CDR3 contained within any one of the alpha chain variable domain sequences listed in Table 8; and beta chain variable domain CDR1, CDR2 and CDR3 contained within any one of the beta chain variable domain sequences listed in Table 8.


In some embodiments, the TCR comprises an alpha chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the alpha chain variable domain amino acid sequences listed in Table 8.


In some embodiments, the TCR comprises a beta chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the beta chain variable domain amino acid sequences listed in Table 8.


In some embodiments, the TCR comprises (a) an alpha chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the alpha chain variable domain amino acid sequences listed in Table 8; and (b) a beta chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the beta chain variable domain amino acid sequences listed in Table 8.


In some embodiments, the TCR comprises (a) an alpha chain variable domain CDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 289, 295, 301, 307, 313, 319, 325, 331, 337, 343, 349, 355, 361, 367, 373, 379, 385, 391, 397, 403, 409, 415, 421, 427, 433, 439, 445, 451, 457, 463, 469, 475, 481, 487, 493, 499, 505, 511, 517, and 523; (b) an alpha chain variable domain CDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 290, 296, 302, 308, 314, 320, 326, 332, 338, 344, 350, 356, 362, 368, 374, 380, 386, 392, 398, 404, 410, 416, 422, 428, 434, 440, 446, 452, 458, 464, 470, 476, 482, 488, 494, 500, 506, 512, 518, and 524; (c) an alpha chain variable domain CDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 291, 297, 303, 309, 315, 321, 327, 333, 339, 345, 351, 357, 363, 369, 375, 381, 387, 393, 399, 405, 411, 417, 423, 429, 435, 441, 447, 453, 459, 465, 471, 477, 483, 489, 495, 501, 507, 513, 519, and 525; (d) a beta chain variable domain CDR1 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 292, 298, 304, 310, 316, 322, 328, 334, 340, 346, 352, 358, 364, 370, 376, 382, 388, 394, 400, 406, 412, 418, 424, 430, 436, 442, 448, 454, 460, 466, 472, 478, 484, 490, 496, 502, 508, 514, 520, and 526; (e) a beta chain variable domain CDR2 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 293, 299, 305, 311, 317, 323, 329, 335, 341, 347, 353, 359, 365, 371, 377, 383, 389, 395, 401, 407, 413, 419, 425, 431, 437, 443, 449, 455, 461, 467, 473, 479, 485, 491, 497, 503, 509, 515, 521, and 527; and (f) a beta chain variable domain CDR3 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 294, 300, 306, 312, 318, 324, 330, 336, 342, 348, 354, 360, 366, 372, 378, 384, 390, 396, 402, 408, 414, 420, 426, 432, 438, 444, 450, 456, 462, 468, 474, 480, 486, 492, 498, 504, 510, 516, 522, and 528.


In some embodiments, the TCR comprises an alpha chain variable domain/beta chain variable domain amino acid sequence pair selected from the group consisting of SEQ ID NOs: 825/827, 845/847, 853/855, 857/859, 865/867, 873/875, 885/887, 893/805, 897/899, 901/903, 913/915, and 925/927.


In some embodiments, the TCR comprises an alpha chain variable domain/beta chain variable domain amino acid sequence pair selected from the group consisting of SEQ ID NOs: 769/771, 773/775, 777/779, 781/783, 785/787, 789/791, 793/795, 797/799, 801/803, 805/807, 809/811, 813/815, 817/819, 821/823, 825/827, 829/831, 833/835, 837/839, 841/843, 845/847, 849/851, 853/855, 857/859, 861/863, 865/867, 869/871, 873/875, 877/879, 881/883, 885/887, 889/891, 893/805, 897/899, 901/903, 905/907, 909/911, 913/915, 917/919, 921/923, and 925/927.


The present invention also provides a TCR (e.g., an isolated TCR or a TCR expressed on an isolated cell) that complete for binding to any one or more of the TCRs of the invention.


In some embodiments, the TCRs of the invention further comprise a detectable moiety.


The present invention further provides pharmaceutical compositions comprising any of the TCRs of the invention, and a pharmaceutically acceptable carrier or diluent; as well as isolated cells presenting any of the TCRs of the invention.


In one aspect, the present invention provides isolated polynucleotide molecules comprising a polynucleotide sequence that encodes an alpha chain variable domain of any of the TCRs of the invention.


In another aspect, the present invention provides isolated polynucleotide molecules comprising a polynucleotide sequence that encodes a beta chain variable domain of any of the TCRs of the invention.


The present invention also provides vectors comprising the polynucleotide molecule of the invention; cells expressing the vectors of the invention.


In one aspect, the present invention provides a method of treating a subject having a PRAME-associated disease or disorder. The methods includes administering to the subject a therapeutically effective amount of a TCR (e.g., an isolated TCR or a TCR expressed on an isolated cell), pharmaceutical composition, or a plurality of the cells of the invention, thereby treating the subject.


In some embodiments, the PRAME-associated disease or disorder is PRAME-associated cancer.


In some embodiments, the PRAME-associated cancer is a liposarcoma, a neuroblastoma, a myeloma, a melanoma, a metastatic melanoma, a synovial sarcoma, a bladder cancer, an esophageal cancer, an esophageal squamous cell carcinoma, a hepatocellular cancer, a head and neck cancer, a non-small cell lung cancer, an ovarian cancer, an ovarian epithelial cancer, a prostate cancer, a breast cancer, an astrocytic tumor, a glioblastoma multiforme, an anaplastic astrocytoma, a brain tumor, a fallopian tube cancer, primary peritoneal cavity cancer, advanced solid tumors, soft tissue sarcoma, a sarcoma, a myelodysplastic syndrome, an acute myeloid leukemia, a Hodgkin lymphoma, a non-Hodgkin lymphoma, a Hodgkin disease, a multiple myeloma, a metastatic solid tumors, a colorectal carcinoma, a stomach cancer, a gastric cancer, a rhabdomyosarcoma, a myxoid round cell liposarcoma, uterine corpus endometrial carcinoma, uterine carcinosarcoma, testicular germ cell tumor, uveal melanoma, kidney renal papillary cell carcinoma, kidney renal clear cell carcinoma, thymoma, colon adenocarcinoma, cervical squamous cell carcinoma, cervical tumor, pancreatic adenocarcinoma, liver cancer, hepatocellular carcinoma, mesothelioma, or a recurrent non-small cell lung cancer.


In some embodiments of the invention, a TCR (e.g., an isolated TCR or a TCR expressed on an isolated cell), pharmaceutical composition, or a plurality of the cells of the invention is administered to the subject in combination with a second therapeutic agent.


The TCR, the pharmaceutical composition, or the plurality of cells may be administered subcutaneously, intravenously, intradermally, intraperitoneally, orally, intramuscularly or intracranially to the subject.


In one aspect, the present invention provides an isolated nucleic acid molecule encoding a T cell receptor (TCR), wherein the TCR binds specifically to an HLA-A2 presented cancer testis antigen preferentially expressed antigen in melanoma (PRAME) peptide comprising the amino acid sequence of RLDQLLRHV (SEQ ID NO:929) (PRAME 312-320), wherein the TCR comprises an alpha chain variable domain comprising a complementary determining region (CDR)3, wherein the CDR3 comprises the amino acid sequence of any one of the alpha chain variable domain CDR3 amino acid sequences set forth in Table 5.


In another aspect, the present invention provides an isolated nucleic acid molecule encoding a T cell receptor (TCR), wherein the TCR binds specifically to an HLA-A2 presented cancer testis antigen preferentially expressed antigen in melanoma (PRAME) peptide comprising the amino acid sequence of RLDQLLRHV (SEQ ID NO:929) (PRAME 312-320), wherein the TCR comprises a beta chain variable domain comprising a complementary determining region (CDR)3, wherein the CDR3 comprises the amino acid sequence of any one of the beta chain variable domain CDR3 amino acid sequences set forth in Table 5.


In some embodiments, the isolated nucleic acid molecule encodes at least one TCR alpha chain variable domain and/or at least one beta chain variable domain.


In some embodiments, the TCR comprises alpha chain variable domain complementary determining regions (CDR) 1, CDR2, and CDR3 contained within any one of the alpha chain variable domain sequences listed in Table 5; and beta chain variable domain CDR1, CDR2 and CDR3 contained within any one of the beta chain variable domain sequences listed in Table 5.


In some embodiments, the TCR (e.g., isolated TCR or TCR expressed on an isolated cell) comprises alpha chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the alpha chain variable domain amino acid sequences listed in Table 5.


In some embodiments, the TCR comprises beta chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the beta chain variable domain amino acid sequences listed in Table 5.


In some embodiments, the TCR comprises (a) an alpha chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the alpha chain variable domain amino acid sequences listed in Table 5; and (b) a beta chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the beta chain variable domain amino acid sequences listed in Table 5.


In some embodiments, the isolated antigen-binding protein comprises (a) an alpha chain variable domain CDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, and 103; (b) an alpha chain variable domain CDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 74, 80, 86, 92, 98, and 104; (c) an alpha chain variable domain CDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99, and 105; (d) a beta chain variable domain CDR1 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 4, 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76, 82, 88, 94, 100, and 106; (e) a beta chain variable domain CDR2 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101, and 107; and (f) a beta chain variable domain CDR3 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, and 108.


In some embodiments, the TCR comprises an alpha chain variable domain/beta chain variable domain amino acid sequence pair selected from the group consisting of SEQ ID NOs: 217/219, 229/231, 237/239, 241/243, and 285/287.


In some embodiments, the TCR comprises an alpha chain variable domain/beta chain variable domain amino acid sequence pair selected from the group consisting of SEQ ID NOs: 217/219, 221/223, 225/227, 229/231, 233/235, 237/239, 241/243, 245/247, 249/251, 253/255, 257/259, 261/263, 265/267, 269/271, 273/275, 277/279, 281/283, and 285/287.


In some embodiments, the isolated antigen-binding protein comprises (a) an alpha chain variable domain CDR1 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 109, 115, 121, 127, 133, 139, 145, 151, 157, 163, 169, 175, 181, 187, 193, 199, 205, and 211; (b) an alpha chain variable domain CDR2 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 110, 116, 122, 128, 134, 140, 146, 152, 158, 164, 170, 176, 182, 188, 194, 200, 206, and 212; (c) an alpha chain variable domain CDR3 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 111, 117, 123, 129, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 195, 201, 207, and 213; (d) a beta chain variable domain CDR1 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 112, 118, 124, 130, 136, 142, 148, 154, 160, 166, 172, 178, 184, 190, 196, 202, 208, and 214; (e) a beta chain variable domain CDR2 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 113, 119, 125, 131, 137, 143, 149, 155, 161, 167, 173, 179, 185, 191, 197, 203, 209, and 215; and (f) a beta chain variable domain CDR3 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 114, 120, 126, 132, 138, 144, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, and 216.


In some embodiments, the TCR comprises an alpha chain variable domain/beta chain variable domain nucleic acid sequence pair selected from the group consisting of SEQ ID NOs: 218/220, 222/224, 226/228, 230/232, 234/236, 238/240, 242/244, 246/248, 250/252, 254/256, 258/260, 262/264, 266/268, 270/272, 274/276, 278/280, 282/284, and 286/288.


The present invention also provides vectors comprising an isolated nucleic acid molecule of the invention and isolated cells comprising a vector of the invention.


In one aspect, the present invention provides isolated polynucleotide molecules comprising a polynucleotide sequence that encodes an alpha chain variable domain of any of the TCRs of the invention.


In another aspect, the present invention provides isolated polynucleotide molecules comprising a polynucleotide sequence that encodes a beta chain variable domain of any of the TCRs of the invention.


The present invention also provides vectors comprising the polynucleotide molecule of the invention; cells expressing the vectors of the invention.


In one aspect, the present invention provides a method of treating a subject having a PRAME-associated disease or disorder. The methods includes administering to the subject a therapeutically effective amount of a TCR (e.g., an isolated TCR or a TCR expressed on an isolated cell), pharmaceutical composition, or a plurality of the cells of the invention, thereby treating the subject.


In some embodiments, the PRAME-associated disease or disorder is PRAME-associated cancer.


In some embodiments, the PRAME-associated cancer is a liposarcoma, a neuroblastoma, a myeloma, a melanoma, a metastatic melanoma, a synovial sarcoma, a bladder cancer, an esophageal cancer, an esophageal squamous cell carcinoma, a hepatocellular cancer, a head and neck cancer, a non-small cell lung cancer, an ovarian cancer, an ovarian epithelial cancer, a prostate cancer, a breast cancer, an astrocytic tumor, a glioblastoma multiforme, an anaplastic astrocytoma, a brain tumor, a fallopian tube cancer, primary peritoneal cavity cancer, advanced solid tumors, soft tissue sarcoma, a sarcoma, a myelodysplastic syndrome, an acute myeloid leukemia, a Hodgkin lymphoma, a non-Hodgkin lymphoma, a Hodgkin disease, a multiple myeloma, a metastatic solid tumors, a colorectal carcinoma, a stomach cancer, a gastric cancer, a rhabdomyosarcoma, a myxoid round cell liposarcoma, uterine corpus endometrial carcinoma, uterine carcinosarcoma, testicular germ cell tumor, uveal melanoma, kidney renal papillary cell carcinoma, kidney renal clear cell carcinoma, thymoma, colon adenocarcinoma, cervical squamous cell carcinoma, cervical tumor, pancreatic adenocarcinoma, liver cancer, hepatocellular carcinoma, mesothelioma, or a recurrent non-small cell lung cancer.


In some embodiments of the invention, a TCR (e.g., an isolated TCR or a TCR expressed on an isolated cell), pharmaceutical composition, or a plurality of the cells of the invention is administered to the subject in combination with a second therapeutic agent.


The TCR, the pharmaceutical composition, or the plurality of cells may be administered subcutaneously, intravenously, intradermally, intraperitoneally, orally, intramuscularly or intracranially to the subject.


In one aspect, the present invention provides an isolated nucleic acid molecule encoding a T cell receptor (TCR), wherein the TCR binds specifically to an HLA-A2 presented cancer testis antigen preferentially expressed antigen in melanoma (PRAME) peptide comprising the amino acid sequence of SLLQHLIGL (SEQ ID NO:930) (PRAME 425-433), wherein the TCR comprises an alpha chain variable domain comprising a complementary determining region (CDR)3, wherein the CDR3 comprises the amino acid sequence of any one of the alpha chain variable domain CDR3 amino acid sequences set forth in Table 8.


In another aspect, the present invention provides an isolated nucleic acid molecule encoding a T cell receptor (TCR), wherein the TCR binds specifically to an HLA-A2 presented cancer testis antigen preferentially expressed antigen in melanoma (PRAME) peptide comprising the amino acid sequence of SLLQHLIGL (SEQ ID NO:930) (PRAME 425-433), wherein the TCR comprises a beta chain variable domain comprising a complementary determining region (CDR)3, wherein the CDR3 comprises the amino acid sequence of any one of the beta chain variable domain CDR3 amino acid sequences set forth in Table 8.


In some embodiments, the isolated nucleic acid molecule encodes at least one TCR alpha chain variable domain and/or at least one beta chain variable domain.


In some embodiments, the TCR comprises alpha chain variable domain complementary determining regions (CDR) 1, CDR2, and CDR3 contained within any one of the alpha chain variable domain sequences listed in Table 8; and beta chain variable domain CDR1, CDR2 and CDR3 contained within any one of the beta chain variable domain sequences listed in Table 8.


In some embodiments, the TCR (e.g., isolated TCR or TCR expressed on an isolated cell) comprises alpha chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the alpha chain variable domain amino acid sequences listed in Table 8.


In some embodiments, the TCR comprises beta chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the beta chain variable domain amino acid sequences listed in Table 8.


In some embodiments, the TCR comprises (a) an alpha chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the alpha chain variable domain amino acid sequences listed in Table 8; and (b) a beta chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the beta chain variable domain amino acid sequences listed in Table 8.


In some embodiments, the isolated antigen-binding protein comprises (a) an alpha chain variable domain CDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 289, 295, 301, 307, 313, 319, 325, 331, 337, 343, 349, 355, 361, 367, 373, 379, 385, 391, 397, 403, 409, 415, 421, 427, 433, 439, 445, 451, 457, 463, 469, 475, 481, 487, 493, 499, 505, 511, 517, and 523; (b) an alpha chain variable domain CDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 290, 296, 302, 308, 314, 320, 326, 332, 338, 344, 350, 356, 362, 368, 374, 380, 386, 392, 398, 404, 410, 416, 422, 428, 434, 440, 446, 452, 458, 464, 470, 476, 482, 488, 494, 500, 506, 512, 518, and 524; (c) an alpha chain variable domain CDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 291, 297, 303, 309, 315, 321, 327, 333, 339, 345, 351, 357, 363, 369, 375, 381, 387, 393, 399, 405, 411, 417, 423, 429, 435, 441, 447, 453, 459, 465, 471, 477, 483, 489, 495, 501, 507, 513, 519, and 525; (d) a beta chain variable domain CDR1 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 292, 298, 304, 310, 316, 322, 328, 334, 340, 346, 352, 358, 364, 370, 376, 382, 388, 394, 400, 406, 412, 418, 424, 430, 436, 442, 448, 454, 460, 466, 472, 478, 484, 490, 496, 502, 508, 514, 520, and 526; (e) a beta chain variable domain CDR2 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 293, 299, 305, 311, 317, 323, 329, 335, 341, 347, 353, 359, 365, 371, 377, 383, 389, 395, 401, 407, 413, 419, 425, 431, 437, 443, 449, 455, 461, 467, 473, 479, 485, 491, 497, 503, 509, 515, 521, and 527; and (f) a beta chain variable domain CDR3 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 294, 300, 306, 312, 318, 324, 330, 336, 342, 348, 354, 360, 366, 372, 378, 384, 390, 396, 402, 408, 414, 420, 426, 432, 438, 444, 450, 456, 462, 468, 474, 480, 486, 492, 498, 504, 510, 516, 522, and 528.


In some embodiments, the TCR comprises an alpha chain variable domain/beta chain variable domain amino acid sequence pair selected from the group consisting of SEQ ID NOs: 825/827, 845/847, 853/855, 857/859, 865/867, 873/875, 885/887, 893/805, 897/899, 901/903, 913/915, and 925/927.


In some embodiments, the TCR comprises an alpha chain variable domain/beta chain variable domain amino acid sequence pair selected from the group consisting of SEQ ID NOs: 769/771, 773/775, 777/779, 781/783, 785/787, 789/791, 793/795, 797/799, 801/803, 805/807, 809/811, 813/815, 817/819, 821/823, 825/827, 829/831, 833/835, 837/839, 841/843, 845/847, 849/851, 853/855, 857/859, 861/863, 865/867, 869/871, 873/875, 877/879, 881/883, 885/887, 889/891, 893/805, 897/899, 901/903, 905/907, 909/911, 913/915, 917/919, 921/923, and 925/927.


In some embodiments, the isolated antigen-binding protein comprises (a) an alpha chain variable domain CDR1 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 529, 535, 541, 547, 553, 559, 565, 571, 577, 583, 589, 595, 601, 607, 613, 619, 625, 631, 637, 643, 649, 655, 661, 667, 673, 679, 685, 691, 697, 703, 709, 715, 721, 727, 733, 739, 745, 751, 757, and 763; (b) an alpha chain variable domain CDR2 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 530, 536, 542, 548, 554, 560, 566, 572, 578, 584, 590, 596, 602, 608, 614, 620, 626, 632, 638, 644, 650, 656, 662, 668, 674, 680, 686, 692, 698, 704, 710, 716, 722, 728, 734, 740, 746, 752, 758, and 764; (c) an alpha chain variable domain CDR3 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 531, 537, 543, 549, 555, 561, 567, 573, 579, 585, 591, 597, 603, 609, 615, 621, 627, 633, 639, 645, 651, 657, 663, 669, 675, 681, 687, 693, 699, 705, 711, 717, 723, 729, 735, 741, 747, 753, 759, and 765; (d) a beta chain variable domain CDR1 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 532, 538, 544, 550, 556, 562, 568, 574, 580, 586, 592, 598, 604, 610, 616, 622, 628, 634, 640, 646, 652, 658, 664, 670, 676, 682, 688, 694, 700, 706, 712, 718, 724, 730, 736, 742, 748, 754, 760, and 766; (e) a beta chain variable domain CDR2 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 533, 539, 545, 551, 557, 563, 569, 575, 581, 587, 593, 599, 605, 611, 617, 623, 629, 635, 641, 647, 653, 659, 665, 671, 677, 683, 689, 695, 701, 707, 713, 719, 725, 731, 737, 743, 749, 755, 761, and 767; and (f) a beta chain variable domain CDR3 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 534, 540, 546, 552, 558, 564, 570, 576, 582, 588, 594, 600, 606, 612, 618, 624, 630, 636, 642, 648, 654, 660, 666, 672, 678, 684, 690, 696, 702, 708, 714, 720, 726, 732, 738, 744, 750, 756, 762, and 768.


In some embodiments, the TCR comprises an alpha chain variable domain/beta chain variable domain nucleic acid sequence pair selected from the group consisting of SEQ ID NOs: 770/772, 774/776, 778/780, 782/784, 786/788, 790/792, 794/796, 798/800, 802/804, 806/808, 810/812, 814/816, 818/820, 822/824, 826/828, 830/832, 834/836, 838/840, 842/844, 846/848, 850/852, 854/856, 858/860, 862/864, 866/868, 870/872, 874/876, 878/880, 882/884, 886/888, 890/892, 894/896, 898/900, 902/904, 906/908, 910/912, 914/916, 918/920, 922/924, and 926/928.


The present invention also provides vectors comprising an isolated nucleic acid molecule of the invention and isolated cells comprising a vector of the invention.


In one aspect, the present invention provides a method of treating a subject having a PRAME-associated disease or disorder, comprising administering to the subject a plurality of the cells comprising a vector of the invention, thereby treating the subject.


In some embodiments, the PRAME-associated disease or disorder is PRAME-associated cancer.


In some embodiments, the PRAME-associated cancer is a liposarcoma, a neuroblastoma, a myeloma, a melanoma, a metastatic melanoma, a synovial sarcoma, a bladder cancer, an esophageal cancer, an esophageal squamous cell carcinoma, a hepatocellular cancer, a head and neck cancer, a non-small cell lung cancer, an ovarian cancer, an ovarian epithelial cancer, a prostate cancer, a breast cancer, an astrocytic tumor, a glioblastoma multiforme, an anaplastic astrocytoma, a brain tumor, a fallopian tube cancer, primary peritoneal cavity cancer, advanced solid tumors, soft tissue sarcoma, a sarcoma, a myelodysplastic syndrome, an acute myeloid leukemia, a Hodgkin lymphoma, a non-Hodgkin lymphoma, a Hodgkin disease, a multiple myeloma, a metastatic solid tumors, a colorectal carcinoma, a stomach cancer, a gastric cancer, a rhabdomyosarcoma, a myxoid round cell liposarcoma, uterine corpus endometrial carcinoma, uterine carcinosarcoma, testicular germ cell tumor, uveal melanoma, kidney renal papillary cell carcinoma, kidney renal clear cell carcinoma, thymoma, colon adenocarcinoma, cervical squamous cell carcinoma, cervical tumor, pancreatic adenocarcinoma, liver cancer, hepatocellular carcinoma, mesothelioma, or a recurrent non-small cell lung cancer.


In some embodiments, a plurality of cells is administered to the subject in combination with a second therapeutic agent.


The present invention is further illustrated by the following detailed description.







DETAILED DESCRIPTION

The present invention provides T cell receptors (TCRs) that were generated against a PRAME peptide antigen in the context of MHC (HLA-A2). The unique TCR sequences identified have shown specific binding to the small peptide PRAME presented in the groove of an HLA molecule.


I. Definitions

In order that the present invention may be more readily understood, certain terms are first defined. In addition, it should be noted that whenever a value or range of values of a parameter are recited, it is intended that values and ranges intermediate to the recited values are also part of this invention.


In the following description, for purposes of explanation, specific numbers, materials and configurations are set forth in order to provide a thorough understanding of the invention. It will be apparent, however, to one having ordinary skill in the art that the invention may be practiced without these specific details. In some instances, well-known features may be omitted or simplified so as not to obscure the present invention. Furthermore, reference in the specification to phrases such as “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of phrases such as “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.


The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.


The term “comprising” or “comprises” is used herein in reference to compositions, methods, and respective component(s) thereof, that are essential to the disclosure, yet open to the inclusion of unspecified elements, whether essential or not.


The term “consisting of” refers to compositions, methods, and respective components thereof as described herein, which are exclusive of any element not recited in that description of the embodiment.


The term “T cell receptor” (TCR), as used herein, refers to an immunoglobulin superfamily member having a variable binding domain, a constant domain, a transmembrane region, and a short cytoplasmic tail; see, e.g., Janeway et al., Immunobiology: The Immune System in Health and Disease, 3rd Ed., Current Biology Publications, p. 4:33, 1997) capable of specifically binding to an antigen peptide bound to a MHC receptor. A TCR can be found on the surface of a cell and generally is comprised of a heterodimer having a and β chains (also known as TCRα and TCRβ, respectively), or γ and δ chains (also known as TCRγ and TCRβ, respectively). Like immunoglobulins, the extracellular portion of TCR chains (e.g., α-chain, β-chain) contain two immunoglobulin regions, a variable region (e.g., TCR variable α region or Vα and TCR variable β region or Vβ; typically amino acids 1 to 116 based on Kabat numbering at the N-terminus), and one constant region (e.g., TCR constant domain α or Cα and typically amino acids 117 to 259 based on Kabat, TCR constant domain β or Cβ, typically amino acids 117 to 295 based on Kabat) adjacent to the cell membrane. Also, like immunoglobulins, the variable domains contain complementary determining regions (CDRs) separated by framework regions (FRs). In certain embodiments, a TCR is found on the surface of T cells (or T lymphocytes) and associates with the CD3 complex. The source of a TCR of the present disclosure may be from various animal species, such as a human, mouse, rat, rabbit or other mammal. In preferred embodiments, the source of a TCR of the present invention is a mouse genetically engineered to produce TCRs comprising human alpha and beta chains (see, e.g., PCT Publication No. WO 2016/164492, the entire contents of which are incorporated herein by reference).


The term “variable region” (variable region of an alpha chain (Vα), variable region of a beta chain (Vβ)) as used herein denotes each of the alpha and beta chains which is involved directly in binding the TCR to the antigen.


The “constant region” of the alpha chain and of the beta chain are not involved directly in binding of a TCR to an antigen, but exhibit various effector functions.


The term “antigen” as used herein is meant any substance that causes the immune system to produce antibodies or specific cell-mediated immune responses against it. A disease-associated antigen is any substance that is associated with any disease that causes the immune system to produce antibodies or a specific-cell mediated response against it.


The term “PRAME” or “preferentially expressed antigen in melanoma” refers to the well-known cancer-testis antigen (CTA) that is re-expressed in numerous cancer types.


The nucleotide sequence of PRAME is known and may be found in, for example, GenBank Accession Nos. NM_001291715.2 (SEQ ID NO: 931), NM_001291716.2 (SEQ ID NO: 932), NM_001291717.2 (SEQ ID NO: 933), NM_001291719.2 (SEQ ID NO: 934), NM_001318126.1 (SEQ ID NO: 935), NM_001318127.1 (SEQ ID NO: 936), NM_006115.5 (SEQ ID NO: 937), NM_206956.3 (SEQ ID NO: 938), NM_206955.2 (SEQ ID NO: 939), NM_206954.3 (SEQ ID NO: 940), and NM_206953.2 (SEQ ID NO: 941). The amino acid sequence of full-length PRAME is known and may be found in, for example, GenBank as Accession Nos. NP_001278646.1 (SEQ ID NO: 942), NP_006106.1 (SEQ ID NO: 943), NP_996837.1 (SEQ ID NO: 944), NP_996836.1 (SEQ ID NO: 945), NP_996839.1 (SEQ ID NO: 946), NP_996838.1 (SEQ ID NO: 947), NP_001278644.1 (SEQ ID NO: 948), NP_001305055.1 (SEQ ID NO: 949), NP_001305056.1 (SEQ ID NO: 950), NP_001278648.1 (SEQ ID NO: 951), and NP_001278645.1 (SEQ ID NO: 952). The term “PRAME” includes recombinant PRAME or a fragment thereof. The term also encompasses PRAME or a fragment thereof coupled to, for example, histidine tag, mouse or human Fc, or a signal sequence such as ROR1. In certain embodiments, the term comprises PRAME, or a fragment thereof, in the context of HLA-A2, linked to HLA-A2 or as displayed by HLA-A2. As used herein, the numbering of certain PRAME amino acid residues within the full-length PRAME sequence is with respect to SEQ ID NO: 944.


The term “HLA” refers to the human leukocyte antigen (HLA) system or complex, which is a gene complex encoding the major histocompatibility complex (MHC) proteins in humans. These cell-surface proteins are responsible for the regulation of the immune system in humans. HLAs corresponding to MHC class I (A, B, and C) present peptides from inside the cell.


The term “HLA-A” refers to the group of human leukocyte antigens (HLA) that are coded for by the HLA-A locus. HLA-A is one of three major types of human MHC class I cell surface receptors. The receptor is a heterodimer, and is composed of a heavy α chain and smaller β chain. The α chain is encoded by a variant HLA-A gene, and the β chain (β2-microglobulin) is an invariant β2 microglobulin molecule.


The term “HLA-A2” (which may also be referred to as HLA-A2*01 or HLA-A*0201 or HLA-A*02:01) is one particular class I major histocompatibility complex (MHC) allele group at the HLA-A locus; the α chain is encoded by the HLA-A*02 gene and the β chain is encoded by the β2-microglobulin or B2M locus.


The term “specifically binds,” or “binds specifically to”, or the like, means that TCR forms a complex with an antigen that is relatively stable under physiologic conditions. Specific binding can be characterized by an equilibrium dissociation constant of at least about 1×10−6 M or less, for example, 1×10−8 M or less (e.g., a smaller KD denotes a tighter binding). Methods for determining whether two molecules specifically bind are well known in the art and include, for example, equilibrium dialysis, surface plasmon resonance, and the like. As described herein, the TCRs of the invention bind specifically to an HLA-A2 presented cancer testis preferentially expressed antigen in melanoma (PRAME) peptide, e.g., a peptide comprising amino acid residues 312-320 or 425-433 of PRAME (e.g., of the full-length PRAME sequence of SEQ ID NO: 944).


The term “off-target peptide” refers to a peptide that differs by 1, 2, 3, 4, 5 or more amino acids from a target peptide (e.g., a PRAME 312-320 peptide or a PRAME 425-433 peptide). In certain embodiments, the term includes a peptide that differs by less than or equal to 3 amino acids than the target peptide. For example, for a 9-mer peptide, if 1, 2, or 3 amino acids are not identical to the target peptide, it is considered an “off-target” peptide. In certain embodiments, amino acid identity is expressed in terms of ‘degree of similarity’ (DoS). If 6 or more amino acids within a 9-mer peptide are identical, the DoS is 6. In certain embodiments, a peptide with DoS≤6 is considered an “off-target” peptide. The term “off-target” peptide also refers to a peptide that is similar to the target peptide based on sequence homology, is predicted to bind to HLA-A2 and is comprised in a protein that is expressed in essential, normal tissues. Accordingly, in some embodiments a TCR of the present disclosure can bind to an HLA-A2-presented PRAME peptide (e.g., a peptide comprising amino acid residues 312-320 or 425-433 of PRAME) with an affinity corresponding to a KD value that is at least ten-fold lower than its affinity for binding to an off-target peptide.


The term “isolated” refers to a composition, compound, substance, or molecule altered by the hand of man from the natural state. For example, a composition or substance that occurs in nature is isolated if it has been changed or removed from its original environment, or both. For example, a polynucleotide or a polypeptide naturally present in a living animal is not isolated, but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is isolated, as the term is employed herein. More particularly, an isolated TCR can refer to a TCR that has been removed from a cell, for example, a TCR that has been purified. TCRs can also be expressed by an isolated cell, e.g., a cell that has been isolated from an animal or a cell from cell culture. In this context, the isolated cell can express the TCR on its surface (i.e., the cell can “present” the TCR).


The term “recombinant”, as used herein, refers to TCRs of the invention created, expressed, isolated or obtained by technologies or methods known in the art as recombinant DNA technology which include, e.g., DNA splicing and transgenic expression. The term refers to TCRs expressed in a non-human mammal (including transgenic non-human mammals, e.g., transgenic mice), or a cell (e.g., CHO cells) expression system or isolated from a recombinant combinatorial human antibody library.


As used herein, the terms “polynucleotide” and “nucleic acid molecule” are used interchangeably to refer to polymeric forms of nucleotides of any length. The polynucleotides may contain deoxyribonucleotides, ribonucleotides, and/or their analogs. Nucleotides may have any three-dimensional structure, and may perform any function, known or unknown. The term “polynucleotide” includes, for example, single-, double-stranded and triple helical molecules, a gene or gene fragment, exons, introns, mRNA, tRNA, rRNA, ribozymes, antisense molecules, cDNA, recombinant polynucleotides, branched polynucleotides, aptamers, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers. A nucleic acid molecule may also comprise modified nucleic acid molecules (e.g., comprising modified bases, sugars, and/or internucleotide linkers).


The term “polypeptide” is meant to refer to any polymer preferably consisting essentially of any of the 20 natural amino acids regardless of its size. Although the term “protein” is often used in reference to relatively large proteins, and “peptide” is often used in reference to small polypeptides, use of these terms in the field often overlaps. The term “polypeptide” refers generally to proteins, polypeptides, and peptides unless otherwise noted. Peptides useful in accordance with the present disclosure in general will be generally between about 0.1 to 100 kDa or greater up to about 1000 kDa, preferably between about 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 30 and 50 kDa as judged by standard molecule sizing techniques such as centrifugation or SDS-polyacrylamide gel electrophoresis.


The term “vector” is a nucleic acid molecule that is able to replicate autonomously in a host cell and can accept foreign DNA. A vector carries its own origin of replication, one or more unique recognition sites for restriction endonucleases which can be used for the insertion of foreign DNA, and usually selectable markers such as genes coding for antibiotic resistance, and often recognition sequences (e.g., promoter) for the expression of the inserted DNA. Common vectors include plasmid vectors and phage vectors.


In some embodiments, TCRs of the invention may be conjugated to a moiety such as a ligand, a detectable moiety, or a therapeutic moiety (“immunoconjugate”), such as a cytotoxin, an anti-cancer drug, or any other therapeutic moiety useful for treating a disease or condition including PRAME-associated disease or disorder, such as a PRAME-associated cancer.


The term “surface plasmon resonance”, as used herein, refers to an optical phenomenon that allows for the analysis of real-time biomolecular interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using the BIACORE™ system (Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway, N.J.).


The term “KD”, also known as KD or Kd, is intended to refer to the equilibrium dissociation constant of a particular biomolecule and its binding partner. KD measurements are particularly useful for assessing protein-protein interactions, e.g. as in an antigen-binding protein-antigen interaction. The smaller the value of the KD, the greater (or e.g. stronger) the binding interaction or affinity between the antigen-binding protein and antigen (e.g. target). The larger the value of the KD, the weaker the binding interaction or affinity between the antigen-binding protein and antigen.


The term “substantial identity” or “substantially identical,” when referring to a nucleic acid or fragment thereof, indicates that, when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 90%, and more preferably at least about 95%, 96%, 97%, 98% or 99% of the nucleotide bases, as measured by any well-known algorithm of sequence identity, as discussed below. A nucleic acid molecule having substantial identity to a reference nucleic acid molecule may, in certain instances, encode a polypeptide having the same or substantially similar amino acid sequence as the polypeptide encoded by the reference nucleic acid molecule.


Sequence identity can be calculated using an algorithm, for example, the Needleman Wunsch algorithm (Needleman and Wunsch 1970, J. Mol. Biol. 48: 443-453) for global alignment, or the Smith Waterman algorithm (Smith and Waterman 1981, J Mol. Biol. 147: 195-197) for local alignment. Another preferred algorithm is described by Dufresne et al in Nature Biotechnology in 2002 (vol. 20, pp. 1269-71) and is used in the software GenePAST (GQ Life Sciences, Inc. Boston, Mass.).


As applied to polypeptides, the term “substantial similarity” or “substantially similar” means that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights, share at least 90% sequence identity, even more preferably at least 95%, 96%, 97%, 98% or 99% sequence identity. Preferably, residue positions, which are not identical, differ by conservative amino acid substitutions. A “conservative amino acid substitution” is one in which an amino acid residue is substituted by another amino acid residue having a side chain (R group) with similar chemical properties (e.g., charge or hydrophobicity). In general, a conservative amino acid substitution will not substantially change the functional properties of a protein. In cases where two or more amino acid sequences differ from each other by conservative substitutions, the percent or degree of similarity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well known to those of skill in the art. See, e.g., Pearson (1994) Methods Mol. Biol. 24: 307-331, which is herein incorporated by reference. Examples of groups of amino acids that have side chains with similar chemical properties include 1) aliphatic side chains: glycine, alanine, valine, leucine and isoleucine; 2) aliphatic-hydroxyl side chains: serne and threonine; 3) amide-containing side chains: asparagine and glutamine; 4) aromatic side chains: phenylalanine, tyrosine, and tryptophan; 5) basic side chains: lysine, arginine, and histidine; 6) acidic side chains: aspartate and glutamate, and 7) sulfur-containing side chains: cysteine and methionine. Preferred conservative amino acids substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, glutamate-aspartate, and asparagine-glutamine. Alternatively, a conservative replacement is any change having a positive value in the PAM250 log-likelihood matrix disclosed in Gonnet et al. (1992) Science 256: 1443 45, herein incorporated by reference. A “moderately conservative” replacement is any change having a nonnegative value in the PAM250 log-likelihood matrix.


