Pregnancy clock proteins for predicting due date and time to birth

Abstract
The present invention provides compositions and methods for due date and time to birth prediction for a pregnancy with significantly higher accuracy than current clinical methods. The compositions and methods for due date and time to birth prediction for a pregnancy can also identify those pregnancies that will deliver earlier than the due date derived from LMP and/or US dating.
Description
BACKGROUND

Accurately assigning Estimated Due Date (EDD) and/or Time To Birth (TTB) early in prenatal care is among the most important results of evaluation and history taking. This information is vital for timing of appropriate obstetric care; scheduling and interpretation of certain antepartum tests; determining the appropriateness of fetal growth; and designing interventions to prevent preterm births, postterm births, and related morbidities. A consistent and exacting approach to accurate dating is also a research and public health imperative because of the influence of dating on investigational protocols and vital statistics.


Traditionally, determining the first day of the Last Mentstrual Period (LMP) is the first step in establishing the EDD. By convention, the EDD is 280 days after the first day of the LMP. Because this practice assumes a regular menstrual cycle of 28 days, with ovulation occurring on the 14th day after the beginning of the menstrual cycle, its accuracy is affected by factors that include inaccurate recall of the LMP, irregularities in cycle length, or variability in the timing of ovulation. Obstetric ultrasonography (US) is routinely used to determine fetal gestational age and aid in assigning EDD. If the patient is unsure of her LMP, dating of EDD based on first trimester US considered more reliable than second trimester or third semester US.


Both LMP and/or ultrasound are population-based estimates for a normal pregnancy and the accuracy of these methods varies significantly. Current clinical practice utilizing these methods is accurate in making a due date prediction that falls within plus or minus five days of the actual due date for term deliveries only about 35% of the time. In addition, 15% of predictions made under current clinical practice fall on or outside of 14 days before or after the actual due date for term deliveries. More accurate dating of pregnancy is needed to improve outcomes and is a research and public health imperative. The present invention addresses this need by providing an Estimated Due Date (EDD) molecular predictor (EDDmp) and/or Time To Birth (TTB) molecular predictor (TTBmp) that incorporates molecular information from proteins listed in Tables 1-27 into the estimation of pregnancy due date and/or time to birth with much higher accuracy than methods utilized as part of current clinical practice. Related advantages are provided as well.


SUMMARY

The present invention provides compositions and methods for due date and time to birth prediction for a pregnancy with significantly higher accuracy than current clinical methods. The compositions and methods for due date and time to birth prediction for a pregnancy can also identify those pregnancies, with high accuracy, that will deliver earlier than the official EDD as derived from LMP and/or US dating. Accordingly, the present invention provides an improved process that applies the discoveries described herein to enable, inter alia, a new and useful process for estimating the due date of a pregnant female, subsequently referred to as the Estimated Due Date (EDD) and/or estimating time to birth (TTB) with much higher accuracy than currently practiced clinical methods.


Each of the proteins, peptides and clinical variables disclosed herein as components of pairs, ratios and/or reversal pairs serve as biomarkers for determining the EDD, predicting gestational age at birth (GAB), predicting time to birth (TTB), either individually, in ratios, reversal pairs or in panels of biomarkers/reversal pairs.


The utility of the biomarker pairs, ratios and/or reversal pairs as “clock proteins” to accurately date a pregnancy, i.e. accurately estimate gestational age (GA), is essential to the quality of obstetric care and maternal-fetal health. The utility of the clock proteins of the invention to date a pregnancy with significantly higher accuracy than can be achieved with current clinical extends to every prognostic, diagnostic or other clinical assessment of the pregnant female and fetus that relies on accurately estimating GA for its own accuracy.


In one embodiment, the present invention provides a composition comprising a pair of isolated biomarkers selected from the group consisting of ADA12_FGFGGSTDSGPIR and PAEP_HLWYLLDLK, PAEP_HLWYLLDLK and PRG4_GLPNVVTSAISLPNIR, IBP4_Q.CHPALDGQR and PAEP_HLWYLLDLK, FETUA_FSVVYAK and IBP4_Q.CHPALDGQR, ADA12_FGFGGSTDSGPIR and CRIS3_YEDLYSNCK, CO5_TLLPVSKPEIR and ADA12_FGFGGSTDSGPIR, AFAM_HFQNLGK and AACT_EIGELYLPK, ALS_IRPHTFTGLSGLR and PCD12_AHDADLGINGK, VTNC_GQYCYELDEK and PCD12_AHDADLGINGK, CRIS3_YEDLYSNCK and TETN_LDTLAQEVALLK, B2MG_VEHSDLSFSK and FGFR1_IGPDNLPYVQILK, GELS_TASDFITK and FGFR1_IGPDNLPYVQILK, LIRB5_KPSLLIPQGSVVAR and FA9_SALVLQYLR, B2MG_VEHSDLSFSK and CHL1_VIAVNEVGR, and CHL1_VIAVNEVGR and IGF2_GIVEECCFR, wherein said pair of biomarkers exhibits a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the composition further comprises AACT_EIGELYLPK.


In one embodiment, the present invention provides a composition comprising a pair of isolated biomarkers selected from the group consisting of ADA12_FGFGGSTDSGPIR and PAEP_HLWYLLDLK, PAEP_HLWYLLDLK and PRG4_GLPNVVTSAISLPNIR, IBP4_Q.CHPALDGQR and PAEP_HLWYLLDLK, FETUA_FSVVYAK and IBP4_Q.CHPALDGQR, ADA12_FGFGGSTDSGPIR and CRIS3_YEDLYSNCK, CO5_TLLPVSKPEIR and ADA12_FGFGGSTDSGPIR, AFAM_HFQNLGK and AACT_EIGELYLPK, ALS_IRPHTFTGLSGLR and PCD12_AHDADLGINGK, VTNC_GQYCYELDEK and PCD12_AHDADLGINGK, CRIS3_YEDLYSNCK and TETN_LDTLAQEVALLK, B2MG_VEHSDLSFSK and FGFR1_IGPDNLPYVQILK, GELS_TASDFITK and FGFR1_IGPDNLPYVQILK, LIRB5_KPSLLIPQGSVVAR and FA9_SALVLQYLR, B2MG_VEHSDLSFSK and CHL1_VIAVNEVGR, and CHL1_VIAVNEVGR and IGF2_GIVEECCFR, wherein said pair of biomarkers exhibits a change between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the composition further comprises AACT_EIGELYLPK.


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers selected from the group consisting of ADA12_FGFGGSTDSGPIR and PAEP_HLWYLLDLK, PAEP_HLWYLLDLK and PRG4_GLPNVVTSAISLPNIR, IBP4_Q.CHPALDGQR and PAEP_HLWYLLDLK, and FETUA_FSVVYAK and IBP4_Q.CHPALDGQR, to determine the EDD for said pregnant female. In some embodiments, the pregnant female is nulliparous. In additional embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers selected from the group consisting of ADA12_FGFGGSTDSGPIR and PAEP_HLWYLLDLK, PAEP_HLWYLLDLK and PRG4_GLPNVVTSAISLPNIR, IBP4_Q.CHPALDGQR and PAEP_HLWYLLDLK, and FETUA_FSVVYAK and IBP4_Q.CHPALDGQR, to determine the EDD for said pregnant female. In some embodiments, the pregnant female is nulliparous. In additional embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers selected from the group consisting of ADA12_FGFGGSTDSGPIR and PAEP_HLWYLLDLK, PAEP_HLWYLLDLK and PRG4_GLPNVVTSAISLPNIR, IBP4_Q.CHPALDGQR and PAEP_HLWYLLDLK, and FETUA_FSVVYAK and IBP4_Q.CHPALDGQR, to determine the TTB for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers selected from the group consisting of ADA12_FGFGGSTDSGPIR and PAEP_HLWYLLDLK, PAEP_HLWYLLDLK and PRG4_GLPNVVTSAISLPNIR, IBP4_Q.CHPALDGQR and PAEP_HLWYLLDLK, and FETUA_FSVVYAK and IBP4_Q.CHPALDGQR, to determine the TTB for said pregnant female. In some embodiments, the pregnant female is nulliparous. In additional embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a reversal value of a biomarker pair selected from the group consisting of ADA12_FGFGGSTDSGPIR and PAEP_HLWYLLDLK, PAEP_HLWYLLDLK and PRG4_GLPNVVTSAISLPNIR, IBP4_Q.CHPALDGQR and PAEP_HLWYLLDLK, and FETUA_FSVVYAK and IBP4_Q.CHPALDGQR, wherein said pair of biomarkers exhibits a change in a reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a biomarker pair selected from the group consisting of ADA12_FGFGGSTDSGPIR and PAEP_HLWYLLDLK, PAEP_HLWYLLDLK and PRG4_GLPNVVTSAISLPNIR, IBP4_Q.CHPALDGQR and PAEP_HLWYLLDLK, and FETUA_FSVVYAK and IBP4_Q.CHPALDGQR, wherein said pair of biomarkers exhibits a change between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a composition comprising a pair of isolated biomarkers consisting of FETUA_HTLNQIDEVK, PRG4_GLPNVVTSAISLPNIR or KNG1_DIPTNSPELEETLTHTITK and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the composition further comprises AACT_EIGELYLPK.


In one embodiment, the present invention provides a composition comprising a pair of isolated biomarkers consisting of FETUA_HTLNQIDEVK, PRG4_GLPNVVTSAISLPNIR or KNG1_DIPTNSPELEETLTHTITK and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the composition further comprises AACT_EIGELYLPK.


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers consisting of FETUA_HTLNQIDEVK, PRG4_GLPNVVTSAISLPNIR or KNG1_DIPTNSPELEETLTHTITK and one of the biomarkers listed in Tables 1-27, to determine the EDD for said pregnant female. In some embodiments, the pregnant female is nulliparous. In additional embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers consisting of FETUA_HTLNQIDEVK, PRG4_GLPNVVTSAISLPNIR or KNG1_DIPTNSPELEETLTHTITK and one of the biomarkers listed in Tables 1-27, to determine the EDD for said pregnant female. In some embodiments the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers consisting of FETUA_HTLNQIDEVK, PRG4_GLPNVVTSAISLPNIR or KNG1_DIPTNSPELEETLTHTITK and one of the biomarkers listed in Tables 1-27, to determine the TTB for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers consisting of FETUA_HTLNQIDEVK, PRG4_GLPNVVTSAISLPNIR or KNG1_DIPTNSPELEETLTHTITK and one of the biomarkers listed in Tables 1-27, to determine the TTB for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a reversal value of a biomarker pair consisting of FETUA_HTLNQIDEVK, PRG4_GLPNVVTSAISLPNIR or KNG1_DIPTNSPELEETLTHTITK and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change in a reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the pregnant female is nulliparous. In additional embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a biomarker pair consisting of FETUA_HTLNQIDEVK, PRG4_GLPNVVTSAISLPNIR or KNG1_DIPTNSPELEETLTHTITK and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the pregnant female is nulliparous. In additional embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers selected from the group consisting of ADA12_FGFGGSTDSGPIR and CRIS3_YEDLYSNCK, CO5_TLLPVSKPEIR and ADA12_FGFGGSTDSGPIR, AFAM_HFQNLGK and AACT_EIGELYLPK, ALS_IRPHTFTGLSGLR and PCD12_AHDADLGINGK, VTNC_GQYCYELDEK and PCD12_AHDADLGINGK, and CRIS3_YEDLYSNCK and TETN_LDTLAQEVALLK, to determine the EDD for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers selected from the group consisting of ADA12_FGFGGSTDSGPIR and CRIS3_YEDLYSNCK, CO5_TLLPVSKPEIR and ADA12_FGFGGSTDSGPIR, AFAM_HFQNLGK and AACT_EIGELYLPK, ALS_IRPHTFTGLSGLR and PCD12_AHDADLGINGK, VTNC_GQYCYELDEK and PCD12_AHDADLGINGK, and CRIS3_YEDLYSNCK and TETN_LDTLAQEVALLK, to determine the EDD for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers selected from the group consisting of ADA12_FGFGGSTDSGPIR and CRIS3_YEDLYSNCK, CO5_TLLPVSKPEIR and ADA12_FGFGGSTDSGPIR, AFAM_HFQNLGK and AACT_EIGELYLPK, ALS_IRPHTFTGLSGLR and PCD12_AHDADLGINGK, VTNC_GQYCYELDEK and PCD12_AHDADLGINGK, and CRIS3_YEDLYSNCK and TETN_LDTLAQEVALLK, to determine the TTB for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers selected from the group consisting of ADA12_FGFGGSTDSGPIR and CRIS3_YEDLYSNCK, CO5_TLLPVSKPEIR and ADA12_FGFGGSTDSGPIR, AFAM_HFQNLGK and AACT_EIGELYLPK, ALS_IRPHTFTGLSGLR and PCD12_AHDADLGINGK, VTNC_GQYCYELDEK and PCD12_AHDADLGINGK, and CRIS3_YEDLYSNCK and TETN_LDTLAQEVALLK, to determine the TTB for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a reversal value of a biomarker pair selected from the group consisting of ADA12_FGFGGSTDSGPIR and CRIS3_YEDLYSNCK, CO5_TLLPVSKPEIR and ADA12_FGFGGSTDSGPIR, AFAM_HFQNLGK and AACT_EIGELYLPK, ALS_IRPHTFTGLSGLR and PCD12_AHDADLGINGK, VTNC_GQYCYELDEK and PCD12_AHDADLGINGK, and CRIS3_YEDLYSNCK and TETN_LDTLAQEVALLK, wherein said pair of biomarkers exhibits a change in a reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a biomarker pair selected from the group consisting of ADA12_FGFGGSTDSGPIR and CRIS3_YEDLYSNCK, CO5_TLLPVSKPEIR and ADA12_FGFGGSTDSGPIR, AFAM_HFQNLGK and AACT_EIGELYLPK, ALS_IRPHTFTGLSGLR and PCD12_AHDADLGINGK, VTNC_GQYCYELDEK and PCD12_AHDADLGINGK, and CRIS3_YEDLYSNCK and TETN_LDTLAQEVALLK, wherein said pair of biomarkers exhibits a change between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a composition comprising a pair of isolated biomarkers consisting of ADA12_FGFGGSTDSGPIR, PCD12_AHDADLGINGK, CD14_LTVGAAQVPAQLLVGALR or CRIS3_YEDLYSNCK and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days.


