This invention relates to the preform of a plastic container particularly designed for packaging foodstuffs. This preform is formed using the conventional injection moulding machinery and utilised to form plastic containers, such as cans, for packaging foodstuffs, and especially to blow mould thin-walled containers which can be hermetically closed with a metal lid secured to the container by seaming the lid flange on filling machines, without deforming the flange or the cylindrical neck under it.
The Polish patent application no. P 336 680 A1 relates to a plastic preform designed for forming thin-walled containers. The preform has a threaded neck and a cylindrical body terminated with a convex hemispherical bottom. The body diameter of this preform is 0.5 to 0.85, and the body wall thickness is 0.08 to 0.18, of the neck diameter.
It has been known for some time how to form thin-walled containers terminated with a flange by blow moulding the conventional preform and then severing the top portion of the container including a threaded neck. In this way immense amounts of scrap are produced, which the result that the whole process is highly uneconomical. Furthermore, this method leaves much uncertainty about the reliability of the closure, including its tightness and resistance to pressures inside the container. The edge of the container flange may become nicked by cutting operations and its thickness may vary along the circumference, which is normal as the flange is blow moulded as a part of the side wall of a larger container.
In order for the closure of the plastic container to be tight under pressure, it would be best if the container was formed from the injection moulded preform by a stretch blow moulding process.
Patent EP 0482652B1 describes a cylindrical preform with a flat bottom, wherein the bottom is much thinner than the preform walls that gradually slightly part. Due to the fact that the flow of material is hindered, it is impossible to achieve the flange thickness that is below 0.3 mm. The preform flange is smooth and does not have a thickened rim.
Patent WO-A 83/01766 presents a preform, which is generally cylindrical in shape and slightly tapers in the downward direction; its walls and bottom have the same thickness. The flange is smooth and does not have a thickened rim. It has been noted in the document that it is impossible for one to achieve a good degree of orientation of the material in the flange of such a preform; hence, its strength is insufficient for good quality connection between the metal lid and the container.
The optimum solution for the cylindrical neck and the flange is to come as closely as possible to the dimensions of a metal container, while maintaining the best possible strength parameters. In this way, the container formed from the preform by a stretch blow moulding process could be efficiently closed by seaming a metal lid, thereby providing a reliable closure for carbonated beverages under pressure. This invention brings us closer to solving this problem.
The subject preform for forming plastic containers has a conical shape with a convex hemispherical bottom. The body of the preform flares towards a cylindrical neck surrounded by a radially outwardly extended flange terminated in a thickened rim. The opening angle of the internal conical surface of the body is greater than the opening angle of the external conical surface of the body; hence, the bottom is the thickest part of the container body and the cylindrical neck is significantly thinner than the bottom. The inflow of the material to the neck space and then to the flange is easy. This is due to the fact that the bottom at the injection point is relatively thick, the walls are appropriately inclined and their thickness tapers in a favourable manner. The material flow velocity in the mould is relatively high during the forming process with the result that the time taken by the material to reach the preform peripheries, including the flange, is short and a decline in temperature of the flowing material is much lower, which allows for appropriate filling and orientation and ensures a far better flange strength. In this way, it is possible for the flange thickness to be less than 0.3 mm, which is required for good quality seaming of the metal lid. The best seaming quality is achieved when there is a gradual change in thickness between the cylindrical neck and the flange and the transition between these two elements is arched.
Preferably, the ratio of the flange thickness to the cylindrical neck thickness should be approximately 0.8.
Furthermore, in order to ensure that the container metal lid fits precisely into the flange rim, it is desirable that the angle between the flange and the cylindrical neck is 180°-γ, where γ lies within a range of 60° to 90°, and most preferably equals 78°.
In order for the seaming operation to ensure a good quality connection between the pressure container and the metal lid, the flange should terminate in a thickened annular rim showing on one or both sides of the flange ending. The height of the annular thickened rim should vary from 1.1 to 2.0 times the flange thickness.
The flange in the axial sectional view may also have a rectangular rim whose height is generally equal to the flange thickness. Such flanges can be used in containers where there is no internal pressure involved. In such a case, the angle γ is preferably 90°.
The present invention has been described in greater detail in the figures below. We believe that these figures illustrate the most efficient version of the preform.
As shown in
The preform 1 as shown in
Number | Date | Country | Kind |
---|---|---|---|
363595 | Nov 2003 | PL | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/PL2004/000092 | 11/19/2004 | WO | 00 | 5/19/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/049434 | 6/2/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
648436 | Rider | May 1900 | A |
2614727 | Robinson | Oct 1952 | A |
3027044 | Winstead | Mar 1962 | A |
3190530 | Edwards | Jun 1965 | A |
3705660 | Bright | Dec 1972 | A |
3785311 | Yoshikawa | Jan 1974 | A |
3984259 | Rogers et al. | Oct 1976 | A |
4420081 | Dart | Dec 1983 | A |
4496064 | Beck et al. | Jan 1985 | A |
4751035 | McHenry et al. | Jun 1988 | A |
4950514 | Strassheimer | Aug 1990 | A |
5342663 | Yokobayashi | Aug 1994 | A |
5575398 | Robbins, III | Nov 1996 | A |
5833085 | Valyi et al. | Nov 1998 | A |
6260723 | Bergholtz | Jul 2001 | B1 |
6413467 | Britton | Jul 2002 | B1 |
20020125260 | Nakamura et al. | Sep 2002 | A1 |
20040065669 | Giraud et al. | Apr 2004 | A1 |
20040137178 | Janusson et al. | Jul 2004 | A1 |
20060073296 | Nahill et al. | Apr 2006 | A1 |
Number | Date | Country |
---|---|---|
0482652 | Apr 1992 | EP |
0378456 | Feb 2000 | EP |
0978456 | Feb 2000 | EP |
2599002 | Nov 1987 | FR |
62018215 | Jan 1987 | JP |
05032247 | Feb 1993 | JP |
28420 | Feb 2007 | MA |
193908 | May 2000 | PL |
8301766 | May 1983 | WO |
WO8301766 | May 1983 | WO |
20064995 | Nov 2007 | ZA |
Number | Date | Country | |
---|---|---|---|
20070090118 A1 | Apr 2007 | US |