Sequence similarity for polypeptides is typically measured using sequence analysis software. Protein analysis software matches similar sequences using measures of similarity assigned to various substitutions, deletions and other modifications, including conservative amino acid substitutions. For instance, GCG software contains programs such as GAP and BESTFIT which can be used with default parameters to determine sequence homology or sequence identity between closely related polypeptides, such as homologous polypeptides from different species of organisms or between a wild type protein and a mutein thereof. See, e.g., GCG Version 6.1. Polypeptide sequences also can be compared using FASTA with default or recommended parameters; a program in GCG Version 6.1. FASTA (e.g., FASTA2 and FASTA3) provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson (2000) supra). Sequences also can be compared using the Smith-Waterman homology search algorithm using an affine gap search with a gap open penalty of 12 and a gap extension penalty of 2, BLOSUM matrix of 62. Another preferred algorithm when comparing a sequence of the invention to a database containing a large number of sequences from different organisms is the computer program BLAST, especially BLASTP or TBLASTN, using default parameters. See, e.g., Altschul et al. (1990) J Mol. Biol. 215: 403-410 and (1997) Nucleic Acids Res. 25:3389-3402, each of which is herein incorporated by reference.


A “patient-derived TCR” is a TCR that is produced by isolating the alpha and beta chains of a PRAME reactive TCR isolated from the T-lymphocytes that mediated in vivo regression of a tumor in a subject having a PRAME-associated cancer.


An “affinity-matured TCR” is a TCR that is produced by mutagenesis and selection in vitro. For example, untargeted or targeted (e.g., oligonucleotide-directed) mutagenesis can be performed to introduce variation in TCR sequences, and the subsequent TCRs can then be screened for affinity against a target, e.g., by use of phage display.


The term “activates a T cell response having a signal to noise ratio stronger or equal to a patient-derived PRAME-specific TCR” or “activates a T cell response having a signal to noise ratio stronger or equal to an affinity-matured PRAME-specific TCR” is meant to refer to an increase, i.e., about 2-fold or more, an amplification, i.e., about 2-fold, an augmentation, i.e., about 2-fold, or a boost of a physiological activity, i.e., about 2-fold, i.e., T cell signaling, as measured by, for example, a luminescent bioassay. Reference to a greater T cell response, or a stronger T cell response or an activation signal, may be used interchangeably. Various measurements and assays of T cell response or T cell activation are well known to the skilled artisan.


By the phrase “therapeutically effective amount” is meant an amount that produces the desired effect for which it is administered. The exact amount will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (see, for example, Lloyd (1999) The Art, Science and Technology of Pharmaceutical Compounding). The term “effective amount” is intended to encompass contexts such as a pharmaceutically effective amount or therapeutically effective amount. For example, in certain embodiments, the effective amount is capable of achieving a beneficial state, beneficial outcome, functional activity in a screening assay, or improvement of a clinical condition.


As described herein, a TCR of the invention may be “administered” to a subject. “Administering” a TCR of the invention includes, but is not limited to, administration of a cell expressing a TCR of the invention (e.g., an effector cell such as a T cell), administration of a nucleic acid expressing a TCR of the invention (e.g., a vector expressing such a TCR), and administration of a polypeptide comprising a TCR of the invention, wherein the polypeptide has been formatted for such administration (e.g., a bispecific polypeptide comprising a TCR chain and a CD3-binding antibody chain).


As used herein, the term “subject” refers to an animal, preferably a mammal, in need of amelioration, prevention and/or treatment of a PRAME-associated disease or disorder, such as a PRAME-associated cancer (e.g., a PRAME-positive cancer). The term includes human subjects who have or are at risk of having a PRAME-associated disease or disorder, such as a PRAME-associated cancer.


As used herein, “anti-cancer drug” means any agent useful to treat or ameliorate or inhibit cancer including, but not limited to, cytotoxins and agents such as antimetabolites, alkylating agents, anthracyclines, antibiotics, antimitotic agents, procarbazine, hydroxyurea, asparaginase, corticosteroids, cyclophosphamide, mytotane (O,P′-(DDD)), biologics (e.g., antibodies and interferons) and radioactive agents. As used herein, “a cytotoxin or cytotoxic agent”, also refers to a chemotherapeutic agent and means any agent that is detrimental to cells. Examples include Taxol® (paclitaxel), temozolamide, cytochalasin B, gramicidin D, ethidium bromide, emetine, cisplatin, mitomycin, etoposide, tenoposide, vincristine, vinbiastine, coichicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof.


The terms “prevent”, “preventing”, “prevention”, “prophylactic treatment” and the like are meant to refer to reducing the probability of developing a disorder or condition in a subject, who does not have, but is at risk of or susceptible to developing a disorder or condition. Prevention and the like do not mean preventing a subject from ever getting the specific disease or disorder. Prevention may require the administration of multiple doses. Prevention can include the prevention of a recurrence of a disease in a subject for whom all disease symptoms were eliminated, or prevention of recurrence in a relapsing-remitting disease.


II. PRAME T Cell (TCRs) and Compositions Comprising PRAME TCRS

T cells are a subgroup of cells which, together with other immune cell types (polymorphonuclear, eosinophils, basophils, mast cells, B-cells, NK cells), constitute the cellular component of the immune system. Under physiological conditions T cells function in immune surveillance and in the elimination of foreign antigen. However, under pathological conditions there is compelling evidence that T cells play a major role in the causation and propagation of disease. In these disorders, breakdown of T cell immunological tolerance, either central or peripheral is a fundamental process in the causation of autoimmune disease.


T cells bind epitopes on small antigenic determinants on the surface of antigen-presenting cells that are associated with a major histocompatibility complex (MHC; in mice) or human leukocyte antigen (HLA; in humans) complex. T cells bind these epitopes through a T cell receptor (TCR) complex on the surface of the T cell. T cell receptors are heterodimeric structures composed of two types of chains: an α (alpha) and β (beta) chain, or a γ (gamma) and δ (delta) chain. The α chain is encoded by the nucleic acid sequence located within the α locus (on human or mouse chromosome 14), which also encompasses the entire δ locus, and the β chain is encoded by the nucleic acid sequence located within the β locus (on mouse chromosome 6 or human chromosome 7). The majority of T cells have an αβ TCR; while a minority of T cells bears a γδ TCR.


T cell receptor α and β polypeptides (and similarly γ and δ polypeptides) are linked to each other via a disulfide bond. Each of the two polypeptides that make up the TCR contains an extracellular domain comprising constant and variable regions, a transmembrane domain, and a cytoplasmic tail (the transmembrane domain and the cytoplasmic tail also being a part of the constant region). The variable region of the TCR determines its antigen specificity, and similar to immunoglobulins, comprises three complementary determining regions (CDRs). The TCR is expressed on most T cells in the body and is known to be involved in the recognition of MHC-restricted antigens. The TCR α chain includes a covalently linked Vα and Cα region, whereas the β chain includes a Vβ region covalently linked to a Cβ region. The Vα and Vβ regions form a pocket or cleft that can bind an antigen in the context of a major histocompatibility complex (MHC) (or HLA in humans). TCRs are detection molecules with exquisite specificity, and exhibit, like antibodies, an enormous diversity.


The general structure of TCR molecules and methods of making and using, including binding to a peptide: Major Histocompatibility Complex have been disclosed. See, for example PCT/US98/04274; PCT/US98/20263; WO99/60120.


Non-human animals (e.g., rodents, e.g., mice or rats) can be genetically engineered to express a human or humanized T cell receptor (TCR) comprising a variable domain encoded by at least one human TCR variable region gene segment, as described in, for example, PCT Publication No. WO 2016/164492, the entire contents of which are hereby incorporated herein by reference. For example, the VelociT® mouse technology (Regeneron), a genetically modified mouse that allows for the production of fully human therapeutic TCRs against tumor and/or viral antigens, can be used to produce the TCRs of the invention. Those of skill in the art, through standard mutagenesis techniques, in conjunction with the assays described herein, can obtain altered TCR sequences and test them for particular binding affinity and/or specificity. Useful mutagenesis techniques known in the art include, without limitation, de novo gene synthesis, oligonucleotide-directed mutagenesis, region-specific mutagenesis, linker-scanning mutagenesis, and site-directed mutagenesis by PCR (see, e.g., Sambrook et al. (1989) and Ausubel et al. (1999)).


Briefly, in some embodiments, methods for generating a TCR to a PRAME 312-320 peptide or a PRAME 425-433 peptide may include immunizing a non-human animal (e.g., a rodent, e.g., a mouse or a rat), such as a genetically engineered non-human animal that comprises in its genome an un-rearranged human TCR variable gene locus, with a PRAME 312-320 peptide or a PRAME 425-433 peptide; allowing the animal to mount an immune response to the peptide; isolating from the animal a T cell reactive to the peptide; determining a nucleic acid sequence of a human TCR variable region expressed by the T cell; cloning the human TCR variable region into a nucleotide construct comprising a nucleic acid sequence of a human TCR constant region such that the human TCR variable region is operably linked to the human TCR constant region; and expressing from the construct a human T cell receptor specific for the PRAME 312-320 peptide or a PRAME 425-433 peptide, respectively. In some embodiments, the steps of isolating a T cell, determining a nucleic acid sequence of a human TCR variable region expressed by the T cell, cloning the human TCR variable region into a nucleotide construct comprising a nucleic acid sequence of a human TCR constant region, and expressing a human T cell receptor are performed using standard techniques known to those of skill the art.


In some embodiments, the nucleotide sequence encoding a T cell receptor specific for an antigen of interest is expressed in a cell. In some embodiments, the cell expressing the TCR is selected from a CHO, COS, 293, HeLa, PERC.6™ cell, etc.


In obtaining variant TCR coding sequences, those of ordinary skill in the art will recognize that TCR-derived proteins may be modified by certain amino acid substitutions, additions, deletions, and post-translational modifications, without loss or reduction of biological activity. In particular, it is well known that conservative amino acid substitutions, that is, substitution of one amino acid for another amino acid of similar size, charge, polarity and conformation, are unlikely to significantly alter protein function. The 20 standard amino acids that are the constituents of proteins can be broadly categorized into four groups of conservative amino acids as follows: the nonpolar (hydrophobic) group includes alanine, isoleucine, leucine, methionine, phenylalanine, proline, tryptophan and valine; the polar (uncharged, neutral) group includes asparagine, cysteine, glutamine, glycine, serine, threonine and tyrosine; the positively charged (basic) group contains arginine, histidine and lysine; and the negatively charged (acidic) group contains aspartic acid and glutamic acid. Substitution in a protein of one amino acid for another within the same group is unlikely to have an adverse effect on the biological activity of the protein.


In some embodiments, a TCR of the present disclosure can comprise a CDR sequence (e.g., a CDR3 sequence such as a Vα CDR3 or a Vβ CDR3) with 1 or more substitutions as compared to a CDR sequence (e.g., a CDR3 sequence such as a Vα CDR3 or a Vβ CDR3) of Table 5 or Table 8. For example, a TCR of the present disclosure can comprise a CDR sequence with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more substitutions as compared to a CDR sequence of Table 5 or Table 8. In general, the TCRs of the present invention function by binding to an HLA-A2 presented PRAME 312-320 peptide or a HLA-A2 presented PRAME 425-433 peptide. As used herein, an HLA presented peptide (such as an HLA-A2 presented peptide) can refer to a peptide that is bound to a human leukocyte antigen (HLA) protein, for example, an HLA protein expressed on the surface of a cell. Thus, a TCR that binds to an HLA presented peptide binds to the peptide that is bound by the HLA, and optionally also binds to the HLA itself. Interaction with the HLA can confer specificity for binding to a peptide presented by a particular HLA. In some embodiments, the TCR binds to an isolated HLA presented peptide. In some embodiments, the TCR binds to an HLA presented peptide on the surface of a cell.


In general, the TCRs of the present invention can function by binding to an HLA-A2-presented PRAME peptide (e.g., PRAME 312-320 or PRAME 425-433).


The present invention includes PRAME TCRs that bind a PRAME 312-320 peptide or a PRAME 425-433 peptide in the context of HLA-A2 with high specificity. In some embodiments, the PRAME TCRs do not bind to the PRAME 312-320 peptide or the PRAME 425-433 peptide in the absence of HLA-A2, or such binding is minimal. Further, in some embodiments, the PRAME TCRs do not bind to an off-target peptide in the context of HLA-A2, or such binding is minimal. As used herein, an off-target peptide can refer to a peptide that differs from a target peptide by 1, 2, 3, 4, 5, or more amino acids. In some embodiments, binding specificity can be determined by a) measuring on-target binding (e.g., binding to the HLA-A2 presented PRAME (312-320) peptide or the HLA-A2 presented PRAME (425-433) peptide), b) measuring off-target binding, and c) quantifying the difference between the two, e.g., by calculating a ratio. This ratio can be calculated, for example, by dividing the values obtained in a) and b). Measurement of on-target and off-target binding can be achieved, for example, by measuring % binding to a peptide/HLA tetramer reagent (e.g., a PRAME/HLA tetramer reagent), or by other techniques known in the art. In some embodiments, an on-target binding/off-target binding value (e.g., a value obtained by dividing the values obtained in a) and b) described above) of a TCR of the present disclosure can be greater than 5, greater than 6, greater than 7, greater than 8, greater than 9, greater than 10, greater than 11, greater than 12, greater than 13, greater than 14, greater than 15, greater than 16, greater than 17, greater than 18, greater than 19, greater than 20, greater than 21, greater than 22, greater than 23, greater than 24, greater than 25, greater than 26, greater than 27, greater than 28, greater than 29, greater than 30, greater than 35, greater than 40, greater than 45, greater than 50, greater than 55, greater than 60, greater than 65, greater than 70, greater than 75, greater than 80, greater than 85, greater than 90, greater than 95, greater than 100, greater than 110, greater than 120, greater than 130, greater than 140, greater than 150, greater than 160, greater than 170, greater than 180, greater than 190, greater than 200, greater than 225, greater than 250, greater than 275, greater than 300, greater than 325, greater than 350, greater than 375, greater than 400, greater than 425, greater than 450, greater than 475, greater than 500, greater than 550, greater than 600, greater than 650, greater than 700, greater than 750, greater than 800, greater than 850, greater than 900, greater than 950, greater than 1000, greater than 1100, greater than 1200, greater than 1300, greater than 1400, greater than 1500, greater than 1600, greater than 1700, greater than 1800, greater than 1900, or greater than 2000. In some embodiments, an on-target binding/off-target binding value (e.g., a value obtained by dividing the values obtained in a) and b) described above) can be about 5 to about 20, about 10 to about 30, about 20 to about 80, about 30 to about 70, about 40 to about 60, about 50 to about 250, about 100 to about 200, about 100 to about 1000, about 300 to about 700, about 500 to about 1500, about 800 to about 1200, about 900 to about 1100, about 800 to about 1500, about 1000 to about 1400, or about 1100 to about 1300.


In some embodiments, the invention provides a recombinant antigen-binding protein (e.g., an isolated antigen-binding protein) that binds specifically to a conformational epitope of an HLA-A2 presented human PRAME (312-320) peptide or to a conformational epitope of an HLA-A2 presented human PRAME (425-433) peptide, wherein the antigen-binding protein has a property selected from the group consisting of: (a) binds monomeric HLA-A2: PRAME (312-320) peptide or monomeric PRAME (312-320) peptide with a binding dissociation equilibrium constant (KD) of less than about 20 nM as measured in a surface plasmon resonance assay at 25° C.; (b) binds monomeric HLA-A2: PRAME (425-433) peptide or monomeric PRAME (425-433) peptide with a binding dissociation equilibrium constant (KD) of less than about 25 nM as measured in a surface plasmon resonance assay at 25° C.; (c) binds to HLA-A2: PRAME (312-320) peptide-expressing cells or PRAME (425-433) peptide-expressing cells with an EC50 less than about 6 nM and does not bind to cells expressing predicted off-target peptides as determined by luminescence assay; (d) binds to HLA-A2: PRAME (312-320) peptide-expressing cells or PRAME (425-433) peptide-expressing cells with an EC50 less than about 1 nM and do not substantially bind to cells expressing predicted off-target peptides as determined by luminescence assay; (e) binds to HLA-A2: PRAME (312-320) peptide-expressing cells or PRAME (425-433) peptide-expressing cells with an EC50 less than about 30 nM as determined by flow cytometry assay; (f) binds to HLA-A2: PRAME (312-320) peptide-expressing cells or PRAME (425-433) peptide-expressing cells with an EC50 less than about 75 nM as determined by flow cytometry assay; and (g) the conformational epitope comprises one or more amino acids of SEQ ID NO: 944.


In some embodiments, the PRAME TCRs of the present disclosure have specific activity or affinity for PRAME (312-320) or for PRAME (425-433) as measured by an in vitro assay. For example, cells (such as T2 cells) expressing an HLA can be pulsed with a PRAME (312-320) or for PRAME (425-433) polypeptide, or an off-target polypeptide thereby inducing the cells to present the polypeptide bound to the HLA. Alternatively or in addition to using an off-target polypeptide as a control, an off-target HLA (an HLA other than the HLA that is recognized by the TCR of interest) can be used. For example, an off-target HLA can be used to present the PRAME peptide to test for specificity of binding to the HLA-A2-presented PRAME peptide. In addition, a control can be a cell line that expresses neither PRAME nor the target HLA (e.g., HLA-A2). Cells can be co-cultured with a T-cell population expressing the TCR of interest, and activity measured as a function of the amount of a cytokine (such as interferon gamma) produced by the cells. In certain embodiments, the assay can comprise in vitro co-cultures of a TCR-expressing T cell population with 10−10 M peptide-loaded T2 cells at an effector cell:target cell ratio of 1:1 (1×105 effector cells/96 well), and interferon gamma measurement 24 hours after co-culture (e.g., by a Meso Scale Discovery (MSD®) Sector Imager). In certain embodiments, the assay can comprise in vitro co-cultures of a TCR-expressing T cell population and effector cell at an effector cell:target cell ratio of 5:1 (2.5×105 effector cells:5×104 target cells), and interferon gamma measurement 24 hours after co-culture (e.g., by a Meso Scale Discovery (MSD®) Sector Imager).


Increasing amounts of cytokine detected can serve as an indicator of activity. The activity or specificity of a TCR of interest to its target peptide in comparison to a control (off-target) polypeptide, or the activity or specificity of a TCR of interest to its on-target HLA-bound target peptide in comparison to an off-target HLA-bound target peptide can be 2-fold or greater, 3-fold or greater, 4-fold or greater, 5-fold or greater, 6-fold or greater, 7-fold or greater, 8-fold or greater, 9-fold or greater, 10-fold or greater, 15-fold or greater, 20-fold or greater, 30-fold or greater, 40-fold or greater, 50-fold or greater, 100-fold or greater, 200-fold or greater, 300-fold or greater, 400-fold or greater, 500-fold or greater, 600-fold or greater, 700-fold or greater, 800-fold or greater, 900-fold or greater, 1,000-fold or greater, 1,500-fold or greater. 2,000-fold or greater, 2,500-fold or greater, 3,000-fold or greater, 4,000-fold or greater, 5,000-fold or greater, 10,000-fold or greater, 20,000-fold or greater, 30,000-fold or greater, 40,000-fold or greater, 50,000-fold or greater, 60.000-fold or greater, 70,000-fold or greater, 80,000-fold or greater, 90,000-fold or greater, or 100,000-fold or greater.


In certain embodiments, the PRAME TCRs of the present disclosure are useful in inhibiting the growth of a tumor or delaying the progression of cancer when administered prophylactically to a subject in need thereof and may increase survival of the subject. For example, the administration of a PRAME TCR of the present invention may lead to shrinking of a primary tumor and may prevent metastasis or development of secondary tumors. In certain embodiments, the PRAME TCRs of the present invention are useful in inhibiting the growth of a tumor when administered therapeutically to a subject in need thereof and may increase survival of the subject. For example, the administration of a therapeutically effective amount of a PRAME TCR of the invention to a subject may lead to shrinking and disappearance of an established tumor in the subject.


In some embodiments, the invention provides a TCR (e.g., an isolated TCR or a TCR expressed on an isolated cell) that specifically binds to an HLA-A2 presented PRAME 312-320 peptide, wherein the antigen-binding protein exhibits one or more of the following characteristics: (i) comprises an alpha chain variable domain comprising a complementary determining region (CDR)3, wherein the CDR3 comprises the amino acid sequence of any one of the alpha chain variable domain CDR3 amino acid sequences set forth in Table 3; (ii) comprises a beta chain variable domain comprising a complementary determining region (CDR)3, wherein the CDR3 comprises the amino acid sequence of any one of the beta chain variable domain CDR3 amino acid sequences set forth in Table 3; (iii) comprises a CDR1 of the alpha chain variable domain comprising any one of the CDR1 amino acid sequences set forth in Table 3, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity, and a CDR2 of the alpha chain variable domain independently comprising any one of the CDR2 amino acid sequences set forth in Table 3, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; (iv) comprises a CDR1 of a beta chain variable domain comprising any one of the CDR1 amino acid sequences set forth in Table 3, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity, and a CDR2 of a beta chain variable domain independently comprising any one of the CDR2 amino acid sequences set forth in Table 3, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; (v) comprises an alpha chain variable domain CDR1, CDR2 and CDR3 contained within any one of the alpha chain variable domain sequences listed in Table 5, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; and beta chain variable domain CDR1, CDR2 and CDR3 contained within any one of the beta chain variable domain sequences listed in Table 5, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; (vi) comprises an alpha chain variable domain having an amino acid sequence that has at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or about 100% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the alpha chain variable domain amino acid sequences listed in Table 5; (vii) comprises a beta chain variable domain having an amino acid sequence that has at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or about 100% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the beta chain variable domain amino acid sequences listed in Table 5; (viii) comprises (a) an alpha chain variable domain having an amino acid sequence that has at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or about 100% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the alpha chain variable domain amino acid sequences listed in Table 5; and (b) a beta chain variable domain having an amino acid sequence that has at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or about 100% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the beta chain variable domain amino acid sequences listed in Table 5; (ix) comprises (a) an alpha chain variable domain CDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, and 103, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; (b) an alpha chain variable domain CDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 74, 80, 86, 92, 98, and 104, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; (c) an alpha chain variable domain CDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99, and 105, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; (d) a beta chain variable domain CDR1 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 4, 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76, 82, 88, 94, 100, and 106, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; (e) a beta chain variable domain CDR2 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101, and 107, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; and (f) a beta chain variable domain CDR3 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, and 108, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; (x) comprises an alpha chain variable domain/beta chain variable domain amino acid sequence pair selected from the group consisting of SEQ ID NOs: 217/219, 229/231, 237/239, 241/243, and 285/287, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; (xi) comprises an alpha chain variable domain/beta chain variable domain amino acid sequence pair selected from the group consisting of SEQ ID NOs: 217/219, 221/223, 225/227, 229/231, 233/235, 237/239, 241/243, 245/247, 249/251, 253/255, 257/259, 261/263, 265/267, 269/271, 273/275, 277/279, 281/283, and 285/287, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; (xii) does not specifically bind to cells expressing predicted off-target peptides but not an HLA-A2 presented PRAME 312-320 peptide, as determined by a luminescence assay; and/or (xiii) activates a T cell response about two times greater than a patient-derived PRAME-specific TCR, e.g., activates a T cell response about two times greater, or about three times greater, or about four times greater than a patient-derived PRAME-specific TCR as determined by a TCR-mediated T cell signaling luminescent bioassay.


In some embodiments, the invention provides a TCR (e.g., an isolated TCR or a TCR expressed on an isolated cell) that specifically binds to an HLA-A2 presented PRAME 425-433 peptide, wherein the antigen-binding protein exhibits one or more of the following characteristics: (i) comprises an alpha chain variable domain comprising a complementary determining region (CDR)3, wherein the CDR3 comprises the amino acid sequence of any one of the alpha chain variable domain CDR3 amino acid sequences set forth in Table 6; (ii) comprises a beta chain variable domain comprising a complementary determining region (CDR)3, wherein the CDR3 comprises the amino acid sequence of any one of the beta chain variable domain CDR3 amino acid sequences set forth in Table 6; (iii) comprises a CDR1 of the alpha chain variable domain comprising any one of the CDR1 amino acid sequences set forth in Table 6, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity, and a CDR2 of the alpha chain variable domain independently comprising any one of the CDR2 amino acid sequences set forth in Table 6, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; (iv) comprises a CDR1 of a beta chain variable domain comprising any one of the CDR1 amino acid sequences set forth in Table 6, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity, and a CDR2 of a beta chain variable domain independently comprising any one of the CDR2 amino acid sequences set forth in Table 6, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; (v) comprises an alpha chain variable domain CDR1, CDR2 and CDR3 contained within any one of the alpha chain variable domain sequences listed in Table 8, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; and beta chain variable domain CDR1, CDR2 and CDR3 contained within any one of the beta chain variable domain sequences listed in Table 8, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; (vi) comprises an alpha chain variable domain having an amino acid sequence that has at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or about 100% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the alpha chain variable domain amino acid sequences listed in Table 8; (vii) comprises a beta chain variable domain having an amino acid sequence that has at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or about 100% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the beta chain variable domain amino acid sequences listed in Table 8; (viii) comprises (a) an alpha chain variable domain having an amino acid sequence that has at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or about 100% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the alpha chain variable domain amino acid sequences listed in Table 8; and (b) a beta chain variable domain having an amino acid sequence that has at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or about 100% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the beta chain variable domain amino acid sequences listed in Table 8; (ix) comprises (a) an alpha chain variable domain CDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 289, 295, 301, 307, 313, 319, 325, 331, 337, 343, 349, 355, 361, 367, 373, 379, 385, 391, 397, 403, 409, 415, 421, 427, 433, 439, 445, 451, 457, 463, 469, 475, 481, 487, 493, 499, 505, 511, 517, and 523, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; (b) an alpha chain variable domain CDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 290, 296, 302, 308, 314, 320, 326, 332, 338, 344, 350, 356, 362, 368, 374, 380, 386, 392, 398, 404, 410, 416, 422, 428, 434, 440, 446, 452, 458, 464, 470, 476, 482, 488, 494, 500, 506, 512, 518, and 524, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; (c) an alpha chain variable domain CDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 291, 297, 303, 309, 315, 321, 327, 333, 339, 345, 351, 357, 363, 369, 375, 381, 387, 393, 399, 405, 411, 417, 423, 429, 435, 441, 447, 453, 459, 465, 471, 477, 483, 489, 495, 501, 507, 513, 519, and 525, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; (d) a beta chain variable domain CDR1 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 292, 298, 304, 310, 316, 322, 328, 334, 340, 346, 352, 358, 364, 370, 376, 382, 388, 394, 400, 406, 412, 418, 424, 430, 436, 442, 448, 454, 460, 466, 472, 478, 484, 490, 496, 502, 508, 514, 520, and 526, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; (e) a beta chain variable domain CDR2 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 293, 299, 305, 311, 317, 323, 329, 335, 341, 347, 353, 359, 365, 371, 377, 383, 389, 395, 401, 407, 413, 419, 425, 431, 437, 443, 449, 455, 461, 467, 473, 479, 485, 491, 497, 503, 509, 515, 521, and 527, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; and (f) a beta chain variable domain CDR3 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 294, 300, 306, 312, 318, 324, 330, 336, 342, 348, 354, 360, 366, 372, 378, 384, 390, 396, 402, 408, 414, 420, 426, 432, 438, 444, 450, 456, 462, 468, 474, 480, 486, 492, 498, 504, 510, 516, 522, and 528, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; (x) comprises an alpha chain variable domain/beta chain variable domain amino acid sequence pair selected from the group consisting of SEQ ID NOs: 825/827, 845/847, 853/855, 857/859, 865/867, 873/875, 885/887, 893/805, 897/899, 901/903, 913/915, and 925/927, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; (xi) comprises an alpha chain variable domain/beta chain variable domain amino acid sequence pair selected from the group consisting of SEQ ID NOs: 769/771, 773/775, 777/779, 781/783, 785/787, 789/791, 793/795, 797/799, 801/803, 805/807, 809/811, 813/815, 817/819, 821/823, 825/827, 829/831, 833/835, 837/839, 841/843, 845/847, 849/851, 853/855, 857/859, 861/863, 865/867, 869/871, 873/875, 877/879, 881/883, 885/887, 889/891, 893/805, 897/899, 901/903, 905/907, 909/911, 913/915, 917/919, 921/923, and 925/927, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity; (xii) does not specifically bind to cells expressing predicted off-target peptides but not an HLA-A2 presented PRAME 425-433 peptide, as determined by a luminescence assay; and/or (xiii) activates a T cell response about two times greater than a patient-derived PRAME-specific TCR, e.g., activates a T cell response about two times greater, or about three times greater, or about four times greater than a patient-derived PRAME-specific TCR as determined by a TCR-mediated T cell signaling luminescent bioassay.


The TCRs of the present invention may possess one or more of the aforementioned biological characteristics, or any combinations thereof. Other biological characteristics of the antigen-binding proteins of the present invention will be evident to a person of ordinary skill in the art from a review of the present disclosure including the working Examples herein.


In certain embodiments, a polynucleotide encoding a PRAME TCR described herein is inserted into a vector. The term “vector” as used herein refers to a vehicle into which a polynucleotide encoding a protein may be covalently inserted so as to bring about the expression of that protein and/or the cloning of the polynucleotide. Such vectors may also be referred to as “expression vectors”. The isolated polynucleotide may be inserted into a vector using any suitable methods known in the art, for example, without limitation, the vector may be digested using appropriate restriction enzymes and then may be ligated with the isolated polynucleotide having matching restriction ends. Expression vectors have the ability to incorporate and express heterologous or modified nucleic acid sequences coding for at least part of a gene product capable of being transcribed in a cell. In most cases, RNA molecules are then translated into a protein. Expression vectors can contain a variety of control sequences, which refer to nucleic acid sequences necessary for the transcription and possibly translation of an operatively linked coding sequence in a particular host organism. In addition to control sequences that govern transcription and translation, vectors and expression vectors may contain nucleic acid sequences that serve other functions as well and are discussed infra. An expression vector may comprise additional elements, for example, the expression vector may have two replication systems, thus allowing it to be maintained in two organisms, for example in human cells for expression and in a prokaryotic host for cloning and amplification.


The expression vector may have the necessary 5′ upstream and 3′ downstream regulatory elements such as promoter sequences such as CMV, PGK and EF1α promoters, ribosome recognition and binding TATA box, and 3′ UTR AAUAAA transcription termination sequence for the efficient gene transcription and translation in its respective host cell. Other suitable promoters include the constitutive promoter of simian virus 40 (SV40) early promoter, mouse mammary tumor virus (MMTV), HIV LTR promoter, MoMuLV promoter, avian leukemia virus promoter, EBV immediate early promoter, and rous sarcoma virus promoter. Human gene promoters may also be used, including, but not limited to the actin promoter, the myosin promoter, the hemoglobin promoter, and the creatine kinase promoter. In certain embodiments inducible promoters are also contemplated as part of the vectors expressing chimeric antigen receptor. This provides a molecular switch capable of turning on expression of the polynucleotide sequence of interest or turning off expression. Examples of inducible promoters include, but are not limited to a metallothionine promoter, a glucocorticoid promoter, a progesterone promoter, or a tetracycline promoter.


The expression vector may have additional sequence such as 6×-histidine (SEQ ID NO: 954), c-Myc, and FLAG tags which are incorporated into the expressed TCRs. Thus, the expression vector may be engineered to contain 5′ and 3′ untranslated regulatory sequences that sometimes can function as enhancer sequences, promoter regions and/or terminator sequences that can facilitate or enhance efficient transcription of the nucleic acid(s) of interest carried on the expression vector. An expression vector may also be engineered for replication and/or expression functionality (e.g., transcription and translation) in a particular cell type, cell location, or tissue type. Expression vectors may include a selectable marker for maintenance of the vector in the host or recipient cell.


Examples of vectors are plasmid, autonomously replicating sequences, and transposable elements. Additional exemplary vectors include, without limitation, plasmids, phagemids, cosmids, artificial chromosomes such as yeast artificial chromosome (YAC), bacterial artificial chromosome (BAC), or P1-derived artificial chromosome (PAC), bacteriophages such as lambda phage or M13 phage, and animal viruses. Examples of categories of animal viruses useful as vectors include, without limitation, retrovirus (including lentivirus), adenovirus, adeno-associated virus, herpesvirus (e.g., herpes simplex virus), poxvirus, baculovirus, papillomavirus, and papovavirus (e.g., SV40). Examples of expression vectors are Lenti-X™ Bicistronic Expression System (Neo) vectors (Clontrch), pClneo vectors (Promega) for expression in mammalian cells; pLenti4/V5-DEST™, pLenti6/V5-DEST™, and pLenti6.2N5-GW/lacZ (Invitrogen) for lentivirus-mediated gene transfer and expression in mammalian cells. The coding sequences of the TCRs disclosed herein can be ligated into such expression vectors for the expression of the chimeric protein in mammalian cells.


In certain embodiments, the nucleic acids encoding the TCR of the present invention are provided in a viral vector. A viral vector can be those derived from retrovirus, lentivirus, or foamy virus. As used herein, the term, “viral vector,” refers to a nucleic acid vector construct that includes at least one element of viral origin and has the capacity to be packaged into a viral vector particle. The viral vector can contain the coding sequence for the various proteins described herein in place of nonessential viral genes. The vector and/or particle can be utilized for the purpose of transferring DNA, RNA or other nucleic acids into cells either in vitro or in vivo. Numerous forms of viral vectors are known in the art.


In certain embodiments, the viral vector containing the coding sequence for a TCR described herein is a retroviral vector or a lentiviral vector. The term “retroviral vector” refers to a vector containing structural and functional genetic elements that are primarily derived from a retrovirus. The term “lentiviral vector” refers to a vector containing structural and functional genetic elements outside the LTRs that are primarily derived from a lentivirus.


The retroviral vectors for use herein can be derived from any known retrovirus (e.g., type c retroviruses, such as Moloney murine sarcoma virus (MoMSV), Harvey murine sarcoma virus (HaMuSV), murine mammary tumor virus (MuMTV), gibbon ape leukemia virus (GaLV), feline leukemia virus (FLV), spumavirus, Friend, Murine Stem Cell Virus (MSCV) and Rous Sarcoma Virus (RSV)). Retroviruses” of the invention also include human T cell leukemia viruses, HTLV-1 and HTLV-2, and the lentiviral family of retroviruses, such as Human Immunodeficiency Viruses, HIV-1, HIV-2, simian immunodeficiency virus (SIV), feline immunodeficiency virus (FIV), equine immunodeficiency virus (EIV), and other classes of retroviruses.


A lentiviral vector for use herein refers to a vector derived from a lentivirus, a group (or genus) of retroviruses that give rise to slowly developing disease. Viruses included within this group include HIV (human immunodeficiency virus; including HIV type 1, and HIV type 2); visna-maedi; a caprine arthritis-encephalitis virus; equine infectious anemia virus; feline immunodeficiency virus (FIV); bovine immune deficiency virus (BIV); and simian immunodeficiency virus (SIV). Preparation of the recombinant lentivirus can be achieved using the methods according to Dull et al. and Zufferey et al. (Dull et al., J. Virol., 1998; 72: 8463-8471 and Zufferey et al., J. Virol. 1998; 72:9873-9880).


Retroviral vectors (i.e., both lentiviral and non-lentiviral) for use in the present invention can be formed using standard cloning techniques by combining the desired DNA sequences in the order and orientation described herein (Current Protocols in Molecular Biology, Ausubel, F. M. et al. (eds.) Greene Publishing Associates, (1989), Sections 9.10-9.14 and other standard laboratory manuals; Eglitis, et al. (1985) Science 230:1395-1398; Danos and Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:6460-6464; Wilson et al. (1988) Proc. Natl. Acad. Sci. USA 85:3014-3018; Armentano et al. (1990) Proc. Natl. Acad. Sci. USA 87:6141-6145; Huber et al. (1991) Proc. Natl. Acad. Sci. USA 88:8039-8043; Ferry et al. (1991) Proc. Natl. Acad. Sci. USA 88:8377-8381; Chowdhury et al. (1991) Science 254:1802-1805; van Beusechem et al. (1992) Proc. Natl. Acad. Sci. USA 89:7640-7644; Kay et al. (1992) Human Gene Therapy 3:641-647; Dai et al. (1992) Proc. Natl. Acad. Sci. USA 89:10892-10895; Hwu et al. (1993) J. Immunol 150:4104-4115; U.S. Pat. Nos. 4,868,116; 4,980,286; PCT Application WO 89/07136; PCT Application WO 89/02468; PCT Application WO 89/05345; and PCT Application WO 92/07573).


Suitable sources for obtaining retroviral (i.e., both lentiviral and non-lentiviral) sequences for use in forming the vectors include, for example, genomic RNA and cDNAs available from commercially available sources, including the Type Culture Collection (ATCC), Rockville, Md. The sequences also can be synthesized chemically.