In one embodiment, the present invention provides a composition comprising a pair of isolated biomarkers consisting of ADA12_FGFGGSTDSGPIR, PCD12_AHDADLGINGK, CD14_LTVGAAQVPAQLLVGALR or CRIS3_YEDLYSNCK and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days.


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers consisting of ADA12_FGFGGSTDSGPIR, PCD12_AHDADLGINGK, CD14_LTVGAAQVPAQLLVGALR or CRIS3_YEDLYSNCK and one of the biomarkers listed in Tables 1-27, to determine the EDD for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers consisting of ADA12_FGFGGSTDSGPIR, PCD12_AHDADLGINGK, CD14_LTVGAAQVPAQLLVGALR or CRIS3_YEDLYSNCK and one of the biomarkers listed in Tables 1-27, to determine the EDD for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers consisting of ADA12_FGFGGSTDSGPIR, PCD12_AHDADLGINGK, CD14_LTVGAAQVPAQLLVGALR or CRIS3_YEDLYSNCK and one of the biomarkers listed in Tables 1-27, to determine the TTB for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers consisting of ADA12_FGFGGSTDSGPIR, PCD12_AHDADLGINGK, CD14_LTVGAAQVPAQLLVGALR or CRIS3_YEDLYSNCK and one of the biomarkers listed in Tables 1-27, to determine the TTB for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a reversal value of a biomarker pair consisting of ADA12_FGFGGSTDSGPIR, PCD12_AHDADLGINGK, CD14_LTVGAAQVPAQLLVGALR or CRIS3_YEDLYSNCK and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change in a reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a biomarker pair consisting of ADA12_FGFGGSTDSGPIR, PCD12_AHDADLGINGK, CD14_LTVGAAQVPAQLLVGALR or CRIS3_YEDLYSNCK and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In additional embodiments, the biological sample is blood and the gestational age at blood draw (GABD) is from 23 0/7 weeks and 28 6/7 weeks. In some embodiments, the method further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers selected from the group consisting of B2MG_VEHSDLSFSK and FGFR1_IGPDNLPYVQILK, GELS_TASDFITK and FGFR1_IGPDNLPYVQILK, LIRB5_KPSLLIPQGSVVAR and FA9_SALVLQYLR, B2MG_VEHSDLSFSK and CHL1_VIAVNEVGR, and CHL1_VIAVNEVGR and IGF2_GIVEECCFR, to determine the EDD for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers selected from the group consisting of B2MG_VEHSDLSFSK and FGFR1_IGPDNLPYVQILK, GELS_TASDFITK and FGFR1_IGPDNLPYVQILK, LIRB5_KPSLLIPQGSVVAR and FA9_SALVLQYLR, B2MG_VEHSDLSFSK and CHL1_VIAVNEVGR, and CHL1_VIAVNEVGR and IGF2_GIVEECCFR, to determine the EDD for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers selected from the group consisting of B2MG_VEHSDLSFSK and FGFR1_IGPDNLPYVQILK, GELS_TASDFITK and FGFR1_IGPDNLPYVQILK, LIRB5_KPSLLIPQGSVVAR and FA9_SALVLQYLR, B2MG_VEHSDLSFSK and CHL1_VIAVNEVGR, and CHL1_VIAVNEVGR and IGF2_GIVEECCFR, to determine the TTB for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers selected from the group consisting of B2MG_VEHSDLSFSK and FGFR1_IGPDNLPYVQILK, GELS_TASDFITK and FGFR1_IGPDNLPYVQILK, LIRB5_KPSLLIPQGSVVAR and FA9_SALVLQYLR, B2MG_VEHSDLSFSK and CHL1_VIAVNEVGR, and CHL1_VIAVNEVGR and IGF2_GIVEECCFR, to determine the TTB for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a reversal value of a biomarker pair selected from the group consisting of B2MG_VEHSDLSFSK and FGFR1_IGPDNLPYVQILK, GELS_TASDFITK and FGFR1_IGPDNLPYVQILK, LIRB5_KPSLLIPQGSVVAR and FA9_SALVLQYLR, B2MG_VEHSDLSFSK and CHL1_VIAVNEVGR, and CHL1_VIAVNEVGR and IGF2_GIVEECCFR, wherein said pair of biomarkers exhibits a change in a reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, the method further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a biomarker pair selected from the group consisting of B2MG_VEHSDLSFSK and FGFR1_IGPDNLPYVQILK, GELS_TASDFITK and FGFR1_IGPDNLPYVQILK, LIRB5_KPSLLIPQGSVVAR and FA9_SALVLQYLR, B2MG_VEHSDLSFSK and CHL1_VIAVNEVGR, and CHL1_VIAVNEVGR and IGF2_GIVEECCFR, wherein said pair of biomarkers exhibits a change between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, the method further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a composition comprising a pair of isolated biomarkers consisting of CHL1_VIAVNEVGR, FGFR1_IGPDNLPYVQILK or FA9_FGSGYVSGWGR and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days.


In one embodiment, the present invention provides a composition comprising a pair of isolated biomarkers consisting of CHL1_VIAVNEVGR, FGFR1_IGPDNLPYVQILK or FA9_FGSGYVSGWGR and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days.


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers consisting of CHL1_VIAVNEVGR, FGFR1_IGPDNLPYVQILK or FA9_FGSGYVSGWGR and one of the biomarkers listed in Tables 1-27, to determine the EDD for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers consisting of CRL1_VIAVNEVGR, FGFR1_IGPDNLPYVQILK or FA9_FGSGYVSGWGR and one of the biomarkers listed in Tables 1-27, to determine the EDD for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers consisting of CRL1_VIAVNEVGR, FGFR1_IGPDNLPYVQILK or FA9_FGSGYVSGWGR and one of the biomarkers listed in Tables 1-27, to determine the TTB for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers consisting of CRL1_VIAVNEVGR, FGFR1_IGPDNLPYVQILK or FA9_FGSGYVSGWGR and one of the biomarkers listed in Tables 1-27, to determine the TTB for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a reversal value of a biomarker pair consisting of CRL1_VIAVNEVGR, FGFR1_IGPDNLPYVQILK or FA9_FGSGYVSGWGR and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change in a reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, the method further comprises calculation of Inverse Parity as 1/(Parity 0.5).


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a biomarker pair consisting of CHL1_VIAVNEVGR, FGFR1_IGPDNLPYVQILK or FA9_FGSGYVSGWGR and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, method further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a composition comprising a pair of isolated biomarkers selected from the group consisting of the biomarker pairs listed in Tables 1-27, wherein said pair of biomarkers exhibits a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the composition comprises AACT_EIGELYLPK.


In one embodiment, the present invention provides a composition comprising two or more pairs of isolated biomarkers selected from the group consisting of the biomarker pairs listed in Tables 1-27, wherein said pairs of biomarkers exhibit a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the composition comprises AACT_EIGELYLPK.


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a biomarker pair selected from the group consisting of the biomarker pairs listed in Tables 1-27 to determine the EDD for said pregnant female.


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for two or more biomarker pairs selected from the group consisting of the biomarker pairs listed in Tables 1-27 to determine the EDD for said pregnant female.


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in reversal value of a biomarker pair selected from the group consisting of the biomarker pairs listed in Tables 1-27, wherein said pair of biomarkers exhibits a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days.


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in reversal value of two or more biomarker pairs selected from the group consisting of the biomarker pairs listed in Tables 1-27, wherein said pair of biomarkers exhibit a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days.


In one embodiment, the present invention further provides a method for prediction of gestational age at birth (GAB).


In a further embodiment, the present invention provides a method for estimating gestational age (GA).


In one embodiment, the present invention further provides a method for prediction of time to birth (TTB).


In some of the embodiments, the methods have an accuracy of 60% or more for predicting the EDD within plus or minus 5 days of the actual due date (DD).


In additional embodiments, the methods comprise measuring AACT_EIGELYLPK.


In additional embodiments, the methods comprise calculation of Inverse Parity as 1/(Parity−0.5).


In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks.


In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks.


In some embodiments, the measuring comprises mass spectrometry (MS). In one embodiment, the measuring further comprises measuring surrogate peptides of said biomarkers in the biological sample obtained from said pregnant female. In one embodiment, the measuring of surrogate peptides of said biomarkers further comprises measuring stable isotope labeled standard peptides (SIS peptides) for each of the surrogate peptides.


In some embodiments, the biological sample is selected from the group consisting of whole blood, plasma, and serum. In one embodiment, the biological sample is serum.


In some embodiments, the measuring comprises an assay that utilizes a capture agent. In one embodiment, the measuring comprises an assay that utilizes a capture agent selected from the group consisting of and antibody, antibody fragment, nucleic acid-based protein binding reagent, small molecule or variant thereof. In one embodiment, the measuring comprises an assay selected from the group consisting of enzyme immunoassay (EIA), enzyme-linked immunosorbent assay (ELISA), and radioimmunoassay (RIA).


Other features and advantages of the invention will be apparent from the detailed description, and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1. Kinetic plot of the protein ratio of CATD/TENX over the a Gestational Age at Blood Draw (GABD) window of 140 to 153 shows an AUC of 82% in separating those subjects that gave birth significantly earlier (i.e. before 270 days) than the population average of 280 days.



FIG. 2 depicts a conditional inference tree for the prediction of a subject TTB's difference from the median TTB.





DETAILED DESCRIPTION

The present disclosure is based, generally, on the discovery that certain proteins and peptides in biological samples obtained from a pregnant female are differentially expressed in pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. The present disclosure is further based, generally, on the discovery that certain proteins and peptides in biological samples obtained from a pregnant female are differentially expressed in pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days.


The present disclosure is further specifically based, in part, on the unexpected discovery that pairs of biomarkers disclosed herein can be utilized in methods of estimating the due date of a pregnant female, subsequently referred to as the Estimated Due Date (EDD) and/or estimating time to birth (TTB). The present disclosure is further specifically based, in part, on the unexpected discovery that pairs of biomarkers disclosed herein can be utilized in methods of estimating the due date of a pregnant female, subsequently referred to as the EDD. Furthermore, each of the proteins, peptides and clinical variables disclosed herein as components of pairs, ratios and/or reversal pairs serve as biomarkers for determining the EDD, predicting gestational age at birth (GAB), predicting time to birth (TTB), estimating gestational age (GA) either individually, in ratios, reversal pairs or in panels of biomarkers/reversal pairs. Furthermore, the compositions and methods described herein comprise each of the proteins corresponding to the peptide biomarkers disclosed herein can serve as a component of pairs, ratios and/or reversal pairs for determining the EDD, predicting gestational age at birth (GAB), predicting time to birth (TTB), estimating gestational age (GA) either individually, in ratios, reversal pairs or in panels of biomarkers/reversal pairs. In addition, the compositions and methods described herein comprise surrogate peptides for each of the proteins corresponding to the peptide biomarkers disclosed herein can serve as a component of pairs, ratios and/or reversal pairs for determining the EDD, predicting gestational age at birth (GAB), predicting time to birth (TTB), estimating gestational age (GA), either individually, in ratios, reversal pairs or in panels of biomarkers/reversal pairs.


The present disclosure is further specifically based, in part, on the unexpected discovery that pairs of biomarkers disclosed herein can be utilized in methods of estimating the time to birth of a pregnant female, subsequently referred to as the Time To Birth (TTB). The present disclosure is further specifically based, in part, on the unexpected discovery that reversal values of pairs of biomarkers disclosed herein can be utilized in methods of estimating the due date of a pregnant female, subsequently referred to as TTB.


The present invention provides an improved process that applies the aforementioned discoveries to enable a new and useful process for estimating the due date of a pregnant female, subsequently referred to as the Estimated Due Date (EDD) and/or estimating time to birth (TTB) with much higher accuracy than currently practiced clinical methods.


The concepts of EDD and TTB are directly related and a skilled person can adjust the methods used to determine EDD to determine TTB and vice versa. Accordingly, the terms estimated due date (EDD) and time to birth (TTB) are used interchangeably in the context of predictors for DD. The EDD can be used to predict TTB and vice-versa. Explicitly, if the estimated gestational age of a pregnancy is X at the time of blood draw then TTB can be estimated from EDD as follows: TTB=EDD−X. And DD can be estimated from a TTB predictor as follows: EDD=X+TTB, where the units used are days.


The proteins and peptides disclosed herein as components of pairs, ratios and/or reversal pairs serve as biomarkers for determining the EDD, predicting gestational age at birth (GAB), predicting time to birth (TTB), either individually, in ratios, reversal pairs or in panels of biomarkers/reversal pairs.


A reversal value is the ratio of the relative peak area of an up regulated biomarker over the relative peak area of a down regulated biomarker and serves to both normalize variability and amplify diagnostic signal. The invention lies, in part, in the selection of particular biomarkers that, when paired together, can accurately determine the EDD and/or TTB based on pairs of biomarkers. Accordingly, it is human ingenuity in selecting the specific biomarkers that are informative upon being paired, for example, in novel reversals that underlies the present invention.


The disclosure provides biomarker reversal pairs and associated panels of reversal pairs, methods and kits for determining the EDD and/or TTB in a pregnant female.


In addition to the specific biomarkers identified in this disclosure, for example, by name, sequence, or reference, the invention also contemplates use of biomarker variants that are at least 90% or at least 95% or at least 97% identical to the exemplified sequences and that are now known or later discovered and that have utility for the methods of the invention. These variants may represent polymorphisms, splice variants, mutations, and the like. In this regard, the instant specification discloses multiple art-known proteins in the context of the invention and provides exemplary peptide sequences that can be used to identify these proteins. However, those skilled in the art appreciate that additional sequences or other information can easily be identified that can provide additional characteristics of the disclosed biomarkers and that the exemplified references are in no way limiting with regard to the disclosed biomarkers.


As described herein, various techniques and reagents find use in the methods of the present invention. Suitable samples in the context of the present invention include, for example, blood, plasma, serum, amniotic fluid, vaginal secretions, saliva, and urine. In some embodiments, the biological sample is selected from the group consisting of whole blood, plasma, and serum. In a particular embodiment, the biological sample is serum. As described herein, biomarkers can be detected through a variety of assays and techniques known in the art. As further described herein, such assays include, without limitation, mass spectrometry (MS)-based assays, antibody-based assays as well as assays that combine aspects of the two.


Protein biomarkers that are components of reversal pairs described herein include, for example, Cathepsin D (CATD) and Tenascin X (TENX).


In some embodiments, the invention provides a method of determining the EDD for a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a reversal value for the biomarkers CATD and TENX.


In some embodiments, the invention provides a method of determining the EDD for a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a reversal value for one pair of biomarkers consisting of CATD/TENX to determine the EDD for said pregnant female.


The invention methods also contemplate measuring surrogate peptides of the biomarkers CATD and TENX. The biomarkers of the invention, their surrogate peptides and the corresponding stable isotope labeled standard peptides (SIS peptides) can be used in methods of determining the EDD for a pregnant female. In some embodiments, the SIS peptides correspond to surrogate peptides of the isolated biomarkers selected from the group consisting of CATD and TENX.


In some embodiments, the invention provides a pair of isolated biomarkers CATD/TENX, wherein the pair of biomarkers exhibits a higher ratio in pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days.


In one embodiment, the present invention provides a composition comprising a pair of isolated biomarkers selected from the group consisting of the biomarker pairs listed in Table 1, wherein said pair of biomarkers exhibits a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days.


In one embodiment, the present invention provides a pair of surrogate peptides of a pair of biomarkers selected from the group consisting of the biomarker pairs listed in Tables 1-27, wherein said pair of biomarkers exhibits a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In one embodiment, the present invention further provides stable isotope labeled standard peptides (SIS peptides) corresponding to each of the surrogate peptides.


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers selected from the group consisting of the biomarker pairs listed in Tables 1-27 to determine the EDD for said pregnant female.


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for two or more biomarker pairs selected from the group consisting of the biomarker pairs listed in Tables 1-27 to determine the EDD for said pregnant female.


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in reversal value for a pair of biomarkers selected from the group consisting of the biomarker pairs listed in Tables 1-27, wherein said pair of biomarkers exhibits a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days.


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in reversal value of two or more biomarker pairs selected from the group consisting of biomarker pairs listed in Tables 1-27, wherein said pair of biomarkers exhibits a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days.


In some embodiments, the sample is obtained between 18 and 21 weeks of GABD. In further embodiments, the sample is obtained between 23 and 28 weeks of GABD. In some embodiments, the sample is obtained between 18 and 28 weeks of GABD. In some embodiments, the sample is obtained between 18 and 36 weeks of GABD. In further embodiments the sample is obtained between 19 and 21 weeks of GABD. In some embodiments, the sample is obtained between 20 and 22 weeks of GABD. In some embodiments, the sample is obtained between 21 and 23 weeks of GABD. In further embodiments, the sample is obtained between 22 and 24 weeks of GABD. In additional embodiments, the sample is obtained between 23 and 25 weeks of GABD. In some embodiments, the sample is obtained between 24 and 26 weeks of GABD. In further embodiments, the sample is obtained between 25 and 27 weeks of GABD. In additional embodiments, the sample is obtained between 26 and 28 weeks of GABD. In some embodiments, the sample is obtained between 27 and 29 weeks of GABD. In further embodiments, the sample is obtained between 28 and 30 weeks of GABD. In additional embodiments, the sample is obtained between 29 and 31 weeks of GABD. In some embodiments, the sample is obtained between 30 and 32 weeks of GABD. In further embodiments, the sample is obtained between 31 and 33 weeks of GABD. In additional embodiments, the sample is obtained between 32 and 34 weeks of GABD. In some embodiments, the sample is obtained between 33 and 35 weeks of GABD. In further embodiments, the sample is obtained between 34 and 36 weeks of GABD. In additional embodiments, the sample is obtained between 18 and 21 weeks of GABD.


In addition to the specific biomarkers, the disclosure further includes biomarker variants that are about 90%, about 95%, or about 97% identical to the exemplified sequences. Variants, as used herein, include polymorphisms, splice variants, mutations, and the like. Although described with reference to protein biomarkers, changes in reversal value can be identified in protein or gene expression levels for pairs of biomarkers.


The compositions and methods of the invention also can include clinical variables, including but not limited to, maternal characteristics, medical history, past pregnancy history, and obstetrical history. Such additional clinical variables can include, for example, previous low birth weight or preterm delivery, multiple 2nd trimester spontaneous abortions, prior first trimester induced abortion, familial and intergenerational factors, history of infertility, parity, nulliparity, placental abnormalities, cervical and uterine anomalies, short cervical length measurements, gestational bleeding, intrauterine growth restriction, in utero diethylstilbestrol exposure, multiple gestations, infant sex, short stature, low prepregnancy weight, low or high body mass index, diabetes, diabetes mellitus, chronic diabetes, chronic diabetes mellitus, chronic hypertension, urogenital infections (i.e. urinary tract infection), asthma, anxiety and depression, asthma, hypertension, hypothyroidism, high body mass index (BMI), low BMI, BMI. Demographic risk indicia for preterm birth can include, for example, maternal age, race/ethnicity, single marital status, low socioeconomic status, maternal age, employment-related physical activity, occupational exposures and environment exposures and stress. Further clinical variables can include, inadequate prenatal care, cigarette smoking, use of marijuana and other illicit drugs, cocaine use, alcohol consumption, caffeine intake, maternal weight gain, dietary intake, sexual activity during late pregnancy and leisure-time physical activities. (Preterm Birth: Causes, Consequences, and Prevention, Institute of Medicine (US) Committee on Understanding Premature Birth and Assuring Healthy Outcomes; Behrman R E, Butler A S, editors. Washington (DC): National Academies Press (US); 2007). Additional clinical variables useful for as markers can be identified using learning algorithms known in the art, such as linear discriminant analysis, support vector machine classification, recursive feature elimination, prediction analysis of microarray, logistic regression, CART, FlexTree, LART, random forest, MART, and/or survival analysis regression, which are known to those of skill in the art and are further described herein.


The present disclosure describes and exemplifies various models and corresponding biomarkers that perform at high levels of accuracy and precision in predicting the actual due date. It will be understood by those of skill in the art, that other models are known in the art that can be used to practice the claimed inventions and that the performance of a model can be evaluated in a variety of ways, including, but not limited to accuracy, precision, recall/sensitivity, weighted average of precision and recall. Models known in the art include, without limitation, linear discriminant analysis, support vector machine classification, recursive feature elimination, prediction analysis of microarray, logistic regression, CART, FlexTree, LART, random forest, MART, and/or survival analysis regression.


In some embodiments, performance of a model can be evaluated based on accuracy, which can be described as the difference between the EDD and the actual due date. For example, accuracy can be expressed as the percentage of time, for example, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 80% or more that a model provides an EDD that falls within a certain range of days, for example, +/−10 days, +/−9 days, +/−8 days, +/−7 days, +/−6 days, +/−5 days, +/−4 days, +/−3 days +/−2 days, +/−1 day of the actual due date. In one embodiment, accuracy can be described by noting that the EDD or TTB predictor is accurate to within +/−5 days of the actual DD or TTB for a term pregnancy at least 60% of the time.


The present disclosure is based in part on the surprising discovery that the selection of certain biomarkers and/or clinical variables enables determining EDD and/or TTB at a significantly higher level of accuracy and precision compared to current clinical practice, which is accurate in making a due date prediction that falls within +/−5 days of the actual due date only about 35% of the time. In contrast, the present invention provides and exemplifies compositions and methods that enable a prediction time to birth or due date that falls within plus or minus five days of the actual time to birth or due date about 60% of the time.


It must be noted that, as used in this specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to “a biomarker” includes a mixture of two or more biomarkers, and the like.


The term “about,” particularly in reference to a given quantity, is meant to encompass deviations of plus or minus five percent.


As used in this application, including the appended claims, the singular forms “a,” “an,” and “the” include plural references, unless the content clearly dictates otherwise, and are used interchangeably with “at least one” and “one or more.”


As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “contains,” “containing,” and any variations thereof, are intended to cover a non-exclusive inclusion, such that a process, method, product-by-process, or composition of matter that comprises, includes, or contains an element or list of elements does not include only those elements but can include other elements not expressly listed or inherent to such process, method, product-by-process, or composition of matter.


As used herein, the term “panel” refers to a composition, such as an array or a collection, comprising one or more biomarkers. The term can also refer to a profile or index of expression patterns of one or more biomarkers described herein. The number of biomarkers useful for a biomarker panel is based on the sensitivity and specificity value for the particular combination of biomarker values.


As used herein, and unless otherwise specified, the terms “isolated” and “purified” generally describes a composition of matter that has been removed from its native environment (e.g., the natural environment if it is naturally occurring), and thus is altered by the hand of man from its natural state so as to possess markedly different characteristics with regard to at least one of structure, function and properties. An isolated protein or nucleic acid is distinct from the way it exists in nature and includes synthetic peptides and proteins.


The term “biomarker” refers to a biological molecule, a fragment of a biological molecule, or a clinical variable the change and/or the detection of which can be correlated with a particular physical condition or state. The terms “marker” and “biomarker” are used interchangeably throughout the disclosure. For example, the biomarkers of the present invention are associated with a discrimination power between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. Such biomarkers include any suitable analyte, but are not limited to, biological molecules comprising nucleotides, nucleic acids, nucleosides, amino acids, sugars, fatty acids, steroids, metabolites, peptides, polypeptides, proteins, carbohydrates, lipids, hormones, antibodies, regions of interest that serve as surrogates for biological macromolecules and combinations thereof (e.g., glycoproteins, ribonucleoproteins, lipoproteins). The term also encompasses portions or fragments of a biological molecule, for example, peptide fragment of a protein or polypeptide that comprises at least 5 consecutive amino acid residues, at least 6 consecutive amino acid residues, at least 7 consecutive amino acid residues, at least 8 consecutive amino acid residues, at least 9 consecutive amino acid residues, at least 10 consecutive amino acid residues, at least 11 consecutive amino acid residues, at least 12 consecutive amino acid residues, at least 13 consecutive amino acid residues, at least 14 consecutive amino acid residues, at least 15 consecutive amino acid residues, at least 5 consecutive amino acid residues, at least 16 consecutive amino acid residues, at least 17 consecutive amino acid residues, at least 18 consecutive amino acid residues, at least 19 consecutive amino acid residues, at least 20 consecutive amino acid residues, at least 21 consecutive amino acid residues, at least 22 consecutive amino acid residues, at least 23 consecutive amino acid residues, at least 24 consecutive amino acid residues, at least 25 consecutive amino acid residues, or more consecutive amino acid residues.