For expression of a PRAME TCR, the vector may be introduced into a host cell to allow expression of the polypeptide within the host cell. The expression vectors may contain a variety of elements for controlling expression, including without limitation, promoter sequences, transcription initiation sequences, enhancer sequences, selectable markers, and signal sequences. These elements may be selected as appropriate by a person of ordinary skill in the art, as described above. For example, the promoter sequences may be selected to promote the transcription of the polynucleotide in the vector. Suitable promoter sequences include, without limitation, T7 promoter, T3 promoter, SP6 promoter, beta-actin promoter, EF1α promoter, CMV promoter, and SV40 promoter. Enhancer sequences may be selected to enhance the transcription of the polynucleotide. Selectable markers may be selected to allow selection of the host cells inserted with the vector from those not, for example, the selectable markers may be genes that confer antibiotic resistance. Signal sequences may be selected to allow the expressed polypeptide to be transported outside of the host cell.


For cloning of the polynucleotide, the vector may be introduced into a host cell (an isolated host cell) to allow replication of the vector itself and thereby amplify the copies of the polynucleotide contained therein. The cloning vectors may contain sequence components generally include, without limitation, an origin of replication, promoter sequences, transcription initiation sequences, enhancer sequences, and selectable markers. These elements may be selected as appropriate by a person of ordinary skill in the art. For example, the origin of replication may be selected to promote autonomous replication of the vector in the host cell.


In certain embodiments, the present disclosure provides isolated host cells containing the vectors provided herein. The host cells containing the vector may be useful in expression or cloning of the polynucleotide contained in the vector. Suitable host cells can include, without limitation, prokaryotic cells, fungal cells, yeast cells, or higher eukaryotic cells such as mammalian cells. Suitable prokaryotic cells for this purpose include, without limitation, eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis, Pseudomonas such as P. aeruginosa, and Streptomyces.


The TCRs of the present invention are introduced into a host cell using transfection and/or transduction techniques known in the art. As used herein, the terms, “transfection,” and, “transduction,” refer to the processes by which an exogenous nucleic acid sequence is introduced into a host cell. The nucleic acid may be integrated into the host cell DNA or may be maintained extrachromosomally. The nucleic acid may be maintained transiently or a may be a stable introduction. Transfection may be accomplished by a variety of means known in the art including but not limited to calcium phosphate-DNA co-precipitation, DEAE-dextran-mediated transfection, polybrene-mediated transfection, electroporation, microinjection, liposome fusion, lipofection, protoplast fusion, retroviral infection, and biolistics. Transduction refers to the delivery of a gene(s) using a viral or retroviral vector by means of viral infection rather than by transfection. In certain embodiments, retroviral vectors are transduced by packaging the vectors into virions prior to contact with a cell. For example, a nucleic acid encoding a PRAME TCR of the invention carried by a retroviral vector can be transduced into a cell through infection and pro virus integration.


As used herein, the term “genetically engineered” or “genetically modified” refers to the addition of extra genetic material in the form of DNA or RNA into the total genetic material in a cell. The terms, “genetically modified cells,” “modified cells,” and, “redirected cells,” are used interchangeably.


In particular, the TCRs of the present invention are introduced and expressed in immune effector cells so as to redirect their specificity to a target antigen of interest, e.g., an HLA-A2 displayed PRAME peptide, e.g., amino acid residues 312-320 or 425-433 of PRAME.


The present invention provides methods for making the immune effector cells which express the TCRs as described herein. In some embodiments, the method comprises transfecting or transducing immune effector cells, e.g., immune effector cells isolated from a subject, such as a subject having a PRAME-associated disease or disorder, such that the immune effector cells express one or more TCR as described herein. In certain embodiments, the immune effector cells are isolated from an individual and genetically modified without further manipulation in vitro. Such cells can then be directly re-administered into the individual. In further embodiments, the immune effector cells are first activated and stimulated to proliferate in vitro prior to being genetically modified to express a TCR. In this regard, the immune effector cells may be cultured before or after being genetically modified (i.e., transduced or transfected to express a TCR as described herein).


Prior to in vitro manipulation or genetic modification of the immune effector cells described herein, the source of cells may be obtained from a subject. In particular, the immune effector cells for use with the TCRs as described herein comprise T cells.


T cells can be obtained from a number of sources, including peripheral blood mononuclear cells, bone marrow, lymph nodes tissue, cord blood, thymus issue, tissue from a site of infection, ascites, pleural effusion, spleen tissue, and tumors. In certain embodiments, T cell can be obtained from a unit of blood collected from the subject using any number of techniques known to the skilled person, such as FICOLL separation. In some embodiments, cells from the circulating blood of an individual are obtained by apheresis. The apheresis product typically contains lymphocytes, including T cells, monocytes, granulocyte, B cells, other nucleated white blood cells, red blood cells, and platelets. In some embodiments, the cells collected by apheresis may be washed to remove the plasma fraction and to place the cells in an appropriate buffer or media for subsequent processing. In some embodiments of the invention, the cells are washed with PBS. In alternative embodiments, the washed solution lacks calcium and may lack magnesium or may lack many if not all divalent cations. As would be appreciated by those of ordinary skill in the art, a washing step may be accomplished by methods known to those in the art, such as by using a semiautomated flow-through centrifuge. After washing, the cells may be resuspended in a variety of biocompatible buffers or other saline solution with or without buffer. In certain embodiments, the undesirable components of the apheresis sample may be removed in the cell directly resuspended culture media.


In certain embodiments, T cells are isolated from peripheral blood mononuclear cells (PBMCs) by lysing the red blood cells and depleting the monocytes, for example, by centrifugation through a PERCOLL™ gradient. A specific subpopulation of T cells, such as CD28+, CD4+, CD8+, CD45RA+, and CD45RO+ T cells, can be further isolated by positive or negative selection techniques. For example, enrichment of a T cell population by negative selection can be accomplished with a combination of antibodies directed to surface markers unique to the negatively selected cells. One method for use herein is cell sorting and/or selection via negative magnetic immunoadherence or flow cytometry that uses a cocktail of monoclonal antibodies directed to cell surface markers present on the cells negatively selected. For example, to enrich for CD4+ cells by negative selection, a monoclonal antibody cocktail typically includes antibodies to CD14, CD20, CD11b, CD16, HLA-DR, and CD8. Flow cytometry and cell sorting may also be used to isolate cell populations of interest for use in the present invention.


PBMC may be used directly for genetic modification with the TCRs using methods as described herein. In certain embodiments, after isolation of PBMC, T lymphocytes are further isolated and in certain embodiments, both cytotoxic and helper T lymphocytes can be sorted into naive, memory, and effector T cell subpopulations either before or after genetic modification and/or expansion.


The immune effector cells, such as T cells, can be genetically modified following isolation using known methods, or the immune effector cells can be activated and expanded (or differentiated in the case of progenitors) in vitro prior to being genetically modified. In some embodiments, the immune effector cells, such as T cells, are genetically modified with the chimeric antigen receptors described herein (e.g., transduced with a viral vector comprising a nucleic acid encoding a TCR) and then are activated and expanded in vitro. Methods for activating and expanding T cells are known in the art and are described, for example, in U.S. Pat. Nos. 6,905,874; 6,867,041; 6,797,514; WO2012079000, US 2016/0175358.


The invention provides a population of modified immune effector cells for the treatment of a PRAME-associated disease or disorder, e.g., cancer, the modified immune effector cells comprising a PRAME TCR as disclosed herein.


TCR-expressing immune effector cells prepared as described herein can be utilized in methods and compositions for adoptive immunotherapy in accordance with known techniques, or variations thereof that will be apparent to those skilled in the art based on the instant disclosure. See, e.g., US Patent Application Publication No. 2003/0170238 to Gruenberg et al; see also U.S. Pat. No. 4,690,915 to Rosenberg.


III. Pharmaceutical Compositions

The invention provides therapeutic compositions comprising the PRAME TCRs of the invention or immune effector cells comprising the PRAME TCRs of the invention. Therapeutic compositions in accordance with the invention will be administered with suitable carriers, excipients, and other agents that are incorporated into formulations to provide improved transfer, delivery, tolerance, and the like. A multitude of appropriate formulations can be found in the formulary known to all pharmaceutical chemists: Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa. These formulations include, for example, powders, pastes, ointments, jellies, waxes, oils, lipids, lipid (cationic or anionic) containing vesicles (such as LIPOFECTIN™), DNA conjugates, anhydrous absorption pastes, oil-in-water and water-in-oil emulsions, emulsions carbowax (polyethylene glycols of various molecular weights), semi-solid gels, and semi-solid mixtures containing carbowax. See also Powell et al. “Compendium of excipients for parenteral formulations” PDA (1998) J Pharm Sci Technol 52:238-311.


Depending on the severity of the condition, the frequency and the duration of the treatment can be adjusted.


In certain embodiments, the initial dose may be followed by administration of a second or a plurality of subsequent doses of PRAME TCRs of the invention or immune effector cells comprising the PRAME TCRs of the invention in an amount that can be approximately the same or less than that of the initial dose,


In certain situations, the pharmaceutical composition can be delivered in a controlled release system. In some embodiments, a pump may be used.


Injectable preparations may include dosage forms for intravenous, subcutaneous, intracutaneous, intracranial, intraperitoneal and intramuscular injections, drip infusions, etc. The TCRs, pharmaceutical compositions, and cells described herein can be administered via parenteral administration. The preparations of the present disclosure may be prepared by methods publicly known. For example, the preparations may be prepared, e.g., by dissolving, suspending or emulsifying the antigen-binding protein or its salt described above in a sterile aqueous medium or an oily medium conventionally used for injections. As the aqueous medium for injections, there are, for example, physiological saline, an isotonic solution containing glucose and other auxiliary agents, etc., which may be used in combination with an appropriate solubilizing agent such as an alcohol (e.g., ethanol), a polyalcohol (e.g., propylene glycol, polyethylene glycol), a nonionic surfactant [e.g., polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct of hydrogenated castor oil)], etc. As the oily medium, there are employed, e.g., sesame oil, soybean oil, etc., which may be used in combination with a solubilizing agent such as benzyl benzoate, benzyl alcohol, etc. The injection thus prepared is preferably filled in an appropriate ampoule.


In some embodiments, TCR-expressing immune effector cells are formulated by first harvesting them from their culture medium, and then washing and concentrating the cells in a medium and container system suitable for administration (a “pharmaceutically acceptable” carrier) in a treatment-effective amount. Suitable infusion medium can be any isotonic medium formulation, typically normal saline, Normosol R (Abbott) or Plasma-Lyte A (Baxter), but also 5% dextrose in water or Ringer's lactate can be utilized. The infusion medium can be supplemented with human serum albumin.


A treatment-effective number of cells in the composition is typically greater than 102 cells, and up to 106 up to and including 108 or 109 cells and can be more than 1010 cells. The number of cells will depend upon the ultimate use for which the composition is intended as will the type of cells included therein.


The cells may be autologous or heterologous to the patient undergoing therapy. If desired, the treatment may also include administration of mitogens (e.g., PHA) or lymphokines, cytokines, and/or chemokines (e.g., IFN-γ, IL-2, IL-12, TNF-α, IL-18, and TNF-β, GM-CSF, IL-4, IL-13, Flt3-L, RANTES, MIP1α, etc.) as described herein to enhance induction of the immune response.


The TCR expressing immune effector cell populations of the present invention may be administered either alone, or as a pharmaceutical composition in combination with diluents and/or with other components such as IL-2 or other cytokines or cell populations. Briefly, pharmaceutical compositions of the present invention may comprise a TCR-expressing immune effector cell population, such as T cells, as described herein, in combination with one or more pharmaceutically or physiologically acceptable carriers, diluents or excipients. Such compositions may comprise buffers such as neutral buffered saline, phosphate buffered saline and the like; carbohydrates such as glucose, mannose, sucrose or dextrans, mannitol; proteins; polypeptides or amino acids such as glycine; antioxidants; chelating agents such as EDTA or glutathione; adjuvants (e.g., aluminum hydroxide); and preservatives. Compositions of the present invention are preferably formulated for intravenous administration.


IV. Therapeutic Uses of PRAME TCRs or Immune Effector Cells Comprising PRAME TCRs

The anti-tumor immune response induced in a subject by administering TCR expressing T cells described herein using the methods described herein, or other methods known in the art, may include cellular immune responses mediated by cytotoxic T cells capable of killing infected cells, regulatory T cells, and helper T cell responses. Humoral immune responses, mediated primarily by helper T cells capable of activating B cells thus leading to antibody production, may also be induced. A variety of techniques may be used for analyzing the type of immune responses induced by the compositions of the present invention, which are well described in the art; e.g., Current Protocols in Immunology, Edited by: John E. Coligan, Ada M. Kruisbeek, David H. Margulies, Ethan M. Shevach, Warren Strober (2001) John Wiley & Sons, NY, N.Y.


Thus, the PRAME TCRs of the invention are useful, inter alia, for the treatment, prevention and/or amelioration of any disease or disorder associated with or mediated by PRAME. For example, the present invention provides methods for treating a PRAME-associated disease or disorder, such as a PRAME-associated cancer (e.g., a PRAME-positive cancer) (tumor growth inhibition) by administering a PRAME TCR (or pharmaceutical composition comprising a PRAME TCR or a plurality of cells comprising a PRAME TCR) as described herein to a patient in need of such treatment, and PRAME TCRs (or pharmaceutical composition comprising a PRAME TCR) for use in the treatment of a PRAME-associated cancer. The antigen-binding proteins of the present invention are useful for the treatment, prevention, and/or amelioration of disease or disorder or condition such as a PRAME-associated cancer and/or for ameliorating at least one symptom associated with such disease, disorder or condition. In the context of the methods of treatment described herein, the PRAME TCR (or pharmaceutical composition or plurality of cells) may be administered as a monotherapy (i.e., as the only therapeutic agent) or in combination with one or more additional therapeutic agents (examples of which are described elsewhere herein).


Accordingly, the present invention provides for methods of treating an individual diagnosed with or suspected of having, or at risk of developing, a PRAME-associated disease or disorder, e.g., a PRAME-associated cancer, comprising administering the individual a therapeutically effective amount of the TCR-expressing immune effector cells as described herein.


In some embodiments, the invention provides a method of treating a subject diagnosed with a PRAME-positive cancer comprising removing immune effector cells from a subject diagnosed with a PRAME-positive cancer, genetically modifying said immune effector cells with a vector comprising a nucleic acid encoding a TCR of the instant invention, thereby producing a population of modified immune effector cells, and administering the population of modified immune effector cells to the same subject. In some embodiments, the immune effector cells comprise T cells.


The methods for administering the cell compositions described herein includes any method which is effective to result in reintroduction of ex vivo genetically modified immune effector cells that either directly express a TCR of the invention in the subject or on reintroduction of the genetically modified progenitors of immune effector cells that on introduction into a subject differentiate into mature immune effector cells that express the TCR. One method comprises transducing peripheral blood T cells ex vivo with a nucleic acid construct in accordance with the invention and returning the transduced cells into the subject.


In some embodiments of the invention, the compositions described herein are useful for treating subjects suffering from primary or recurrent cancer, including, but not limited to, PRAME-associated cancer, e.g., PRAME-associated cancer is a liposarcoma, a neuroblastoma, a myeloma, a melanoma, a metastatic melanoma, a synovial sarcoma, a bladder cancer, an esophageal cancer, an esophageal squamous cell carcinoma, a hepatocellular cancer, a head and neck cancer, a non-small cell lung cancer, an ovarian cancer, an ovarian epithelial cancer, a prostate cancer, a breast cancer, an astrocytic tumor, a glioblastoma multiforme, an anaplastic astrocytoma, a brain tumor, a fallopian tube cancer, primary peritoneal cavity cancer, advanced solid tumors, soft tissue sarcoma, a sarcoma, a myelodysplastic syndrome, an acute myeloid leukemia, a Hodgkin lymphoma, a non-Hodgkin lymphoma, a Hodgkin disease, a multiple myeloma, a metastatic solid tumors, a colorectal carcinoma, a stomach cancer, a gastric cancer, a rhabdomyosarcoma, a myxoid round cell liposarcoma, or a recurrent non-small cell lung cancer. In some embodiments, the PRAME-associated cancer is an ovarian cancer, a melanoma, a non-small cell lung carcinoma, a hepatocellular carcinoma, a colorectal carcinoma, an esophageal squamous cell carcinoma, an esophageal adenocarcinoma, a stomach cancer, a bladder cancer, a head and neck cancer, a gastric cancer, a synovial sarcoma, uterine corpus endometrial carcinoma, uterine carcinosarcoma, testicular germ cell tumor, uveal melanoma, kidney renal papillary cell carcinoma, kidney renal clear cell carcinoma, thymoma, colon adenocarcinoma, cervical squamous cell carcinoma, cervical tumor, pancreatic adenocarcinoma, liver cancer, hepatocellular carcinoma, mesothelioma, or a myxoid round cell liposarcoma.


The TCRs may be used to treat early stage or late-stage symptoms of the PRAME-associated cancer. In some embodiments, a TCR of the invention may be used to treat advanced or metastatic cancer. The TCRs are useful in reducing or inhibiting or shrinking tumor growth. In certain embodiments, treatment with a TCR of the invention leads to more than 40% regression, more than 50% regression, more than 60% regression, more than 70% regression, more than 80% regression or more than 90% regression of a tumor in a subject. In certain embodiments, the TCRs may be used to prevent relapse of a tumor. In certain embodiments, the TCRs are useful in extending progression-free survival or overall survival in a subject with PRAME-associated cancer. In some embodiments, the TCRs are useful in reducing toxicity due to chemotherapy or radiotherapy while maintaining long-term survival in a patient suffering from PRAME-associated cancer.


One or more TCRs of the present invention may be administered to relieve or prevent or decrease the severity of one or more of the symptoms or conditions of the disease or disorder.


It is also contemplated herein to use one or more TCRs of the present invention prophylactically to patients at risk for developing a disease or disorder such as PRAME-associated disease or disorder, such as a PRAME-associated cancer.


In further embodiments of the invention, the present TCRs are used for the preparation of a pharmaceutical composition for treating patients suffering from PRAME-associated disease or disorder, such as a PRAME-associated cancer. In some embodiments of the invention, the present TCRs are used as adjunct therapy with any other agent or any other therapy known to those skilled in the art useful for treating PRAME-associated cancer.


Combination therapies may include a PRAME TCR of the invention, such as immune effector cell comprising a TCR of the invention, or a pharmaceutical composition of the invention, and any additional therapeutic agent that may be advantageously combined with a TCR of the invention. The TCRs of the present invention may be combined synergistically with one or more anti-cancer drugs or therapy used to treat or inhibit a PRAME-associated disease or disorder, such as PRAME-positive cancer, e.g., a liposarcoma, a neuroblastoma, a myeloma, a melanoma, a metastatic melanoma, a synovial sarcoma, a bladder cancer, an esophageal cancer, an esophageal squamous cell carcinoma, a hepatocellular cancer, a head and neck cancer, a non-small cell lung cancer, an ovarian cancer, an ovarian epithelial cancer, a prostate cancer, a breast cancer, an astrocytic tumor, a glioblastoma multiforme, an anaplastic astrocytoma, a brain tumor, a fallopian tube cancer, primary peritoneal cavity cancer, advanced solid tumors, soft tissue sarcoma, a sarcoma, a myelodysplastic syndrome, an acute myeloid leukemia, a Hodgkin lymphoma, a non-Hodgkin lymphoma, a Hodgkin disease, a multiple myeloma, a metastatic solid tumors, a colorectal carcinoma, a stomach cancer, a gastric cancer, a rhabdomyosarcoma, a myxoid round cell liposarcoma, uterine corpus endometrial carcinoma, uterine carcinosarcoma, testicular germ cell tumor, uveal melanoma, kidney renal papillary cell carcinoma, kidney renal clear cell carcinoma, thymoma, colon adenocarcinoma, cervical squamous cell carcinoma, cervical tumor, pancreatic adenocarcinoma, liver cancer, hepatocellular carcinoma, mesothelioma, or a recurrent non-small cell lung cancer.


It is contemplated herein to use the TCRs of the invention in combination with immunostimulatory and/or immunosupportive therapies to inhibit tumor growth, and/or enhance survival of cancer patients. The immunostimulatory therapies include direct immunostimulatory therapies to augment immune cell activity by either “releasing the brake” on suppressed immune cells or “stepping on the gas” to activate an immune response. Examples include targeting other checkpoint receptors, vaccination and adjuvants. The immunosupportive modalities may increase antigenicity of the tumor by promoting immunogenic cell death, inflammation or have other indirect effects that promote an anti-tumor immune response. Examples include radiation, chemotherapy, anti-angiogenic agents, and surgery.


In various embodiments, one or more TCRs of the present invention may be used in combination with a PD-1 inhibitor (e.g., an anti-PD-1 antibody such as nivolumab, pembrolizumab, pidilizumab, BGB-A317 or REGN2810), a PD-L1 inhibitor (e.g., an anti-PD-L1 antibody such as avelumab, atezolizumab, durvalumab, MDX-1105, or REGN3504), a CTLA-4 inhibitor (e.g., ipilimumab), a TIM3 inhibitor, a BTLA inhibitor, a TIGIT inhibitor, a CD47 inhibitor, a GITR inhibitor, an antagonist of another T cell co-inhibitor or ligand (e.g., an antibody to CD-28, 2B4, LY108, LAIR1, ICOS, CD160 or VISTA), an indoleamine-2,3-dioxygenase (IDO) inhibitor, a vascular endothelial growth factor (VEGF) antagonist [e.g., a “VEGF-Trap” such as aflibercept or other VEGF-inhibiting fusion protein as set forth in U.S. Pat. No. 7,087,411, or an anti-VEGF antibody or antigen-binding fragment thereof (e.g., bevacizumab, or ranibizumab) or a small molecule kinase inhibitor of VEGF receptor (e.g., sunitinib, sorafenib, or pazopanib)], an Ang2 inhibitor (e.g., nesvacumab), a transforming growth factor beta (TGFβ) inhibitor, an epidermal growth factor receptor (EGFR) inhibitor (e.g., erlotinib, cetuximab), an NY-ESO-1 inhibitor (e.g., an anti-NY-ESO-1 antibody), a CD20 inhibitor (e.g., an anti-CD20 antibody such as rituximab), an antibody to a tumor-specific antigen [e.g., CA9, CA125, melanoma-associated antigen 3 (MAGE3), carcinoembryonic antigen (CEA), vimentin, tumor-M2-PK, prostate-specific antigen (PSA), mucin-1, MART-1, and CA19-9], a vaccine (e.g., Bacillus Calmette-Guerin, a cancer vaccine), an adjuvant to increase antigen presentation (e.g., granulocyte-macrophage colony-stimulating factor), a costimulatory agent, a bispecific antibody (e.g., CD3×CD20 bispecific antibody, a PSMA×CD3 bispecific antibody, or a bispecific antibody that acts as a costimulatory agent, such as a bispecific antibody that binds a tumor antigen and has costimulatory activity), a cytotoxin, a chemotherapeutic agent (e.g., dacarbazine, temozolomide, cyclophosphamide, docetaxel, doxorubicin, daunorubicin, cisplatin, carboplatin, gemcitabine, methotrexate, mitoxantrone, oxaliplatin, paclitaxel, and vincristine), cyclophosphamide, radiotherapy, surgery, an IL-6R inhibitor (e.g., sarilumab), an IL-4R inhibitor (e.g., dupilumab), an IL-10 inhibitor, a cytokine such as IL-2, IL-7, IL-21, and IL-15, an antibody-drug conjugate (ADC) (e.g., anti-CD19-DM4 ADC, and anti-DS6-DM4 ADC), an anti-inflammatory drug (e.g., corticosteroids, and non-steroidal anti-inflammatory drugs), a dietary supplement such as anti-oxidants or any other therapy care to treat cancer. In certain embodiments, the TCRs of the present invention may be used in combination with cancer vaccines including dendritic cell vaccines, oncolytic viruses, tumor cell vaccines, etc. to augment the anti-tumor response.


Examples of cancer vaccines that can be used in combination with TCRs of the present invention include MAGE3 vaccine for melanoma and bladder cancer, MUC1 vaccine for breast cancer, EGFRv3 (e.g., Rindopepimut) for brain cancer (including glioblastoma multiforme), ALVAC-CEA (for CEA+ cancers), and NY-ESO-1 vaccine (e.g., for melanoma).


In certain embodiments, the PRAME TCRs of the invention may be administered in combination with radiation therapy in methods to generate long-term durable anti-tumor responses and/or enhance survival of patients with cancer. In some embodiments, the PRAME TCRs of the invention may be administered prior to, concomitantly or after administering radiation therapy to a cancer patient. For example, radiation therapy may be administered in one or more doses to tumor lesions followed by administration of one or more doses of PRAME TCRs of the invention. In some embodiments, radiation therapy may be administered locally to a tumor lesion to enhance the local immunogenicity of a patient's tumor (adjuvinating radiation) and/or to kill tumor cells (ablative radiation) followed by systemic administration of a PRAME TCRs of the invention.


The additional therapeutically active agent(s)/component(s) may be administered prior to, concurrent with, or after the administration of the PRAME TCRs of the present invention. For purposes of the present disclosure, such administration regimens are considered the administration of a PRAME TCR “in combination with” a second therapeutically active component.


The additional therapeutically active component(s) may be administered to a subject prior to administration of a PRAME TCR of the present invention. In other embodiments, the additional therapeutically active component(s) may be administered to a subject after administration of a PRAME TCR of the present invention. In yet other embodiments, the additional therapeutically active component(s) may be administered to a subject concurrent with administration of a PRAME TCR of the present invention. “Concurrent” administration, for purposes of the present invention, includes, e.g., administration of a PRAME TCR and an additional therapeutically active component to a subject in a single dosage form (e.g., co-formulated), or in separate dosage forms administered to the subject within about 30 minutes or less of each other. If administered in separate dosage forms, each dosage form may be administered via the same route; alternatively, each dosage form may be administered via a different route. In any event, administering the components in a single dosage from, in separate dosage forms by the same route, or in separate dosage forms by different routes are all considered “concurrent administration,” for purposes of the present disclosure. For purposes of the present disclosure, administration of a PRAME TCR “prior to”, “concurrent with,” or “after” (as those terms are defined herein above) administration of an additional therapeutically active component is considered administration of a PRAME TCR “in combination with” an additional therapeutically active component).


The present invention is further illustrated by the following Examples, which are not intended to be limiting in any way. The entire contents of all references, patents and published patent applications cited throughout this application are hereby incorporated herein by reference.


EXAMPLES
Example 1. Identification of PRAME Specific T Cell Receptors

Mice humanized for cellular immune system components, VelociT mice (see, e.g., PCT Publication No. WO 2016/164492, the entire contents of which are incorporated herein by reference), were immunized with either a PRAME (312-320) peptide (RLDQLLRHV); SEQ ID NO:929) or a PRAME (425-433) peptide (SLLQHLIGL); SEQ ID NO:930) presented specifically by human HLA-A2, diluted in PBS and mixed with adjuvant, e.g. in equal volume with Complete Freund's Adjuvant (CFA; Chondrex, Inc.). Spleen suspensions from mice immunized with wither peptide were separately obtained and dissociated. Red blood cells were lysed in ACK lysis buffer (Life Technologies), and splenocytes were suspended in RPMI complete media. Isolated splenocytes were sorted and single T cells that bind the PRAME peptide used for immunization (either PRAME (312-320) or PRAME (425-433) in the context of MHC were isolated by fluorescent-activated cell sorting (FACS). Isolated T cells were single well plated and mixed with TCR alpha and beta variable region-specific PCR primers. cDNAs for each single T cell were synthesized via a reverse transcriptase (RT) reaction. Each resulting RT product was then split and transferred into two corresponding wells for subsequent TCR beta and alpha PCRs. One set of the resulting RT products was first amplified by PCR using a 5′ degenerate primer specific for TCR beta variable region leader sequence or a 5′ degenerate primer specific for TCR alpha chain variable region leader sequence and a 3′ primer specific for TCR constant region, to form an amplicon. The amplicons were then amplified again by PCR using a 5′ degenerate primer specific for TCR beta variable region framework 1 or a 5′ degenerate primer specific for TCR alpha chain variable region framework 1 and a 3′ primer specific for TCR constant region, to generate amplicons for cloning. The TCR beta and alpha derived PCR products were cloned into expression vectors containing beta constant region and alpha constant region, respectively. Expression vectors expressing full-length beta and alpha chain pairs were transfected into CHO cells and tested for binding to commercial PRAME/HLA tetramer reagent. CHO cells were incubated with soluble HLA-A2:PRAME (312-320) or HLA:A2:PRAME (425-433) (MBL International, Woburn, Mass.) tetramer and an antibody specific for mouse TCR constant region (clone H57-597) (Biolegend, San Diego, Calif.). Samples were then analyzed on an LSRFortessa X-20 (BD Biosciences, San Jose, Calif.). To calculate percentage of tetramer positive cells, antigen positive (Ag+) gates were set based on a negative control TCR that does not bind to the HLA-A2:PRAME (312-320) or HLA:A2:PRAME (425-433) (MBL International, Woburn, Mass.) tetramer using FlowJo (LLC, Ashland, Oreg.). All Ag+ TCRs had a FlowJo criteria of ≥1% of cells in Ag+ gate with the mean fluorescence intensity (MFI)≥1000. Ag+ TCRs were determined by Next Generation Sequencing. The total number of TCRs that were identified with PRAME (312-320) and that express identical TCR alpha and beta nucleotide sequences are shown in Table 1 below. Cell frequency, or % tetramer positive cells in the Ag+ gate, is representative of the TCR shown in the first column of Table 1. The total number of TCRs that were identified with PRAME (425-433) and that express identical TCR alpha and beta nucleotide sequences are shown in Table 2 below. Cell frequency, or % tetramer positive cells in the Ag+ gate, is representative of the TCR shown in the first column of Table 2.


A detailed list of the beta chain variable domain CDR1, CDR2, and CDR3 amino acid sequences, and the alpha chain variable domain CDR1, CDR2, and CDR3 amino acid sequences of the TCRs that were identified with PRAME (312-320) as described above are provided in Table 3. A detailed list of the beta chain variable domain CDR1, CDR2, and CDR3 polynucleic acid sequences, and the alpha chain variable domain CDR1, CDR2, and CDR3 polynucleic acid sequences of the TCRs that were identified with PRAME (312-320) as described above are provided in Table 4. Table 5 provides the amino acid and nucleotide sequences of the beta chain variable and alpha chain variable regions of the TCRs that were identified with PRAME (312-320).


A detailed list of the beta chain variable domain CDR1, CDR2, and CDR3 amino acid sequences, and the alpha chain variable domain CDR1, CDR2, and CDR3 amino acid sequences of the TCRs that were identified with PRAME (425-433) as described above are provided in Table 6. A detailed list of the beta chain variable domain CDR1, CDR2, and CDR3 polynucleic acid sequences, and the alpha chain variable domain CDR1, CDR2, and CDR3 polynucleic acid sequences of the TCRs that were identified with PRAME (425-433) as described above are provided in Table 7. Table 8 provides the amino acid and nucleotide sequences of the beta chain variable and alpha chain variable regions of the TCRs that were identified with PRAME (425-433).


Table 9 provides the TCR gene families for the alpha and beta variable and joining regions of the isolated TCRs that were identified with PRAME (312-320) and Table 11 provides the amino acid and polynucleic acid sequence identifiers for alpha and beta variable chains and CDRs of the TCRs that were identified with PRAME (312-320).


Table 10 provides the TCR gene families for the alpha and beta variable and joining regions of the isolated TCRs that were identified with PRAME (425-433) and Table 12 provides the amino acid and polynucleic acid sequence identifiers for alpha and beta variable chains and CDRs of the TCRs that were identified with PRAME (425-433).













TABLE 1









Cell




Total Ag+
Frequency ≥1000



TCR ID
TCRs
MFI, ≥1%




















PN46909
21
52.60



PN46889
21
92.50



PN46733
2
87.90



PN46723
52
72.50



PN46714
1
62.10



PN46735
1
17.90



PN46678
1
11.00



PN46884
3
59.00



PN46914
1
11.50



PN46883
13
64.70



PN46857
1
53.90



PN46880
5
31.90



PN46871
2
44.70



PN46853
2
35.40



PN46731
1
15.70



PN46777
99
98.90



PN46797
1
57.30



PN46738
1
23.00





















TABLE 2









Cell




Total Ag+
Frequency ≥1000



TCR ID
TCRs
MFI, ≥1%




















PN42365
96
95.80



PN42879
1
93.10



PN42774
3
91.60



PN42498
30
90.30



PN42558
1
85.70



PN42386
1
82.20



PN42378
2
77.50



PN42776
1
60.20



PN42455
1
53.00



PN42840
21
52.50



PN42795
14
49.40



PN42870
8
7.27



PN42689
21
4.92



PN42888
22
87.40



PN42450
4
62.20



PN42750
2
40.80



PN42562
5
92.00



PN42483
29
86.40



PN42712
11
80.70



PN42561
150
80.20



PN42442
3
61.30



PN42476
1
54.20



PN42496
1
45.00



PN42655
7
27.00



PN42677
1
25.30



PN42706
1
24.70



PN42654
1
20.10



PN42441
1
15.50



PN42683
2
11.10



PN42845
1
10.50



PN42826
1
9.26



PN42707
10
7.28



PN42833
2
6.86



PN42762
12
4.95



PN42780
1
4.89



PN42746
1
4.39



PN42815
30
4.35



PN42711
1
4.26



PN42895
3
4.09



PN42610
1
6.08

















TABLE 3







Amino acid CDR sequences for VelociT TCRs specific for PRAME (312-320)/HLA-A2





















SEQ

SEQ

SEQ

SEQ

SEQ

SEQ


TCR

ID

ID

ID

ID

ID

ID


ID
Vα CDR1
NO:
Vα CDR2
NO:
Vα CDR3
NO:
Vβ CDR1
NO:
Vβ CDR2
NO:
Vβ CDR3
NO:






















PN46678
TRDTTYY
1
RNSFDEQN
2
ALSEFDRGST
3
SGHKS
4
YYEKEE
5
ASSRDINEKLF
6







LGRLY












PN46714
VSGLRG
7
LYSAGEE
8
AVQADGGSQGNLI
9
SGHKS
10
YYEKEE
11
ASSLDINSPLH
12





PN46723
VSGLRG
13
LYSAGEE
14
AVQEDGGSQGNLI
15
SGHKS
16
YYEKEE
17
ASSRDINEKLF
18





PN46731
DSASNY
19
IRSNVGE
20
AAWNYGQNFV
21
PRHDT
22
FYEKMQ
23
ASSLEGSEAF
24





PN46733
NSASDY
25
IRSNMDK
26
AENNYGQNFV
27
MNHNS
28
SASEGT
29
ASSDWGQGVEAF
30





PN46735
TISGTDY
31
GLTSN
32
ILREYMYSGGG
33
SGHKS
34
YYEKEE
35
ASSFQAGVN
36







ADGLT





YGYT






PN46738
TSENNYY
37
QEAYKQQN
38
AFGMYSGGGA
39
WSHSY
40
SAAADI
41
ASSDGTGYY
42







DGLT





GYT






PN46777
TSENNYY
43
QEAYKQQN
44
ALMEYGNKLV
45
WSHSY
46
SAAADI
47
ASSDGTGYYGYT
48





PN46797
TSENNYY
49
QEAYKQQN
50
ALMEYENKLV
51
WSHSY
52
SAAADI
53
ASSDGTGYYGYT
54





PN46853
SSNFYA
55
MTLNGDE
56
ACGGSGNTGKLI
57
PRHDT
58
FYEKMQ
59
ASSSQGQPQH
60





PN46857
TRDTTYY
61
RNSFDEQN
62
ALSEGYGNKLV
63
KGHSH
64
LQKENI
65
ASSHRDDTEAF
66





PN46871
DSAIYN
67
IQSSQRE
68
AVEGTTDSWGKFQ
69
PRHDT
70
FYEKMQ
71
ASSSQGQPQH
72





PN46880
YSGSPE
73
HISR
74
ALSGASGGSYIPT
75
KGHSH
76
LQKENI
77
ASSHRDDTEAF
78





PN46883
TRDTTYY
79
RNSFDEQN
80
ALSVSSYNTDKLI
81
KGHSH
82
LQKENI
83
ASSHRDDTEAF
84





PN46884
TRDTTYY
85
RNSFDEQN
86
ALSEGYNTDKLI
87
MDHEN
88
SYDVKM
89
ASSLGGANTIY
90





PN46889
DRGSQS
91
IYSNGD
92
AVNIPNSGYSTLT
93
MNHEY
94
SVGEGT
95
ASSYWEGTEAF
96





PN46909
TSENNYY
97
QEAYKQQN
98
AFDYGQNFV
99
MNHNY
100
SVGAGI
101
ASSYGGGQTEAF
102





PN46914
TRDTTYY
103
RNSFDEQN
104
ALSEGYNQGGKLI
105
MDHEN
106
SYDVKM
107
ASGADSNQPQH
108
















TABLE 4







Nucleic acid CDR sequences for VelociT TCRs specific for PRAME (312-320) / HLA-A2





















SEQ

SEQ

SEQ

SEQ

SEQ

SEQ


TCR

ID

ID

ID

ID

ID

ID


ID
Vα CDR1
NO:
Vα CDR2
NO:
Vα CDR3
NO:
Vβ CDR1
NO:
Vβ CDR2
NO:
Vβ CDR3
NO:





PN46678
ACCCGTG
109
CGGAACTCT
110
GCTCTGAGTGAGTTTG
111
TCTGGGC
112
TATTATG
113
GCCAGCAGCCGGGA
114



ATACTAC

TTTGATGAG

ACAGAGGCTCAACCC

ACAAGA

AGAAAGA

CATTAATGAAAAAC




TTATTAC

CAAAAT

TGGGGAGGCTATAC

GT

AGAG

TGTTT






PN46714
GTCAGCG
115
CTGTATTCA
116
GCTGTGCAGGCCGAT
117
TCTGGGC
118
TATTATG
119
GCCAGCAGCTTGGA
120



GTTTAAG

GCTGGGGAA

GGAGGAAGCCAAGGA

ACAAGA

AGAAAGA

CATTAATTCACCCCT




AGGG

GAA

AATCTCATC

GT

AGAG

CCAC






PN46723
GTCAGCG
121
CTGTATTCA
122
GCTGTGCAGGAGGAT
123
TCTGGGC
124
TATTATG
125
GCCAGCAGCCGGGA
126



GTTTAAG

GCTGGGGAA

GGAGGAAGCCAAGGA

ACAAGA

AGAAAGA

CATTAATGAAAAAC




AGGG

GAA

AATCTCATC

GT

AGAG

TGTTT






PN46731
GACAGTG
127
ATTCGTTCA
128
GCAGCATGGAACTAT
129
CCTAGAC
130
TTTTATG
131
GCCAGCAGCTTAGA
132



CCTCAAA

AATGTGGGC

GGTCAGAATTTTGTC

ACGACA

AAAAGAT

GGGGTCTGAAGCTT




CTAC

GAA



CT

GCAG

TC






PN46733
AACAGCG
133
ATTCGTTCA
134
GCAGAGAATAACTAT
135
ATGAAC
136
TCAGCTT
137
GCCAGCAGTGACTG
138



CCTCAGA

AATATGGAC

GGTCAGAATTTTGTC

CATAACT

CTGAGGG

GGGACAGGGGGTTG




CTAC

AAA



CC

TACC

AAGCTTTC






PN46735
ACAATCA
139
GGTCTTACA
140
ATCCTGAGAGAATAC
141
TCTGGGC
142
TATTATG
143
GCCAGCAGCTTCCA
144



GTGGAAC

AGCAAT

ATGTATTCAGGAGGA

ACAAGA

AGAAAGA

AGCAGGGGTTAACT




TGATTAC



GGTGCTGACGGACTC

GT

AGAG

ATGGCTACACC








ACC












PN46738
ACCAGTG
145
CAAGAAGCT
146
GCTTTCGGTATGTATT
147
TGGAGC
148
TCAGCAG
149
GCCAGCAGTGATGG
150



AGAATAA

TATAAGCAA

CAGGAGGAGGTGCTG

CACAGCT

CTGCTGA

GACAGGGTACTATG




TTATTAT

CAGAAT

ACGGACTCACC

AT

TATT

GCTACACC






PN46777
ACCAGTG
151
CAAGAAGCT
152
GCCCTTATGGAATATG
153
TGGAGC
154
TCAGCAG
155
GCCAGCAGTGATGG
156



AGAATAA

TATAAGCAA

GAAACAAACTGGTC

CACAGCT

CTGCTGA

GACAGGGTACTATG




TTATTAT

CAGAAT



AT

TATT

GCTACACC






PN46797
ACCAGTG
157
CAAGAAGCT
158
GCCCTTATGGAATATG
159
TGGAGC
160
TCAGCAG
161
GCCAGCAGTGATGG
162



AGAATAA

TATAAGCAA

AAAACAAACTGGTC

CACAGCT

CTGCTGA

GACAGGGTACTATG




TTATTAT

CAGAAT



AT

TATT

GCTACACC






PN46853
TCCAGCA
163
ATGACTTTA
164
GCCTGTGGGGGTTCTG
165
CCTAGAC
166
TTTTATG
167
GCCAGCAGCTCCCA
168



ATTTTTAT

AATGGGGAT

GCAACACAGGCAAAC

ACGACA

AAAAGAT

GGGTCAGCCCCAGC




GCC



TAATC

CT

GCAG

AT






PN46857
ACCCGTG
169
CGGAACTCT
170
GCTCTGAGTGAGGGA
171
AAAGGA
172
CTCCAGA
173
GCCAGCTCACACAG
174



ATACTAC

TTTGATGAG

TATGGAAACAAACTG

CACAGTC

AAGAAAA

GGACGACACTGAAG




TTATTAC

CAAAAT

GTC

AT

TATC

CTTTC






PN46871
GATAGCG
175
ATTCAGTCA
176
GCTGTGGAGGGGACA
177
CCTAGAC
178
TTTTATG
179
GCCAGCAGCTCCCA
180



CTATTTA

AGTCAGAGA

ACTGACAGCTGGGGG

ACGACA

AAAAGAT

GGGTCAGCCCCAGC




CAAC

GAG

AAATTCCAG

CT

GCAG

AT






PN46880
TATTCTG
181
CACATCTCT
182
GCTCTAAGTGGGGCAT
183
AAAGGA
184
CTCCAGA
185
GCCAGCTCACACAG
186



GGAGTCC

AGA

CAGGAGGAAGCTACA

CACAGTC

AAGAAAA

GGACGACACTGAAG




TGAA



TACCTACA

AT

TATC

CTTTC






PN46883
ACCCGTG
187
CGGAACTCT
188
GCTCTGAGTGTATCAT
189
AAAGGA
190
CTCCAGA
191
GCCAGCTCACACAG
192



ATACTAC

TTTGATGAG

CTTATAACACCGACAA

CACAGTC

AAGAAAA

GGATGACACTGAAG




TTATTAC

CAAAAT

GCTCATC

AT

TATC

CTTTC






PN46884
ACCCGTG
193
CGGAACTCT
194
GCTCTGAGTGAGGGG
195
ATGGAC
196
TCATATG
197
GCCAGCAGTTTAGG
198



ATACTAC

TTTGATGAG

TATAACACCGACAAG

CATGAA

ATGTTAA

GGGGGCGAACACCA




TTATTAC

CAAAAT

CTCATC

AAT

AATG

TATAT






PN46889
GACCGAG
199
ATATACTCC
200
GCCGTGAACATTCCGA
201
ATGAAC
202
TCAGTTG
203
GCCAGCAGTTACTG
204



GTTCCCA

AATGGTGAC

ATTCAGGATACAGCA

CATGAAT

GTGAGGG

GGAGGGCACTGAAG




GTCC



CCCTCACC

AC

TACA

CTTTC






PN46909
ACCAGTG
205
CAAGAAGCT
206
GCTTTCGACTATGGTC
207
ATGAAC
208
TCAGTTG
209
GCCAGCAGTTACGG
210



AGAATAA

TATAAGCAA

AGAATTTTGTC

CATAACT

GTGCTGG

GGGGGGGCAGACTG




TTATTAT

CAGAAT



AC

TATC

AAGCTTTC






PN46914
ACCCGTG
211
CGGAACTCT
212
GCTCTGAGTGAGGGTT
213
ATGGAC
214
TCATATG
215
GCCAGCGGGGCAGA
216



ATACTAC

TTTGATGAG

ATAACCAGGGAGGAA

CATGAA

ATGTTAA

TAGCAATCAGCCCC




TTATTAC

CAAAAT

AGCTTATC

AAT

AATG

AGCAT
















TABLE 5







Amino acid and nucleic acid sequences for VelociT TCRs


specific for PRAME (312-320)/HLA-A2









Domain Sequences



Amino Acid Sequence (SEQ ID NO); CDR1, CDR2, and



CDR3 sequences are underlined


Domain
Nucleic Acid Sequence (SEQ ID NO); CDR1, CDR2, and


name
CDR3 sequences are underlined





PN46678
AQKVTQAQPEISVVEKEDVTLDCVYETRDTTYYLFWYKQPPSGELVFLIRRNSFD




EQNEISGRYSWNFQKSTSSFNFTITASQVVDSAVYFCALSEFDRGSTLGRLYFGR




GTQLTVWP (SEQ ID NO: 217)






GCTCAGAAGGTAACTCAAGCGCAGCCTGAAATTTCTGTGGTGGAGAAGGAG



GATGTGACCTTGGACTGTGTGTATGAAACCCGTGATACTACTTATTACTTATT



CTGGTACAAGCAACCACCAAGTGGAGAATTGGTTTTCCTTATTCGTCGGAAC




TCTTTTGATGAGCAAAATGAAATAAGTGGTCGGTATTCTTGGAACTTCCAGA




AATCCACCAGTTCCTTCAACTTCACCATCACAGCCTCACAAGTCGTGGACTCA



GCAGTATACTTCTGTGCTCTGAGTGAGTTTGACAGAGGCTCAACCCTGGGGA




GGCTATACTTTGGAAGAGGAACTCAGTTGACTGTCTGGCCT (SEQ ID NO: 218)






PN46678
DAGVTQSPTHLIKTRGQQVTLRCSPISGHKSVSWYQQVLGQGPQFIFQYYEKEER



GRGNFPDRFSARQFPNYSSELNVNALLLGDSALYLCASSRDINEKLFFGSGTQLS



VL (SEQ ID NO: 219)






GACGCTGGAGTCACCCAAAGTCCCACACACCTGATCAAAACGAGAGGACAG



CAAGTGACTCTGAGATGCTCTCCTATCTCTGGGCACAAGAGTGTGTCCTGGTA



CCAACAGGTCCTGGGTCAGGGGCCCCAGTTTATCTTTCAGTATTATGAGAAA




GAAGAGAGAGGAAGAGGAAACTTCCCTGATCGATTCTCAGCTCGCCAGTTCC




CTAACTATAGCTCTGAGCTGAATGTGAACGCCTTGTTGCTGGGGGACTCGGC



CCTGTATCTCTGTGCCAGCAGCCGGGACATTAATGAAAAACTGTTTTTTGGCA



GTGGAACCCAGCTCTCTGTCTTG (SEQ ID NO: 220)








PN46714
EDQVTQSPEALRLQEGESSSLNCSYTVSGLRGLFWYRQDPGKGPEFLFTLYSAGE




EKEKERLKATLTKKESFLHITAPKPEDSATYLCAVQADGGSQGNLIFGKGTKLSV




KP (SEQ ID NO: 221)






GAAGACCAGGTGACGCAGAGTCCCGAGGCCCTGAGACTCCAGGAGGGAGAG



AGTAGCAGTCTCAACTGCAGTTACACAGTCAGCGGTTTAAGAGGGCTGTTCT



GGTATAGGCAAGATCCTGGGAAAGGCCCTGAATTCCTCTTCACCCTGTATTC




AGCTGGGGAAGAAAAGGAGAAAGAAAGGCTAAAAGCCACATTAACAAAGA




AGGAAAGCTTTCTGCACATCACAGCCCCTAAACCTGAAGACTCAGCCACTTA



TCTCTGTGCTGTGCAGGCCGATGGAGGAAGCCAAGGAAATCTCATCTTTGGA



AAAGGCACTAAACTCTCTGTTAAACCA (SEQ ID NO: 222)





PN46714
DAGVTQSPTHLIKTRGQQVTLRCSPISGHKSVSWYQQVLGQGPQFIFQYYEKEER



GRGNFPDRFSARQFPNYSSELNVNALLLGDSALYLCASSLDINSPLHFGNGTRLT



VT (SEQ ID NO: 223)






GACGCTGGAGTCACCCAAAGTCCCACACACCTGATCAAAACGAGAGGACAG



CAAGTGACTCTGAGATGCTCTCCTATCTCTGGGCACAAGAGTGTGTCCTGGTA



CCAACAGGTCCTGGGTCAGGGGCCCCAGTTTATCTTTCAGTATTATGAGAAA




GAAGAGAGAGGAAGAGGAAACTTCCCTGATCGATTCTCAGCTCGCCAGTTCC




CTAACTATAGCTCTGAGCTGAATGTGAACGCCTTGTTGCTGGGGGACTCGGC



CCTGTATCTCTGTGCCAGCAGCTTGGACATTAATTCACCCCTCCACTTTGGGA



ACGGGACCAGGCTCACTGTGACA (SEQ ID NO: 224)





PN46723
EDQVTQSPEALRLQEGESSSLNCSYTVSGLRGLFWYRQDPGKGPEFLFTLYSAGE



EKEKERLKATLTKKESFLHITAPKPEDSATYLCAVQEDGGSQGNLIFGKGTKLSV



KP (SEQ ID NO: 225)






GAAGACCAGGTGACGCAGAGTCCCGAGGCCCTGAGACTCCAGGAGGGAGAG



AGTAGCAGTCTCAACTGCAGTTACACAGTCAGCGGTTTAAGAGGGCTGTTCT



GGTATAGGCAAGATCCTGGGAAAGGCCCTGAATTCCTCTTCACCCTGTATTC




AGCTGGGGAAGAAAAGGAGAAAGAAAGGCTAAAAGCCACATTAACAAAGA




AGGAAAGCTTTCTGCACATCACAGCCCCTAAACCTGAAGACTCAGCCACTTA



TCTCTGTGCTGTGCAGGAGGATGGAGGAAGCCAAGGAAATCTCATCTTTGGA



AAAGGCACTAAACTCTCTGTTAAACCA (SEQ ID NO: 226)





PN46723
DAGVTQSPTHLIKTRGQQVTLRCSPISGHKSVSWYQQVLGQGPQFIFQYYEKEER



GRGNFPDRFSARQFPNYSSELNVNALLLGDSALYLCASSRDINEKLFFGSGTQLS



VL (SEQ ID NO: 227)






GACGCTGGAGTCACCCAAAGTCCCACACACCTGATCAAAACGAGAGGACAG



CAAGTGACTCTGAGATGCTCTCCTATCTCTGGGCACAAGAGTGTGTCCTGGTA



CCAACAGGTCCTGGGTCAGGGGCCCCAGTTTATCTTTCAGTATTATGAGAAA




GAAGAGAGAGGAAGAGGAAACTTCCCTGATCGATTCTCAGCTCGCCAGTTCC




CTAACTATAGCTCTGAGCTGAATGTGAACGCCTTGTTGCTGGGGGACTCGGC



CCTGTATCTCTGTGCCAGCAGCCGGGACATTAATGAAAAACTGTTTTTTGGCA



GTGGAACCCAGCTCTCTGTCTTG (SEQ ID NO: 228)





PN46731
GENVEQHPSTLSVQEGDSAVIKCTYSDSASNYFPWYKQELGKRPQLIIDIRSNVG




EKKDQRIAVTLNKTAKHFSLHITETQPEDSAVYFCAAWNYGQNFVFGPGTRLSV




LP (SEQ ID NO: 229)






GGAGAGAATGTGGAGCAGCATCCTTCAACCCTGAGTGTCCAGGAGGGAGAC



AGCGCTGTTATCAAGTGTACTTATTCAGACAGTGCCTCAAACTACTTCCCTTG



GTATAAGCAAGAACTTGGAAAAAGACCTCAGCTTATTATAGACATTCGTTCA




AATGTGGGCGAAAAGAAAGACCAACGAATTGCTGTTACATTGAACAAGACA




GCCAAACATTTCTCCCTGCACATCACAGAGACCCAACCTGAAGACTCGGCTG



TCTACTTCTGTGCAGCATGGAACTATGGTCAGAATTTTGTCTTTGGTCCCGGA



ACCAGATTGTCCGTGCTGCCC (SEQ ID NO: 230)





PN46731
AAGVIQSPRHLIKEKRETATLKCYPIPRHDTVYWYQQGPGQDPQFLISFYEKMQS



DKGSIPDRFSAQQFSDYHSELNMSSLELGDSALYFCASSLEGSEAFFGQGTRLTV



V (SEQ ID NO: 231)






GCTGCTGGAGTCATCCAGTCCCCAAGACATCTGATCAAAGAAAAGAGGGAA



ACAGCCACTCTGAAATGCTATCCTATCCCTAGACACGACACTGTCTACTGGTA



CCAGCAGGGTCCAGGTCAGGACCCCCAGTTCCTCATTTCGTTTTATGAAAAG




ATGCAGAGCGATAAAGGAAGCATCCCTGATCGATTCTCAGCTCAACAGTTCA




GTGACTATCATTCTGAACTGAACATGAGCTCCTTGGAGCTGGGGGACTCAGC



CCTGTACTTCTGTGCCAGCAGCTTAGAGGGGTCTGAAGCTTTCTTTGGACAAG



GCACCAGACTCACAGTTGTA (SEQ ID NO: 232)





PN46733
GESVGLHLPTLSVQEGDNSIINCAYSNSASDYFIWYKQESGKGPQFIIDIRSNMDK



RQGQRVTVLLNKTVKHLSLQIAATQPGDSAVYFCAENNYGQNFVFGPGTRLSVL



P (SEQ ID NO: 233)






GGAGAGAGTGTGGGGCTGCATCTTCCTACCCTGAGTGTCCAGGAGGGTGACA



ACTCTATTATCAACTGTGCTTATTCAAACAGCGCCTCAGACTACTTCATTTGG



TACAAGCAAGAATCTGGAAAAGGTCCTCAATTCATTATAGACATTCGTTCAA




ATATGGACAAAAGGCAAGGCCAAAGAGTCACCGTTTTATTGAATAAGACAGT




GAAACATCTCTCTCTGCAAATTGCAGCTACTCAACCTGGAGACTCAGCTGTCT



ACTTTTGTGCAGAGAATAACTATGGTCAGAATTTTGTCTTTGGTCCCGGAACC



AGATTGTCCGTGCTGCCC (SEQ ID NO: 234)





PN46733
NAGVTQTPKFQVLKTGQSMTLQCAQDMNHNSMYWYRQDPGMGLRLIYYSASE




GTTDKGEVPNGYNVSRLNKREFSLRLESAAPSQTSVYFCASSDWGQGVEAFFGQ




GTRLTVV (SEQ ID NO: 235)






AATGCTGGTGTCACTCAGACCCCAAAATTCCAGGTCCTGAAGACAGGACAGA



GCATGACACTGCAGTGTGCCCAGGATATGAACCATAACTCCATGTACTGGTA



TCGACAAGACCCAGGCATGGGACTGAGGCTGATTTATTACTCAGCTTCTGAG




GGTACCACTGACAAAGGAGAAGTCCCCAATGGCTACAATGTCTCCAGATTAA




ACAAACGGGAGTTCTCGCTCAGGCTGGAGTCGGCTGCTCCCTCCCAGACATC



TGTGTACTTCTGTGCCAGCAGTGACTGGGGACAGGGGGTTGAAGCTTTCTTTG



GACAAGGCACCAGACTCACAGTTGTA (SEQ ID NO: 236)





PN46735
DAKTTQPNSMESNEEEPVHLPCNHSTISGTDYIHWYRQLPSQGPEYVIHGLTSNV



NNRMASLAIAEDRKSSTLILHRATLRDAAVYYCILREYMYSGGGADGLTFGKGT



HLIIQP (SEQ ID NO: 237)






GATGCTAAGACCACACAGCCAAATTCAATGGAGAGTAACGAAGAAGAGCCT



GTTCACTTGCCTTGTAACCACTCCACAATCAGTGGAACTGATTACATACATTG



GTATCGACAGCTTCCCTCCCAGGGTCCAGAGTACGTGATTCATGGTCTTACAA




GCAATGTGAACAACAGAATGGCCTCTCTGGCAATCGCTGAAGACAGAAAGTC




CAGTACCTTGATCCTGCACCGTGCTACCTTGAGAGATGCTGCTGTGTACTACT



GCATCCTGAGAGAATACATGTATTCAGGAGGAGGTGCTGACGGACTCACCTT



TGGCAAAGGGACTCATCTAATCATCCAGCCC (SEQ ID NO: 238)





PN46735
DAGVTQSPTHLIKTRGQQVTLRCSPISGHKSVSWYQQVLGQGPQFIFQYYEKEER



GRGNFPDRFSARQFPNYSSELNVNALLLGDSALYLCASSFQAGVNYGYTFGSGT



RLTVV (SEQ ID NO: 239)






GACGCTGGAGTCACCCAAAGTCCCACACACCTGATCAAAACGAGAGGACAG



CAAGTGACTCTGAGATGCTCTCCTATCTCTGGGCACAAGAGTGTGTCCTGGTA



CCAACAGGTCCTGGGTCAGGGGCCCCAGTTTATCTTTCAGTATTATGAGAAA




GAAGAGAGAGGAAGAGGAAACTTCCCTGATCGATTCTCAGCTCGCCAGTTCC




CTAACTATAGCTCTGAGCTGAATGTGAACGCCTTGTTGCTGGGGGACTCGGC



CCTGTATCTCTGTGCCAGCAGCTTCCAAGCAGGGGTTAACTATGGCTACACCT



TCGGTTCGGGGACCAGGTTAACCGTTGTA (SEQ ID NO: 240)





PN46738
AQTVTQSQPEMSVQEAETVTLSCTYDTSENNYYLFWYKQPPSRQMILVIRQEAY




KQQNATENRFSVNFQKAAKSFSLKISDSQLGDTAMYFCAFGMYSGGGADGLTF




GKGTHLIIQP (SEQ ID NO: 241)






GCCCAGACAGTCACTCAGTCTCAACCAGAGATGTCTGTGCAGGAGGCAGAGA



CTGTGACCCTGAGTTGCACATATGACACCAGTGAGAATAATTATTATTTGTTC



TGGTACAAGCAGCCTCCCAGCAGGCAGATGATTCTCGTTATTCGCCAAGAAG




CTTATAAGCAACAGAATGCAACGGAGAATCGTTTCTCTGTGAACTTCCAGAA




AGCAGCCAAATCCTTCAGTCTCAAGATCTCAGACTCACAGCTGGGGGACACT



GCGATGTATTTCTGTGCTTTCGGTATGTATTCAGGAGGAGGTGCTGACGGACT




CACCTTTGGCAAAGGGACTCATCTAATCATCCAGCCC (SEQ ID NO: 242)






PN46738
DAGITQSPRYKITETGRQVTLMCHQTWSHSYMFWYRQDLGHGLRLIYYSAAADI



TDKGEVPDGYVVSRSKTENFPLTLESATRSQTSVYFCASSDGTGYYGYTFGSGTR



LTVV (SEQ ID NO: 243)






GATGCTGGAATCACCCAGAGCCCAAGATACAAGATCACAGAGACAGGAAGG



CAGGTGACCTTGATGTGTCACCAGACTTGGAGCCACAGCTATATGTTCTGGT



ATCGACAAGACCTGGGACATGGGCTGAGGCTGATCTATTACTCAGCAGCTGC




TGATATTACAGATAAAGGAGAAGTCCCCGATGGCTATGTTGTCTCCAGATCC




AAGACAGAGAATTTCCCCCTCACTCTGGAGTCAGCTACCCGCTCCCAGACAT



CTGTGTATTTCTGCGCCAGCAGTGATGGGACAGGGTACTATGGCTACACCTTC



GGTTCGGGGACCAGGTTAACCGTTGTA (SEQ ID NO: 244)





PN46777
AQTVTQSQPEMSVQEAETVTLSCTYDTSENNYYLFWYKQPPSRQMILVIRQEAY




KQQNATENRFSVNFQKAAKSFSLKISDSQLGDTAMYFCALMEYGNKLVFGAGTI




LRVKS (SEQ ID NO: 245)






GCCCAGACAGTCACTCAGTCTCAACCAGAGATGTCTGTGCAGGAGGCAGAGA



CTGTGACCCTGAGTTGCACATATGACACCAGTGAGAATAATTATTATTTGTTC



TGGTACAAGCAGCCTCCCAGCAGGCAGATGATTCTCGTTATTCGCCAAGAAG




CTTATAAGCAACAGAATGCAACGGAGAATCGTTTCTCTGTGAACTTCCAGAA




AGCAGCCAAATCCTTCAGTCTCAAGATCTCAGACTCACAGCTGGGGGACACT



GCGATGTATTTCTGTGCCCTTATGGAATATGGAAACAAACTGGTCTTTGGCGC



AGGAACCATTCTGAGAGTCAAGTCC (SEQ ID NO: 246)





PN46777
DAGITQSPRYKITETGRQVTLMCHQTWSHSYMFWYRQDLGHGLRLIYYSAAADI



TDKGEVPDGYVVSRSKTENFPLTLESATRSQTSVYFCASSDGTGYYGYTFGSGTR



LTVV (SEQ ID NO: 247)






GATGCTGGAATCACCCAGAGCCCAAGATACAAGATCACAGAGACAGGAAGG



CAGGTGACCTTGATGTGTCACCAGACTTGGAGCCACAGCTATATGTTCTGGT



ATCGACAAGACCTGGGACATGGGCTGAGGCTGATCTATTACTCAGCAGCTGC




TGATATTACAGATAAAGGAGAAGTCCCCGATGGCTATGTTGTCTCCAGATCC




AAGACAGAGAATTTCCCCCTCACTCTGGAGTCAGCTACCCGCTCCCAGACAT



CTGTGTATTTCTGCGCCAGCAGTGATGGGACAGGGTACTATGGCTACACCTTC



GGTTCGGGGACCAGGTTAACCGTTGTA (SEQ ID NO: 248)





PN46797
AQTVTQSQPEMSVQEAETVTLSCTYDTSENNYYLFWYKQPPSRQMILVIRQEAY




KQQNATENRFSVNFQKAAKSFSLKISDSQLGDTAMYFCALMEYENKLVFGAGTI




LRVKS (SEQ ID NO: 249)






GCCCAGACAGTCACTCAGTCTCAACCAGAGATGTCTGTGCAGGAGGCAGAGA



CTGTGACCCTGAGTTGCACATATGACACCAGTGAGAATAATTATTATTTGTTC



TGGTACAAGCAGCCTCCCAGCAGGCAGATGATTCTCGTTATTCGCCAAGAAG




CTTATAAGCAACAGAATGCAACGGAGAATCGTTTCTCTGTGAACTTCCAGAA




AGCAGCCAAATCCTTCAGTCTCAAGATCTCAGACTCACAGCTGGGGGACACT



GCGATGTATTTCTGTGCCCTTATGGAATATGAAAACAAACTGGTCTTTGGCGC



AGGAACCATTCTGAGAGTCAAGTCC (SEQ ID NO: 250)





PN46797
DAGITQSPRYKITETGRQVTLMCHQTWSHSYMFWYRQDLGHGLRLIYYSAAADI



TDKGEVPDGYVVSRSKTENFPLTLESATRSQTSVYFCASSDGTGYYGYTFGSGTR



LTVV (SEQ ID NO: 251)






GATGCTGGAATCACCCAGAGCCCAAGATACAAGATCACAGAGACAGGAAGG



CAGGTGACCTTGATGTGTCACCAGACTTGGAGCCACAGCTATATGTTCTGGT



ATCGACAAGACCTGGGACATGGGCTGAGGCTGATCTATTACTCAGCAGCTGC




TGATATTACAGATAAAGGAGAAGTCCCCGATGGCTATGTTGTCTCCAGATCC




AAGACAGAGAATTTCCCCCTCACTCTGGAGTCAGCTACCCGCTCCCAGACAT



CTGTGTATTTCTGCGCCAGCAGTGATGGGACAGGGTACTATGGCTACACCTTC



GGTTCGGGGACCAGGTTAACCGTTGTA (SEQ ID NO: 252)





PN46853
ILNVEQSPQSLHVQEGDSTNFTCSFPSSNFYALHWYRWETAKSPEALFVMTLNG



DEKKKGRISATLNTKEGYSYLYIKGSQPEDSATYLCACGGSGNTGKLIFGQGTTL



QVKP (SEQ ID NO: 253)






ATACTGAACGTGGAACAAAGTCCTCAGTCACTGCATGTTCAGGAGGGAGACA



GCACCAATTTCACCTGCAGCTTCCCTTCCAGCAATTTTTATGCCTTACACTGG



TACAGATGGGAAACTGCAAAAAGCCCCGAGGCCTTGTTTGTAATGACTTTAA




ATGGGGATGAAAAGAAGAAAGGACGAATAAGTGCCACTCTTAATACCAAGG




AGGGTTACAGCTATTTGTACATCAAAGGATCCCAGCCTGAAGACTCAGCCAC



ATACCTCTGTGCCTGTGGGGGTTCTGGCAACACAGGCAAACTAATCTTTGGG



CAAGGGACAACTTTACAAGTAAAACCA (SEQ ID NO: 254)





PN46853
AAGVIQSPRHLIKEKRETATLKCYPIPRHDTVYWYQQGPGQDPQFLISFYEKMQS



DKGSIPDRFSAQQFSDYHSELNMSSLELGDSALYFCASSSQGQPQHFGDGTRLSIL



(SEQ ID NO: 255)






GCTGCTGGAGTCATCCAGTCCCCAAGACATCTGATCAAAGAAAAGAGGGAA



ACAGCCACTCTGAAATGCTATCCTATCCCTAGACACGACACTGTCTACTGGTA



CCAGCAGGGTCCAGGTCAGGACCCCCAGTTCCTCATTTCGTTTTATGAAAAG




ATGCAGAGCGATAAAGGAAGCATCCCTGATCGATTCTCAGCTCAACAGTTCA




GTGACTATCATTCTGAACTGAACATGAGCTCCTTGGAGCTGGGGGACTCAGC



CCTGTACTTCTGTGCCAGCAGCTCCCAGGGTCAGCCCCAGCATTTTGGTGATG



GGACTCGACTCTCCATCCTA (SEQ ID NO: 256)





PN46857
AQKVTQATREISVVEKEDVTLDCVYETRDTTYYLFWYKQPPSGELVFLIRRNSFD




EQNEISGRYSWNFQKSTSSFNFTITASQVVDSAVYFCALSEGYGNKLVFGAGTIL




RVKS (SEQ ID NO: 257)






GCTCAGAAGGTAACTCAAGCGACTAGAGAAATTTCTGTGGTGGAGAAGGAG



GATGTGACCTTGGACTGTGTGTATGAAACCCGTGATACTACTTATTACTTATT



CTGGTACAAGCAACCACCAAGTGGAGAATTGGTTTTCCTTATTCGTCGGAAC




TCTTTTGATGAGCAAAATGAAATAAGTGGTCGGTATTCTTGGAACTTCCAGA




AATCCACCAGTTCCTTCAACTTCACCATCACAGCCTCACAAGTCGTGGACTCA



GCAGTATACTTCTGTGCTCTGAGTGAGGGATATGGAAACAAACTGGTCTTTG



GCGCAGGAACCATTCTGAGAGTCAAGTCC (SEQ ID NO: 258)





PN46857
NAGVMQNPRHLVRRRGQEARLRCSPMKGHSHVYWYRQLPEEGLKFMVYLQKE




NIIDESGMPKERFSAEFPKEGPSILRIQQVVRGDSAAYFCASSHRDDTEAFFGQGT




RLTVV (SEQ ID NO: 259)






AATGCCGGCGTCATGCAGAACCCAAGACACCTGGTCAGGAGGAGGGGACAG



GAGGCAAGACTGAGATGCAGCCCAATGAAAGGACACAGTCATGTTTACTGGT



ATCGGCAGCTCCCAGAGGAAGGTCTGAAATTCATGGTTTATCTCCAGAAAGA




AAATATCATAGATGAGTCAGGAATGCCAAAGGAACGATTTTCTGCTGAATTT




CCCAAAGAGGGCCCCAGCATCCTGAGGATCCAGCAGGTAGTGCGAGGAGAT



TCGGCAGCTTATTTCTGTGCCAGCTCACACAGGGACGACACTGAAGCTTTCTT



TGGACAAGGCACCAGACTCACAGTTGTA (SEQ ID NO: 260)





PN46871
KQEVTQIPAALSVPEGENLVLNCSFTDSAIYNLQWFRQDPGKGLTSLLLIQSSQRE



QTSGRLNASLDKSSGRSTLYIAASQPGDSATYLCAVEGTTDSWGKFQFGAGTQV



WTP (SEQ ID NO: 261)






AAACAGGAGGTGACGCAGATTCCTGCAGCTCTGAGTGTCCCAGAAGGAGAA



AACTTGGTTCTCAACTGCAGTTTCACTGATAGCGCTATTTACAACCTCCAGTG



GTTTAGGCAGGACCCTGGGAAAGGTCTCACATCTCTGTTGCTTATTCAGTCAA




GTCAGAGAGAGCAAACAAGTGGAAGACTTAATGCCTCGCTGGATAAATCATC




AGGACGTAGTACTTTATACATTGCAGCTTCTCAGCCTGGTGACTCAGCCACCT



ACCTCTGTGCTGTGGAGGGGACAACTGACAGCTGGGGGAAATTCCAGTTTGG



AGCAGGGACCCAGGTTGTGGTCACCCCA (SEQ ID NO: 262)





PN46871
AAGVIQSPRHLIKEKRETATLKCYPIPRHDTVYWYQQGPGQDPQFLISFYEKMQS



DKGSIPDRFSAQQFSDYHSELNMSSLELGDSALYFCASSSQGQPQHFGDGTRLSIL



(SEQ ID NO: 263)






GCTGCTGGAGTCATCCAGTCCCCAAGACATCTGATCAAAGAAAAGAGGGAA



ACAGCCACTCTGAAATGCTATCCTATCCCTAGACACGACACTGTCTACTGGTA



CCAGCAGGGTCCAGGTCAGGACCCCCAGTTCCTCATTTCGTTTTATGAAAAG




ATGCAGAGCGATAAAGGAAGCATCCCTGATCGATTCTCAGCTCAACAGTTCA




GTGACTATCATTCTGAACTGAACATGAGCTCCTTGGAGCTGGGGGACTCAGC



CCTGTACTTCTGTGCCAGCAGCTCCCAGGGTCAGCCCCAGCATTTTGGTGATG



GGACTCGACTCTCCATCCTA (SEQ ID NO: 264)





PN46880
AQRVTQPEKLLSVFKGAPVELKCNYSYSGSPELFWYVQYSRQRLQLLLRHISRES



IKGFTADLNKGETSFHLKKPFAQEEDSAMYYCALSGASGGSYIPTFGRGTSLIVH



P (SEQ ID NO: 265)






GCCCAGAGAGTGACTCAGCCCGAGAAGCTCCTCTCTGTCTTTAAAGGGGCCC



CAGTGGAGCTGAAGTGCAACTATTCCTATTCTGGGAGTCCTGAACTCTTCTGG



TATGTCCAGTACTCCAGACAACGCCTCCAGTTACTCTTGAGACACATCTCTAG




AGAGAGCATCAAAGGCTTCACTGCTGACCTTAACAAAGGCGAGACATCTTTC




CACCTGAAGAAACCATTTGCTCAAGAGGAAGACTCAGCCATGTATTACTGTG



CTCTAAGTGGGGCATCAGGAGGAAGCTACATACCTACATTTGGAAGAGGAAC



CAGCCTTATTGTTCATCCG (SEQ ID NO: 266)





PN46880
NAGVMQNPRHLVRRRGQEARLRCSPMKGHSHVYWYRQLPEEGLKFMVYLQKE




NIIDESGMPKERFSAEFPKEGPSILRIQQVVRGDSAAYFCASSHRDDTEAFFGQGT




RLTVV (SEQ ID NO: 267)






AATGCCGGCGTCATGCAGAACCCAAGACACCTGGTCAGGAGGAGGGGACAG



GAGGCAAGACTGAGATGCAGCCCAATGAAAGGACACAGTCATGTTTACTGGT



ATCGGCAGCTCCCAGAGGAAGGTCTGAAATTCATGGTTTATCTCCAGAAAGA




AAATATCATAGATGAGTCAGGAATGCCAAAGGAACGATTTTCTGCTGAATTT




CCCAAAGAGGGCCCCAGCATCCTGAGGATCCAGCAGGTAGTGCGAGGAGAT



TCGGCAGCTTATTTCTGTGCCAGCTCACACAGGGACGACACTGAAGCTTTCTT



TGGACAAGGCACCAGACTCACAGTTGTA (SEQ ID NO: 268)





PN46883
AQKVTQAQTEISVVEKEDVTLDCVYETRDTTYYLFWYKQPPSGELVFLIRRNSF




DEQNEISGRYSWNFQKSTSSFNFTITASQVVDSAVYFCALSVSSYNTDKLIFGTGT




RLQVFP (SEQ ID NO: 269)






GCTCAGAAGGTAACTCAAGCGCAGACTGAAATTTCTGTGGTGGAGAAGGAG



GATGTGACCTTGGACTGTGTGTATGAAACCCGTGATACTACTTATTACTTATT



CTGGTACAAGCAACCACCAAGTGGAGAATTGGTTTTCCTTATTCGTCGGAAC




TCTTTTGATGAGCAAAATGAAATAAGTGGTCGGTATTCTTGGAACTTCCAGA




AATCCACCAGTTCCTTCAACTTCACCATCACAGCCTCACAAGTCGTGGACTCA



GCAGTATACTTCTGTGCTCTGAGTGTATCATCTTATAACACCGACAAGCTCAT




CTTTGGGACTGGGACCAGATTACAAGTCTTTCCA (SEQ ID NO: 270)






PN46883
NAGVMQNPRHLVRRRGQEARLRCSPMKGHSHVYWYRQLPEEGLKFMVYLQKE




NIIDESGMPKERFSAEFPKEGPSILRIQQVVRGDSAAYFCASSHRDDTEAFFGQGT




RLTVV (SEQ ID NO: 271)