As used herein, the term “surrogate peptide” refers to a peptide that is selected to serve as a surrogate for quantification of a biomarker of interest in an MRM assay configuration. Quantification of surrogate peptides is best achieved using stable isotope labeled standard surrogate peptides (“SIS surrogate peptides” or “SIS peptides”) in conjunction with the MRM detection technique. A surrogate peptide can be synthetic. An SIS surrogate peptide can be synthesized with heavy labeled for example, with an Arginine or Lysine, or any other amino acid at the C-terminus of the peptide to serve as an internal standard in the MRM assay. An SIS surrogate peptide is not a naturally occurring peptide and has markedly different structure and properties compared to its naturally occurring counterpart. For any of the embodiments described herein, the biomarkers can be quantified by measuring surrogate peptides.


In some embodiments, the invention provides a method of separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring in a biological sample obtained from the pregnant female a ratio for at least a pair of biomarkers consisting of CATD/TENX to determine the EDD for said pregnant female, wherein a higher ratio indicates a greater likelihood of delivery before 270 days.


In some embodiments, the invention provides a method of separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring in a biological sample obtained from the pregnant female a ratio for at least a pair of biomarkers consisting of CATD/TENX to determine the EDD for said pregnant female, wherein a lower ratio indicates a greater likelihood of delivery on or after 280 days.


The term “clock protein” as used herein, refers to biomarkers that provide information on the due date of a pregnant subject, the state of development and/or age of a fetus or the progress through pregnancy. There are a number of important ways that these biomarkers can be advantageously used in assessing development including, for example, (1) for the prediction of gestational age at birth or time to birth (TTB) from the moment the blood is drawn to deliver and (2) for prediction of the gestational age at the time blood is drawn. In addition, clock proteins can serve to normalize component peptides in signatures to improve predictive performance or to select appropriate biomarkers and/or classifiers.


As used herein, the term “reversal” refers to the ratio of the measured value of an upregulated analyte over that of a down-regulated analyte. In some embodiments, the analyte value is itself a ratio of the peak area of the endogenous analyte over that of the peak area of the corresponding stable isotopic standard analyte, referred to herein as: response ratio or relative ratio.


As used herein, the term “reversal pair” refers to biomarkers in pairs that exhibit a change in value between the classes being compared. The detection of reversals in protein concentrations or gene expression levels eliminates the need for data normalization or the establishment of population-wide thresholds. Encompassed within the definition of any reversal pair is the corresponding reversal pair wherein individual biomarkers are switched between the numerator and denominator. One skilled in the art will appreciate that such a corresponding reversal pair is equally informative with regard to its predictive power.


The term “reversal value” refers to the ratio of the relative peak areas corresponding to the abundance of two analytes and serves to both normalize variability and amplify diagnostic signal. In some embodiments, a reversal value refers to the ratio of the relative peak area of an up-regulated (interchangeably referred to as “over-abundant,” up-regulation as used herein simply refers to an observation of relative abundance) analyte over the relative peak area of a down-regulated analyte (interchangeably referred to as “under-abundant,” down-regulation as used herein simply refers to an observation of relative abundance). In some embodiments, a reversal value refers to the ratio of the relative peak area of an up-regulated analyte over the relative peak area of a up-regulated analyte, where one analyte differs in the degree of up-regulation relative the other analyte. In some embodiments, a reversal value refers to the ratio of the relative peak area of a down-regulated analyte over the relative peak area of a down-regulated analyte, where one analyte differs in the degree of down-regulation relative the other analyte.


One advantageous aspect of a reversal is the presence of complementary information in the two analytes, so that the combination of the two is more diagnostic of the condition of interest than either one alone. Preferably the combination of the two analytes increases signal-to-noise ratio by compensating for biomedical conditions not of interest, pre-analytic variability and/or analytic variability. Out of all the possible reversals within a narrow window, a subset can be selected based on individual univariate performance. Additionally, a subset can be selected based on bivariate or multivariate performance in a training set, with testing on held-out data or on bootstrap iterations. For example, logistic or linear regression models can be trained, optionally with parameter shrinkage by L1 or L2 or other penalties, and tested in leave-one-out, leave-pair-out or leave-fold-out cross-validation, or in bootstrap sampling with replacement, or in a held-out data set. In some embodiments, the analyte value is itself a ratio of the peak area of the endogenous analyte over that of the peak area of the corresponding stable isotopic standard analyte, referred to herein as: response ratio or relative ratio. As disclosed herein, the ratio of the relative peak areas corresponding to the abundance of two analytes, for example, the ratio of the relative peak area of an up-regulated biomarker over the relative peak area of a down-regulated biomarker, referred herein as a reversal value, can be used to identify robust and accurate classifiers and predict EDD, GAB, and/or predicting time to birth (TTB). Use of a ratio of biomarkers in the methods disclosed herein corrects for variability that is the result of human manipulation after the removal of the biological sample from the pregnant female. Such variability can be introduced, for example, during sample collection, processing, depletion, digestion or any other step of the methods used to measure the biomarkers present in a sample and is independent of how the biomarkers behave in nature. Accordingly, the invention generally encompasses the use of a reversal pair in a method of diagnosis or prognosis to reduce variability and/or amplify, normalize or clarify diagnostic signal.


While the term reversal value refers to the ratio of the relative peak area of an up regulated analyte over the relative peak area of a down regulated analyte and serves to both normalize variability and amplify diagnostic signal, it is also contemplated that a pair of biomarkers of the invention could be measured by any other means, for example, by subtraction, addition or multiplication of relative peak areas. The methods disclosed herein encompass the measurement of biomarker pairs by such other means.


This method is advantageous because it provides the simplest possible classifier that is independent of data normalization, helps to avoid overfitting, and results in a very simple experimental test that is easy to implement in the clinic. The use of marker pairs based on changes in reversal values that are independent of data normalization enabled the development of the clinically relevant biomarkers disclosed herein. Because quantification of any single protein is subject to uncertainties caused by measurement variability, normal fluctuations, and individual related variation in baseline expression, identification of pairs of markers that may be under coordinated, systematic regulation enables robust methods for individualized diagnosis and prognosis.


While the specification discloses embodiments directed to measuring the particular pairs of biomarkers disclosed in Tables 1-27, the invention is not restricted to the particular pairs recited in Tables 1-27 and individual biomarkers disclosed herein as well as any pair or panel of the individual biomarkers is also encompassed by the present invention, as are methods comprising one or more pairs of biomarkers.


In one embodiment, the present invention provides a composition comprising a pair of isolated biomarkers consisting of cathepsin D (CATD) and tenascin X (TENX), wherein said pair of biomarkers exhibits a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days.


In one embodiment, the present invention provides a pair of surrogate peptides of a pair of biomarkers selected from the group consisting of CATD and TENX, wherein said pair of biomarkers exhibits a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In one embodiment, the present invention further provides stable isotope labeled standard peptides (SIS peptides) corresponding to each of the surrogate peptides.


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers consisting of CATD and TENX to determine the EDD for said pregnant female.


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in reversal value of a biomarker pair consisting of CATD and TENX, wherein said pair of biomarkers exhibits a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days.


In one embodiment, the present invention further provides a method for prediction of gestational age at birth (GAB).


In a further embodiment, the present invention further provides a method for prediction of time to birth (TTB).


The present invention further contemplates that the methods and compositions can encompass changes in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver, for example, on or after 280 days; before 260 days relative to pregnant females that deliver on or after 270 days; before 250 days relative to pregnant females that deliver on or after 260 days; before 240 days relative to pregnant females that deliver on or after 250 days; before 230 days relative to pregnant females that deliver on or after 240 days. One skilled in the art will be able to select additional time windows, time windows with different cut-offs as well as time windows with different gaps, for example, 5 days, 15 days or 20 days. All of these variations are contemplated by the invention disclosed herein.


In one embodiment, the present invention provides a composition comprising a pair of isolated biomarkers selected from the group consisting of ADA12_FGFGGSTDSGPIR and PAEP_HLWYLLDLK, PAEP_HLWYLLDLK and PRG4_GLPNVVTSAISLPNIR, IBP4_Q.CHPALDGQR and PAEP_HLWYLLDLK, FETUA_FSVVYAK and IBP4_Q.CHPALDGQR, ADA12_FGFGGSTDSGPIR and CRIS3_YEDLYSNCK, CO5_TLLPVSKPEIR and ADA12_FGFGGSTDSGPIR, AFAM_HFQNLGK and AACT_EIGELYLPK, ALS_IRPHTFTGLSGLR and PCD12_AHDADLGINGK, VTNC_GQYCYELDEK and PCD12_AHDADLGINGK, CRIS3_YEDLYSNCK and TETN_LDTLAQEVALLK, B2MG_VEHSDLSFSK and FGFR1_IGPDNLPYVQILK, GELS_TASDFITK and FGFR1_IGPDNLPYVQILK, LIRB5_KPSLLIPQGSVVAR and FA9_SALVLQYLR, B2MG_VEHSDLSFSK and CHL1_VIAVNEVGR, and CHL1_VIAVNEVGR and IGF2_GIVEECCFR, wherein said pair of biomarkers exhibits a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the composition further comprises AACT_EIGELYLPK.


In one embodiment, the present invention provides a composition comprising a pair of isolated biomarkers selected from the group consisting of ADA12_FGFGGSTDSGPIR and PAEP_HLWYLLDLK, PAEP_HLWYLLDLK and PRG4_GLPNVVTSAISLPNIR, IBP4_Q.CHPALDGQR and PAEP_HLWYLLDLK, FETUA_FSVVYAK and IBP4_Q.CHPALDGQR, ADA12_FGFGGSTDSGPIR and CRIS3_YEDLYSNCK, CO5_TLLPVSKPEIR and ADA12_FGFGGSTDSGPIR, AFAM_HFQNLGK and AACT_EIGELYLPK, ALS_IRPHTFTGLSGLR and PCD12_AHDADLGINGK, VTNC_GQYCYELDEK and PCD12_AHDADLGINGK, CRIS3_YEDLYSNCK and TETN_LDTLAQEVALLK, B2MG_VEHSDLSFSK and FGFR1_IGPDNLPYVQILK, GELS_TASDFITK and FGFR1_IGPDNLPYVQILK, LIRB5_KPSLLIPQGSVVAR and FA9_SALVLQYLR, B2MG_VEHSDLSFSK and CHL1_VIAVNEVGR, and CHL1_VIAVNEVGR and IGF2_GIVEECCFR, wherein said pair of biomarkers exhibits a change between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the composition further comprises AACT_EIGELYLPK.


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers selected from the group consisting of ADA12_FGFGGSTDSGPIR and PAEP_HLWYLLDLK, PAEP_HLWYLLDLK and PRG4_GLPNVVTSAISLPNIR, IBP4_Q.CHPALDGQR and PAEP_HLWYLLDLK, and FETUA_FSVVYAK and IBP4_Q.CHPALDGQR, to determine the EDD for said pregnant female. In some embodiments, the pregnant female is nulliparous. In additional embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers selected from the group consisting of ADA12_FGFGGSTDSGPIR and PAEP_HLWYLLDLK, PAEP_HLWYLLDLK and PRG4_GLPNVVTSAISLPNIR, IBP4_Q.CHPALDGQR and PAEP_HLWYLLDLK, and FETUA_FSVVYAK and IBP4_Q.CHPALDGQR, to determine the EDD for said pregnant female. In some embodiments, the pregnant female is nulliparous. In additional embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers selected from the group consisting of ADA12_FGFGGSTDSGPIR and PAEP_HLWYLLDLK, PAEP_HLWYLLDLK and PRG4_GLPNVVTSAISLPNIR, IBP4_Q.CHPALDGQR and PAEP_HLWYLLDLK, and FETUA_FSVVYAK and IBP4_Q.CHPALDGQR, to determine the TTB for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers selected from the group consisting of ADA12_FGFGGSTDSGPIR and PAEP_HLWYLLDLK, PAEP_HLWYLLDLK and PRG4_GLPNVVTSAISLPNIR, IBP4_Q.CHPALDGQR and PAEP_HLWYLLDLK, and FETUA_FSVVYAK and IBP4_Q.CHPALDGQR, to determine the TTB for said pregnant female. In some embodiments, the pregnant female is nulliparous. In additional embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a reversal value of a biomarker pair selected from the group consisting of ADA12_FGFGGSTDSGPIR and PAEP_HLWYLLDLK, PAEP_HLWYLLDLK and PRG4_GLPNVVTSAISLPNIR, IBP4_Q.CHPALDGQR and PAEP_HLWYLLDLK, and FETUA_FSVVYAK and IBP4_Q.CHPALDGQR, wherein said pair of biomarkers exhibits a change in a reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a biomarker pair selected from the group consisting of ADA12_FGFGGSTDSGPIR and PAEP_HLWYLLDLK, PAEP_HLWYLLDLK and PRG4_GLPNVVTSAISLPNIR, IBP4_Q.CHPALDGQR and PAEP_HLWYLLDLK, and FETUA_FSVVYAK and IBP4_Q.CHPALDGQR, wherein said pair of biomarkers exhibits a change between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a composition comprising a pair of isolated biomarkers consisting of FETUA_HTLNQIDEVK, PRG4_GLPNVVTSAISLPNIR or KNG1_DIPTNSPELEETLTHTITK and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the composition further comprises AACT_EIGELYLPK.