AATGCCGGCGTCATGCAGAACCCAAGACACCTGGTCAGGAGGAGGGGACAG



GAGGCAAGACTGAGATGCAGCCCAATGAAAGGACACAGTCATGTTTACTGGT



ATCGGCAGCTCCCAGAGGAAGGTCTGAAATTCATGGTTTATCTCCAGAAAGA




AAATATCATAGATGAGTCAGGAATGCCAAAGGAACGATTTTCTGCTGAATTT




CCCAAAGAGGGCCCCAGCATCCTGAGGATCCAGCAGGTAGTGCGAGGAGAT



TCGGCAGCTTATTTCTGTGCCAGCTCACACAGGGATGACACTGAAGCTTTCTT



TGGACAAGGCACCAGACTCACAGTTGTA (SEQ ID NO: 272)





PN46884
AQKVTQAQPEISVVEKEDVTLDCVYETRDTTYYLFWYKQPPSGELVFLIRRNSFD




EQNEISGRYSWNFQKSTSSFNFTITASQVVDSAVYFCALSEGYNTDKLIFGTGTRL




QVFP (SEQ ID NO: 273)






GCTCAGAAGGTAACTCAAGCGCAGCCTGAAATTTCTGTGGTGGAGAAGGAG



GATGTGACCTTGGACTGTGTGTATGAAACCCGTGATACTACTTATTACTTATT



CTGGTACAAGCAACCACCAAGTGGAGAATTGGTTTTCCTTATTCGTCGGAAC




TCTTTTGATGAGCAAAATGAAATAAGTGGTCGGTATTCTTGGAACTTCCAGA




AATCCACCAGTTCCTTCAACTTCACCATCACAGCCTCACAAGTCGTGGACTCA



GCAGTATACTTCTGTGCTCTGAGTGAGGGGTATAACACCGACAAGCTCATCT



TTGGGACTGGGACCAGATTACAAGTCTTTCCA (SEQ ID NO: 274)





PN46884
DVKVTQSSRYLVKRTGEKVFLECVQDMDHENMFWYRQDPGLGLRLIYFSYDVK




MKEKGDIPEGYSVSREKKERFSLILESASTNQTSMYLCASSLGGANTIYFGEGSW




LTVV (SEQ ID NO: 275)






GATGTGAAAGTAACCCAGAGCTCGAGATATCTAGTCAAAAGGACGGGAGAG



AAAGTTTTTCTGGAATGTGTCCAGGATATGGACCATGAAAATATGTTCTGGTA



TCGACAAGACCCAGGTCTGGGGCTACGGCTGATCTATTTCTCATATGATGTTA




AAATGAAAGAAAAAGGAGATATTCCTGAGGGGTACAGTGTCTCTAGAGAGA




AGAAGGAGCGCTTCTCCCTGATTCTGGAGTCCGCCAGCACCAACCAGACATC



TATGTACCTCTGTGCCAGCAGTTTAGGGGGGGCGAACACCATATATTTTGGA



GAGGGAAGTTGGCTCACTGTTGTA (SEQ ID NO: 276)





PN46889
QKEVEQNSGPLSVPEGAIASLNCTYSDRGSQSFFWYRQYSGKSPELIMSIYSNGD



KEDGRFTAQLNKASQYVSLLIRDSQPSDSATYLCAVNIPNSGYSTLTFGKGTMLL



VSP (SEQ ID NO: 277)






CAGAAGGAGGTGGAGCAGAATTCTGGACCCCTCAGTGTTCCAGAGGGAGCC



ATTGCCTCTCTCAACTGCACTTACAGTGACCGAGGTTCCCAGTCCTTCTTCTG



GTACAGACAATATTCTGGGAAAAGCCCTGAGTTGATAATGTCCATATACTCC




AATGGTGACAAAGAAGATGGAAGGTTTACAGCACAGCTCAATAAAGCCAGC




CAGTATGTTTCTCTGCTCATCAGAGACTCCCAGCCCAGTGATTCAGCCACCTA



CCTCTGTGCCGTGAACATTCCGAATTCAGGATACAGCACCCTCACCTTTGGGA



AGGGGACTATGCTTCTAGTCTCTCCA (SEQ ID NO: 278)





PN46889
NAGVTQTPKFRVLKTGQSMTLLCAQDMNHEYMYWYRQDPGMGLRLIHYSVGE




GTTAKGEVPDGYNVSRLKKQNFLLGLESAAPSQTSVYFCASSYWEGTEAFFGQG




TRLTVV (SEQ ID NO: 279)






AATGCTGGTGTCACTCAGACCCCAAAATTCCGGGTCCTGAAGACAGGACAGA



GCATGACACTGCTGTGTGCCCAGGATATGAACCATGAATACATGTACTGGTA



TCGACAAGACCCAGGCATGGGGCTGAGGCTGATTCATTACTCAGTTGGTGAG




GGTACAACTGCCAAAGGAGAGGTCCCTGATGGCTACAATGTCTCCAGATTAA




AAAAACAGAATTTCCTGCTGGGGTTGGAGTCGGCTGCTCCCTCCCAAACATC



TGTGTACTTCTGTGCCAGCAGTTACTGGGAGGGCACTGAAGCTTTCTTTGGAC



AAGGCACCAGACTCACAGTTGTA (SEQ ID NO: 280)





PN46909
AQTVTQSQPEMSVQEAETVTLSCTYDTSENNYYLFWYKQPPSRQMILVIRQEAY




KQQNATENRFSVNFQKAAKSFSLKISDSQLGDTAMYFCAFDYGQNFVFGPGTRL




SVLP (SEQ ID NO: 281)






GCCCAGACAGTCACTCAGTCTCAACCAGAGATGTCTGTGCAGGAGGCAGAGA



CTGTGACCCTGAGTTGCACATATGACACCAGTGAGAATAATTATTATTTGTTC



TGGTACAAGCAGCCTCCCAGCAGGCAGATGATTCTCGTTATTCGCCAAGAAG




CTTATAAGCAACAGAATGCAACGGAGAATCGTTTCTCTGTGAACTTCCAGAA




AGCAGCCAAATCCTTCAGTCTCAAGATCTCAGACTCACAGCTGGGGGACACT



GCGATGTATTTCTGTGCTTTCGACTATGGTCAGAATTTTGTCTTTGGTCCCGG



AACCAGATTGTCCGTGCTGCCC (SEQ ID NO: 282)





PN46909
NAGVTQTPKFRILKIGQSMTLQCAQDMNHNYMYWYRQDPGMGLKLIYYSVGA




GITDKGEVPNGYNVSRSTTEYFPLRLELAAPSQTSVYFCASSYGGGQTEAFFGQG




TRLTVV (SEQ ID NO: 283)






AATGCTGGTGTCACTCAGACCCCAAAATTCCGCATCCTGAAGATAGGACAGA



GCATGACACTGCAGTGTGCCCAGGATATGAACCATAACTACATGTACTGGTA



TCGACAAGACCCAGGCATGGGGCTGAAGCTGATTTATTATTCAGTTGGTGCT




GGTATCACTGATAAAGGAGAAGTCCCGAATGGCTACAACGTCTCCAGATCAA




CCACAGAGTATTTCCCGCTCAGGCTGGAGTTGGCTGCTCCCTCCCAGACATCT



GTGTACTTCTGTGCCAGCAGTTACGGGGGGGGGCAGACTGAAGCTTTCTTTG



GACAAGGCACCAGACTCACAGTTGTA (SEQ ID NO: 284)





PN46914
AQKVTQAQPEISVVEKEDVTLDCVYETRDTTYYLFWYKQPPSGELVFLIRRNSFD




EQNEISGRYSWNFQKSTSSFNFTITASQVVDSAVYFCALSEGYNQGGKLIFGQGT




ELSVKP (SEQ ID NO: 285)






GCTCAGAAGGTAACTCAAGCGCAGCCTGAAATTTCTGTGGTGGAGAAGGAG



GATGTGACCTTGGACTGTGTGTATGAAACCCGTGATACTACTTATTACTTATT



CTGGTACAAGCAACCACCAAGTGGAGAATTGGTTTTCCTTATTCGTCGGAAC




TCTTTTGATGAGCAAAATGAAATAAGTGGTCGGTATTCTTGGAACTTCCAGA




AATCCACCAGTTCCTTCAACTTCACCATCACAGCCTCACAAGTCGTGGACTCA



GCAGTATACTTCTGTGCTCTGAGTGAGGGTTATAACCAGGGAGGAAAGCTTA




TCTTCGGACAGGGAACGGAGTTATCTGTGAAACCC (SEQ ID NO: 286)






PN46914
DVKVTQSSRYLVKRTGEKVFLECVQDMDHENMFWYRQDPGLGLRLIYFSYDVK




MKEKGDIPEGYSVSREKKERFSLILESASTNQTSMYLCASGADSNQPQHFGDGTR




LSIL (SEQ ID NO: 287)






GATGTGAAAGTAACCCAGAGCTCGAGATATCTAGTCAAAAGGACGGGAGAG



AAAGTTTTTCTGGAATGTGTCCAGGATATGGACCATGAAAATATGTTCTGGTA



TCGACAAGACCCAGGTCTGGGGCTACGGCTGATCTATTTCTCATATGATGTTA




AAATGAAAGAAAAAGGAGATATTCCTGAGGGGTACAGTGTCTCTAGAGAGA




AGAAGGAGCGCTTCTCCCTGATTCTGGAGTCCGCCAGCACCAACCAGACATC



TATGTACCTCTGTGCCAGCGGGGCAGATAGCAATCAGCCCCAGCATTTTGGT



GATGGGACTCGACTCTCCATCCTA (SEQ ID NO: 288)
















TABLE 6







Amino acid CDR sequences for VelociT TCRs specific for PRAME (425-433)/HLA-A2





















SEQ

SEQ

SEQ

SEQ

SEQ




TCR

ID

ID

ID

ID

ID

TCR


ID
Vα CDR1
NO:
Vα CDR2
NO:
Vα CDR3
NO:
Vβ CDR1
NO:
Vβ CDR2
NO:
Vβ CDR3
ID





PN42365
SVFSS
289
VVTGGEV
290
AANGGSQGNLI
291
SGHDT
292
YYEEEE
293
ASSLQDYGYT
294





PN42378
TISGTDY
295
GLTSN
296
ILRPDSWGKFQ
297
SGHDT
298
YYEEEE
299
ASSLQDYGYT
300





PN42386
SVFSS
301
VVTGGEV
302
ATNGGSQGNLI
303
SGHDT
304
YYEEEE
305
ASSLQDYGYT
306





PN42441
TISGTDY
307
GLTSN
308
IRRPGNQFY
309
MNHEY
310
SMNVEV
311
ASSLWTGSEAF
312





PN42442
SVFSS
313
VVTGGEV
314
AGGTSGTYKYI
315
MNHEY
316
SMNVEV
317
ASSPGTANYGYT
318





PN42450
YSGSPE
319
HISR
320
ALGNTDKLI
321
MDHEN
322
SYDVKM
323
ASSSPRTGWYGYT
324





PN42455
TISGTDY
325
GLTSN
326
ILRPDSWGKFQ
327
SGHDT
328
YYEEEE
329
ASSLVDYGYT
330





PN42476
TISGTDY
331
GLTSN
332
ILRPDSWGKFQ
333
MDHEY
334
SMNVEV
335
ASSLGGVDERLS
336





PN42483
SVFSS
337
VVTGGEV
338
AGDGGSQGNLI
339
MNHEY
340
SMNVEV
341
ASSLGGADEKLF
342





PN42496
TISGTDY
343
GLTSN
344
ILGQGAQKLV
345
MNHEY
346
SMNVEV
347
ASSLWTGGGYT
348





PN42498
SVFSS
349
VVTGGEV
350
AGDGGSQGNLI
351
SGHDT
352
YYEEEE
353
ASSLVDYGYT
354





PN42558
DSVNN
355
IPSGT
356
VLGGGSQGNLI
357
SGHDT
358
YYEEEE
359
ASSFTDYGYT
360





PN42561
TISGTDY
361
GLTSN
362
ILRDGTGNQFY
363
MNHEY
364
SMNVEV
365
ASSLWTGGGYT
366





PN42562
SVFSS
367
VVTGGEV
368
AGGPSGTYKYI
369
MNHEY
370
SMNVEV
371
ASSPGTPNYGYT
372





PN42610
DRGSQS
373
IYSNGD
374
AGNYGQNFV
375
PRHDT
376
FYEKMQ
377
ASSIGLNQPQH
378





PN42654
TISGTDY
379
GLTSN
380
ILRDGIGNQFY
381
MNHEY
382
SMNVEV
383
ASSLWTGGGYT
384





PN42655
TISGTDY
385
GLTSN
386
ILRPDSWGKFQ
387
MNHEY
388
SMNVEV
389
ASSLWTGGGYT
390





PN42677
TISGTDY
391
GLTSN
392
ILRDGTGNQFY
393
MNHEY
394
SMNVEV
395
ASSSTGYYGYT
396





PN42683
TISGTDY
397
GLTSN
398
ILRDREYGNKLV
399
MNHEY
400
SMNVEV
401
ASSLWTGGGYT
402





PN42689
SVFSS
403
VVTGGEV
404
AEDGGSQGNLI
405
SGHDT
406
YYEEEE
407
ASSLSDYGYT
408





PN42706
DSVNN
409
IPSGT
410
AVEASGTYKYI
411
MNHEY
412
SMNVEV
413
ASSWGTGGYGYT
414





PN42707
NSASDY
415
IRSNMDK
416
AENKRDNYGQNFV
417
MNHEY
418
SMNVEV
419
ASSFWVNTEAF
420





PN42711
DSVNN
421
IPSGT
422
AVGSSNGYKLS
423
MNHEY
424
SMNVEV
425
ASSPGTGGFSPLH
426





PN42712
DSVNN
427
IPSGT
428
AVGSSNDYKLS
429
MNHEY
430
SMNVEV
431
ASSPGTGGFSPLH
432





PN42746
NSASDY
433
IRSNMDK
434
AENRQDNYGQNFV
435
MNHEY
436
SMNVEV
437
ASSLWVNTEAF
438





PN42750
TISGTDY
439
GLTSN
440
ILRPDSWGKFQ
441
MDHEN
442
SYDVKM
443
ASSTVRQGNYGYT
444





PN42762
TISGTDY
445
GLTSN
446
ILNTGTASKLT
447
MNHEY
448
SMNVEV
449
ASSLSSNTEAF
450





PN42774
DRGSQS
451
IYSNGD
452
AVNRGTDKLI
453
SGHDT
454
YYEEEE
455
ASSWTDYGYT
456





PN42776
TISGTDY
457
GLTSN
458
ILRPDSWGKFQ
459
SGHDT
460
YYEEEE
461
ASSWTDYGYT
462





PN42780
SVFSS
463
VVTGGEV
464
AGGTSGTYKYI
465
MNHEY
466
SMNVEV
467
ASSPGTPNYGYT
468





PN42795
NSASQS
469
VYSSGN
470
VVNGGSQGNLI
471
SGHDT
472
YYEEEE
473
ASSVGDYGYT
474





PN42815
NSASDY
475
IRSNMDK
476
AENNYGQNFV
477
MNHEY
478
SMNVEV
479
ASSLWDSSPLH
480





PN42826
NSMFDY
481
ISSIKDK
482
AASAGSARQLT
483
MNHEY
484
SMNVEV
485
ASSLYTHTEAF
486





PN42833
TISGNEY
487
GLKNN
488
IVRDTTSGTYKYI
489
MNHEY
490
SMNVEV
491
ASSLSSTGFSPLH
492





PN42840
SVFSS
493
VVTGGEV
494
AEGGGSQGNLI
495
SGHDT
496
YYEEEE
497
ASSWTDYGYT
498





PN42845
SVFSS
499
VVTGGEV
500
AGIRSNDYKLS
501
MNHEY
502
SMNVEV
503
ASSSWTAHTEAF
504





PN42870
SVFSS
505
VVTGGEV
506
AENSGGGADGLT
507
SGHDT
508
YYEEEE
509
ASSFTDYGYT
510





PN42879
SVFSS
511
VVTGGEV
512
AGEDFGNEKLT
513
SGHDT
514
YYEEEE
515
ASSWADYGYT
516





PN42888
SSNFYA
517
MTLNGDE
518
AFLTGNQFY
519
MDHEN
520
SYDVKM
521
ASSTVRQGNYGYT
522





PN42895
NSMFDY
523
ISSIKDK
524
AASAGSARQLT
525
MNHEY
526
SMNVEV
527
ASSLWSNTEAF
528
















TABLE 7







Nucleic acid CDR sequences for VelociT TCRs specific for PRAME (425-433)/HLA-A2





















SEQ

SEQ

SEQ

SEQ

SEQ




TCR

ID

ID

ID

ID

ID

TCR


ID
Vα CDR1
NO:
Vα CDR2
NO:
Vα CDR3
NO:
Vβ CDR1
NO:
Vβ CDR2
NO:
Vβ CDR3
ID





PN42365
AGTGTTT
529
GTAGTTACG
530
GCCGCTAATGGAGGA
531
TCTGGGC
532
TATTATG
533
GCCAGCAGCTTACA
534



TTTCCAG

GGTGGAGAA

AGCCAAGGAAATCTC

ATGACA

AGGAGGA

GGACTATGGCTACA




c

GTG

ATC

CT

AGAG

CC






PN42378
ACAATCA
535
GGTCTTACA
536
ATCCTGCGGCCTGACA
537
TCTGGGC
538
TATTATG
539
GCCAGCAGCTTACA
540



GTGGAAC

AGCAAT

GCTGGGGGAAATTCC

ATGACA

AGGAGGA

GGACTATGGCTACA




TGATTAC



AG

CT

AGAG

CC






PN42386
AGTGTTT
541
GTAGTTACG
542
GCCACTAATGGAGGA
543
TCTGGGC
544
TATTATG
545
GCCAGCAGCTTACA
546



TTTCCAG

GGTGGAGAA

AGCCAAGGAAATCTC

ATGACA

AGGAGGA

GGACTATGGCTACA




C

GTG

ATC

CT

AGAG

CC






PN42441
ACAATCA
547
GGTCTTACA
548
ATCAGGCGGCCCGGT
549
ATGAAC
550
TCAATGA
551
GCCAGCAGTTTATG
552



GTGGAAC

AGCAAT

AACCAGTTCTAT

CATGAGT

ATGTTGA

GACAGGGTCTGAAG




TGATTAC





AT

GGTG

CTTTC






PN42442
AGTGTTT
553
GTAGTTACT
554
GCAGGAGGGACCTCA
555
ATGAAC
556
TCAATGA
557
GCCAGCAGTCCAGG
558



TTTCCAG

GGTGGAGAA

GGAACCTACAAATAC

CATGAGT

ATGTTGA

GACAGCTAACTATG




C

GTG

ATC

AT

GGTG

GCTACACC






PN42450
TATTCTG
559
CACATCTCT
560
GCTCTAGGGAACACC
561
ATGGAC
562
TCATATG
563
GCCAGCAGTTCGCC
564



GGAGTCC

AGA

GACAAGCTCATC

CATGAA

ATGTTAA

CAGGACAGGGTGGT




TGAA





AAT

AATG

ATGGCTACACC






PN42455
ACAATCA
565
GGTCTTACA
566
ATCCTGCGGCCTGACA
567
TCTGGGC
568
TATTATG
569
GCCAGCAGCTTGGT
570



GTGGAAC

AGCAAT

GCTGGGGGAAATTCC

ATGACA

AGGAGGA

GGATTATGGCTACA




TGATTAC



AG

CT

AGAG

CC






PN42476
ACAATCA
571
GGTCTTACA
572
ATCCTGCGGCCTGACA
573
ATGGAC
574
TCAATGA
575
GCCAGCAGTTTAGG
576



GTGGAAC

AGCAAT

GCTGGGGGAAATTCC

CATGAGT

ATGTTGA

GGGCGTGGATGAAA




TGATTAC



AG

AT

GGTG

GACTGTCT






PN42483
AGTGTTT
577
GTAGTTACG
578
GCAGGGGATGGAGGA
579
ATGAAC
580
TCAATGA
581
GCCAGCAGTTTAGG
582



TTTCCAG

GGTGGAGAA

AGCCAAGGAAATCTC

CATGAGT

ATGTTGA

GGGCGCGGATGAAA




C

GTG

ATC

AT

GGTG

AACTGTTT






PN42496
ACAATCA
583
GGTCTTACA
584
ATCCTGGGTCAGGGA
585
ATGAAC
586
TCAATGA
587
GCCAGCAGTTTATG
588



GTGGAAC

AGCAAT

GCCCAGAAGCTGGTA

CATGAGT

ATGTTGA

GACAGGGGGCGGCT




TGATTAC





AT

GGTG

ACACC






PN42498
AGTGTTT
589
GTAGTTACG
590
GCAGGGGATGGAGGA
591
TCTGGGC
592
TATTATG
593
GCCAGCAGCTTGGT
594



TTTCCAG

GGTGGAGAA

AGCCAAGGAAATCTC

ATGACA

AGGAGGA

GGATTATGGCTACA




C

GTG

ATC

CT

AGAG

CC






PN42558
GACTCTG
595
ATTCCCTCA
596
GTCCTAGGGGGAGGA
597
TCTGGGC
598
TATTATG
599
GCCAGCAGCTTTAC
600



TGAACAA

GGGACA

AGCCAAGGAAATCTC

ATGACA

AGGAGGA

AGACTATGGCTACA




T



ATC

CT

AGAG

CC






PN42561
ACAATCA
601
GGTCTTACA
602
ATCCTGAGAGACGGG
603
ATGAAC
604
TCAATGA
605
GCCAGCAGTTTATG
606



GTGGAAC

AGCAAT

ACCGGTAACCAGTTCT

CATGAGT

ATGTTGA

GACAGGGGGTGGCT




TGATTAC



AT

AT

GGTG

ACACC






PN42562
AGTGTTT
607
GTAGTTACG
608
GCAGGAGGACCCTCA
609
ATGAAC
610
TCAATGA
611
GCCAGCAGTCCCGG
612



TTTCCAG

GGTGGAGAA

GGAACCTACAAATAC

CATGAGT

ATGTTGA

GACACCTAACTATG




C

GTG

ATC

AT

GGTG

GCTACACC






PN42610
GACCGAG
613
ATATACTCC
614
GCCGGGAACTATGGT
615
CCTAGAC
616
TTTTATG
617
GCCAGCAGCATCGG
618



GTTCCCA

AATGGTGAC

CAGAATTTTGTC

ACGACA

AAAAGAT

ACTTAATCAGCCCC




GTCC





CT

GCAG

AGCAT






PN42654
ACAATCA
619
GGTCTTACA
620
ATCCTGAGAGACGGC
621
ATGAAC
622
TCAATGA
623
GCCAGCAGTTTATG
624



GTGGAAC

AGCAAT

ATCGGTAACCAGTTCT

CATGAGT

ATGTTGA

GACAGGGGGAGGCT




TGATTA



AT

AT

GGTG

ACACC






PN42655
ACAATCA
625
GGTCTTACA
626
ATCCTGCGGCCTGACA
627
ATGAAC
628
TCAATGA
629
GCCAGCAGTTTATG
630



GTGGAAC

AGCAAT

GCTGGGGGAAATTCC

CATGAGT

ATGTTGA

GACAGGGGGAGGCT




TGATTAC



AG

AT

GGTG

ACACC






PN42677
ACAATCA
631
GGTCTTACA
632
ATCCTGAGAGACGGC
633
ATGAAC
634
TCAATGA
635
GCCAGCAGTTCGAC
636



GTGGAAC

AGCAAT

ACCGGTAACCAGTTCT

CATGAGT

ATGTTGA

AGGGTACTATGGCT




TGATTAC



AT

AT

GGTG

ACACC






PN42683
ACAATCA
637
GGTCTTACA
638
ATCCTGAGAGACCGG
639
ATGAAC
640
TCAATGA
641
GCCAGCAGTTTATG
642



GTGGAAC

AGCAAT

GAATATGGAAACAAA

CATGAGT

ATGTTGA

GACAGGGGGCGGCT




TGATTAC



CTGGTC

AT

GGTG

ACACC






PN42689
AGTGTTT
643
GTAGTTACG
644
GCAGAAGATGGAGGA
645
TCTGGGC
646
TATTATG
647
GCCAGCAGCTTATC
648



TTTCCAG

GGTGGAGAA

AGCCAAGGAAATCTC

ATGACA

AGGAGGA

AGACTATGGCTACA




C

GTG

ATC

CT

AGAG

CC






PN42706
GACTCTG
649
ATTCCCTCA
650
GCTGTGGAGGCCTCA
651
ATGAAC
652
TCAATGA
653
GCCAGCAGTTGGGG
654



TGAACAA

GGGACA

GGAACCTACAAATAC

CATGAGT

ATGTTGA

GACAGGGGGCTATG




T



ATC

AT

GGTG

GCTACACC






PN42707
AACAGCG
655
ATTCGTTCA
656
GCAGAGAATAAGCGG
657
ATGAAC
658
TCAATGA
659
GCCAGCAGTTTCTG
660



CCTCAGA

AATATGGAC

GATAACTATGGTCAG

CATGAGT

ATGTTGA

GGTGAACACTGAAG




CTAC

AAA

AATTTTGTC

AT

GGTG

CTTTC






PN42711
GACTCTG
661
ATTCCCTCA
662
GCTGTGGGGAGTTCTA
663
ATGAAC
664
TCAATGA
665
GCCAGCAGTCCCGG
666



TGAACAA

GGGACA

ACGGCTACAAGCTCA

CATGAGT

ATGTTGA

GACAGGGGGATTTT




T



GC

AT

GGTG

CACCCCTCCAC






PN42712
GACTCTG
667
ATTCCCTCA
668
GCTGTGGGGAGTTCTA
669
ATGAAC
670
TCAATGA
671
GCCAGCAGTCCCGG
672



TGAACAA

GGGACA

ACGACTACAAGCTCA

CATGAGT

ATGTTGA

GACAGGGGGATTTT




T



GC

AT

GGTG

CACCCCTCCAC






PN42746
AACAGCG
673
ATTCGTTCA
674
GCAGAGAATAGGCAG
675
ATGAAC
676
TCAATGA
677
GCCAGCAGTTTATG
678



CCTCAGA

AATATGGAC

GATAACTATGGTCAG

CATGAGT

ATGTTGA

GGTTAACACTGAAG




CTAC

AAA

AATTTTGTC

AT

GGTG

CTTTC






PN42750
ACAATCA
679
GGTCTTACA
680
ATCCTGCGGCCTGACA
681
ATGGAC
682
TCATATG
683
GCCAGCAGTACCGT
684



GTGGAAC

AGCAAT

GCTGGGGGAAGTTCC

CATGAA

ATGTTAA

GAGGCAGGGGAACT




TGATTAC



AG

AAT

AATG

ATGGCTACACC






PN42762
ACAATCA
685
GGTCTTACA
686
ATCCTGAATACCGGCA
687
ATGAAC
688
TCAATGA
689
GCCAGCAGTTTATC
690



GTGGAAC

AGCAAT

CTGCCAGTAAACTCAC

CATGAGT

ATGTTGA

GTCGAACACTGAAG




TGATTAC



c

AT

GGTG

CTTTC






PN42774
GACCGAG
691
ATATACTCC
692
GCCGTGAACAGAGGC
693
TCTGGGC
694
TATTATG
695
GCCAGCAGCTGGAC
696



GTTCCCA

AATGGTGAC

ACCGACAAGCTCATC

ATGACA

AGGAGGA

AGACTATGGCTACA




GTCC





CT

AGAG

CC






PN42776
ACAATCA
697
GGTCTTACA
698
ATCCTGCGGCCTGACA
699
TCTGGGC
700
TATTATG
701
GCCAGCAGCTGGAC
702



GTGGAAC

AGCAAT

GCTGGGGGAAATTCC

ATGACA

AGGAGGA

AGACTATGGCTACA




TGATTAC



AG

CT

AGAG

CC






PN42780
AGTGTTT
703
GTAGTTACG
704
GCAGGAGGAACCTCA
705
ATGAAC
706
TCAATGA
707
GCCAGCAGTCCCGG
708



TTTCCAG

GGTGGAGAA

GGAACCTACAAATAC

CATGAGT

ATGTTGA

GACACCCAACTATG




C

GTG

ATC

AT

GGTG

GCTACACC






PN42795
AACAGTG
709
GTATACTCC
710
GTGGTGAATGGAGGA
711
TCTGGGC
712
TATTATG
713
GCCAGCAGCGTAGG
714



CTTCTCA

AGTGGTAAT

AGCCAAGGAAATCTC

ATGACA

AGGAGGA

GGACTATGGCTACA




GTCT



ATC

CT

AGAG

CC






PN42815
AACAGCG
715
ATTCGTTCA
716
GCAGAGAACAACTAT
717
ATGAAC
718
TCAATGA
719
GCCAGCAGTTTATG
720



CCTCAGA

AATATGGAC

GGTCAGAATTTTGTC

CATGAGT

ATGTTGA

GGACAGTTCACCCC




CTAC

AAA



AT

GGTG

TCCAC






PN42826
AACAGCA
721
ATAAGTTCC
722
GCAGCAAGCGCCGGT
723
ATGAAC
724
TCAATGA
725
GCCAGCAGTTTATA
726



TGTTTGA

ATTAAGGAT

TCTGCAAGGCAACTG

CATGAGT

ATGTTGA

CACCCACACTGAAG




TTAT

AAA

ACC

AT

GGTG

CTTTC






PN42833
ACCATCA
727
GGTCTAAAA
728
ATCGTCAGAGACACT
729
ATGAAC
730
TCAATGA
731
GCCAGCAGTTTATC
732



GTGGAAA

AACAAT

ACCTCAGGAACCTAC

CATGAGT

ATGTTGA

CTCGACAGGTTTTT




TGAGTAT



AAATACATC

AT

GGTG

CACCCCTCCAC






PN42840
AGTGTTT
733
GTAGTTACG
734
GCAGAGGGGGGAGGA
735
TCTGGGC
736
TATTATG
737
GCCAGCAGCTGGAC
738



TTTCCAG

GGTGGAGAA

AGCCAAGGAAATCTC

ATGACA

AGGAGGA

AGACTATGGCTACA




C

GTG

ATC

CT

AGAG

CC






PN42845
AGTGTTT
739
GTAGTTACG
740
GCAGGGATACGTTCTA
741
ATGAAC
742
TCAATGA
743
GCCAGCAGTTCCTG
744



TTTCCAG

GGTGGAGAA

ACGACTACAAGCTCA

CATGAGT

ATGTTGA

GACAGCCCACACTG




C

GTG

GC

AT

GGTG

AAGCTTTC






PN42870
AGTGTTT
745
GTAGTTACG
746
GCAGAAAATTCAGGA
747
TCTGGGC
748
TATTATG
749
GCCAGCAGCTTCAC
750



TTTCCAG

GGTGGAGAA

GGAGGTGCTGACGGA

ATGACA

AGGAGGA

AGACTATGGCTACA




C

GTG

CTCACC

CT

AGAG

CC






PN42879
AGTGTTT
751
GTAGTTACG
752
GCAGGAGAGGACTTT
753
TCTGGGC
754
TATTATG
755
GCCAGCAGCTGGGC
756



TTTCCAG

GGTGGAGAA

GGAAATGAGAAATTA

ATGACA

AGGAGGA

GGATTATGGCTACA




C

GTG

ACC

CT

AGAG

CC






PN42888
TCCAGCA
757
ATGACTTTA
758
GCCTTTCTCACCGGTA
759
ATGGAC
760
TCATATG
761
GCCAGCAGTACCGT
762



ATTTTTAT

AATGGGGAT

ACCAGTTCTAT

CATGAA

ATGTTAA

GAGGCAGGGGAACT




GCC

GAA



AAT

AATG

ATGGCTACACC






PN42895
AACAGCA
763
ATAAGTTCC
764
GCAGCAAGCGCCGGT
765
ATGAAC
766
TCAATGA
767
GCCAGCAGTTTATG
768



TGTTTGA

ATTAAGGAT

TCTGCAAGGCAACTG

CATGAGT

ATGTTGA

GTCGAACACTGAAG




TTAT

AAA

ACC

AT

GGTG

CTTTC
















TABLE 8







Amino acid and nucleic acid sequences for VelociT TCRs


specific for PRAME (425-433)/HLA-A2









Domain Sequences



Amino Acid Sequence (SEQ ID NO); CDR1, CDR2, and CDR3 sequences are



underlined


Domain
Nucleic Acid Sequence (SEQ ID NO); CDR1, CDR2, and CDR3 sequences are


name
underlined





PN42365
TQLLEQSPQFLSIQEGENLTVYCNSSSVFSSLQWYRQEPGEGPVLLVTVVTGGEV



KKLKRLTFQFGDARKDSSLHITAAQPGDTGLYLCAANGGSQGNLIFGKGTKLSV



KP (SEQ ID NO: 769)






ACCCAGCTGCTGGAGCAGAGCCCTCAGTTTCTAAGCATCCAAGAGGGAGAAA



ATCTCACTGTGTACTGCAACTCCTCAAGTGTTTTTTCCAGCTTACAATGGTAC



AGACAGGAGCCTGGGGAAGGTCCTGTCCTCCTGGTGACAGTAGTTACGGGTG




GAGAAGTGAAGAAGCTGAAGAGACTAACCTTTCAGTTTGGTGATGCAAGAA




AGGACAGTTCTCTCCACATCACTGCGGCCCAGCCTGGTGATACAGGCCTCTA



CCTCTGTGCCGCTAATGGAGGAAGCCAAGGAAATCTCATCTTTGGAAAAGGC



ACTAAACTCTCTGTTAAACCA (SEQ ID NO: 770)





PN42365
DAGVTQSPTHLIKTRGQQVTLRCSPKSGHDTVSWYQQALGQGPQFIFQYYEEEE



RQRGNFPDRFSGHQFPNYSSELNVNALLLGDSALYLCASSLQDYGYTFGSGTRL



TVV (SEQ ID NO: 771)






GACGCTGGAGTCACCCAAAGTCCCACACACCTGATCAAAACGAGAGGACAG



CAAGTGACTCTGAGATGCTCTCCTAAGTCTGGGCATGACACTGTGTCCTGGTA



CCAACAGGCCCTGGGTCAGGGGCCCCAGTTTATCTTTCAGTATTATGAGGAG




GAAGAGAGACAGAGAGGCAACTTCCCTGATCGATTCTCAGGTCACCAGTTCC




CTAACTATAGCTCTGAGCTGAATGTGAACGCCTTGTTGCTGGGGGACTCGGC



CCTCTATCTCTGTGCCAGCAGCTTACAGGACTATGGCTACACCTTCGGTTCGG



GGACCAGGTTAACCGTTGTA (SEQ ID NO: 772)





PN42378
DAKTTQPNSMESNEEEPVHLPCNHSTISGTDYIHWYRQLPSQGPEYVIHGLTSNV



NNRMASLAIAEDRKSSTLILHRSTLRDAAVYYCILRPDSWGKFQFGAGTQVVVT



P (SEQ ID NO: 773)






GATGCTAAGACCACACAGCCAAATTCAATGGAGAGTAACGAAGAAGAGCCT



GTTCACTTGCCTTGTAACCACTCCACAATCAGTGGAACTGATTACATACATTG



GTATCGACAGCTTCCCTCCCAGGGTCCAGAGTACGTGATTCATGGTCTTACAA




GCAATGTGAACAACAGAATGGCCTCTCTGGCAATCGCTGAAGACAGAAAGTC




CAGTACCTTGATCCTGCACCGTTCTACCTTGAGAGATGCTGCTGTGTACTACT



GCATCCTGCGGCCTGACAGCTGGGGGAAATTCCAGTTTGGAGCAGGGACCCA



GGTTGTGGTCACCCCA (SEQ ID NO: 774)





PN42378
DAGVTQSPTHLIKTRGQQVTLRCSPKSGHDTVSWYQQALGQGPQFIFQYYEEEE



RQRGNFPDRFSGHQFPNYSSELNVNALLLGDSALYLCASSLQDYGYTFGSGTRL



TVV (SEQ ID NO: 775)






GACGCTGGAGTCACCCAAAGTCCCACACACCTGATCAAAACGAGAGGACAG



CAAGTGACTCTGAGATGCTCTCCTAAGTCTGGGCATGACACTGTGTCCTGGTA



CCAACAGGCCCTGGGTCAGGGGCCCCAGTTTATCTTTCAGTATTATGAGGAG




GAAGAGAGACAGAGAGGCAACTTCCCTGATCGATTCTCAGGTCACCAGTTCC




CTAACTATAGCTCTGAGCTGAATGTGAACGCCTTGTTGCTGGGGGACTCGGC



CCTCTATCTCTGTGCCAGCAGCTTACAGGACTATGGCTACACCTTCGGTTCGG



GGACCAGGTTAACCGTTGTA (SEQ ID NO: 776)





PN42386
TQLLEQSPQFLSIQEGENLTVYCNSSSVFSSLQWYRQEPGEGPVLLVTVVTGGEV



KKLKRLTFQFGDARKDSSLHITAAQPGDTGLYLCATNGGSQGNLIFGKGTKLSV



KP (SEQ ID NO: 777)