In one embodiment, the present invention provides a composition comprising a pair of isolated biomarkers consisting of FETUA_HTLNQIDEVK, PRG4_GLPNVVTSAISLPNIR or KNG1_DIPTNSPELEETLTHTITK and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the composition further comprises AACT_EIGELYLPK.


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers consisting of FETUA_HTLNQIDEVK, PRG4_GLPNVVTSAISLPNIR or KNG1_DIPTNSPELEETLTHTITK and one of the biomarkers listed in Tables 1-27, to determine the EDD for said pregnant female. In some embodiments, the pregnant female is nulliparous. In additional embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers consisting of FETUA_HTLNQIDEVK, PRG4_GLPNVVTSAISLPNIR or KNG1_DIPTNSPELEETLTHTITK and one of the biomarkers listed in Tables 1-27, to determine the EDD for said pregnant female. In some embodiments the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers consisting of FETUA_HTLNQIDEVK, PRG4_GLPNVVTSAISLPNIR or KNG1_DIPTNSPELEETLTHTITK and one of the biomarkers listed in Tables 1-27, to determine the TTB for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers consisting of FETUA_HTLNQIDEVK, PRG4_GLPNVVTSAISLPNIR or KNG1_DIPTNSPELEETLTHTITK and one of the biomarkers listed in Tables 1-27, to determine the TTB for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a reversal value of a biomarker pair consisting of FETUA_HTLNQIDEVK, PRG4_GLPNVVTSAISLPNIR or KNG1_DIPTNSPELEETLTHTITK and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change in a reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the pregnant female is nulliparous. In additional embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a biomarker pair consisting of FETUA_HTLNQIDEVK, PRG4_GLPNVVTSAISLPNIR or KNG1_DIPTNSPELEETLTHTITK and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the pregnant female is nulliparous. In additional embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises measuring AACT_EIGELYLPK.


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers selected from the group consisting of ADA12_FGFGGSTDSGPIR and CRIS3_YEDLYSNCK, CO5_TLLPVSKPEIR and ADA12_FGFGGSTDSGPIR, AFAM_HFQNLGK and AACT_EIGELYLPK, ALS_IRPHTFTGLSGLR and PCD12_AHDADLGINGK, VTNC_GQYCYELDEK and PCD12_AHDADLGINGK, and CRIS3_YEDLYSNCK and TETN_LDTLAQEVALLK, to determine the EDD for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers selected from the group consisting of ADA12_FGFGGSTDSGPIR and CRIS3_YEDLYSNCK, CO5_TLLPVSKPEIR and ADA12_FGFGGSTDSGPIR, AFAM_HFQNLGK and AACT_EIGELYLPK, ALS_IRPHTFTGLSGLR and PCD12_AHDADLGINGK, VTNC_GQYCYELDEK and PCD12_AHDADLGINGK, and CRIS3_YEDLYSNCK and TETN_LDTLAQEVALLK, to determine the EDD for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers selected from the group consisting of ADA12_FGFGGSTDSGPIR and CRIS3_YEDLYSNCK, CO5_TLLPVSKPEIR and ADA12_FGFGGSTDSGPIR, AFAM_HFQNLGK and AACT_EIGELYLPK, ALS_IRPHTFTGLSGLR and PCD12_AHDADLGINGK, VTNC_GQYCYELDEK and PCD12_AHDADLGINGK, and CRIS3_YEDLYSNCK and TETN_LDTLAQEVALLK, to determine the TTB for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers selected from the group consisting of ADA12_FGFGGSTDSGPIR and CRIS3_YEDLYSNCK, CO5_TLLPVSKPEIR and ADA12_FGFGGSTDSGPIR, AFAM_HFQNLGK and AACT_EIGELYLPK, ALS_IRPHTFTGLSGLR and PCD12_AHDADLGINGK, VTNC_GQYCYELDEK and PCD12_AHDADLGINGK, and CRIS3_YEDLYSNCK and TETN_LDTLAQEVALLK, to determine the TTB for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a reversal value of a biomarker pair selected from the group consisting of ADA12_FGFGGSTDSGPIR and CRIS3_YEDLYSNCK, CO5_TLLPVSKPEIR and ADA12_FGFGGSTDSGPIR, AFAM_HFQNLGK and AACT_EIGELYLPK, ALS_IRPHTFTGLSGLR and PCD12_AHDADLGINGK, VTNC_GQYCYELDEK and PCD12_AHDADLGINGK, and CRIS3_YEDLYSNCK and TETN_LDTLAQEVALLK, wherein said pair of biomarkers exhibits a change in a reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a biomarker pair selected from the group consisting of ADA12_FGFGGSTDSGPIR and CRIS3_YEDLYSNCK, CO5_TLLPVSKPEIR and ADA12_FGFGGSTDSGPIR, AFAM_HFQNLGK and AACT_EIGELYLPK, ALS_IRPHTFTGLSGLR and PCD12_AHDADLGINGK, VTNC_GQYCYELDEK and PCD12_AHDADLGINGK, and CRIS3_YEDLYSNCK and TETN_LDTLAQEVALLK, wherein said pair of biomarkers exhibits a change between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a composition comprising a pair of isolated biomarkers consisting of ADA12_FGFGGSTDSGPIR, PCD12_AHDADLGINGK, CD14_LTVGAAQVPAQLLVGALR or CRIS3_YEDLYSNCK and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days.


In one embodiment, the present invention provides a composition comprising a pair of isolated biomarkers consisting of ADA12_FGFGGSTDSGPIR, PCD12_AHDADLGINGK, CD14_LTVGAAQVPAQLLVGALR or CRIS3_YEDLYSNCK and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days.


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers consisting of ADA12_FGFGGSTDSGPIR, PCD12_AHDADLGINGK, CD14_LTVGAAQVPAQLLVGALR or CRIS3_YEDLYSNCK and one of the biomarkers listed in Tables 1-27, to determine the EDD for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers consisting of ADA12_FGFGGSTDSGPIR, PCD12_AHDADLGINGK, CD14_LTVGAAQVPAQLLVGALR or CRIS3_YEDLYSNCK and one of the biomarkers listed in Tables 1-27, to determine the EDD for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers consisting of ADA12_FGFGGSTDSGPIR, PCD12_AHDADLGINGK, CD14_LTVGAAQVPAQLLVGALR or CRIS3_YEDLYSNCK and one of the biomarkers listed in Tables 1-27, to determine the TTB for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers consisting of ADA12_FGFGGSTDSGPIR, PCD12_AHDADLGINGK, CD14_LTVGAAQVPAQLLVGALR or CRIS3_YEDLYSNCK and one of the biomarkers listed in Tables 1-27, to determine the TTB for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a reversal value of a biomarker pair consisting of ADA12_FGFGGSTDSGPIR, PCD12_AHDADLGINGK, CD14_LTVGAAQVPAQLLVGALR or CRIS3_YEDLYSNCK and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change in a reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks. In some embodiments, the method further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a biomarker pair consisting of ADA12_FGFGGSTDSGPIR, PCD12_AHDADLGINGK, CD14_LTVGAAQVPAQLLVGALR or CRIS3_YEDLYSNCK and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In additional embodiments, the biological sample is blood and the gestational age at blood draw (GABD) is from 23 0/7 weeks and 28 6/7 weeks. In some embodiments, the method further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers selected from the group consisting of B2MG_VEHSDLSFSK and FGFR1_IGPDNLPYVQILK, GELS_TASDFITK and FGFR1_IGPDNLPYVQILK, LIRB5_KPSLLIPQGSVVAR and FA9_SALVLQYLR, B2MG_VEHSDLSFSK and CHL1_VIAVNEVGR, and CHL1_VIAVNEVGR and IGF2_GIVEECCFR, to determine the EDD for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers selected from the group consisting of B2MG_VEHSDLSFSK and FGFR1_IGPDNLPYVQILK, GELS_TASDFITK and FGFR1_IGPDNLPYVQILK, LIRB5_KPSLLIPQGSVVAR and FA9_SALVLQYLR, B2MG_VEHSDLSFSK and CHL1_VIAVNEVGR, and CHL1_VIAVNEVGR and IGF2_GIVEECCFR, to determine the EDD for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers selected from the group consisting of B2MG_VEHSDLSFSK and FGFR1_IGPDNLPYVQILK, GELS_TASDFITK and FGFR1_IGPDNLPYVQILK, LIRB5_KPSLLIPQGSVVAR and FA9_SALVLQYLR, B2MG_VEHSDLSFSK and CHL1_VIAVNEVGR, and CHL1_VIAVNEVGR and IGF2_GIVEECCFR, to determine the TTB for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers selected from the group consisting of B2MG_VEHSDLSFSK and FGFR1_IGPDNLPYVQILK, GELS_TASDFITK and FGFR1_IGPDNLPYVQILK, LIRB5_KPSLLIPQGSVVAR and FA9_SALVLQYLR, B2MG_VEHSDLSFSK and CHL1_VIAVNEVGR, and CHL1_VIAVNEVGR and IGF2_GIVEECCFR, to determine the TTB for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a reversal value of a biomarker pair selected from the group consisting of B2MG_VEHSDLSFSK and FGFR1_IGPDNLPYVQILK, GELS_TASDFITK and FGFR1_IGPDNLPYVQILK, LIRB5_KPSLLIPQGSVVAR and FA9_SALVLQYLR, B2MG_VEHSDLSFSK and CHL1_VIAVNEVGR, and CHL1_VIAVNEVGR and IGF2_GIVEECCFR, wherein said pair of biomarkers exhibits a change in a reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, the method further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a biomarker pair selected from the group consisting of B2MG_VEHSDLSFSK and FGFR1_IGPDNLPYVQILK, GELS_TASDFITK and FGFR1_IGPDNLPYVQILK, LIRB5_KPSLLIPQGSVVAR and FA9_SALVLQYLR, B2MG_VEHSDLSFSK and CHL1_VIAVNEVGR, and CHL1_VIAVNEVGR and IGF2_GIVEECCFR, wherein said pair of biomarkers exhibits a change between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, the method further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a composition comprising a pair of isolated biomarkers consisting of CHL1_VIAVNEVGR, FGFR1_IGPDNLPYVQILK or FA9_FGSGYVSGWGR and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days.


In one embodiment, the present invention provides a composition comprising a pair of isolated biomarkers consisting of CHL1_VIAVNEVGR, FGFR1_IGPDNLPYVQILK or FA9_FGSGYVSGWGR and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days.


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers consisting of CHL1_VIAVNEVGR, FGFR1_IGPDNLPYVQILK or FA9_FGSGYVSGWGR and one of the biomarkers listed in Tables 1-27, to determine the EDD for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers consisting of CHL1_VIAVNEVGR, FGFR1_IGPDNLPYVQILK or FA9_FGSGYVSGWGR and one of the biomarkers listed in Tables 1-27, to determine the EDD for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers consisting of CHL1_VIAVNEVGR, FGFR1_IGPDNLPYVQILK or FA9_FGSGYVSGWGR and one of the biomarkers listed in Tables 1-27, to determine the TTB for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method of determining the time to birth (TTB) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a pair of biomarkers consisting of CHL1_VIAVNEVGR, FGFR1_IGPDNLPYVQILK or FA9_FGSGYVSGWGR and one of the biomarkers listed in Tables 1-27, to determine the TTB for said pregnant female. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, the determination further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a reversal value of a biomarker pair consisting of CRL1_VIAVNEVGR, FGFR1_IGPDNLPYVQILK or FA9_FGSGYVSGWGR and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change in a reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, the method further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in a biomarker pair consisting of CHL1_VIAVNEVGR, FGFR1_IGPDNLPYVQILK or FA9_FGSGYVSGWGR and one of the biomarkers listed in Tables 1-27, wherein said pair of biomarkers exhibits a change between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks. In some embodiments, method further comprises calculation of Inverse Parity as 1/(Parity−0.5).


In one embodiment, the present invention provides a composition comprising a pair of isolated biomarkers selected from the group consisting of the biomarker pairs listed in Tables 1-27, wherein said pair of biomarkers exhibits a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the composition comprises AACT_EIGELYLPK.


In one embodiment, the present invention provides a composition comprising two or more pairs of isolated biomarkers selected from the group consisting of the biomarker pairs listed in Tables 1-27, wherein said pairs of biomarkers exhibit a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. In some embodiments, the composition comprises AACT_EIGELYLPK.