ACCCAGCTGCTGGAGCAGAGCCCTCAGTTTCTAAGCATCCAAGAGGGAGAAA



ATCTCACTGTGTACTGCAACTCCTCAAGTGTTTTTTCCAGCTTACAATGGTAC



AGACAGGAGCCTGGGGAAGGTCCTGTCCTCCTGGTGACAGTAGTTACGGGTG




GAGAAGTGAAGAAGCTGAAGAGACTAACCTTTCAGTTTGGTGATGCAAGAA




AGGACAGTTCTCTCCACATCACTGCGGCCCAGCCTGGTGATACAGGCCTCTA



CCTCTGTGCCACTAATGGAGGAAGCCAAGGAAATCTCATCTTTGGAAAAGGC



ACTAAACTCTCTGTTAAACCA (SEQ ID NO: 778)





PN42386
DAGVTQSPTHLIKTRGQQVTLRCSPKSGHDTVSWYQQALGQGPQFIFQYYEEEE



RQRGNFPDRFSGHQFPNYSSELNVNALLLGDSALYLCASSLQDYGYTFGSGTRL



TVV (SEQ ID NO: 779)






GACGCTGGAGTCACCCAAAGTCCCACACACCTGATCAAAACGAGAGGACAG



CAAGTGACTCTGAGATGCTCTCCTAAGTCTGGGCATGACACTGTGTCCTGGTA



CCAACAGGCCCTGGGTCAGGGGCCCCAGTTTATCTTTCAGTATTATGAGGAG




GAAGAGAGACAGAGAGGCAACTTCCCTGATCGATTCTCAGGTCACCAGTTCC




CTAACTATAGCTCTGAGCTGAATGTGAACGCCTTGTTGCTGGGGGACTCGGC



CCTCTATCTCTGTGCCAGCAGCTTACAGGACTATGGCTACACCTTCGGTTCGG



GGACCAGGTTAACCGTTGTA (SEQ ID NO: 780)





PN42441
DAKTTQPNSMESNEEEPVHLPCNHSTISGTDYIHWYRQLPSQGPEYVIHGLTSNV



NNRMASLAIAEDRKSSTLILHRATLRDAAVYYCIRRPGNQFYFGTGTSLTVIP



(SEQ ID NO: 781)






GATGCTAAGACCACACAGCCAAATTCAATGGAGAGTAACGAAGAAGAGCCT



GTTCACTTGCCTTGTAACCACTCCACAATCAGTGGAACTGATTACATACATTG



GTATCGACAGCTTCCCTCCCAGGGTCCAGAGTACGTGATTCATGGTCTTACAA




GCAATGTGAACAACAGAATGGCCTCTCTGGCAATCGCTGAAGACAGAAAGTC




CAGTACCTTGATCCTGCACCGTGCTACCTTGAGAGATGCTGCTGTGTACTACT



GCATCAGGCGGCCCGGTAACCAGTTCTATTTTGGGACAGGGACAAGTTTGAC



GGTCATTCCA (SEQ ID NO: 782)





PN42441
EAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGLRQIYYSMNVE



VTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLYFCASSLWTGSEAFFGQGTR



LTVV (SEQ ID NO: 783)






GAAGCCCAAGTGACCCAGAACCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTATATGTCCTGGTA



TCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTT




GAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAA




GAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCAGACCT



CTCTGTACTTCTGTGCCAGCAGTTTATGGACAGGGTCTGAAGCTTTCTTTGGA



CAAGGCACCAGACTCACAGTTGTA (SEQ ID NO: 784)





PN42442
TQLLEQSPQFLSIQEGENLTVYCNSSSVFSSLQWYRQEPGEGPVLLVTVVTGGEV



KKLKRLTFQFGDARKDSSLHITAAQPGDTGLYLCAGGTSGTYKYIFGTGTRLKV



LA (SEQ ID NO: 785)






ACCCAGCTGCTGGAGCAGAGCCCTCAGTTTCTAAGCATCCAAGAGGGAGAAA



ATCTCACTGTGTACTGCAACTCCTCAAGTGTTTTTTCCAGCTTACAATGGTAC



AGACAGGAGCCTGGGGAAGGTCCTGTCCTCCTGGTGACAGTAGTTACTGGTG




GAGAAGTGAAGAAGCTGAAGAGACTAACCTTTCAGTTTGGTGATGCAAGAA




AGGACAGTTCTCTCCACATCACTGCGGCCCAGCCTGGTGATACAGGCCTCTA



CCTCTGTGCAGGAGGGACCTCAGGAACCTACAAATACATCTTTGGAACAGGC



ACCAGGCTGAAGGTTTTAGCA (SEQ ID NO: 786)





PN42442
EAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGLRQIYYSMNVE



VTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLYFCASSPGTANYGYTFGSGT



RLTVV (SEQ ID NO: 787)






GAAGCCCAAGTGACCCAGAACCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTATATGTCCTGGTA



TCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTT




GAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAA




GAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCAGACCT



CTCTGTACTTCTGTGCCAGCAGTCCAGGGACAGCTAACTATGGCTACACCTTC



GGTTCGGGGACCAGGTTAACCGTTGTA (SEQ ID NO: 788)





PN42450
AQRVTQPEKLLSVFKGAPVELKCNYSYSGSPELFWYVQYSRQRLQLLLRHISRES



IKGFTADLNKGETSFHLKKPFAQEEDSAMYYCALGNTDKLIFGTGTRLQVFP



(SEQ ID NO: 789)






GCCCAGAGAGTGACTCAGCCCGAGAAGCTCCTCTCTGTCTTTAAAGGGGCCC



CAGTGGAGCTGAAGTGCAACTATTCCTATTCTGGGAGTCCTGAACTCTTCTGG



TATGTCCAGTACTCCAGACAACGCCTCCAGTTACTCTTGAGACACATCTCTAG




AGAGAGCATCAAAGGCTTCACTGCTGACCTTAACAAAGGCGAGACATCTTTC




CACCTGAAGAAACCATTTGCTCAAGAGGAAGACTCAGCCATGTATTACTGTG




CTCTAGGGAACACCGACAAGCTCATCTTTGGGACTGGGACCAGATTACAAGT




CTTTCCA (SEQ ID NO: 790)





PN42450
DVKVTQSSRYLVKRTGEKVFLECVQDMDHENMFWYRQDPGLGLRLIYFSYDVK




MKEKGDIPEGYSVSREKKERFSLILESASTNQTSMYLCASSSPRTGWYGYTFGSG




TRLTVV (SEQ ID NO: 791)






GATGTGAAAGTAACCCAGAGCTCGAGATATCTAGTCAAAAGGACGGGAGAG



AAAGTTTTTCTGGAATGTGTCCAGGATATGGACCATGAAAATATGTTCTGGTA



TCGACAAGACCCAGGTCTGGGGCTACGGCTGATCTATTTCTCATATGATGTTA




AAATGAAAGAAAAAGGAGATATTCCTGAGGGGTACAGTGTCTCTAGAGAGA




AGAAGGAGCGCTTCTCCCTGATTCTGGAGTCCGCCAGCACCAACCAGACATC



TATGTACCTCTGTGCCAGCAGTTCGCCCAGGACAGGGTGGTATGGCTACACC



TTCGGTTCGGGGACCAGGTTAACCGTTGTA (SEQ ID NO: 792)





PN42455
DAKTTQPNSMESNEEEPVHLPCNHSTISGTDYIHWYRQLPSQGPEYVIHGLTSNV



NNRMASLAIAEDRKSSTLILHRSTLRDAAVYYCILRPDSWGKFQFGAGTQVVVT



P (SEQ ID NO: 793)






GATGCTAAGACCACACAGCCAAATTCAATGGAGAGTAACGAAGAAGAGCCT



GTTCACTTGCCTTGTAACCACTCCACAATCAGTGGAACTGATTACATACATTG



GTATCGACAGCTTCCCTCCCAGGGTCCAGAGTACGTGATTCATGGTCTTACAA




GCAATGTGAACAACAGAATGGCCTCTCTGGCAATCGCTGAAGACAGAAAGTC




CAGTACCTTGATCCTGCACCGTTCTACCTTGAGAGATGCTGCTGTGTACTACT



GCATCCTGCGGCCTGACAGCTGGGGGAAATTCCAGTTTGGAGCAGGGACCCA



GGTTGTGGTCACCCCA (SEQ ID NO: 794)





PN42455
DAGVTQSPTHLIKTRGQQVTLRCSPKSGHDTVSWYQQALGQGPQFIFQYYEEEE



RQRGNFPDRFSGHQFPNYSSELNVNALLLGDSALYLCASSLVDYGYTFGSGTRL



TVV (SEQ ID NO: 795)






GACGCTGGAGTCACCCAAAGCCCCACACACCTGATCAAAACGAGAGGACAG



CAAGTGACTCTGAGATGCTCTCCTAAGTCTGGGCATGACACTGTGTCCTGGTA



CCAACAGGCCCTGGGTCAGGGGCCCCAGTTTATCTTTCAGTATTATGAGGAG




GAAGAGAGACAGAGAGGCAACTTCCCTGATCGATTCTCAGGTCACCAGTTCC




CTAACTATAGCTCTGAGCTGAATGTGAACGCCTTGTTGCTGGGGGACTCGGC



CCTCTATCTCTGTGCCAGCAGCTTGGTGGATTATGGCTACACCTTCGGTTCGG



GGACCAGGTTAACCGTTGTA (SEQ ID NO: 796)





PN42476
DAKTTQPNSMESNEEEPVHLPCNHSTISGTDYIHWYRQLPSQGPEYVIHGLTSNV



NNRMASLAIAEDRKSSTLILHRSTLRDAAVYYCILRPDSWGKFQFGAGTQVVVT



P (SEQ ID NO: 797)






GATGCTAAGACCACACAGCCAAATTCAATGGAGAGTAACGAAGAAGAGCCT



GTTCACTTGCCTTGTAACCACTCCACAATCAGTGGAACTGATTACATACATTG



GTATCGACAGCTTCCCTCCCAGGGTCCAGAGTACGTGATTCATGGTCTTACAA




GCAATGTGAACAACAGAATGGCCTCTCTGGCAATCGCTGAAGACAGAAAGTC




CAGTACCTTGATCCTGCACCGTTCTACCTTGAGAGATGCTGCTGTGTACTACT



GCATCCTGCGGCCTGACAGCTGGGGGAAATTCCAGTTTGGAGCAGGGACCCA



GGTTGTGGTCACCCCA (SEQ ID NO: 798)





PN42476
EAQVTQSPRYLITVTGKKLTVTCSQNMDHEYMSWYRQDPGLGLRQIYYSMNVE



VTDKGDVPEGYKVPRKEKRSFPLILESPCCSQTPLYLCASSLGGVDERLSFGSGT



QLSVL (SEQ ID NO: 799)






GAAGCCCAAGTGACCCAGAGCCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGGACCATGAGTATATGTCCTGGTA



TCGACAGGACCCGGGGCTGGGCCTAAGGCAGATCTACTATTCAATGAATGTT




GAGGTGACAGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCCCTCGAAAA




GAGAAGAGGAGTTTCCCCCTGATCCTGGAGTCGCCCTGCTGCAGCCAGACCC



CTCTGTACCTCTGTGCCAGCAGTTTAGGGGGCGTGGATGAAAGACTGTCTTTT



GGCAGTGGAACCCAGCTCTCCGTCTTG (SEQ ID NO: 800)





PN42483
TQLLEQSPQFLSIQEGENLTVYCNSSSVFSSLQWYRQEPGEGPVLLVTVVTGGEV



KKLKRLTFQFGDARKDSSLHITAAQPGDTGLYLCAGDGGSQGNLIFGKGTKLSV



KP (SEQ ID NO: 801)






ACCCAGCTGCTGGAGCAGAGCCCTCAGTTTCTAAGCATCCAAGAGGGAGAAA



ATCTCACTGTGTACTGCAACTCCTCAAGTGTTTTTTCCAGCTTACAATGGTAC



AGACAGGAGCCTGGGGAAGGTCCTGTCCTCCTGGTGACAGTAGTTACGGGTG




GAGAAGTGAAGAAGCTGAAGAGACTAACCTTTCAGTTTGGTGATGCAAGAA




AGGACAGTTCTCTCCACATCACTGCGGCCCAGCCTGGTGATACAGGCCTCTA



CCTCTGTGCAGGGGATGGAGGAAGCCAAGGAAATCTCATCTTTGGAAAAGGC



ACTAAACTCTCTGTTAAACCA (SEQ ID NO: 802)





PN42483
EAQVTQSPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGLRQIYYSMNVE




VTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLYFCASSLGGADEKLFFGSGT




QLSVL (SEQ ID NO: 803)






GAAGCCCAAGTGACCCAGAGCCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTATATGTCCTGGTA



TCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTT




GAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAA




GAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCAGACCT



CTCTGTACTTCTGTGCCAGCAGTTTAGGGGGCGCGGATGAAAAACTGTTTTTT



GGCAGTGGAACCCAGCTCTCTGTCTTG (SEQ ID NO: 804)





PN42496
DAKTTQPNSMESNEEEPVHLPCNHSTISGTDYIHWYRQLPSQGPEYVIHGLTSNV



NNRMASLAIAEDRKSSTLILHRATLRDAAVYYCILGQGAQKLVFGQGTRLTINP



(SEQ ID NO: 805)






GATGCTAAGACCACACAGCCAAATTCAATGGAGAGTAACGAAGAAGAGCCT



GTTCACTTGCCTTGTAACCACTCCACAATCAGTGGAACTGATTACATACATTG



GTATCGACAGCTTCCCTCCCAGGGTCCAGAGTACGTGATTCATGGTCTTACAA




GCAATGTGAACAACAGAATGGCCTCTCTGGCAATCGCTGAAGACAGAAAGTC




CAGTACCTTGATCCTGCACCGTGCTACCTTGAGAGATGCTGCTGTGTACTACT



GCATCCTGGGTCAGGGAGCCCAGAAGCTGGTATTTGGCCAAGGAACCAGGCT



GACTATCAACCCA (SEQ ID NO: 806)





PN42496
EAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGLRQIYYSMNVE




VTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLYFCASSLWTGGGYTFGSGTR




LTVV (SEQ ID NO: 807)






GAAGCCCAAGTGACCCAGAACCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTATATGTCCTGGTA



TCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTT




GAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAA




GAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCAGACCT



CTCTGTACTTCTGTGCCAGCAGTTTATGGACAGGGGGCGGCTACACCTTCGGT



TCGGGGACCAGGTTAACCGTTGTA (SEQ ID NO: 808)





PN42498
TQLLEQSPQFLSIQEGENLTVYCNSSSVFSSLQWYRQEPGEGPVLLVTVVTGGEV



KKLKRLTFQFGDARKDSSLHITAAQPGDTGLYLCAGDGGSQGNLIFGKGTKLSV



KP (SEQ ID NO: 809)






ACCCAGCTGCTGGAGCAGAGCCCTCAGTTTCTAAGCATCCAAGAGGGAGAAA



ATCTCACTGTGTACTGCAACTCCTCAAGTGTTTTTTCCAGCTTACAATGGTAC



AGACAGGAGCCTGGGGAAGGTCCTGTCCTCCTGGTGACAGTAGTTACGGGTG




GAGAAGTGAAGAAGCTGAAGAGACTAACCTTTCAGTTTGGTGATGCAAGAA




AGGACAGTTCTCTCCACATCACTGCGGCCCAGCCTGGTGATACAGGCCTCTA



CCTCTGTGCAGGGGATGGAGGAAGCCAAGGAAATCTCATCTTTGGAAAAGGC



ACTAAACTCTCTGTTAAACCA (SEQ ID NO: 810)





PN42498
DAGVTQSPTHLIKTRGQQVTLRCSPKSGHDTVSWYQQALGQGPQFIFQYYEEEE



RQRGNFPDRFSGHQFPNYSSELNVNALLLGDSALYLCASSLVDYGYTFGSGTRL



TVV (SEQ ID NO: 811)






GACGCTGGAGTCACCCAAAGTCCCACACACCTGATCAAAACGAGAGGACAG



CAAGTGACTCTGAGATGCTCTCCTAAGTCTGGGCATGACACTGTGTCCTGGTA



CCAACAGGCCCTGGGTCAGGGGCCCCAGTTTATCTTTCAGTATTATGAGGAG




GAAGAGAGACAGAGAGGCAACTTCCCTGATCGATTCTCAGGTCACCAGTTCC




CTAACTATAGCTCTGAGCTGAATGTGAACGCCTTGTTGCTGGGGGACTCGGC



CCTCTATCTCTGTGCCAGCAGCTTGGTGGATTATGGCTACACCTTCGGTTCGG



GGACCAGGTTAACCGTTGTA (SEQ ID NO: 812)





PN42558
GIQVEQSPPDLILQEGANSTLRCNFSDSVNNLQWFHQNPWGQLINLFYIPSGTKQ



NGRLSATTVATERYSLLYISSSQTTDSGVYFCVLGGGSQGNLIFGKGTKLSVKP



(SEQ ID NO: 813)






GGAATACAAGTGGAGCAGAGTCCTCCAGACCTGATTCTCCAGGAGGGAGCC



AATTCCACGCTGCGGTGCAATTTTTCTGACTCTGTGAACAATTTGCAGTGGTT



TCATCAAAACCCTTGGGGACAGCTCATCAACCTGTTTTACATTCCCTCAGGGA




CAAAACAGAATGGAAGATTAAGCGCCACGACTGTCGCTACGGAACGCTACA




GCTTATTGTACATTTCCTCTTCCCAGACCACAGACTCAGGCGTTTATTTCTGT




GTCCTAGGGGGAGGAAGCCAAGGAAATCTCATCTTTGGAAAAGGCACTAAA




CTCTCTGTTAAACCA (SEQ ID NO: 814)





PN42558
DAGVTQSPTHLIKTRGQQVTLRCSPKSGHDTVSWYQQALGQGPQFIFQYYEEEE



RQRGNFPDRFSGHQFPNYSSELNVNALLLGDSALYLCASSFTDYGYTFGSGTRLT



W (SEQ ID NO: 815)






GACGCTGGAGTCACCCAAAGTCCCACACACCTGATCAAAACGAGAGGACAG



CAAGTGACTCTGAGATGCTCTCCTAAGTCTGGGCATGACACTGTGTCCTGGTA



CCAACAGGCCCTGGGTCAGGGGCCCCAGTTTATCTTTCAGTATTATGAGGAG




GAAGAGAGACAGAGAGGCAACTTCCCTGATCGATTCTCAGGTCACCAGTTCC




CTAACTATAGCTCTGAGCTGAATGTGAACGCCTTGTTGCTGGGGGACTCGGC



CCTCTATCTCTGTGCCAGCAGCTTTACAGACTATGGCTACACCTTCGGTTCGG



GGACCAGGTTAACCGTTGTA (SEQ ID NO: 816)





PN42561
DAKTTQPNSMESNEEEPVHLPCNHSTISGTDYIHWYRQLPSQGPEYVIHGLTSNV



NNRMASLAIAEDRKSSTLILHRATLRDAAVYYCILRDGTGNQFYFGTGTSLTVIP



(SEQ ID NO: 817)






GATGCTAAGACCACACAGCCAAATTCAATGGAGAGTAACGAAGAAGAGCCT



GTTCACTTGCCTTGTAACCACTCCACAATCAGTGGAACTGATTACATACATTG



GTATCGACAGCTTCCCTCCCAGGGTCCAGAGTACGTGATTCATGGTCTTACAA




GCAATGTGAACAACAGAATGGCCTCTCTGGCAATCGCTGAAGACAGAAAGTC




CAGTACCTTGATCCTGCACCGTGCTACCTTGAGAGATGCTGCTGTGTACTACT



GCATCCTGAGAGACGGGACCGGTAACCAGTTCTATTTTGGGACAGGGACAAG



TTTGACGGTCATTCCA (SEQ ID NO: 818)





PN42561
EAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGLRQIYYSMNVE




VTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLYFCASSLWTGGGYTFGSGTR




LTVV(SEQ ID NO: 819)






GAAGCCCAAGTGACCCAGAACCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTATATGTCCTGGTA



TCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTT




GAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAA




GAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCAGACCT



CTCTGTACTTCTGTGCCAGCAGTTTATGGACAGGGGGTGGCTACACCTTCGGT



TCGGGGACCAGGTTAACCGTTGTA (SEQ ID NO: 820)





PN42562
TQLLEQSPQFLSIQEGENLTVYCNSSSVFSSLQWYRQEPGEGPVLLVTVVTGGEV



KKLKRLTFQFGDARKDSSLHITAAQPGDTGLYLCAGGPSGTYKYIFGTGTRLKV



LA (SEQ ID NO: 821)






ACCCAGCTGCTGGAGCAGAGCCCTCAGTTTCTAAGCATCCAAGAGGGAGAAA



ATCTCACTGTGTACTGCAACTCCTCAAGTGTTTTTTCCAGCTTACAATGGTAC



AGACAGGAGCCTGGGGAAGGTCCTGTCCTCCTGGTGACAGTAGTTACGGGTG




GAGAAGTGAAGAAGCTGAAGAGACTAACCTTTCAGTTTGGTGATGCAAGAA




AGGACAGTTCTCTCCACATCACTGCGGCCCAGCCTGGTGATACAGGCCTCTA



CCTCTGTGCAGGAGGACCCTCAGGAACCTACAAATACATCTTTGGAACAGGC



ACCAGGCTGAAGGTTTTAGCA (SEQ ID NO: 822)





PN42562
EAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGLRQIYYSMNVE




VTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLYFCASSPGTPNYGYTFGSGT




RLTVV (SEQ ID NO: 823)






GAAGCCCAAGTGACCCAGAACCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTATATGTCCTGGTA



TCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTT




GAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAA




GAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCAGACCT



CTCTGTACTTCTGTGCCAGCAGTCCCGGGACACCTAACTATGGCTACACCTTC



GGTTCGGGGACCAGGTTAACCGTTGTA (SEQ ID NO: 824)





PN42610
QKEVEQNSGPLSVPEGAIASLNCTYSDRGSQSFFWYRQYSGKSPELIMSIYSNGD



KEDGRFTAQLNKASQYVSLLIRDSQPSDSATYLCAGNYGQNFVFGPGTRLSVLP



(SEQ ID NO: 825)






CAGAAGGAGGTGGAGCAGAATTCTGGACCCCTCAGTGTTCCAGAGGGAGCC



ATTGCCTCTCTCAACTGCACTTACAGTGACCGAGGTTCCCAGTCCTTCTTCTG



GTACAGACAATATTCTGGGAAAAGCCCTGAGTTGATAATGTCCATATACTCC




AATGGTGACAAAGAAGATGGAAGGTTTACAGCACAGCTCAATAAAGCCAGC




CAGTATGTTTCTCTGCTCATCAGAGACTCCCAGCCCAGTGATTCAGCCACCTA



CCTCTGTGCCGGGAACTATGGTCAGAATTTTGTCTTTGGTCCCGGAACCAGAT



TGTCCGTGCTGCCC (SEQ ID NO: 826)





PN42610
AAGVIQSPRHLIKEKRETATLKCYPIPRHDTVYWYQQGPGQDPQFLISFYEKMQS



DKGSIPDRFSAQQFSDYHSELNMSSLELGDSALYFCASSIGLNQPQHFGDGTRLSI



L (SEQ ID NO: 827)






GCTGCTGGAGTCATCCAGTCCCCAAGACATCTGATCAAAGAAAAGAGGGAA



ACAGCCACTCTGAAATGCTATCCTATCCCTAGACACGACACTGTCTACTGGTA



CCAGCAGGGTCCAGGTCAGGACCCCCAGTTCCTCATTTCGTTTTATGAAAAG




ATGCAGAGCGATAAAGGAAGCATCCCTGATCGATTCTCAGCTCAACAGTTCA




GTGACTATCATTCTGAACTGAACATGAGCTCCTTGGAGCTGGGGGACTCAGC



CCTGTACTTCTGTGCCAGCAGCATCGGACTTAATCAGCCCCAGCATTTTGGTG



ATGGGACTCGACTCTCCATCCTA (SEQ ID NO: 828)





PN42654
DAKTTQPNSMESNEEEPVHLPCNHSTISGTDYIHWYRQLPSQGPEYVIHGLTSNV



NNRMASLAIAEDRKSSTLILHRATLRDAAVYYCILRDGIGNQFYFGTGTSLTVIP



(SEQ ID NO: 829)






GATGCTAAGACCACACAGCCAAATTCAATGGAGAGTAACGAAGAAGAGCCT



GTTCACTTGCCTTGTAACCACTCCACAATCAGTGGAACTGATTACATACATTG



GTATCGACAGCTTCCCTCCCAGGGTCCAGAGTACGTGATTCATGGTCTTACAA




GCAATGTGAACAACAGAATGGCCTCTCTGGCAATCGCTGAAGACAGAAAGTC




CAGTACCTTGATCCTGCACCGTGCTACCTTGAGAGATGCTGCTGTGTACTACT



GCATCCTGAGAGACGGCATCGGTAACCAGTTCTATTTTGGGACAGGGACAAG



TTTGACGGTCATTCCA (SEQ ID NO: 830)





PN42654
EAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGLRQIYYSMNVE




VTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLYFCASSLWTGGGYTFGSGTR




LTVV(SEQ ID NO: 831)






GAAGCCCAAGTGACCCAGAACCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTATATGTCCTGGTA



TCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTT




GAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAA




GAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCAGACCT



CTCTGTACTTCTGTGCCAGCAGTTTATGGACAGGGGGAGGCTACACCTTCGGT



TCGGGGACCAGGTTAACCGTTGTA (SEQ ID NO: 832)





PN42655
DAKTTQPNSMESNEEEPVHLPCNHSTISGTDYIHWYRQLPSQGPEYVIHGLTSNV



NNRMASLAIAEDRKSSTLILHRSTLRDAAVYYCILRPDSWGKFQFGAGTQVVVT



P (SEQ ID NO: 833)






GATGCTAAGACCACACAGCCAAATTCAATGGAGAGTAACGAAGAAGAGCCT



GTTCACTTGCCTTGTAACCACTCCACAATCAGTGGAACTGATTACATACATTG



GTATCGACAGCTTCCCTCCCAGGGTCCAGAGTACGTGATTCATGGTCTTACAA




GCAATGTGAACAACAGAATGGCCTCTCTGGCAATCGCTGAAGACAGAAAGTC




CAGTACCTTGATCCTGCACCGTTCTACCTTGAGAGATGCTGCTGTGTACTACT



GCATCCTGCGGCCTGACAGCTGGGGGAAATTCCAGTTTGGAGCAGGGACCCA



GGTTGTGGTCACCCCA (SEQ ID NO: 834)





PN42655
EAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGLRQIYYSMNVE




VTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLYFCASSLWTGGGYTFGSGTR




LTVV (SEQ ID NO: 835)






GAAGCCCAAGTGACCCAGAACCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTATATGTCCTGGTA



TCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTT




GAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAA




GAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCAGACCT



CTCTGTACTTCTGTGCCAGCAGTTTATGGACAGGGGGAGGCTACACCTTCGGT



TCGGGGACCAGGTTAACCGTTGTA (SEQ ID NO: 836)





PN42677
DAKTTQPNSMESNEEEPVHLPCNHSTISGTDYIHWYRQLPSQGPEYVIHGLTSNV



NNRMASLAIAEDRKSSTLILHRATLRDAAVYYCILRDGTGNQFYFGTGTSLTVIP



(SEQ ID NO: 837)






GATGCTAAGACCACACAGCCAAATTCAATGGAGAGTAACGAAGAAGAGCCT



GTTCACTTGCCTTGTAACCACTCCACAATCAGTGGAACTGATTACATACATTG



GTATCGACAGCTTCCCTCCCAGGGTCCAGAGTACGTGATTCATGGTCTTACAA




GCAATGTGAACAACAGAATGGCCTCTCTGGCAATCGCTGAAGACAGAAAGTC




CAGTACCTTGATCCTGCACCGTGCTACCTTGAGAGATGCTGCTGTGTACTACT



GCATCCTGAGAGACGGCACCGGTAACCAGTTCTATTTTGGGACAGGGACAAG



TTTGACGGTCATTCCA (SEQ ID NO: 838)





PN42677
EAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGLRQIYYSMNVE




VTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLYFCASSSTGYYGYTFGSGTR




LTVV (SEQ ID NO: 839)






GAAGCCCAAGTGACCCAGAACCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTATATGTCCTGGTA



TCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTT




GAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAA




GAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCAGACCT



CTCTGTACTTCTGTGCCAGCAGTTCGACAGGGTACTATGGCTACACCTTCGGT



TCGGGGACCAGGTTAACCGTTGTA (SEQ ID NO: 840)





PN42683
DAKTTQPNSMESNEEEPVHLPCNHSTISGTDYIHWYRQLPSQGPEYVIHGLTSNV



NNRMASLAIAEDRKSSTLILHRATLRDAAVYYCILRDREYGNKLVFGAGTILRVK



S (SEQ ID NO: 841)






GATGCTAAGACCACACAGCCAAATTCAATGGAGAGTAACGAAGAAGAGCCT



GTTCACTTGCCTTGTAACCACTCCACAATCAGTGGAACTGATTACATACATTG



GTATCGACAGCTTCCCTCCCAGGGTCCAGAGTACGTGATTCATGGTCTTACAA




GCAATGTGAACAACAGAATGGCCTCTCTGGCAATCGCTGAAGACAGAAAGTC




CAGTACCTTGATCCTGCACCGTGCTACCTTGAGAGATGCTGCTGTGTACTACT



GCATCCTGAGAGACCGGGAATATGGAAACAAACTGGTCTTTGGCGCAGGAA



CCATTCTGAGAGTCAAGTCC (SEQ ID NO: 842)





PN42683
EAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGLRQIYYSMNVE




VTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLYFCASSLWTGGGYTFGSGTR




LTVV (SEQ ID NO: 843)






GAAGCCCAAGTGACCCAGAACCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTATATGTCCTGGTA



TCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTT




GAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAA




GAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCAGACCT



CTCTGTACTTCTGTGCCAGCAGTTTATGGACAGGGGGCGGCTACACCTTCGGT



TCGGGGACCAGGTTAACCGTTGTA (SEQ ID NO: 844)





PN42689
TQLLEQSPQFLSIQEGENLTVYCNSSSVFSSLQWYRQEPGEGPVLLVTVVTGGEV



KKLKRLTFQFGDARKDSSLHITAAQPGDTGLYLCAEDGGSQGNLIFGKGTKLSV



KP (SEQ ID NO: 845)






ACCCAGCTGCTGGAGCAGAGCCCTCAGTTTCTAAGCATCCAAGAGGGAGAAA



ATCTCACTGTGTACTGCAACTCCTCAAGTGTTTTTTCCAGCTTACAATGGTAC



AGACAGGAGCCTGGGGAAGGTCCTGTCCTCCTGGTGACAGTAGTTACGGGTG




GAGAAGTGAAGAAGCTGAAGAGACTAACCTTTCAGTTTGGTGATGCAAGAA




AGGACAGTTCTCTCCACATCACTGCGGCCCAGCCTGGTGATACAGGCCTCTA



CCTCTGTGCAGAAGATGGAGGAAGCCAAGGAAATCTCATCTTTGGAAAAGGC



ACTAAACTCTCTGTTAAACCA (SEQ ID NO: 846)





PN42689
DAGVTQSPTHLIKTRGQQVTLRCSPKSGHDTVSWYQQALGQGPQFIFQYYEEEE



RQRGNFPDRFSGHQFPNYSSELNVNALLLGDSALYLCASSLSDYGYTFGSGTRLT



VV (SEQ ID NO: 847)






GACGCTGGAGTCACCCAAAGTCCCACACACCTGATCAAAACGAGAGGACAG



CAAGTGACTCTGAGATGCTCTCCTAAGTCTGGGCATGACACTGTGTCCTGGTA



CCAACAGGCCCTGGGTCAGGGGCCCCAGTTTATCTTTCAGTATTATGAGGAG




GAAGAGAGACAGAGAGGCAACTTCCCTGATCGATTCTCAGGTCACCAGTTCC




CTAACTATAGCTCTGAGCTGAATGTGAACGCCTTGTTGCTGGGGGACTCGGC



CCTCTATCTCTGTGCCAGCAGCTTATCAGACTATGGCTACACCTTCGGTTCGG



GGACCAGGTTAACCGTTGTA (SEQ ID NO: 848)





PN42706
GIQVEQSPPDLILQEGANSTLRCNFSDSVNNLQWFHQNPWGQLINLFYIPSGTKQ



NGRLSATTVATERYSLLYISSSQTTDSGVYFCAVEASGTYKYIFGTGTRLKVLA



(SEQ ID NO: 849)






GGAATACAAGTGGAGCAGAGTCCTCCAGACCTGATTCTCCAGGAGGGAGCC



AATTCCACGCTGCGGTGCAATTTTTCTGACTCTGTGAACAATTTGCAGTGGTT



TCATCAAAACCCTTGGGGACAGCTCATCAACCTGTTTTACATTCCCTCAGGGA




CAAAACAGAATGGAAGATTAAGCGCCACGACTGTCGCTACGGAACGCTACA




GCTTATTGTACATTTCCTCTTCCCAGACCACAGACTCAGGCGTTTATTTCTGT




GCTGTGGAGGCCTCAGGAACCTACAAATACATCTTTGGAACAGGCACCAGGC




TGAAGGTTTTAGCA (SEQ ID NO: 850)





PN42706
EAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGLRQIYYSMNVE




VTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLYFCASSWGTGGYGYTFGSGT




RLTVV (SEQ ID NO: 851)






GAAGCCCAAGTGACCCAGAACCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTATATGTCCTGGTA



TCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTT




GAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAA




GAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCAGACCT



CTCTGTACTTCTGTGCCAGCAGTTGGGGGACAGGGGGCTATGGCTACACCTT



CGGTTCGGGGACCAGGTTAACCGTTGTA (SEQ ID NO: 852)





PN42707
GESVGLHLPTLSVQEGDNSIINCAYSNSASDYFIWYKQESGKGPQFIIDIRSNMDK



RQGQRVTVLLNKTVKHLSLQIAATQPGDSAVYFCAENKRDNYGQNFVFGPGTR



LSVLP (SEQ ID NO: 853)






GGAGAGAGTGTGGGGCTGCATCTTCCTACCCTGAGTGTCCAGGAGGGTGACA



ACTCTATTATCAACTGTGCTTATTCAAACAGCGCCTCAGACTACTTCATTTGG



TACAAGCAAGAATCTGGAAAAGGTCCTCAATTCATTATAGACATTCGTTCAA




ATATGGACAAAAGGCAAGGCCAAAGAGTCACCGTTTTATTGAATAAGACAGT




GAAACATCTCTCTCTGCAAATTGCAGCTACTCAACCTGGAGACTCAGCTGTCT



ACTTTTGTGCAGAGAATAAGCGGGATAACTATGGTCAGAATTTTGTCTTTGGT



CCCGGAACCAGATTGTCCGTGCTGCCC (SEQ ID NO: 854)





PN42707
EAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGLRQIYYSMNVE




VTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLYFCASSFWVNTEAFFGQGTR




LTVV (SEQ ID NO: 855)






GAAGCCCAAGTGACCCAGAACCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTATATGTCCTGGTA



TCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTT




GAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAA




GAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCAGACCT



CTCTGTACTTCTGTGCCAGCAGTTTCTGGGTGAACACTGAAGCTTTCTTTGGA



CAAGGCACCAGACTCACAGTTGTA (SEQ ID NO: 856)





PN42711
GIQVEQSPPDLILQEGVNSTLRCNFSDSVNNLQWFHQNPWGQLINLFYIPSGTKQ



NGRLSATTVATERYSLLYISSSRTTDSGVYFCAVGSSNGYKLSFGAGTTVTVRA



(SEQ ID NO: 857)






GGAATACAAGTGGAGCAGAGTCCTCCAGACCTGATTCTCCAGGAGGGAGTCA



ATTCCACGCTGCGGTGCAATTTTTCTGACTCTGTGAACAATTTGCAGTGGTTT



CATCAAAACCCTTGGGGACAGCTCATCAACCTGTTTTACATTCCCTCAGGGAC




AAAACAGAATGGAAGATTAAGCGCCACGACTGTGGCTACGGAACGCTACAG




CTTATTGTACATTTCCTCTTCCCGGACCACAGACTCAGGCGTTTATTTCTGTGC




TGTGGGGAGTTCTAACGGCTACAAGCTCAGCTTTGGAGCTGGAACCACAGTA




ACTGTAAGAGCA (SEQ ID NO: 858)





PN42711
EAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGLRQIYYSMNVE




VTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLYFCASSPGTGGFSPLHFGNGT




RLTVT (SEQ ID NO: 859)






GAAGCCCAAGTGACCCAGAACCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTATATGTCCTGGTA



TCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTT




GAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAA




GAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCAGACCT



CTCTGTACTTCTGTGCCAGCAGTCCCGGGACAGGGGGATTTTCACCCCTCCAC



TTTGGGAACGGGACCAGGCTCACTGTGACA (SEQ ID NO: 860)





PN42712
GIQVEQSPPDLILQEGANSTLRCNFSDSVNNLQWFHQNPWGQLINLFYIPSGTKQ



NGRLSATTVATERYSLLYISSSQTTDSGVYFCAVGSSNDYKLSFGAGTTVTVRA



(SEQ ID NO: 861)