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a biomarker pair selected from the group consisting of the biomarker pairs listed in Tables 1-27 to determine the EDD for said pregnant female.


In one embodiment, the present invention provides a method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for two or more biomarker pairs selected from the group consisting of the biomarker pairs listed in Tables 1-27 to determine the EDD for said pregnant female.


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in reversal value of a biomarker pair selected from the group consisting of the biomarker pairs listed in Tables 1-27, wherein said pair of biomarkers exhibits a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days.


In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in reversal value of two or more biomarker pairs selected from the group consisting of the biomarker pairs listed in Tables 1-27, wherein said pair of biomarkers exhibit a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days.


In one embodiment, the present invention further provides a method for prediction of gestational age at birth (GAB).


In a further embodiment, the present invention provides a method for estimating gestational age (GA) comprising measuring a change in reversal value of a biomarker pair selected from the group consisting of the biomarker pairs listed in Tables 1-27 and correlating said measurement to GA.


In one embodiment, the present invention further provides a method for prediction of time to birth (TTB).


In some of the embodiments, the methods have an accuracy of 60% or more for predicting the EDD within plus or minus 5 days of the actual due date (DD).


In additional embodiments, the methods comprise measuring AACT_EIGELYLPK.


In additional embodiments, the methods comprise calculation of Inverse Parity as 1/(Parity−0.5).


In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks.


In some embodiments, the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks.


In one embodiment, the measuring comprises mass spectrometry (MS). In one embodiment, the measuring further comprises measuring surrogate peptides of said biomarkers in the biological sample obtained from said pregnant female. In one embodiment, the measuring of surrogate peptides of said biomarkers further comprises measuring stable isotope labeled standard peptides (SIS peptides) for each of the surrogate peptides.


In one embodiment, the biological sample is selected from the group consisting of whole blood, plasma, and serum. In one embodiment, the biological sample is serum. In one embodiment, the sample is obtained between 18 and 21 weeks of gestational age. In an additional embodiment, the sample is obtained between 23 and 28 weeks of gestational age. In a further embodiment, the sample is obtained between 18 and 28 weeks of gestational age.


In one embodiment, the measuring comprises an assay that utilizes a capture agent. In one embodiment, the measuring comprises an assay that utilizes a capture agent selected from the group consisting of and antibody, antibody fragment, nucleic acid-based protein binding reagent, small molecule or variant thereof. In one embodiment, the measuring comprises an assay selected from the group consisting of enzyme immunoassay (EIA), enzyme-linked immunosorbent assay (ELISA), and radioimmunoassay (RIA)


Cathepsin D (NCBI GenBank: AAA51922.1) is a member of the A1 family of peptidases. The encoded preproprotein is proteolytically processed to generate multiple protein products. These products include the cathepsin D light and heavy chains, which heterodimerize to form the mature enzyme. This enzyme exhibits pepsin-like activity and plays a role in protein turnover and in the proteolytic activation of hormones and growth factors.


Tenascin X (NCBI GenBank: AAB47488.1) is a member of the tenascin family, a highly conserved group of four large extracellular glycoproteins denoted as tenascin-C, -X, -R, and -W. In most cells, the tenascin family interferes with the integrin-dependent spreading and affects cell motility and proliferation. Tenascin-X is the largest, over 400 kDa, member and is widely expressed during development. In adult tissue most of the expression of tenascin-X is seen in the connective tissue of the heart and skeletal muscle, as well as in the dermis. Tenascin-X is composed of a cysteine-rich segment at the N-terminus, epidermal growth factor-(EGF-) like repeats, fibronectin III-like repeats, and a fibrinogen-like domain at the C-terminus.


In one embodiment, the invention provides a composition comprising a pair of surrogate peptides corresponding to a pair of biomarkers selected from the group consisting of CATD/TENX, wherein the pair of biomarkers exhibits a change in reversal value between pregnant females at risk for pre-term birth and term controls.


For methods directed to predicating time to birth, it is understood that “birth” means birth following spontaneous onset of labor, with or without rupture of membranes.


Although described and exemplified with reference to methods of determining EDD in a pregnant female, the present disclosure is similarly applicable to related methods of predicting gestational age at birth (GAB), related methods for predicting term birth, methods for determining time to birth (TTB), methods of estimating gestational age (GA), methods of estimating gestational age at blood draw (GABD) in a pregnant female. Gestational age (GA), and gestational age at blood draw (GABD) are directly related in that estimation of GABD can be used to calculate GA post-blood draw. It will be apparent to one skilled in the art that each of the aforementioned methods has specific and substantial utilities and benefits with regard maternal-fetal health considerations.


In some embodiments, the present disclosure provides biomarkers, biomarker pairs and/or reversals, exemplified here by using CATD/TENX, that are strong predictors of time to birth (TTB). TTB is defined as the difference between the GABD and the gestational age at birth (GAB). This discovery enables prediction, either individually or in mathematical combination of such analytes of TTB or GAB. Analytes that lack a case versus control difference, but demonstrate changes in analyte intensity across pregnancy, are useful in a pregnancy clock according to the methods of the invention. Calibration of multiple analytes can be used to date pregnancy. Such a pregnancy clock is of value to confirm dating by another measure (e.g. date of last menstrual period and/or ultrasound dating), or useful alone to subsequently and more accurately predict GAB or TTB, for example. These analytes, also referred to herein as “clock proteins”, can be used to date a pregnancy in the absence of or in conjunction with other dating methods. All of the embodiments described herein can therefore be used to accurately predict GA and GABD based on measurement of clock proteins.


In additional embodiments, the methods of determining the estimated due date (EDD) or time to birth (TTB) for a pregnant female further encompass detecting a measurable feature for one or more clinical variables. In additional embodiments, the clinical variables include without limitation previous low birth weight or preterm delivery, multiple 2nd trimester spontaneous abortions, prior first trimester induced abortion, familial and intergenerational factors, history of infertility, nulliparity, gravidity, primigravida, multigravida, placental abnormalities, cervical and uterine anomalies, gestational bleeding, intrauterine growth restriction, in utero diethylstilbestrol exposure, multiple gestations, infant sex, short stature, low prepregnancy weight, low or high body mass index, diabetes, diabetes mellitus, chronic hypertension, urogenital infections as well as any other clinical variable disclosed in the accompanying examples and tables.


A “measurable feature” is any property, characteristic or aspect that can be determined and correlated in connection with a prediction of EDD, a prediction of GAB, a prediction of term birth, or a prediction of TTB in a pregnant female. For a biomarker, such a measurable feature can include, for example, the presence, absence, or concentration of the biomarker, or a fragment thereof, in the biological sample, an altered structure, such as, for example, the presence or amount of a post-translational modification, such as oxidation at one or more positions on the amino acid sequence of the biomarker or, for example, the presence of an altered conformation in comparison to the conformation of the biomarker in term control subjects, and/or the presence, amount, or altered structure of the biomarker as a part of a profile of more than one biomarker.


In addition to biomarkers, measurable features can further include clinical variables including, for example, maternal characteristics, age, race, ethnicity, medical history, past pregnancy history, obstetrical history. For a risk indicium, a measurable feature can include, for example, previous low birth weight or preterm delivery, multiple 2nd trimester spontaneous abortions, prior first trimester induced abortion, familial and intergenerational factors, history of infertility, nulliparity, placental abnormalities, cervical and uterine anomalies, short cervical length measurements, gestational bleeding, intrauterine growth restriction, in utero diethylstilbestrol exposure, multiple gestations, infant sex, short stature, low prepregnancy weight/low body mass index, diabetes, hypertension, urogenital infections, hypothyroidism, asthma, low educational attainment, cigarette smoking, drug use and alcohol consumption.


In some embodiments, the methods of the invention comprise calculation of body mass index (BMI).


In some embodiments, the disclosed methods for determining the estimated due date (EDD) encompass detecting and/or quantifying one or more biomarkers using mass spectrometry, a capture agent or a combination thereof.


In additional embodiments, the disclosed methods for determining the estimated due date (EDD) encompass an initial step of providing a biological sample from the pregnant female.


In some embodiments, the disclosed methods of determining methods for determining the estimated due date (EDD) for a pregnant female encompass communicating the results to a health care provider. The disclosed methods of predicting GAB, the methods for predicting term birth, methods for determining the probability of term birth in a pregnant female as well methods of predicating time to birth in a pregnant female similarly encompass communicating the probability to a health care provider. As stated above, although described and exemplified with reference to determining methods for determining the estimated due date (EDD) for a pregnant female, all embodiments described throughout this disclosure are similarly applicable to methods of predicting GAB, methods for predicting term birth, methods for determining the probability of term birth in a pregnant female as well methods of predicating time to birth in a pregnant female. Specifically, the biomarkers and panels recited throughout this application with express reference to determining the estimated due date (EDD) can also be used in methods for predicting GAB, the methods for predicting term birth, methods for determining the probability of term birth in a pregnant female as well methods of predicating time to birth in a pregnant female. It will be apparent to one skilled in the art that each of the aforementioned methods has specific and substantial utilities and benefits with regard maternal-fetal health considerations.


In additional embodiments, the communication informs a subsequent treatment decision for the pregnant female. In some embodiments, the method of determining the estimated due date (EDD) for a pregnant female encompasses the initial or subsequent step of administering an additional test for predicting the probability of pre-term birth in said pregnant female, for example, the PreTRM™ test described in publication US2017/0022565A1, the entire contents of which are incorporated herein by reference.


In some embodiments, each of the proteins, peptides and clinical variables disclosed herein as components of pairs, ratios and/or reversal pairs can serve as clock proteins to normalize component peptides in signatures to improve predictive performance or to select appropriate biomarkers and/or classifiers. Accordingly, the present invention comprises methods for estimating gestational age (GABD) comprising measuring one or more clock proteins and correlating said measurement to GABD.


The utility of the biomarker pairs, ratios and/or reversal pairs as “clock proteins” to accurately date a pregnancy, i.e. accurately estimate gestational age (GA), is essential to the quality of obstetric care and maternal-fetal health. The utility of the clock proteins of the invention to date a pregnancy with significantly higher accuracy than can be achieved with current clinical extends to every prognostic, diagnostic or other clinical assessment of the pregnant female and fetus that relies on accurately estimating GA for its own accuracy. For example, acceptable ultrasonographic fetal measurements and algorithms for their use vary by gestational age at ultrasound. As a further example, the sensitivity of non-invasive prenatal testing (NIPT), which is increasingly used detection for aneuploidies and other conditions, relies on accurately estimating GA in defining an acceptable window for testing. Similarly, prenatal tests such as the Alpha-fetoprotein (AFP) test and the quadruple marker test (quad screen), which also measures human chorionic gonadotropin (HCG) estriol, and inhibin A in addition to AFP, interpret analyte abundances in view of estimated GA. When a pregnant female's EDD is changed based on new information, such as a new ultrasound, tests run earlier in pregnancy are re-assessed and may give medically different results, for example changing an AFP result from normal to abnormal, or vice versa. More generally, biomarkers associated with pregnancy are known to change continuously across pregnancy with individual kinetics. As a result, accurate GA estimation is crucial to the assessment of maternal and fetal health, and to obstetric care decisions. The biomarker pairs, ratios and/or reversal pairs can serve as “clock proteins” to improve the performance of every clinical assessment relating to maternal and fetal health that takes into account GA by enabling a new and useful process for estimating GA with much higher accuracy than currently practiced clinical methods.


Methods for assessment of GA with the clock proteins disclosed herein can serve to date prenatal tests for proper interpretation. As well, GA assessment can guide medical decisions related to fetal maturity. For example, a decision to induce labor or perform a C-section based on maternal health takes into account the estimated maturity of the fetus. Inaccurate assessment of GA can result in induction/C-sections that deliver: an early preterm baby when the fetus was thought to be at term; or a stillborn or ill baby and/or a mother with disseminated intravascular coagulation when the baby was thought to be full term. Further, the ARRIVE trial (Grobman, American Journal of Obstetrics & Gynecology, Volume 218, Issue 1, 5601) suggests that most nulliparous women will show benefit to fetal health without increasing risk of C-section if labor is induced in the 39th week of gestation. Reducing the trial findings to practice crucially requires differentiation between 38 and 39 weeks' GA, and between 39 and 40 weeks' GA. Further, current guidelines on proper management of late-term (41 0/7 weeks through 41 6/7 weeks) and postterm (42 0/7 weeks and beyond) require GA dating accurate to within a week. The critical importance for accurately dating a pregnancy to proper maternal and fetal health care is well documented in the literature and appreciated by those of skill in the art. (see, for example, Grobman et al., N Engl J Med 2018; 379,6:513-23; Greene, N Engl J Med 2018; 379; 6:580-581; Ananth et al., JAMA Pediatr 2018; 172: 627-34; McDorman et al., Natl Vital Stat Rep 2015; 64: 1-24; Middleton et al., Cochrane Database Syst Rev 2018; 5: CD004945; Walker et al., N Engl J Med 2016; 374: 813-22; Martin et al., Natl Vital Stat Rep 2018; 67: 1-55).