GGAATACAAGTGGAGCAGAGTCCTCCAGACCTGATTCTCCAGGAGGGAGCC



AATTCCACGCTGCGGTGCAATTTTTCTGACTCTGTGAACAATTTGCAGTGGTT



TCATCAAAACCCTTGGGGACAGCTCATCAACCTGTTTTACATTCCCTCAGGGA




CAAAACAGAATGGAAGATTAAGCGCCACGACTGTCGCTACGGAACGCTACA




GCTTATTGTACATTTCCTCTTCCCAGACCACAGACTCAGGCGTTTATTTCTGT




GCTGTGGGGAGTTCTAACGACTACAAGCTCAGCTTTGGAGCCGGAACCACAG




TAACTGTAAGAGCA (SEQ ID NO: 862)





PN42712
EAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGLRQIYYSMNVE




VTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLYFCASSPGTGGFSPLHFGNGT




RLTVT (SEQ ID NO: 863)






GAAGCCCAAGTGACCCAGAACCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTATATGTCCTGGTA



TCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTT




GAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAA




GAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCAGACCT



CTCTGTACTTCTGTGCCAGCAGTCCCGGGACAGGGGGATTTTCACCCCTCCAC



TTTGGGAACGGGACCAGGCTCACTGTGACA (SEQ ID NO: 864)





PN42746
GESVGLHLPTLSVQEGDNSIINCAYSNSASDYFIWYKQESGKGPQFIIDIRSNMDK



RQGQRVTVLLNKTVKHLSLQIAATQPGDSAVYFCAENRQDNYGQNFVFGPGTR



LSVLP (SEQ ID NO: 865)






GGAGAGAGTGTGGGGCTGCATCTTCCTACCCTGAGTGTCCAGGAGGGTGACA



ACTCTATTATCAACTGTGCTTATTCAAACAGCGCCTCAGACTACTTCATTTGG



TACAAGCAAGAATCTGGAAAAGGTCCTCAATTCATTATAGACATTCGTTCAA




ATATGGACAAAAGGCAAGGCCAAAGAGTCACCGTTTTATTGAATAAGACAGT




GAAACATCTCTCTCTGCAAATTGCAGCTACTCAACCTGGAGACTCAGCTGTCT



ACTTTTGTGCAGAGAATAGGCAGGATAACTATGGTCAGAATTTTGTCTTTGGT



CCCGGAACCAGATTGTCCGTGCTGCCC (SEQ ID NO: 866)





PN42746
EAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGLRQIYYSMNVE




VTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLYFCASSLWVNTEAFFGQGTR




LTVV (SEQ ID NO: 867)






GAAGCCCAAGTGACCCAGAACCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTATATGTCCTGGTA



TCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTT




GAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAA




GAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCAGACCT



CTCTGTACTTCTGTGCCAGCAGTTTATGGGTTAACACTGAAGCTTTCTTTGGA



CAAGGCACCAGACTCACAGTTGTA (SEQ ID NO: 868)





PN42750
DAKTTQPNSMESNEEEPVHLPCNHSTISGTDYIHWYRQLPSQGPEYVIHGLTSN



NNRMASLAIAEDRKSSTLILHRSTLRDAAVYYCILRPDSWGKFQFGAGTQVVVT



P (SEQ ID NO: 869)






GATGCTAAGACCACACAGCCAAATTCAATGGAGAGTAACGAAGAAGAGCCT



GTTCACTTGCCTTGTAACCACTCCACAATCAGTGGAACTGATTACATACATTG



GTATCGACAGCTTCCCTCCCAGGGTCCAGAGTACGTGATTCATGGTCTTACAA




GCAATGTGAACAACAGAATGGCCTCTCTGGCAATCGCTGAAGACAGAAAGTC




CAGTACCTTGATCCTGCACCGTTCTACCTTGAGAGATGCTGCTGTGTACTACT



GCATCCTGCGGCCTGACAGCTGGGGGAAGTTCCAGTTTGGAGCAGGGACCCA



GGTTGTGGTCACCCCA (SEQ ID NO: 870)





PN42750
DVKVTQSSRYLVKRTGEKVFLECVQDMDHENMFWYRQDPGLGLRLIYFSYDVK




MKEKGDIPEGYSVSREKKERFSLILESASTNQTSMYLCASSTVRQGNYGYTFGSG




TRLTVV (SEQ ID NO: 871)






GATGTGAAAGTAACCCAGAGCTCGAGATATCTAGTCAAAAGGACGGGAGAG



AAAGTTTTTCTGGAATGTGTCCAGGATATGGACCATGAAAATATGTTCTGGTA



TCGACAAGACCCAGGTCTGGGGCTACGGCTGATCTATTTCTCATATGATGTTA




AAATGAAAGAAAAAGGAGATATTCCTGAGGGGTACAGTGTCTCTAGAGAGA




AGAAGGAGCGCTTCTCCCTGATTCTGGAGTCCGCCAGCACCAACCAGACATC



TATGTACCTCTGTGCCAGCAGTACCGTGAGGCAGGGGAACTATGGCTACACC



TTCGGTTCGGGGACCAGGTTAACCGTTGTA (SEQ ID NO: 872)





PN42762
DAKTTQPNSMESNEEEPVHLPCNHSTISGTDYIHWYRQLPSQGPEYVIHGLTSN



NNRMASLAIAEDRKSSTLILHRATLRDAAVYYCILNTGTASKLTFGTGTRLQVTL



(SEQ ID NO: 873)






GATGCTAAGACCACACAGCCAAATTCAATGGAGAGTAACGAAGAAGAGCCT



GTTCACTTGCCTTGTAACCACTCCACAATCAGTGGAACTGATTACATACATTG



GTATCGACAGCTTCCCTCCCAGGGTCCAGAGTACGTGATTCATGGTCTTACAA




GCAATGTGAACAACAGAATGGCCTCTCTGGCAATCGCTGAAGACAGAAAGTC




CAGTACCTTGATCCTGCACCGTGCTACCTTGAGAGATGCTGCTGTGTACTACT



GCATCCTGAATACCGGCACTGCCAGTAAACTCACCTTTGGGACTGGAACAAG



ACTTCAGGTCACGCTC (SEQ ID NO: 874)





PN42762
EAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGLRQIYYSMNVE




VTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLYFCASSLSSNTEAFFGQGTRL




TVV (SEQ ID NO: 875)






GAAGCCCAAGTGACCCAGAACCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTATATGTCCTGGTA



TCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTT




GAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAA




GAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCAGACCT



CTCTGTACTTCTGTGCCAGCAGTTTATCGTCGAACACTGAAGCTTTCTTTGGA



CAAGGCACCAGACTCACAGTTGTA (SEQ ID NO: 876)





PN42774
QKEVEQNSGPLSVPEGAIASLNCTYSDRGSQSFFWYRQYSGKSPELIMSIYSNGD



KEDGRFTAQLNKASQYVSLLIRDSQPSDSATYLCAVNRGTDKLIFGTGTRLQVFP



(SEQ ID NO: 877)






CAGAAGGAGGTGGAGCAGAATTCTGGACCCCTCAGTGTTCCAGAGGGAGCC



ATTGCCTCTCTCAACTGCACTTACAGTGACCGAGGTTCCCAGTCCTTCTTCTG



GTACAGACAATATTCTGGGAAAAGCCCTGAGTTGATAATGTCCATATACTCC




AATGGTGACAAAGAAGATGGAAGGTTTACAGCACAGCTCAATAAAGCCAGC




CAGTATGTTTCTCTGCTCATCAGAGACTCCCAGCCCAGTGATTCAGCCACCTA



CCTCTGTGCCGTGAACAGAGGCACCGACAAGCTCATCTTTGGGACTGGGACC



AGATTACAAGTCTTTCCA (SEQ ID NO: 878)





PN42774
DAGVTQSPTHLIKTRGQQVTLRCSPKSGHDTVSWYQQALGQGPQFIFQYYEEEE



RQRGNFPDRFSGHQFPNYSSELNVNALLLGDSALYLCASSWTDYGYTFGSGTRL



TVV (SEQ ID NO: 879)






GACGCTGGAGTCACCCAAAGTCCCACACACCTGATCAAAACGAGAGGACAG



CAAGTGACTCTGAGATGCTCTCCTAAGTCTGGGCATGACACTGTGTCCTGGTA



CCAACAGGCCCTGGGTCAGGGGCCCCAGTTTATCTTTCAGTATTATGAGGAG




GAAGAGAGACAGAGAGGCAACTTCCCTGATCGATTCTCAGGTCACCAGTTCC




CTAACTATAGCTCTGAGCTGAATGTGAACGCCTTGTTGCTGGGGGACTCGGC



CCTCTATCTCTGTGCCAGCAGCTGGACAGACTATGGCTACACCTTCGGTTCGG



GGACCAGGTTAACCGTTGTA (SEQ ID NO: 880)





PN42776
DAKTTQPNSMESNEEEPVHLPCNHSTISGTDYIHWYRQLPSQGPEYVIHGLTSNV



NNRMASLAIAEDRKSSTLILHRSTLRDAAVYYCILRPDSWGKFQFGAGTQVVVT



P (SEQ ID NO: 881)






GATGCTAAGACCACACAGCCAAATTCAATGGAGAGTAACGAAGAAGAGCCT



GTTCACTTGCCTTGTAACCACTCCACAATCAGTGGAACTGATTACATACATTG



GTATCGACAGCTTCCCTCCCAGGGTCCAGAGTACGTGATTCATGGTCTTACAA




GCAATGTGAACAACAGAATGGCCTCTCTGGCAATCGCTGAAGACAGAAAGTC




CAGTACCTTGATCCTGCACCGTTCTACCTTGAGAGATGCTGCTGTGTACTACT



GCATCCTGCGGCCTGACAGCTGGGGGAAATTCCAGTTTGGAGCAGGGACCCA



GGTTGTGGTCACCCCA (SEQ ID NO: 882)





PN42776
DAGVTQSPTHLIKTRGQQVTLRCSPKSGHDTVSWYQQALGQGPQFIFQYYEEEE



RQRGNFPDRFSGHQFPNYSSELNVNALLLGDSALYLCASSWTDYGYTFGSGTRL



TVV (SEQ ID NO: 883)






GACGCTGGAGTCACCCAAAGTCCCACACACCTGATCAAAACGAGAGGACAG



CAAGTGACTCTGAGATGCTCTCCTAAGTCTGGGCATGACACTGTGTCCTGGTA



CCAACAGGCCCTGGGTCAGGGGCCCCAGTTTATCTTTCAGTATTATGAGGAG




GAAGAGAGACAGAGAGGCAACTTCCCTGATCGATTCTCAGGTCACCAGTTCC




CTAACTATAGCTCTGAGCTGAATGTGAACGCCTTGTTGCTGGGGGACTCGGC



CCTCTATCTCTGTGCCAGCAGCTGGACAGACTATGGCTACACCTTCGGTTCGG



GGACCAGGTTAACCGTTGTA (SEQ ID NO: 884)





PN42780
TQLLEQSPQFLSIQEGENLTVYCNSSSVFSSLQWYRQEPGEGPVLLVTVVTGGEV



KKLKRLTFQFGDARKDSSLHITAAQPGDTGLYLCAGGTSGTYKYIFGTGTRLKV



LA (SEQ ID NO: 885)






ACCCAGCTGCTGGAGCAGAGCCCTCAGTTTCTAAGCATCCAAGAGGGAGAAA



ATCTCACTGTGTACTGCAACTCCTCAAGTGTTTTTTCCAGCTTACAATGGTAC



AGACAGGAGCCTGGGGAAGGTCCTGTCCTCCTGGTGACAGTAGTTACGGGTG




GAGAAGTGAAGAAGCTGAAGAGACTAACCTTTCAGTTTGGTGATGCAAGAA




AGGACAGTTCTCTCCACATCACTGCGGCCCAGCCTGGTGATACAGGCCTCTA



CCTCTGTGCAGGAGGAACCTCAGGAACCTACAAATACATCTTTGGAACAGGC



ACCAGGCTGAAGGTTTTAGCA (SEQ ID NO: 886)





PN42780
EAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGLRQIYYSMNVE




VTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLYFCASSPGTPNYGYTFGSGT




RLTVV (SEQ ID NO: 887)






GAAGCCCAAGTGACCCAGAACCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTATATGTCCTGGTA



TCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTT



GAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAA




GAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCAGACCT




CTCTGTACTTCTGTGCCAGCAGTCCCGGGACACCCAACTATGGCTACACCTTC



GGTTCGGGGACCAGGTTAACCGTTGTA (SEQ ID NO: 888)





PN42795
RKEVEQDPGPFNVPEGATVAFNCTYSNSASQSFFWYRQDCRKEPKLLMSVYSSG




NEDGRFTAQLNRASQYISLLIRDSKLSDSATYLCVVNGGSQGNLIFGKGTKLSVK




P (SEQ ID NO: 889)






CGGAAGGAGGTGGAGCAGGATCCTGGACCCTTCAATGTTCCAGAGGGAGCC



ACTGTCGCTTTCAACTGTACTTACAGCAACAGTGCTTCTCAGTCTTTCTTCTG



GTACAGACAGGATTGCAGGAAAGAACCTAAGTTGCTGATGTCCGTATACTCC




AGTGGTAATGAAGATGGAAGGTTTACAGCACAGCTCAATAGAGCCAGCCAG




TATATTTCCCTGCTCATCAGAGACTCCAAGCTCAGTGATTCAGCCACCTACCT



CTGTGTGGTGAATGGAGGAAGCCAAGGAAATCTCATCTTTGGAAAAGGCACT



AAACTCTCTGTTAAACCA (SEQ ID NO: 890)





PN42795
DAGVTQSPTHLIKTRGQQVTLRCSPKSGHDTVSWYQQALGQGPQFIFQYYEEEE



RQRGNFPDRFSGHQFPNYSSELNVNALLLGDSALYLCASSVGDYGYTFGSGTRL



TVV (SEQ ID NO: 891)






GACGCTGGAGTCACCCAAAGTCCCACACACCTGATCAAAACGAGAGGACAG



CAAGTGACTCTGAGATGCTCTCCTAAGTCTGGGCATGACACTGTGTCCTGGTA



CCAACAGGCCCTGGGTCAGGGGCCCCAGTTTATCTTTCAGTATTATGAGGAG




GAAGAGAGACAGAGAGGCAACTTCCCTGATCGATTCTCAGGTCACCAGTTCC




CTAACTATAGCTCTGAGCTGAATGTGAACGCCTTGTTGCTGGGGGACTCGGC



CCTCTATCTCTGTGCCAGCAGCGTAGGGGACTATGGCTACACCTTCGGTTCGG



GGACCAGGTTAACCGTTGTA (SEQ ID NO: 892)





PN42815
GESVGLHLPTLSVQEGDNSIINCAYSNSASDYFIWYKQESGKGPQFIIDIRSNMDK



RQGQRVTVLLNKTVKHLSLQIAATQPGDSAVYFCAENNYGQNFVFGPGTRLSVL



P (SEQ ID NO: 893)






GGAGAGAGTGTGGGGCTGCATCTTCCTACCCTGAGTGTCCAGGAGGGTGACA



ACTCTATTATCAACTGTGCTTATTCAAACAGCGCCTCAGACTACTTCATTTGG



TACAAGCAAGAATCTGGAAAAGGTCCTCAATTCATTATAGACATTCGTTCAA




ATATGGACAAAAGGCAAGGCCAAAGAGTCACCGTTTTATTGAATAAGACAGT




GAAACATCTCTCTCTGCAAATTGCAGCTACTCAACCTGGAGACTCAGCTGTCT



ACTTTTGTGCAGAGAACAACTATGGTCAGAATTTTGTCTTTGGTCCCGGAACC



AGATTGTCCGTGCTGCCC (SEQ ID NO: 894)





PN42815
EAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGLRQIYYSMNVE




VTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLYFCASSLWDSSPLHFGNGTR




LTVT (SEQ ID NO: 895)






GAAGCCCAAGTGACCCAGAACCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTATATGTCCTGGTA



TCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTT




GAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAA




GAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCAGACCT



CTCTGTACTTCTGTGCCAGCAGTTTATGGGACAGTTCACCCCTCCACTTTGGG



AACGGGACCAGGCTCACTGTGACA (SEQ ID NO: 896)





PN42826
DQQVKQNSPSLSVQEGRISILNCDYTNSMFDYFLWYKKYPAEGPTFLISISSIKDK



NEDGRFTVFLNKSAKHLSLHIVPSQPGDSAVYFCAASAGSARQLTFGSGTQLTVL



P (SEQ ID NO: 897)






GACCAGCAAGTTAAGCAAAATTCACCATCCCTGAGCGTCCAGGAAGGAAGA



ATTTCTATTCTGAACTGTGACTATACTAACAGCATGTTTGATTATTTCCTATGG



TACAAAAAATACCCTGCTGAAGGTCCTACATTCCTGATATCTATAAGTTCCAT




TAAGGATAAAAATGAAGATGGAAGATTCACTGTTTTCTTAAACAAAAGTGCC




AAGCACCTCTCTCTGCACATTGTGCCCTCCCAGCCTGGAGACTCTGCAGTGTA



CTTCTGTGCAGCAAGCGCCGGTTCTGCAAGGCAACTGACCTTTGGATCTGGG



ACACAATTGACTGTTTTACCT (SEQ ID NO: 898)





PN42826
EAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGLRQIYYSMNVE




VTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLYFCASSLYTHTEAFFGQGTR




LTVV (SEQ ID NO: 899)






GAAGCCCAAGTGACCCAGAACCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTATATGTCCTGGTA



TCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTT




GAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAA




GAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCAGACCT



CTCTGTACTTCTGTGCCAGCAGTTTATACACCCACACTGAAGCTTTCTTTGGA



CAAGGCACCAGACTCACAGTTGTA (SEQ ID NO: 900)





PN42833
DAKTTQPPSMDCAEGRAANLPCNHSTISGNEYVYWYRQIHSQGPQYIIHGLKNN



ETNEMASLIITEDRKSSTLILPHATLRDTAVYYCIVRDTTSGTYKYIFGTGTRLKV



LA (SEQ ID NO: 901)






GATGCTAAGACCACCCAGCCCCCCTCCATGGATTGCGCTGAAGGAAGAGCTG



CAAACCTGCCTTGTAATCACTCTACCATCAGTGGAAATGAGTATGTGTATTGG



TATCGACAGATTCACTCCCAGGGGCCACAGTATATCATTCATGGTCTAAAAA




ACAATGAAACCAATGAAATGGCCTCTCTGATCATCACAGAAGACAGAAAGTC




CAGCACCTTGATCCTGCCCCACGCTACGCTGAGAGACACTGCTGTGTACTATT



GCATCGTCAGAGACACTACCTCAGGAACCTACAAATACATCTTTGGAACAGG



CACCAGGCTGAAGGTTTTAGCA (SEQ ID NO: 902)





PN42833
EAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGLRQIYYSMNVE




VTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLYFCASSLSSTGFSPLHFGNGT




RLTVT (SEQ ID NO: 903)






GAAGCCCAAGTGACCCAGAACCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTATATGTCCTGGTA



TCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTT




GAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAA




GAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCAGACCT



CTCTGTACTTCTGTGCCAGCAGTTTATCCTCGACAGGTTTTTCACCCCTCCACT



TTGGGAACGGGACCAGGCTCACTGTGACA (SEQ ID NO: 904)





PN42840
TQLLEQSPQFLSIQEGENLTVYCNSSSVFSSLQWYRQEPGEGPVLLVTVVTGGEV



KKLKRLTFQFGDARKDSSLHITAAQPGDTGLYLCAEGGGSQGNLIFGKGTKLSV



KP (SEQ ID NO: 905)






ACCCAGCTGCTGGAGCAGAGCCCTCAGTTTCTAAGCATCCAAGAGGGAGAAA



ATCTCACTGTGTACTGCAACTCCTCAAGTGTTTTTTCCAGCTTACAATGGTAC



AGACAGGAGCCTGGGGAAGGTCCTGTCCTCCTGGTGACAGTAGTTACGGGTG




GAGAAGTGAAGAAGCTGAAGAGACTAACCTTTCAGTTTGGTGATGCAAGAA




AGGACAGTTCTCTCCACATCACTGCGGCCCAGCCTGGTGATACAGGCCTCTA



CCTCTGTGCAGAGGGGGGAGGAAGCCAAGGAAATCTCATCTTTGGAAAAGG



CACTAAACTCTCTGTTAAACCA (SEQ ID NO: 906)





PN42840
DAGVTQSPTHLIKTRGQQVTLRCSPKSGHDTVSWYQQALGQGPQFIFQYYEEEE



RQRGNFPDRFSGHQFPNYSSELNVNALLLGDSALYLCASSWTDYGYTFGSGTRL



TVV (SEQ ID NO: 907)






GACGCTGGAGTCACCCAAAGTCCCACACACCTGATCAAAACGAGAGGACAG



CAAGTGACTCTGAGATGCTCTCCTAAGTCTGGGCATGACACTGTGTCCTGGTA



CCAACAGGCCCTGGGTCAGGGGCCCCAGTTTATCTTTCAGTATTATGAGGAG



GAAGAGAGACAGAGAGGCAACTTCCCTGATCGATTCTCAGGTCACCAGTTCC



CTAACTATAGCTCTGAGCTGAATGTGAACGCCTTGTTGCTGGGGGACTCGGC



CCTCTATCTCTGTGCCAGCAGCTGGACAGACTATGGCTACACCTTCGGTTCGG



GGACCAGGTTAACCGTTGTA (SEQ ID NO: 908)





PN42845
TQLLEQSPQFLSIQEGENLTVYCNSSSVFSSLQWYRQEPGEGPVLLVTVVTGGEV



KKLKRLTFQFGDARKDSSLHITAAQPGDTGLYLCAGIRSNDYKLSFGAGTTVTV



RA (SEQ ID NO: 909)






ACCCAGCTGCTGGAGCAGAGCCCTCAGTTTCTAAGCATCCAAGAGGGAGAAA



ATCTCACTGTGTACTGCAACTCCTCAAGTGTTTTTTCCAGCTTACAATGGTAC



AGACAGGAGCCTGGGGAAGGTCCTGTCCTCCTGGTGACAGTAGTTACGGGTG




GAGAAGTGAAGAAGCTGAAGAGACTAACCTTTCAGTTTGGTGATGCAAGAA




AGGACAGTTCTCTCCACATCACTGCGGCCCAGCCTGGTGATACAGGCCTCTA



CCTCTGTGCAGGGATACGTTCTAACGACTACAAGCTCAGCTTTGGAGCCGGA



ACCACAGTAACTGTAAGAGCA (SEQ ID NO: 910)





PN42845
EAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGLRQIYYSMNVE




VTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLYFCASSSWTAHTEAFFGQGT




RLTVV (SEQ ID NO: 911)






GAAGCCCAAGTGACCCAGAACCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTATATGTCCTGGTA



TCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTT




GAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAA




GAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCAGACCT



CTCTGTACTTCTGTGCCAGCAGTTCCTGGACAGCCCACACTGAAGCTTTCTTT



GGACAAGGCACCAGACTCACAGTTGTA (SEQ ID NO: 912)





PN42870
TQLLEQSPQFLSIQEGENLTVYCNSSSVFSSLQWYRQEPGEGPVLLVTVVTGGEV



KKLKRLTFQFGDARKDSSLHITAAQPGDTGLYLCAENSGGGADGLTFGKGTHLII



QP (SEQ ID NO: 913)






ACCCAGCTGCTGGAGCAGAGCCCTCAGTTTCTAAGCATCCAAGAGGGAGAAA



ATCTCACTGTGTACTGCAACTCCTCAAGTGTTTTTTCCAGCTTACAATGGTAC



AGACAGGAGCCTGGGGAAGGTCCTGTCCTCCTGGTGACAGTAGTTACGGGTG




GAGAAGTGAAGAAGCTGAAGAGACTAACCTTTCAGTTTGGTGATGCAAGAA




AGGACAGTTCTCTCCACATCACTGCGGCCCAGCCTGGTGATACAGGCCTCTA



CCTCTGTGCAGAAAATTCAGGAGGAGGTGCTGACGGACTCACCTTTGGCAAA



GGGACTCATCTAATCATCCAGCCC (SEQ ID NO: 914)





PN42870
DAGVTQSPTHLIKTRGQQVTLRCSPKSGHDTVSWYQQALGQGPQFIFQYYEEEE



RQRGNFPDRFSGHQFPNYSSELNVNALLLGDSALYLCASSFTDYGYTFGSGTRLT



W (SEQ ID NO: 915)






GACGCTGGAGTCACCCAAAGTCCCACACACCTGATCAAAACGAGAGGACAG



CAAGTGACTCTGAGATGCTCTCCTAAGTCTGGGCATGACACTGTGTCCTGGTA



CCAACAGGCCCTGGGTCAGGGGCCCCAGTTTATCTTTCAGTATTATGAGGAG




GAAGAGAGACAGAGAGGCAACTTCCCTGATCGATTCTCAGGTCACCAGTTCC




CTAACTATAGCTCTGAGCTGAATGTGAACGCCTTGTTGCTGGGGGACTCGGC



CCTCTATCTCTGTGCCAGCAGCTTCACAGACTATGGCTACACCTTCGGTTCGG



GGACCAGGTTAACCGTTGTA (SEQ ID NO: 916)





PN42879
TQLLEQSPQFLSIQEGENLTVYCNSSSVFSSLQWYRQEPGEGPVLLVTVVTGGEV



KKLKRLTFQFGDARKDSSLHITAAQPGDTGLYLCAGEDFGNEKLTFGTGTRLTII



P (SEQ ID NO: 917)






ACCCAGCTGCTGGAGCAGAGTCCTCAGTTTCTAAGCATCCAAGAGGGAGAAA



ATCTCACTGTGTACTGCAACTCCTCAAGTGTTTTTTCCAGCTTACAATGGTAC



AGACAGGAGCCTGGGGAAGGTCCTGTCCTCCTGGTGACAGTAGTTACGGGTG




GAGAAGTGAAGAAGCTGAAGAGACTAACCTTTCAGTTTGGTGATGCAAGAA




AGGACAGTTCTCTCCACATCACTGCGGCCCAGCCTGGTGATACAGGCCTCTA



CCTCTGTGCAGGAGAGGACTTTGGAAATGAGAAATTAACCTTTGGGACTGGA



ACAAGACTCACCATCATACCC (SEQ ID NO: 918)





PN42879
DAGVTQSPTHLIKTRGQQVTLRCSPKSGHDTVSWYQQALGQGPQFIFQYYEEEE



RQRGNFPDRFSGHQFPNYSSELNVNALLLGDSALYLCASSWADYGYTFGSGTRL



TVV(SEQ ID NO: 919)






GACGCTGGAGTCACCCAAAGTCCCACACACCTGATCAAAACGAGAGGACAG



CAAGTGACTCTGAGATGCTCTCCTAAGTCTGGGCATGACACTGTGTCCTGGTA



CCAACAGGCCCTGGGTCAGGGGCCCCAGTTTATCTTTCAGTATTATGAGGAG




GAAGAGAGACAGAGAGGCAACTTCCCTGATCGATTCTCAGGTCACCAGTTCC




CTAACTATAGCTCTGAGCTGAATGTGAACGCCTTGTTGCTGGGGGACTCGGC



CCTCTATCTCTGTGCCAGCAGCTGGGCGGATTATGGCTACACCTTCGGTTCGG



GGACCAGGTTAACCGTTGTA (SEQ ID NO: 920)





PN42888
ILNVEQSPQSLHVQEGDSTNFTCSFPSSNFYALHWYRWETAKSPEALFVMTLNG




DEKKKGRISATLNTKEGYSYLYIKGSQPEDSATYLCAFLTGNQFYFGTGTSLTVIP




(SEQ ID NO: 921)






ATACTGAACGTGGAACAAAGTCCTCAGTCACTGCATGTTCAGGAGGGAGACA



GCACCAATTTCACCTGCAGCTTCCCTTCCAGCAATTTTTATGCCTTACACTGG



TACAGATGGGAAACTGCAAAAAGCCCCGAGGCCTTGTTTGTAATGACTTTAA




ATGGGGATGAAAAGAAGAAAGGACGAATAAGTGCCACTCTTAATACCAAGG




AGGGTTACAGCTATTTGTACATCAAAGGATCCCAGCCTGAAGACTCAGCCAC



ATACCTCTGTGCCTTTCTCACCGGTAACCAGTTCTATTTTGGGACAGGGACAA



GTTTGACGGTCATTCCA (SEQ ID NO: 922)





PN42888
DVKVTQSSRYLVKRTGEKVFLECVQDMDHENMFWYRQDPGLGLRLIYFSYDVK




MKEKGDIPEGYSVSREKKERFSLILESASTNQTSMYLCASSTVRQGNYGYTFGSG




TRLTVV (SEQ ID NO: 923)






GATGTGAAAGTAACCCAGAGCTCGAGATATCTAGTCAAAAGGACGGGAGAG



AAAGTTTTTCTGGAATGTGTCCAGGATATGGACCATGAAAATATGTTCTGGTA



TCGACAAGACCCAGGTCTGGGGCTACGGCTGATCTATTTCTCATATGATGTTA




AAATGAAAGAAAAAGGAGATATTCCTGAGGGGTACAGTGTCTCTAGAGAGA




AGAAGGAGCGCTTCTCCCTGATTCTGGAGTCCGCCAGCACCAACCAGACATC



TATGTACCTCTGTGCCAGCAGTACCGTGAGGCAGGGGAACTATGGCTACACC



TTCGGTTCGGGGACCAGGTTAACCGTTGTA (SEQ ID NO: 924)





PN42895
DQQVKQSSPSLSVQEGRISILNCDYTNSMFDYFLWYKKYPAEGPTFLISISSIKDK



NEDGRFTVFLNKSAKHLSLHIVPSQPGDSAVYFCAASAGSARQLTFGSGTQLTVL



P (SEQ ID NO: 925)






GACCAGCAAGTTAAGCAAAGTTCACCATCCCTGAGCGTCCAGGAAGGAAGA



ATTTCTATTCTGAACTGTGACTATACTAACAGCATGTTTGATTATTTCCTATGG



TACAAAAAATACCCTGCTGAAGGTCCTACATTCCTGATATCTATAAGTTCCAT




TAAGGATAAAAATGAAGATGGAAGATTCACTGTTTTCTTAAACAAAAGTGCC




AAGCACCTCTCTCTGCACATTGTGCCCTCCCAGCCTGGAGACTCTGCAGTGTA



CTTCTGTGCAGCAAGCGCCGGTTCTGCAAGGCAACTGACCTTTGGATCTGGG



ACACAATTGACTGTTTTACCT (SEQ ID NO: 926)





PN42895
EAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGLRQIYYSMNVE




VTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLYFCASSLWSNTEAFFGQGTR




LTVV (SEQ ID NO: 927)






GAAGCCCAAGTGACCCAGAACCCAAGATACCTCATCACAGTGACTGGAAAG



AAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTATATGTCCTGGTA



TCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTT




GAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAA




GAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCAGACCT



CTCTGTACTTCTGTGCCAGCAGTTTATGGTCGAACACTGAAGCTTTCTTTGGA



CAAGGCACCAGACTCACAGTTGTA (SEQ ID NO: 928)
















TABLE 9







Variable (V) and joining (J) region gene families for the α and β


chains of VelociT TCRs specific for PRAME (312-320)/HLA-A2













TCR ID





















PN46909
 6-6
1-1
38-1
26



PN46889
 6-2
1-1
12-2
11



PN46733
 6-1
1-1
13-2
26



PN46723
 5-5
1-4
20-1
42



PN46714
 5-5
1-6
20-1
42



PN46735
 5-5
1-2
26-2
45



PN46678
 5-5
1-4
19-1
18



PN46884
28-1
1-3
19-1
34



PN46914
28-1
1-5
19-1
23



PN46883
18-1
1-1
19-1
34



PN46857
18-1
1-1
19-1
47



PN46880
18-1
1-1
16-1
6



PN46871
13-1
1-5
21-1
24



PN46853
13-1
1-5
24-1
37



PN46731
13-1
1-1
13-1
26



PN46777
10-2
1-2
38-1
47



PN46797
10-2
1-2
38-1
47



PN46738
10-2
1-2
38-1
45

















TABLE 10







Variable (V) and joining (J) region gene families for the α and β


chains of VelociT TCRs specific for PRAME (425-433)/HLA-A2













TCR ID
Vb
Jb
Va
Ja







PN42365
 5-6
1-2
27-1
42-1



PN42879
 5-6
1-2
27-1
48-1



PN42774
 5-6
1-2
12-2
34-1



PN42498
 5-6
1-2
27-1
42-1



PN42558
 5-6
1-2
22-1
42-1



PN42386
 5-6
1-2
27-1
42-1



PN42378
 5-6
1-2
26-2
24-1



PN42776
 5-6
1-2
26-2
24-1



PN42455
 5-6
1-2
26-2
24-1



PN42840
 5-6
1-2
27-1
42-1



PN42795
 5-6
1-2
12-1
42-1



PN42870
 5-6
1-2
27-1
45-1



PN42689
 5-6
1-2
27-1
42-1



PN42888
28-1
1-2
24-1
49-1



PN42450
28-1
1-2
16-1
34-1



PN42750
28-1
1-2
26-2
24-1



PN42562
27-1
1-2
27-1
40-1



PN42483
27-1
1-4
27-1
42-1



PN42712
27-1
1-6
22-1
20-1



PN42561
27-1
1-2
26-2
49-1



PN42442
27-1
1-2
27-1
40-1



PN42476
27-1
1-4
26-2
24-1



PN42496
27-1
1-2
26-2
54-1



PN42655
27-1
1-2
26-2
24-1



PN42677
27-1
1-2
26-2
49-1



PN42706
27-1
1-2
22-1
40-1



PN42654
27-1
1-2
26-2
49-1



PN42441
27-1
1-1
26-2
49-1



PN42683
27-1
1-2
26-2
47-1



PN42845
27-1
1-1
27-1
20-1



PN42826
27-1
1-1
29/DV5
22-1



PN42707
27-1
1-1
13-2
26-1



PN42833
27-1
1-6
26-1
40-1



PN42762
27-1
1-1
26-2
44-1



PN42780
27-1
1-2
27-1
40-1



PN42746
27-1
1-1
13-2
26-1



PN42815
27-1
1-6
13-2
26-1



PN42711
27-1
1-6
22-1
20-1



PN42895
27-1
1-1
29/DV5
22-1



PN42610
13-1
1-5
12-2
26-1

















TABLE 11





Amino acid and polynucleic acid sequence identifiers for TCR alpha and beta


variable chains and CDRs that were identified with PRAME (312-320).

















Amino Acid Sequences











α CDRs

β CDRs

















CDR1
CDR2
CDR3

CDR1
CDR2
CDR3








TCR ID
SEQ ID NO:


















PN46678
217
1
2
3
219
4
5
6


PN46714
221
7
8
9
223
10
11
12


PN46723
225
13
14
15
227
16
17
18


PN46731
229
19
20
21
231
22
23
24


PN46733
233
25
26
27
235
28
29
30


PN46735
237
31
32
33
239
34
35
36


PN46738
241
37
38
39
243
40
41
42


PN46777
245
43
44
45
247
46
47
48


PN46797
249
49
50
51
251
52
53
54


PN46853
253
55
56
57
255
58
59
60


PN46857
257
61
62
63
259
64
65
66


PN46871
261
67
68
69
263
70
71
72


PN46880
265
73
74
75
267
76
77
78


PN46883
269
79
80
81
271
82
83
84


PN46884
273
85
86
87
275
88
89
90


PN46889
277
91
92
93
279
94
95
96


PN46909
281
97
98
99
283
100
101
102


PN46914
285
103
104
105
287
106
107
108












Polynucleic Acid Sequences











α CDRs

β CDRs

















CDR1
CDR2
CDR3

CDR1
CDR2
CDR3










TCR ID
SEQ ID NO:





















PN46678
218
109
110
111
220
112
113
114



PN46714
222
115
116
117
224
118
119
120



PN46723
226
121
122
123
228
124
125
126



PN46731
230
127
128
129
232
130
131
132



PN46733
234
133
134
135
236
136
137
138



PN46735
238
139
140
141
240
142
143
144



PN46738
242
145
146
147
244
148
149
150



PN46777
246
151
152
153
248
154
155
156



PN46797
250
157
158
159
252
160
161
162



PN46853
254
163
164
165
256
166
167
168



PN46857
258
169
170
171
260
172
173
174



PN46871
262
175
176
177
264
178
179
180



PN46880
266
181
182
183
268
184
185
186



PN46883
270
187
188
189
272
190
191
192



PN46884
274
193
194
195
276
196
197
198



PN46889
278
199
200
201
280
202
203
204



PN46909
282
205
206
207
284
208
209
210



PN46914
286
211
212
213
288
214
215
216

















TABLE 12





Amino acid and polynucleic acid sequence identifiers for TCR alpha and beta


variable chains and CDRs that were identified with PRAME (425-433).

