The clock proteins and related methods provided by the invention address the crucial need for accurate, precise gestational age dating by estimating GABD and by predicting GAB, including specific prediction of preterm or late-term and postterm pregnancy with significantly higher accuracy than is achieved under current medical practice. Accordingly, in some embodiments of the invention, the clock protein compositions and corresponding methods can be used in tandem with an assessment of maternal and fetal health that depends on accurate GA estimation.


In some embodiments, the methods for determining the estimated due date (EDD) for a pregnant female encompasses the initial step of administering a test for predicting the probability of pre-term birth in said pregnant female, for example, the PreTRM™ test.


In the methods disclosed herein, determining the estimated due date (EDD) for a pregnant female encompasses an initial step that includes formation of a probability/risk index by measuring the ratio of isolated biomarkers selected from the group in a cohort of pregnancies that includes deliveries before 270 days and deliveries on or after 280 days. pregnancies with known gestational age at birth. For an individual pregnancy, determining the estimated due date (EDD) for a pregnant female encompasses measuring the ratio of the isolated biomarker using the same measurement method as used in the initial step of creating the probability/risk index, and comparing the measured ratio to the risk index to derive the personalized EDD for the individual pregnancy. In one embodiment, a probability/risk index is formed by measuring the ratio of CATD/TENX in a cohort of pregnancies that includes deliveries before 270 days and deliveries on or after 280 days where the gestational age at birth is recorded. Then, in clinical practice the measured ratio of CATD/TENX in an individual pregnancy is compared in the index to derive the EDD using the same isolation and measurement technologies to derive CATD/TENX as in the index group.


As used herein, the term “risk score” refers to a score that can be assigned based on comparing the amount of one or more biomarkers or reversal values in a biological sample obtained from a pregnant female to a standard or reference score that represents an average amount of the one or more biomarkers calculated from biological samples obtained from a random pool of pregnant females. In some embodiments, the risk score is expressed as the log of the reversal value, i.e. the ratio of the relative intensities of the individual biomarkers. One skilled in the art will appreciate that a risk score can be expressed based on a various data transformations as well as being expressed as the ratio itself. Furthermore, with particular regard to reversal pairs, one skilled in the art will appreciate the any ratio is equally informative if the biomarkers in the numerator and denominator are switched or that related data transformations (e.g. subtraction) are applied. Because the level of a biomarker may not be static throughout pregnancy, a standard or reference score has to have been obtained for the gestational time point that corresponds to that of the pregnant female at the time the sample was taken. The standard or reference score can be predetermined and built into a predictor model such that the comparison is indirect rather than actually performed every time the probability is determined for a subject. A risk score can be a standard (e.g., a number) or a threshold (e.g., a line on a graph). The value of the risk score correlates to the deviation, upwards or downwards, from the average amount of the one or more biomarkers calculated from biological samples obtained from a random pool of pregnant females.


As exemplified herein, the predictive performance of the claimed methods can be improved with a BMI stratification of greater than 22 and equal or less than 37 kg/m2. Accordingly, in some embodiments, the methods of the invention can be practiced with samples obtained from pregnant females with a specified BMI. Briefly, BMI is an individual's weight in kilograms divided by the square of height in meters. BMI does not measure body fat directly, but research has shown that BMI is correlated with more direct measures of body fat obtained from skinfold thickness measurements, bioelectrical impedance, densitometry (underwater weighing), dual energy x-ray absorptiometry (DXA) and other methods. Furthermore, BMI appears to be as strongly correlated with various metabolic and disease outcome as are these more direct measures of body fatness. Generally, an individual with a BMI below 18.5 is considered underweight, an individual with a BMI of equal or greater than 18.5 to 24.9 normal weight, while an individual with a BMI of equal or greater than 25.0 to 29.9 is considered overweight and an individual with a BMI of equal or greater than 30.0 is considered obese. In some embodiments, the predictive performance of the claimed methods can be improved with a BMI stratification of equal or greater than 18, equal or greater than 19, equal or greater than 20, equal or greater than 21, equal or greater than 22, equal or greater than 23, equal or greater than 24, equal or greater than 25, equal or greater than 26, equal or greater than 27, equal or greater than 28, equal or greater than 29 or equal or greater than 30. In other embodiments, the predictive performance of the claimed methods can be improved with a BMI stratification of equal or less than 18, equal or less than 19, equal or less than 20, equal or less than 21, equal or less than 22, equal or less than 23, equal or less than 24, equal or less than 25, equal or less than 26, equal or less than 27, equal or less than 28, equal or less than 29 or equal or less than 30.


In the context of the present invention, the term “biological sample,” encompasses any sample that is taken from pregnant female and contains one or more of the biomarkers disclosed herein. Suitable samples in the context of the present invention include, for example, blood, plasma, serum, amniotic fluid, vaginal secretions, saliva, and urine. In some embodiments, the biological sample is selected from the group consisting of whole blood, plasma, and serum. In a particular embodiment, the biological sample is serum. As will be appreciated by those skilled in the art, a biological sample can include any fraction or component of blood, without limitation, T cells, monocytes, neutrophils, erythrocytes, platelets and microvesicles such as exosomes and exosome-like vesicles. In a particular embodiment, the biological sample is serum.


Gestational age is a proxy for the extent of fetal development and the fetus's readiness for birth. Gestational age has typically been defined as the length of time from the date of the last normal menses to the date of birth. However, obstetric measures and ultrasound estimates also can aid in estimating gestational age. In some embodiments, the methods disclosed herein are directed to predicting gestational age at birth.


As used herein, the term “estimated gestational age” or “estimated GA” refers to the GA determined based on the date of the last normal menses and additional obstetric measures, ultrasound estimates or other clinical parameters including, without limitation, those described in the preceding paragraph. In contrast the term “predicted gestational age at birth” or “predicted GAB” refers to the GAB determined based on the methods of the invention as dislosed herein. As used herein, “term birth” refers to birth at a gestational age equal or more than 37 completed weeks.


In some embodiments, the pregnant female is between 17 and 28 weeks of gestation at the time the biological sample is collected, also referred to as GABD (Gestational Age at Blood Draw). In other embodiments, the pregnant female is between 16 and 29 weeks, between 17 and 28 weeks, between 18 and 27 weeks, between 19 and 26 weeks, between 20 and 25 weeks, between 21 and 24 weeks, or between 22 and 23 weeks of gestation at the time the biological sample is collected. In further embodiments, the pregnant female is between about 17 and 22 weeks, between about 16 and 22 weeks between about 22 and 25 weeks, between about 13 and 25 weeks, between about 26 and 28, or between about 26 and 29 weeks of gestation at the time the biological sample is collected. Accordingly, the gestational age of a pregnant female at the time the biological sample is collected can be 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 weeks or older. In particular embodiments, the sample is obtained between 18 and 21 weeks of GABD. In further embodiments, the sample is obtained between 23 and 28 weeks of GABD. In some embodiments, the sample is obtained between 18 and 28 weeks of GABD. In some embodiments, the sample is obtained between 18 and 36 weeks of GABD. In further embodiments the sample is obtained between 19 and 21 weeks of GABD. In some embodiments, the sample is obtained between 20 and 22 weeks of GABD. In some embodiments, the sample is obtained between 21 and 23 weeks of GABD. In further embodiments, the sample is obtained between 22 and 24 weeks of GABD. In additional embodiments, the sample is obtained between 23 and 25 weeks of GABD. In some embodiments, the sample is obtained between 24 and 26 weeks of GABD. In further embodiments, the sample is obtained between 25 and 27 weeks of GABD. In additional embodiments, the sample is obtained between 26 and 28 weeks of GABD. In some embodiments, the sample is obtained between 27 and 29 weeks of GABD. In further embodiments, the sample is obtained between 28 and 30 weeks of GABD. In additional embodiments, the sample is obtained between 29 and 31 weeks of GABD. In some embodiments, the sample is obtained between 30 and 32 weeks of GABD. In further embodiments, the sample is obtained between 31 and 33 weeks of GABD. In additional embodiments, the sample is obtained between 32 and 34 weeks of GABD. In some embodiments, the sample is obtained between 33 and 35 weeks of GABD. In further embodiments, the sample is obtained between 34 and 36 weeks of GABD. In additional embodiments, the sample is obtained between 18 and 21 weeks of GABD.


The term “amount” or “level” as used herein refers to a quantity of a biomarker that is detectable or measurable in a biological sample and/or control. The quantity of a biomarker can be, for example, a quantity of polypeptide, the quantity of nucleic acid, or the quantity of a fragment or surrogate. The term can alternatively include combinations thereof. The term “amount” or “level” of a biomarker is a measurable feature of that biomarker.


The invention also provides a method of detecting a pair of isolated biomarkers consisting of CATD and TENX, said method comprising the steps of a. obtaining a biological sample from the pregnant female; b. detecting whether the pair of isolated biomarkers is present in the biological sample by contacting the biological sample with a first capture agent that specifically binds a first member of said pair and a second capture agent that specifically binds a second member of said pair; and detecting binding between the first biomarker of said pair and the first capture agent and between the second member of said pair and the second capture agent.


The invention also provides a method of detecting a pair of isolated biomarkers consisting of CATD/TENX in a pregnant female, said method comprising the steps of a. obtaining a biological sample from the pregnant female; b. detecting whether the pair of isolated biomarkers is present in the biological sample by contacting the biological sample with a first capture agent that specifically binds a first member of said pair and a second capture agent that specifically binds a second member of said pair; and detecting binding between the first biomarker of said pair and the first capture agent and between the second member of said pair and the second capture agent. In one embodiment the invention provides a method of detecting CATD and TENX in a pregnant female, said method comprising the steps of a. obtaining a biological sample from the pregnant female; b. detecting whether CATD and TENX are present in the biological sample by contacting the biological sample with a capture agent that specifically binds CATD and a capture agent that specifically binds TENX; and c. detecting binding between CATD and the capture agent and between TENX and the capture agent. In a further embodiment, the capture agent is selected from the group consisting of and antibody, antibody fragment, nucleic acid-based protein binding reagent, small molecule or variant thereof. In an additional embodiment, the method is performed by an assay selected from the group consisting of enzyme immunoassay (EIA), enzyme-linked immunosorbent assay (ELISA), and radioimmunoassay (RIA).


The invention also provides a method of detecting a pair of isolated biomarkers consisting of CATD/TENX in a pregnant female, said method comprising the steps of a. obtaining a biological sample from the pregnant female; and b. detecting whether the pair of isolated biomarkers is present in the biological sample comprising subjecting the sample to a proteomics work-flow comprised of mass spectrometry quantification.


In one embodiment the invention provides a method of detecting CATD and TENX in a pregnant female, said method comprising the steps of a. obtaining a biological sample from the pregnant female; and b. detecting whether the pair of isolated biomarkers is present in the biological sample comprising subjecting the sample to a proteomics work-flow comprised of mass spectrometry quantification.


A “proteomics work-flow” generally encompasses one or more of the following steps: Serum samples are thawed and depleted of the 14 highest abundance proteins by immune-affinity chromatography. Depleted serum is digested with a protease, for example, trypsin, to yield peptides. The digest is subsequently fortified with a mixture of SIS peptides and then desalted and subjected to LC-MS/MS with a triple quadrapole instrument operated in MRM mode. Response ratios are formed from the area ratios of endogenous peptide peaks and the corresponding SIS peptide counterpart peaks. Those skilled in the art appreciate that other types of MS such as, for example, MALDI-TOF, or ESI-TOF, can be used in the methods of the invention. In addition, one skilled in the art can modify a proteomics work-flow, for example, by selecting particular reagents (such as proteases) or omitting or changing the order of certain steps, for example, it may not be necessary to immunodeplete, the SIS peptide could be added earlier or later and stable isotope labeled proteins could be used as standards instead of peptides.


Any existing, available or conventional separation, detection and quantification methods can be used herein to measure the presence or absence (e.g., readout being present vs. absent; or detectable amount vs. undetectable amount) and/or quantity (e.g., readout being an absolute or relative quantity, such as, for example, absolute or relative concentration) of biomarkers, peptides, polypeptides, proteins and/or fragments thereof and optionally of the one or more other biomarkers or fragments thereof in samples. In some embodiments, detection and/or quantification of one or more biomarkers comprises an assay that utilizes a capture agent. In further embodiments, the capture agent is an antibody, antibody fragment, nucleic acid-based protein binding reagent, small molecule or variant thereof. In additional embodiments, the assay is an enzyme immunoassay (EIA), enzyme-linked immunosorbent assay (ELISA), and radioimmunoassay (RIA). In some embodiments, detection and/or quantification of one or more biomarkers further comprises mass spectrometry (MS). In yet further embodiments, the mass spectrometry is co-immunoprecitipation-mass spectrometry (co-IP MS), where coimmunoprecipitation, a technique suitable for the isolation of whole protein complexes is followed by mass spectrometric analysis.