Amino Acid Sequences











α CDRs

β CDRs

















CDR1
CDR2
CDR3

CDR1
CDR2
CDR3








TCR ID
SEQ ID NO:


















PN42365
769
289
290
291
771
292
293
294


PN42378
773
295
296
297
775
298
299
300


PN42386
777
301
302
303
779
304
305
306


PN42441
781
307
308
309
783
310
311
312


PN42442
785
313
314
315
787
316
317
318


PN42450
789
319
320
321
791
322
323
324


PN42455
793
325
326
327
795
328
329
330


PN42476
797
331
332
333
799
334
335
336


PN42483
801
337
338
339
803
340
341
342


PN42496
805
343
344
345
807
346
347
348


PN42498
809
349
350
351
811
352
353
354


PN42558
813
355
356
357
815
358
359
360


PN42561
817
361
362
363
819
364
365
366


PN42562
821
367
368
369
823
370
371
372


PN42610
825
373
374
375
827
376
377
378


PN42654
829
379
380
381
831
382
383
384


PN42655
833
385
386
387
835
388
389
390


PN42677
837
391
392
393
839
394
395
396


PN42683
841
397
398
399
843
400
401
402


PN42689
845
403
404
405
847
406
407
408


PN42706
849
409
410
411
851
412
413
414


PN42707
853
415
416
417
855
418
419
420


PN42711
857
421
422
423
859
424
425
426


PN42712
861
427
428
429
863
430
431
432


PN42746
865
433
434
435
867
436
437
438


PN42750
869
439
440
441
871
442
443
444


PN42762
873
445
446
447
875
448
449
450


PN42774
877
451
452
453
879
454
455
456


PN42776
881
457
458
459
883
460
461
462


PN42780
885
463
464
465
887
466
467
468


PN42795
889
469
470
471
891
472
473
474


PN42815
893
475
476
477
895
478
479
480


PN42826
897
481
482
483
899
484
485
486


PN42833
901
487
488
489
903
490
491
492


PN42840
905
493
494
495
907
496
497
498


PN42845
909
499
500
501
911
502
503
504


PN42870
913
505
506
507
915
508
509
510


PN42879
917
511
512
513
919
514
515
516


PN42888
921
517
518
519
923
520
521
522


PN42895
925
523
524
525
927
526
527
528












Polynucleic Acid Sequences











α CDRs

β CDRs

















CDR1
CDR2
CDR3

CDR1
CDR2
CDR3










TCR ID
SEQ ID NO:





















PN42365
770
529
530
531
772
532
533
534



PN42378
774
535
536
537
776
538
539
540



PN42386
778
541
542
543
780
544
545
546



PN42441
782
547
548
549
784
550
551
552



PN42442
786
553
554
555
788
556
557
558



PN42450
790
559
560
561
792
562
563
564



PN42455
794
565
566
567
796
568
569
570



PN42476
798
571
572
573
800
574
575
576



PN42483
802
577
578
579
804
580
581
582



PN42496
806
583
584
585
808
586
587
588



PN42498
810
589
590
591
812
592
593
594



PN42558
814
595
596
597
816
598
599
600



PN42561
818
601
602
603
820
604
605
606



PN42562
822
607
608
609
824
610
611
612



PN42610
826
613
614
615
828
616
617
618



PN42654
830
619
620
621
832
622
623
624



PN42655
834
625
626
627
836
628
629
630



PN42677
838
631
632
633
840
634
635
636



PN42683
842
637
638
639
844
640
641
642



PN42689
846
643
644
645
848
646
647
648



PN42706
850
649
650
651
852
652
653
654



PN42707
854
655
656
657
856
658
659
660



PN42711
858
661
662
663
860
664
665
666



PN42712
862
667
668
669
864
670
671
672



PN42746
866
673
674
675
868
676
677
678



PN42750
870
679
680
681
872
682
683
684



PN42762
874
685
686
687
876
688
689
690



PN42774
878
691
692
693
880
694
695
696



PN42776
882
697
698
699
884
700
701
702



PN42780
886
703
704
705
888
706
707
708



PN42795
890
709
710
711
892
712
713
714



PN42815
894
715
716
717
896
718
719
720



PN42826
898
721
722
723
900
724
725
726



PN42833
902
727
728
729
904
730
731
732



PN42840
906
733
734
735
908
736
737
738



PN42845
910
739
740
741
912
742
743
744



PN42870
914
745
746
747
916
748
749
750



PN42879
918
751
752
753
920
754
755
756



PN42888
922
757
758
759
924
760
761
762



PN42895
926
763
764
765
928
766
767
768










Example 2. Dose-Dependent T Cell Receptor Activation

A Jurkat cell line lacking endogenous TCRα and TCRβ expression was generated by gene disruption. These cells were then engineered with a genomic landing pad site that allowed single copy Cre recombinase-mediated insertion of transgenic TCR constructs. An Activator Protein 1 (AP1) response element-driven luciferase reporter was subsequently incorporated into this parental bioassay cell line. Specific TCR bioassay lines were generated by Cre-mediated insertion of constructs expressing the VelociT®-derived TCRα and TCRβ sequences.


Jurkat bioassay lines expressing TCR constructs were sorted to homogeneity using Flourescence-Activated Cell Sorting (FACS), then tested in peptide-MHC stimulation assays. HEK293T cells (HLA-A2*01) were plated in assay wells with varying dilutions of antigenic PRAME peptide (PRAME 425-433; SEQ ID NO: 930) or an irrelevant HLA-A2 restricted peptide (SLLMWITQC; SEQ ID NO: 953). These dilutions were made as indicated in Table 13.









TABLE 13







Peptide dilutions for testing dose response of anti-PRAME TCRs














Irrelevant
PRAME (425-




Concentration
peptide
433) peptide



Dilution
(μM)
(μg/ml)
(μg/ml)
















1
100
109
98.9



2
20
21.8
19.8



3
4
4.4
4.0



4
0.8
0.87
0.79



5
0.16
0.17
0.16



6
0.032
0.035
0.032



7
0.0064
0.0070
0.0063



8
0.00128
0.0014
0.0013



9
0.000256
0.00028
0.00025



10
0.0000512
5.6E−5
5.1E−5



11
0.00001024
1.1E−5
1.0E−5



12
0 (no peptide)
0
0










After a 2 hour incubation, engineered Jurkat cells were added to wells at a 3:1 Jurkat:293T cell ratio and incubated a further 5 hours. Luciferase reporter activity was determined by measuring endpoint luminescence output in assay wells. PRAME-specific TCRs mediated dose-dependent AP1 reporter activation in response to HLA-A2*01 HEK293T cells pulsed with cognate peptide, but not those cells pulsed with the irrelevant peptide. EC50 data is shown in Table 14, below.









TABLE 14







Antigen-specific response of HLA-A2/PRAME (425-433)-specific TCRs


in a Jurkat cell bioassay, normalized to negative control










TCR ID
EC50 (μM)







PN42365
 0.01594



PN42386
 0.02711



PN42441
0.8205



PN42442
0.2324



PN42450
 0.03355



PN42483
*



PN42496
 0.02937



PN42498
 0.002418



PN42558
0.2614



PN42561
0.0137



PN42562
 0.02807



PN42610
*



PN42654
*



PN42655



PN42677
*



PN42683
*



PN42689
0.0095



PN42706
0.7274



PN42707
 0.01182



PN42711
 0.05688



PN42712
 0.01329



PN42746
 0.04598



PN42762
114.8   



PN42774
0.8757



PN42780
1.255 



PN42795
0.2454



PN42815
0.1261



PN42826
4.915 



PN42833
 0.04786



PN42840
 0.03092



PN42845
0.911 



PN42870
0.1302



PN42879
*



PN42888
0.0119



PN42895
0.94 







* Not above negative control/did not respond in assay






EQUIVALENTS

Those skilled in the art will recognize or be able to ascertain, using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. such equivalents are intended to be encompassed by the following claims. The contents of all references, patents and published patent applications cited throughout this application are incorporated herein by reference.

Claims
  • 1. A T cell receptor (TCR) that binds specifically to an HLA-A2 presented preferentially expressed antigen in melanoma (PRAME) peptide comprising the amino acid sequence of RLDQLLRHV (SEQ ID NO:929) (PRAME 312-320), wherein the TCR comprises an alpha chain variable domain comprising a complementary determining region (CDR) 3, wherein the CDR3 comprises the amino acid sequence of any one of the alpha chain variable domain CDR3 amino acid sequences set forth in Table 3.
  • 2. A T cell receptor (TCR) that binds specifically to an HLA-A2 presented preferentially expressed antigen in melanoma (PRAME) peptide comprising the amino acid sequence of RLDQLLRHV (SEQ ID NO:929) (PRAME 312-320), wherein the TCR comprises a beta chain variable domain comprising a complementary determining region (CDR) 3, wherein the CDR3 comprises the amino acid sequence of any one of the beta chain variable domain CDR3 amino acid sequences set forth in Table 3.
  • 3. The TCR of any one of claims 1-2, wherein the TCR comprises at least one TCR alpha chain variable domain and/or at least one beta chain variable domain.
  • 4. The TCR of claim 3, wherein the TCR comprises a TCR alpha chain variable domain and a TCR beta chain variable domain.
  • 5. The TCR of any one of claims 1-4, wherein the alpha chain variable domain further comprises a CDR1 and a CDR2, wherein the CDR1 comprises any one of the alpha chain variable domain CDR1 amino acid sequences set forth in Table 3 and the CDR2 independently comprises any one of the alpha chain variable domain CDR2 amino acid sequences set forth in Table 3.
  • 6. The TCR of claim 5, wherein the beta chain variable domain further comprises a CDR1 and a CDR2, wherein the CDR1 comprises any one of the beta chain variable CDR1 amino acid sequences set forth in Table 3 and the CDR2 independently comprises any one of the beta chain variable domain CDR2 amino acid sequences set forth in Table 3.
  • 7. The TCR of any one of claims 4-6, comprising alpha chain variable domain CDR1, CDR2 and CDR3 contained within any one of the alpha chain variable domain sequences listed in Table 5; and beta chain variable domain CDR1, CDR2 and CDR3 contained within any one of the beta chain variable domain sequences listed in Table 5.
  • 8. A T cell receptor (TCR) that binds specifically to an HLA-A2 presented preferentially expressed antigen in melanoma (PRAME) peptide comprising the amino acid sequence of RLDQLLRHV (SEQ ID NO:929) (PRAME 312-320), wherein the TCR comprises alpha chain CDR1, CDR2, and CDR3/beta chain CDR1, CDR2, and CDR3 amino acid sequences selected from the alpha chain/beta chain variable domain sequence pairs of SEQ ID NOs: 217/219, 221/223, 225/227, 229/231, 233/235, 237/239, 241/243, 245/247, 249/251, 253/255, 257/259, 261/263, 265/267, 269/271, 273/275, 277/279, 281/283, and 285/287.
  • 9. The TCR of any one of claims 1-8, comprising an alpha chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the alpha chain variable domain amino acid sequences listed in Table 5.
  • 10. The TCR of any one of claims 1-9, comprising a beta chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the beta chain variable domain amino acid sequences listed in Table 5.
  • 11. The TCR of any one of claims 1-10, comprising: (a) an alpha chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the alpha chain variable domain amino acid sequences listed in Table 5; and (b) a beta chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the beta chain variable domain amino acid sequences listed in Table 5.
  • 12. The TCR of any one of claims 4-11, comprising: (a) an alpha chain variable domain CDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, and 103;(b) an alpha chain variable domain CDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 74, 80, 86, 92, 98, and 104;(c) an alpha chain variable domain CDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99, and 105;(d) a beta chain variable domain CDR1 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 4, 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76, 82, 88, 94, 100, and 106;(e) a beta chain variable domain CDR2 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101, and 107; and(f) a beta chain variable domain CDR3 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, and 108.
  • 13. The TCR of claim 12, comprising an alpha chain variable domain/beta chain variable domain amino acid sequence pair selected from the group consisting of SEQ ID NOs: 217/219, 221/223, 225/227, 229/231, 233/235, 237/239, 241/243, 245/247, 249/251, 253/255, 257/259, 261/263, 265/267, 269/271, 273/275, 277/279, 281/283, and 285/287.
  • 14. A T cell receptor (TCR) that binds specifically to an HLA-A2 presented preferentially expressed antigen in melanoma (PRAME) peptide comprising the amino acid sequence of SLLQHLIGL (SEQ ID NO:930) (PRAME 425-433), wherein the TCR comprises an alpha chain variable domain comprising a complementary determining region (CDR) 3, wherein the CDR3 comprises the amino acid sequence of any one of the alpha chain variable domain CDR3 amino acid sequences set forth in Table 6.
  • 15. A T cell receptor (TCR) that binds specifically to an HLA-A2 presented preferentially expressed antigen in melanoma (PRAME) peptide comprising the amino acid sequence of SLLQHLIGL (SEQ ID NO:930) (PRAME 425-433), wherein the TCR comprises a beta chain variable domain comprising a complementary determining region (CDR)3, wherein the CDR3 comprises the amino acid sequence of any one of the beta chain variable domain CDR3 amino acid sequences set forth in Table 6.
  • 16. The TCR of claim 14 or 15, wherein the alpha chain variable domain further comprises a CDR1 and a CDR2, wherein the CDR1 comprises any one of the alpha chain variable domain CDR1 amino acid sequences set forth in Table 6 and the CDR2 independently comprises any one of the alpha chain variable domain CDR2 amino acid sequences set forth in Table 6.
  • 17. The TCR of claim 16, wherein the beta chain variable domain further comprises a CDR1 and a CDR2, wherein the CDR1 comprises any one of the beta chain variable CDR1 amino acid sequences set forth in Table 6 and the CDR2 independently comprises any one of the beta chain variable domain CDR2 amino acid sequences set forth in Table 6.
  • 18. The TCR of any one of claims 14-17, wherein the TCR comprises at least one TCR alpha chain variable domain and/or at least one beta chain variable domain.
  • 19. The TCR of claim 18, wherein the TCR comprises a TCR alpha chain variable domain and a TCR beta chain variable domain.
  • 20. The TCR of any one of claims 17-19, comprising alpha chain variable domain CDR1, CDR2 and CDR3 contained within any one of the alpha chain variable domain sequences listed in Table 8; and beta chain variable domain CDR1, CDR2 and CDR3 contained within any one of the beta chain variable domain sequences listed in Table 8.
  • 21. A T cell receptor (TCR) that binds specifically to an HLA-A2 presented preferentially expressed antigen in melanoma (PRAME) peptide comprising the amino acid sequence of SLLQHLIGL (SEQ ID NO:930) (PRAME 425-433), wherein the TCR comprises alpha chain CDR1, CDR2, and CDR3/beta chain CDR1, CDR2, and CDR3 amino acid sequences selected from the alpha chain/beta chain variable domain sequence pairs of SEQ ID NOs: 769/771, 773/775, 777/779, 781/783, 785/787, 789/791, 793/795, 797/799, 801/803, 805/807, 809/811, 813/815, 817/819, 821/823, 825/827, 829/831, 833/835, 837/839, 841/843, 845/847, 849/851, 853/855, 857/859, 861/863, 865/867, 869/871, 873/875, 877/879, 881/883, 885/887, 889/891, 893/805, 897/899, 901/903, 905/907, 909/911, 913/915, 917/919, 921/923, and 925/927.
  • 22. The TCR of any one of claims 14-21, comprising an alpha chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the alpha chain variable domain amino acid sequences listed in Table 8.
  • 23. The TCR of any one of claims 14-22, comprising a beta chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the beta chain variable domain amino acid sequences listed in Table 8.
  • 24. The TCR of any one of claims 14-23, comprising: (a) an alpha chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the alpha chain variable domain amino acid sequences listed in Table 8; and (b) a beta chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the beta chain variable domain amino acid sequences listed in Table 8.
  • 25. The TCR of any one of claims 17-24, comprising: (a) an alpha chain variable domain CDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 289, 295, 301, 307, 313, 319, 325, 331, 337, 343, 349, 355, 361, 367, 373, 379, 385, 391, 397, 403, 409, 415, 421, 427, 433, 439, 445, 451, 457, 463, 469, 475, 481, 487, 493, 499, 505, 511, 517, and 523;(b) an alpha chain variable domain CDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 290, 296, 302, 308, 314, 320, 326, 332, 338, 344, 350, 356, 362, 368, 374, 380, 386, 392, 398, 404, 410, 416, 422, 428, 434, 440, 446, 452, 458, 464, 470, 476, 482, 488, 494, 500, 506, 512, 518, and 524;(c) an alpha chain variable domain CDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 291, 297, 303, 309, 315, 321, 327, 333, 339, 345, 351, 357, 363, 369, 375, 381, 387, 393, 399, 405, 411, 417, 423, 429, 435, 441, 447, 453, 459, 465, 471, 477, 483, 489, 495, 501, 507, 513, 519, and 525;(d) a beta chain variable domain CDR1 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 292, 298, 304, 310, 316, 322, 328, 334, 340, 346, 352, 358, 364, 370, 376, 382, 388, 394, 400, 406, 412, 418, 424, 430, 436, 442, 448, 454, 460, 466, 472, 478, 484, 490, 496, 502, 508, 514, 520, and 526;(e) a beta chain variable domain CDR2 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 293, 299, 305, 311, 317, 323, 329, 335, 341, 347, 353, 359, 365, 371, 377, 383, 389, 395, 401, 407, 413, 419, 425, 431, 437, 443, 449, 455, 461, 467, 473, 479, 485, 491, 497, 503, 509, 515, 521, and 527; and(f) a beta chain variable domain CDR3 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 294, 300, 306, 312, 318, 324, 330, 336, 342, 348, 354, 360, 366, 372, 378, 384, 390, 396, 402, 408, 414, 420, 426, 432, 438, 444, 450, 456, 462, 468, 474, 480, 486, 492, 498, 504, 510, 516, 522, and 528.
  • 26. The TCR of claim 25, comprising an alpha chain variable domain/beta chain variable domain amino acid sequence pair selected from the group consisting of SEQ ID NOs: 769/771, 773/775, 777/779, 781/783, 785/787, 789/791, 793/795, 797/799, 801/803, 805/807, 809/811, 813/815, 817/819, 821/823, 825/827, 829/831, 833/835, 837/839, 841/843, 845/847, 849/851, 853/855, 857/859, 861/863, 865/867, 869/871, 873/875, 877/879, 881/883, 885/887, 889/891, 893/805, 897/899, 901/903, 905/907, 909/911, 913/915, 917/919, 921/923, and 925/927.
  • 27. A TCR that competes for binding to the TCR of any one of claims 1-26.
  • 28. A TCR that binds to the same epitope as the a TCR of any one of claims 1-26.
  • 29. The TCR of any one of claims 1-28, further comprising a detectable moiety.
  • 30. An isolated cell presenting the TCR of any one of claims 1-29.
  • 31. An isolated polynucleotide molecule comprising a polynucleotide sequence that encodes an alpha chain variable domain of the TCR as set forth in any one of claims 1-29.
  • 32. An isolated polynucleotide molecule comprising a polynucleotide sequence that encodes a beta chain variable domain of the TCR as set forth in any one of claims 1-29.
  • 33. A vector comprising the polynucleotide molecule of claim 31 or 32.
  • 34. An isolated cell expressing the vector of claim 33.
  • 35. A pharmaceutical composition comprising the isolated cell of claim 34 and a pharmaceutically acceptable carrier or diluent.
  • 36. A method of treating a subject having a PRAME-associated disease or disorder, comprising administering to the subject a therapeutically effective amount of the TCR as set forth in any one of claims 1-29, the pharmaceutical composition of claim 35, or a plurality of the isolated cells of claim 30, thereby treating the subject.
  • 37. The method of claim 36, wherein the PRAME-associated disease or disorder is PRAME-associated cancer.
  • 38. The method of claim 37, wherein the PRAME-associated cancer is a liposarcoma, a neuroblastoma, a myeloma, a melanoma, a metastatic melanoma, a synovial sarcoma, a bladder cancer, an esophageal cancer, an esophageal squamous cell carcinoma, a hepatocellular cancer, a head and neck cancer, a non-small cell lung cancer, an ovarian cancer, an ovarian epithelial cancer, a prostate cancer, a breast cancer, an astrocytic tumor, a glioblastoma multiforme, an anaplastic astrocytoma, a brain tumor, a fallopian tube cancer, primary peritoneal cavity cancer, advanced solid tumors, soft tissue sarcoma, a sarcoma, a myelodysplastic syndrome, an acute myeloid leukemia, a Hodgkin lymphoma, a non-Hodgkin lymphoma, a Hodgkin disease, a multiple myeloma, a metastatic solid tumors, a colorectal carcinoma, a stomach cancer, a gastric cancer, a rhabdomyosarcoma, a myxoid round cell liposarcoma, uterine corpus endometrial carcinoma, uterine carcinosarcoma, testicular germ cell tumor, uveal melanoma, kidney renal papillary cell carcinoma, kidney renal clear cell carcinoma, thymoma, colon adenocarcinoma, cervical squamous cell carcinoma, cervical tumor, pancreatic adenocarcinoma, liver cancer, hepatocellular carcinoma, mesothelioma, or a recurrent non-small cell lung cancer.
  • 39. The method of any one of claims 36-38, wherein the TCR, the pharmaceutical composition, or the plurality of cells is administered to the subject in combination with a second therapeutic agent.
  • 40. The method of any one of claims 36-39, wherein the TCR, the pharmaceutical composition, or the plurality of cells is administered subcutaneously, intravenously, intradermally, intraperitoneally, orally, intramuscularly or intracranially to the subject.
  • 41. A polynucleotide molecule encoding a T cell receptor (TCR) that binds specifically to an HLA-A2 presented preferentially expressed antigen in melanoma (PRAME) peptide comprising the amino acid sequence of RLDQLLRHV (SEQ ID NO:929) (PRAME 312-320), wherein the TCR comprises an alpha chain variable domain comprising a complementary determining region (CDR) 3, wherein the CDR3 comprises the amino acid sequence of any one of the alpha chain variable domain CDR3 amino acid sequences set forth in Table 5.
  • 42. A polynucleotide molecule encoding a T cell receptor (TCR) that binds specifically to an HLA-A2 presented preferentially expressed antigen in melanoma (PRAME) peptide comprising the amino acid sequence of RLDQLLRHV (SEQ ID NO:929) (PRAME 312-320), wherein the TCR comprises a beta chain variable domain comprising a complementary determining region (CDR) 3, wherein the CDR3 comprises the amino acid sequence of any one of the beta chain variable domain CDR3 amino acid sequences set forth in Table 5.
  • 43. The polynucleotide molecule of claim 41 or 42, encoding at least one TCR alpha chain variable domain and/or at least one beta chain variable domain.
  • 44. The polynucleotide molecule of claim 43, wherein the TCR comprises alpha chain variable domain complementary determining regions (CDR) 1, CDR2, and CDR3 contained within any one of the alpha chain variable domain sequences listed in Table 5; and beta chain variable domain CDR1, CDR2 and CDR3 contained within any one of the beta chain variable domain sequences listed in Table 5.
  • 45. A polynucleotide molecule encoding a T cell receptor (TCR) that binds specifically to an HLA-A2 presented preferentially expressed antigen in melanoma (PRAME) peptide comprising the amino acid sequence of RLDQLLRHV (SEQ ID NO:929) (PRAME 312-320), wherein the TCR comprises alpha chain CDR1, CDR2, and CDR3/beta chain CDR1, CDR2, and CDR3 amino acid sequences selected from the alpha chain/beta chain variable domain sequence pairs of SEQ ID NOs: 217/219, 221/223, 225/227, 229/231, 233/235, 237/239, 241/243, 245/247, 249/251, 253/255, 257/259, 261/263, 265/267, 269/271, 273/275, 277/279, 281/283, and 285/287.
  • 46. The polynucleotide molecule of any one of claims 41-45, wherein the TCR comprises alpha chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the alpha chain variable domain amino acid sequences listed in Table 5.
  • 47. The polynucleotide molecule of any one of claims 41-46, wherein the TCR comprises beta chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the beta chain variable domain amino acid sequences listed in Table 5.
  • 48. The polynucleotide molecule of any one of claims 41-47, wherein the TCR comprises (a) an alpha chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the alpha chain variable domain amino acid sequences listed in Table 5; and (b) a beta chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the beta chain variable domain amino acid sequences listed in Table 5.
  • 49. The polynucleotide molecule of any one of claims 41-48, wherein the TCR comprises (a) an alpha chain variable domain CDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, and 103;(b) an alpha chain variable domain CDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 74, 80, 86, 92, 98, and 104;(c) an alpha chain variable domain CDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99, and 105;(d) a beta chain variable domain CDR1 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 4, 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76, 82, 88, 94, 100, and 106;(e) a beta chain variable domain CDR2 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101, and 107; and(f) a beta chain variable domain CDR3 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, and 108.
  • 50. The polynucleotide molecule of claim 48, wherein the TCR comprises an alpha chain variable domain/beta chain variable domain amino acid sequence pair selected from the group consisting of SEQ ID NOs: 217/219, 221/223, 225/227, 229/231, 233/235, 237/239, 241/243, 245/247, 249/251, 253/255, 257/259, 261/263, 265/267, 269/271, 273/275, 277/279, 281/283, and 285/287.
  • 51. The polynucleotide molecule of claim 48, wherein the TCR comprises (a) an alpha chain variable domain CDR1 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 109, 115, 121, 127, 133, 139, 145, 151, 157, 163, 169, 175, 181, 187, 193, 199, 205, and 211;(b) an alpha chain variable domain CDR2 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 110, 116, 122, 128, 134, 140, 146, 152, 158, 164, 170, 176, 182, 188, 194, 200, 206, and 212;(c) an alpha chain variable domain CDR3 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 111, 117, 123, 129, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 195, 201, 207, and 213;(d) a beta chain variable domain CDR1 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 112, 118, 124, 130, 136, 142, 148, 154, 160, 166, 172, 178, 184, 190, 196, 202, 208, and 214;(e) a beta chain variable domain CDR2 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 113, 119, 125, 131, 137, 143, 149, 155, 161, 167, 173, 179, 185, 191, 197, 203, 209, and 215; and(f) a beta chain variable domain CDR3 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 114, 120, 126, 132, 138, 144, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, and 216.
  • 52. The polynucleotide molecule of claim 51, wherein the TCR comprises an alpha chain variable domain/beta chain variable domain nucleic acid sequence pair selected from the group consisting of SEQ ID NOs: 218/220, 222/224, 226/228, 230/232, 234/236, 238/240, 242/244, 246/248, 250/252, 254/256, 258/260, 262/264, 266/268, 270/272, 274/276, 278/280, 282/284, and 286/288.
  • 53. A vector comprising the polynucleotide molecule of any one of claims 41-52.
  • 54. An isolated cell comprising the vector of claim 53.
  • 55. A polynucleotide molecule encoding a T cell receptor (TCR) that binds specifically to an HLA-A2 presented preferentially expressed antigen in melanoma (PRAME) peptide comprising the amino acid sequence of SLLQHLIGL (SEQ ID NO:930) (PRAME 425-433), wherein the TCR comprises an alpha chain variable domain comprising a complementary determining region (CDR) 3, wherein the CDR3 comprises the amino acid sequence of any one of the alpha chain variable domain CDR3 amino acid sequences set forth in Table 8.
  • 56. A polynucleotide molecule encoding a T cell receptor (TCR) that binds specifically to an HLA-A2 presented preferentially expressed antigen in melanoma (PRAME) peptide comprising the amino acid sequence of SLLQHLIGL (SEQ ID NO:930) (PRAME 425-433), wherein the TCR comprises a beta chain variable domain comprising a complementary determining region (CDR) 3, wherein the CDR3 comprises the amino acid sequence of any one of the beta chain variable domain CDR3 amino acid sequences set forth in Table 8.
  • 57. The polynucleotide molecule of claim 55 or 56, encoding at least one TCR alpha chain variable domain and/or at least one beta chain variable domain.
  • 58. A polynucleotide molecule encoding a T cell receptor (TCR) that binds specifically to an HLA-A2 presented preferentially expressed antigen in melanoma (PRAME) peptide comprising the amino acid sequence of SLLQHLIGL (SEQ ID NO:930) (PRAME 425-433), wherein the TCR comprises alpha chain CDR1, CDR2, and CDR3/beta chain CDR1, CDR2, and CDR3 amino acid sequences selected from the alpha chain/beta chain variable domain sequence pairs of SEQ ID NOs: 769/771, 773/775, 777/779, 781/783, 785/787, 789/791, 793/795, 797/799, 801/803, 805/807, 809/811, 813/815, 817/819, 821/823, 825/827, 829/831, 833/835, 837/839, 841/843, 845/847, 849/851, 853/855, 857/859, 861/863, 865/867, 869/871, 873/875, 877/879, 881/883, 885/887, 889/891, 893/805, 897/899, 901/903, 905/907, 909/911, 913/915, 917/919, 921/923, and 925/927.
  • 59. The polynucleotide molecule of claim 58, wherein the TCR comprises alpha chain variable domain complementary determining regions (CDR) 1, CDR2, and CDR3 contained within any one of the alpha chain variable domain sequences listed in Table 8; and beta chain variable domain CDR1, CDR2 and CDR3 contained within any one of the beta chain variable domain sequences listed in Table 8.
  • 60. The polynucleotide molecule of any one of claims 55-59, wherein the TCR comprises alpha chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the alpha chain variable domain amino acid sequences listed in Table 8.
  • 61. The polynucleotide molecule of any one of claims 55-60, wherein the TCR comprises beta chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the beta chain variable domain amino acid sequences listed in Table 8.
  • 62. The polynucleotide molecule of any one of claims 55-61, wherein the TCR comprises (a) an alpha chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the alpha chain variable domain amino acid sequences listed in Table 8; and (b) a beta chain variable domain having an amino acid sequence that has at least 85% amino acid identity to the entire amino acid sequence of any one of the amino acid sequences of the beta chain variable domain amino acid sequences listed in Table 8.
  • 63. The polynucleotide molecule of any one of claims 55-62, wherein the TCR comprises (a) an alpha chain variable domain CDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 289, 295, 301, 307, 313, 319, 325, 331, 337, 343, 349, 355, 361, 367, 373, 379, 385, 391, 397, 403, 409, 415, 421, 427, 433, 439, 445, 451, 457, 463, 469, 475, 481, 487, 493, 499, 505, 511, 517, and 523;(b) an alpha chain variable domain CDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 290, 296, 302, 308, 314, 320, 326, 332, 338, 344, 350, 356, 362, 368, 374, 380, 386, 392, 398, 404, 410, 416, 422, 428, 434, 440, 446, 452, 458, 464, 470, 476, 482, 488, 494, 500, 506, 512, 518, and 524;(c) an alpha chain variable domain CDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 291, 297, 303, 309, 315, 321, 327, 333, 339, 345, 351, 357, 363, 369, 375, 381, 387, 393, 399, 405, 411, 417, 423, 429, 435, 441, 447, 453, 459, 465, 471, 477, 483, 489, 495, 501, 507, 513, 519, and 525;(d) a beta chain variable domain CDR1 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 292, 298, 304, 310, 316, 322, 328, 334, 340, 346, 352, 358, 364, 370, 376, 382, 388, 394, 400, 406, 412, 418, 424, 430, 436, 442, 448, 454, 460, 466, 472, 478, 484, 490, 496, 502, 508, 514, 520, and 526;(e) a beta chain variable domain CDR2 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 293, 299, 305, 311, 317, 323, 329, 335, 341, 347, 353, 359, 365, 371, 377, 383, 389, 395, 401, 407, 413, 419, 425, 431, 437, 443, 449, 455, 461, 467, 473, 479, 485, 491, 497, 503, 509, 515, 521, and 527; and(f) a beta chain variable domain CDR3 having an amino acid sequence selected from the group consisting of SEQ ID NOs: 294, 300, 306, 312, 318, 324, 330, 336, 342, 348, 354, 360, 366, 372, 378, 384, 390, 396, 402, 408, 414, 420, 426, 432, 438, 444, 450, 456, 462, 468, 474, 480, 486, 492, 498, 504, 510, 516, 522, and 528.
  • 64. The polynucleotide molecule of claim 63, wherein the TCR comprises an alpha chain variable domain/beta chain variable domain amino acid sequence pair selected from the group consisting of SEQ ID NOs: 769/771, 773/775, 777/779, 781/783, 785/787, 789/791, 793/795, 797/799, 801/803, 805/807, 809/811, 813/815, 817/819, 821/823, 825/827, 829/831, 833/835, 837/839, 841/843, 845/847, 849/851, 853/855, 857/859, 861/863, 865/867, 869/871, 873/875, 877/879, 881/883, 885/887, 889/891, 893/805, 897/899, 901/903, 905/907, 909/911, 913/915, 917/919, 921/923, and 925/927.
  • 65. The polynucleotide molecule of claim 62, wherein the TCR comprises (a) an alpha chain variable domain CDR1 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 529, 535, 541, 547, 553, 559, 565, 571, 577, 583, 589, 595, 601, 607, 613, 619, 625, 631, 637, 643, 649, 655, 661, 667, 673, 679, 685, 691, 697, 703, 709, 715, 721, 727, 733, 739, 745, 751, 757, and 763;(b) an alpha chain variable domain CDR2 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 530, 536, 542, 548, 554, 560, 566, 572, 578, 584, 590, 596, 602, 608, 614, 620, 626, 632, 638, 644, 650, 656, 662, 668, 674, 680, 686, 692, 698, 704, 710, 716, 722, 728, 734, 740, 746, 752, 758, and 764;(c) an alpha chain variable domain CDR3 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 531, 537, 543, 549, 555, 561, 567, 573, 579, 585, 591, 597, 603, 609, 615, 621, 627, 633, 639, 645, 651, 657, 663, 669, 675, 681, 687, 693, 699, 705, 711, 717, 723, 729, 735, 741, 747, 753, 759, and 765;(d) a beta chain variable domain CDR1 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 532, 538, 544, 550, 556, 562, 568, 574, 580, 586, 592, 598, 604, 610, 616, 622, 628, 634, 640, 646, 652, 658, 664, 670, 676, 682, 688, 694, 700, 706, 712, 718, 724, 730, 736, 742, 748, 754, 760, and 766;(e) a beta chain variable domain CDR2 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 533, 539, 545, 551, 557, 563, 569, 575, 581, 587, 593, 599, 605, 611, 617, 623, 629, 635, 641, 647, 653, 659, 665, 671, 677, 683, 689, 695, 701, 707, 713, 719, 725, 731, 737, 743, 749, 755, 761, and 767; and(f) a beta chain variable domain CDR3 encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 534, 540, 546, 552, 558, 564, 570, 576, 582, 588, 594, 600, 606, 612, 618, 624, 630, 636, 642, 648, 654, 660, 666, 672, 678, 684, 690, 696, 702, 708, 714, 720, 726, 732, 738, 744, 750, 756, 762, and 768.
  • 66. The polynucleotide molecule of claim 65, wherein the TCR comprises an alpha chain variable domain/beta chain variable domain nucleic acid sequence pair selected from the group consisting of SEQ ID NOs: 770/772, 774/776, 778/780, 782/784, 786/788, 790/792, 794/796, 798/800, 802/804, 806/808, 810/812, 814/816, 818/820, 822/824, 826/828, 830/832, 834/836, 838/840, 842/844, 846/848, 850/852, 854/856, 858/860, 862/864, 866/868, 870/872, 874/876, 878/880, 882/884, 886/888, 890/892, 894/896, 898/900, 902/904, 906/908, 910/912, 914/916, 918/920, 922/924, and 926/928.
  • 67. A vector comprising the polynucleotide molecule of any one of claims 55-66.
  • 68. An isolated cell comprising the vector of claim 67.
  • 69. A method of treating a subject having a PRAME-associated disease or disorder, comprising administering to the subject a plurality of the cells of claim 54 or 68, thereby treating the subject.
  • 70. The method of claim 69, wherein the PRAME-associated disease or disorder is PRAME-associated cancer.
  • 71. The method of claim 70, wherein the PRAME-associated cancer is a liposarcoma, a neuroblastoma, a myeloma, a melanoma, a metastatic melanoma, a synovial sarcoma, a bladder cancer, an esophageal cancer, an esophageal squamous cell carcinoma, a hepatocellular cancer, a head and neck cancer, a non-small cell lung cancer, an ovarian cancer, an ovarian epithelial cancer, a prostate cancer, a breast cancer, an astrocytic tumor, a glioblastoma multiforme, an anaplastic astrocytoma, a brain tumor, a fallopian tube cancer, primary peritoneal cavity cancer, advanced solid tumors, soft tissue sarcoma, a sarcoma, a myelodysplastic syndrome, an acute myeloid leukemia, a Hodgkin lymphoma, a non-Hodgkin lymphoma, a Hodgkin disease, a multiple myeloma, a metastatic solid tumors, a colorectal carcinoma, a stomach cancer, a gastric cancer, a rhabdomyosarcoma, a myxoid round cell liposarcoma, uterine corpus endometrial carcinoma, uterine carcinosarcoma, testicular germ cell tumor, uveal melanoma, kidney renal papillary cell carcinoma, kidney renal clear cell carcinoma, thymoma, colon adenocarcinoma, cervical squamous cell carcinoma, cervical tumor, pancreatic adenocarcinoma, liver cancer, hepatocellular carcinoma, mesothelioma, or a recurrent non-small cell lung cancer.
  • 72. The method of any one of claims 69-71, wherein the plurality of cells is administered to the subject in combination with a second therapeutic agent.
RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Application No. 62/965,231, filed on Jan. 24, 2020, the entire contents of which are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2021/014490 1/22/2021 WO
Provisional Applications (1)
Number Date Country
62965231 Jan 2020 US