As used herein, the term “mass spectrometer” refers to a device able to volatilize/ionize analytes to form gas-phase ions and determine their absolute or relative molecular masses. Suitable methods of volatilization/ionization are matrix-assisted laser desorption ionization (MALDI), electrospray, laser/light, thermal, electrical, atomized/sprayed and the like, or combinations thereof. Suitable forms of mass spectrometry include, but are not limited to, ion trap instruments, quadrupole instruments, electrostatic and magnetic sector instruments, time of flight instruments, time of flight tandem mass spectrometer (TOF MS/MS), Fourier-transform mass spectrometers, Orbitraps and hybrid instruments composed of various combinations of these types of mass analyzers. These instruments can, in turn, be interfaced with a variety of other instruments that fractionate the samples (for example, liquid chromatography or solid-phase adsorption techniques based on chemical, or biological properties) and that ionize the samples for introduction into the mass spectrometer, including matrix-assisted laser desorption (MALDI), electrospray, or nanospray ionization (ESI) or combinations thereof.


Generally, any mass spectrometric (MS) technique that can provide precise information on the mass of peptides, and preferably also on fragmentation and/or (partial) amino acid sequence of selected peptides (e.g., in tandem mass spectrometry, MS/MS; or in post source decay, TOF MS), can be used in the methods disclosed herein. Suitable peptide MS and MS/MS techniques and systems are well-known per se (see, e.g., Methods in Molecular Biology, vol. 146: “Mass Spectrometry of Proteins and Peptides”, by Chapman, ed., Humana Press 2000; Biemann 1990. Methods Enzymol 193: 455-79; or Methods in Enzymology, vol. 402: “Biological Mass Spectrometry”, by Burlingame, ed., Academic Press 2005) and can be used in practicing the methods disclosed herein. Accordingly, in some embodiments, the disclosed methods comprise performing quantitative MS to measure one or more biomarkers. Such quantitative methods can be performed in an automated (Villanueva, et al., Nature Protocols (2006) 1(2):880-891) or semi-automated format. In particular embodiments, MS can be operably linked to a liquid chromatography device (LC-MS/MS or LC-MS) or gas chromatography device (GC-MS or GC-MS/MS). Other methods useful in this context include isotope-coded affinity tag (ICAT), tandem mass tags (TMT), or stable isotope labeling by amino acids in cell culture (SILAC), followed by chromatography and MS/MS.


As used herein, the terms “multiple reaction monitoring (MRM)” or “selected reaction monitoring (SRM)” refer to an MS-based quantification method that is particularly useful for quantifying analytes that are in low abundance. In an SRM experiment, a predefined precursor ion and one or more of its fragments are selected by the two mass filters of a triple quadrupole instrument and monitored over time for precise quantification. Multiple SRM precursor and fragment ion pairs can be measured within the same experiment on the chromatographic time scale by rapidly toggling between the different precursor/fragment pairs to perform an MRM experiment. A series of transitions (precursor/fragment ion pairs) in combination with the retention time of the targeted analyte (e.g., peptide or small molecule such as chemical entity, steroid, hormone) can constitute a definitive assay. A large number of analytes can be quantified during a single LC-MS experiment. The term “scheduled,” or “dynamic” in reference to MRM or SRM, refers to a variation of the assay wherein the transitions for a particular analyte are only acquired in a time window around the expected retention time, significantly increasing the number of analytes that can be detected and quantified in a single LC-MS experiment and contributing to the selectivity of the test, as retention time is a property dependent on the physical nature of the analyte. A single analyte can also be monitored with more than one transition. Finally, included in the assay can be standards that correspond to the analytes of interest (e.g., same amino acid sequence), but differ by the inclusion of stable isotopes. Stable isotopic standards (SIS) can be incorporated into the assay at precise levels and used to quantify the corresponding unknown analyte. An additional level of specificity is contributed by the co-elution of the unknown analyte and its corresponding SIS and properties of their transitions (e.g., the similarity in the ratio of the level of two transitions of the unknown and the ratio of the two transitions of its corresponding SIS).


Mass spectrometry assays, instruments and systems suitable for biomarker peptide analysis can include, without limitation, matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) MS; MALDI-TOF post-source-decay (PSD); MALDI-TOF/TOF; surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF) MS; electrospray ionization mass spectrometry (ESI-MS); ESI-MS/MS; ESI-MS/(MS)n (n is an integer greater than zero); ESI 3D or linear (2D) ion trap MS; ESI triple quadrupole MS; ESI quadrupole orthogonal TOF (Q-TOF); ESI Fourier transform MS systems; desorption/ionization on silicon (DIOS); secondary ion mass spectrometry (SIMS); atmospheric pressure chemical ionization mass spectrometry (APCI-MS); APCI-MS/MS; APCI-(MS)n; ion mobility spectrometry (IMS); inductively coupled plasma mass spectrometry (ICP-MS) atmospheric pressure photoionization mass spectrometry (APPI-MS); APPI-MS/MS; and APPI-(MS)n. Peptide ion fragmentation in tandem MS (MS/MS) arrangements can be achieved using manners established in the art, such as, e.g., collision induced dissociation (CID). As described herein, detection and quantification of biomarkers by mass spectrometry can involve multiple reaction monitoring (MRM), such as described among others by Kuhn et al. Proteomics 4: 1175-86 (2004). Scheduled multiple-reaction-monitoring (Scheduled MRM) mode acquisition during LC-MS/MS analysis enhances the sensitivity and accuracy of peptide quantitation. Anderson and Hunter, Molecular and Cellular Proteomics 5(4):573 (2006). As described herein, mass spectrometry-based assays can be advantageously combined with upstream peptide or protein separation or fractionation methods, such as for example with the chromatographic and other methods described herein below. As further described herein, shotgun quantitative proteomics can be combined with SRM/MRM-based assays for high-throughput identification and verification of biomarkers useful for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days.


A person skilled in the art will appreciate that a number of methods can be used to determine the amount of a biomarker, including mass spectrometry approaches, such as MS/MS, LC-MS/MS, multiple reaction monitoring (MRM) or SRM and product-ion monitoring (PIM) and also including antibody based methods such as immunoassays such as Western blots, enzyme-linked immunosorbant assay (ELISA), immunoprecipitation, immunohistochemistry, immunofluorescence, radioimmunoassay, dot blotting, and FACS. Accordingly, in some embodiments, determining the level of the at least one biomarker comprises using an immunoassay and/or mass spectrometric methods. In additional embodiments, the mass spectrometric methods are selected from MS, MS/MS, LC-MS/MS, SRM, PIM, and other such methods that are known in the art. In other embodiments, LC-MS/MS further comprises 1D LC-MS/MS, 2D LC-MS/MS or 3D LC-MS/MS. Immunoassay techniques and protocols are generally known to those skilled in the art (Price and Newman, Principles and Practice of Immunoassay, 2nd Edition, Grove's Dictionaries, 1997; and Gosling, Immunoassays: A Practical Approach, Oxford University Press, 2000.) A variety of immunoassay techniques, including competitive and non-competitive immunoassays, can be used (Self et al., Curr. Opin. Biotechnol., 7:60-65 (1996).


In further embodiments, the immunoassay is selected from Western blot, ELISA, immunoprecipitation, immunohistochemistry, immunofluorescence, radioimmunoassay (RIA), dot blotting, and FACS. In certain embodiments, the immunoassay is an ELISA. In yet a further embodiment, the ELISA is direct ELISA (enzyme-linked immunosorbent assay), indirect ELISA, sandwich ELISA, competitive ELISA, multiplex ELISA, ELISPOT technologies, and other similar techniques known in the art. Principles of these immunoassay methods are known in the art, for example John R. Crowther, The ELISA Guidebook, 1st ed., Humana Press 2000, ISBN 0896037282. Typically ELISAs are performed with antibodies but they can be performed with any capture agents that bind specifically to one or more biomarkers of the invention and that can be detected. Multiplex ELISA allows simultaneous detection of two or more analytes within a single compartment (e.g., microplate well) usually at a plurality of array addresses (Nielsen and Geierstanger 2004. J Immunol Methods 290: 107-20 (2004) and Ling et al. 2007. Expert Rev Mol Diagn 7: 87-98 (2007)).


In some embodiments, Radioimmunoassay (RIA) can be used to detect one or more biomarkers in the methods of the invention. MA is a competition-based assay that is well known in the art and involves mixing known quantities of radioactively-labelled (e.g., 125I or 131I-labelled) target analyte with antibody specific for the analyte, then adding non-labeled analyte from a sample and measuring the amount of labeled analyte that is displaced (see, e.g., An Introduction to Radioimmunoassay and Related Techniques, by Chard T, ed., Elsevier Science 1995, ISBN 0444821198 for guidance).


A detectable label can be used in the assays described herein for direct or indirect detection of the biomarkers in the methods of the invention. A wide variety of detectable labels can be used, with the choice of label depending on the sensitivity required, ease of conjugation with the antibody, stability requirements, and available instrumentation and disposal provisions. Those skilled in the art are familiar with selection of a suitable detectable label based on the assay detection of the biomarkers in the methods of the invention. Suitable detectable labels include, but are not limited to, fluorescent dyes (e.g., fluorescein, fluorescein isothiocyanate (FITC), Oregon Green™, rhodamine, Texas red, tetrarhodimine isothiocynate (TRITC), Cy3, Cy5, etc.), fluorescent markers (e.g., green fluorescent protein (GFP), phycoerythrin, etc.), enzymes (e.g., luciferase, horseradish peroxidase, alkaline phosphatase, etc.), nanoparticles, biotin, digoxigenin, metals, and the like.


For mass-spectrometry based analysis, differential tagging with isotopic reagents, e.g., isotope-coded affinity tags (ICAT) or the more recent variation that uses isobaric tagging reagents, iTRAQ (Applied Biosystems, Foster City, Calif.), or tandem mass tags, TMT, (Thermo Scientific, Rockford, Ill.), followed by multidimensional liquid chromatography (LC) and tandem mass spectrometry (MS/MS) analysis can provide a further methodology in practicing the methods of the invention.


A chemiluminescence assay using a chemiluminescent antibody can be used for sensitive, non-radioactive detection of protein levels. An antibody labeled with fluorochrome also can be suitable. Examples of fluorochromes include, without limitation, DAPI, fluorescein, Hoechst 33258, R-phycocyanin, B-phycoerythrin, R-phycoerythrin, rhodamine, Texas red, and lissamine. Indirect labels include various enzymes well known in the art, such as horseradish peroxidase (HRP), alkaline phosphatase (AP), beta-galactosidase, urease, and the like. Detection systems using suitable substrates for horseradish-peroxidase, alkaline phosphatase, and beta-galactosidase are well known in the art.


A signal from the direct or indirect label can be analyzed, for example, using a spectrophotometer to detect color from a chromogenic substrate; a radiation counter to detect radiation such as a gamma counter for detection of 125I; or a fluorometer to detect fluorescence in the presence of light of a certain wavelength. For detection of enzyme-linked antibodies, a quantitative analysis can be made using a spectrophotometer such as an EMAX Microplate Reader (Molecular Devices; Menlo Park, Calif.) in accordance with the manufacturer's instructions. If desired, assays used to practice the invention can be automated or performed robotically, and the signal from multiple samples can be detected simultaneously.


In some embodiments, the methods described herein encompass quantification of the biomarkers using mass spectrometry (MS). In further embodiments, the mass spectrometry can be liquid chromatography-mass spectrometry (LC-MS), multiple reaction monitoring (MRM) or selected reaction monitoring (SRM). In additional embodiments, the MRM or SRM can further encompass scheduled MRM or scheduled SRM.


As described above, chromatography can also be used in practicing the methods of the invention. Chromatography encompasses methods for separating chemical substances and generally involves a process in which a mixture of analytes is carried by a moving stream of liquid or gas (“mobile phase”) and separated into components as a result of differential distribution of the analytes as they flow around or over a stationary liquid or solid phase (“stationary phase”), between the mobile phase and said stationary phase. The stationary phase can be usually a finely divided solid, a sheet of filter material, or a thin film of a liquid on the surface of a solid, or the like. Chromatography is well understood by those skilled in the art as a technique applicable for the separation of chemical compounds of biological origin, such as, e.g., amino acids, proteins, fragments of proteins or peptides, etc.


Chromatography can be columnar (i.e., wherein the stationary phase is deposited or packed in a column), preferably liquid chromatography, and yet more preferably high-performance liquid chromatography (HPLC), or ultra high performance/pressure liquid chromatography (UHPLC). Particulars of chromatography are well known in the art (Bidlingmeyer, Practical HPLC Methodology and Applications, John Wiley & Sons Inc., 1993). Exemplary types of chromatography include, without limitation, high-performance liquid chromatography (HPLC), UHPLC, normal phase HPLC (NP-HPLC), reversed phase HPLC (RP-HPLC), ion exchange chromatography (IEC), such as cation or anion exchange chromatography, hydrophilic interaction chromatography (HILIC), hydrophobic interaction chromatography (HIC), size exclusion chromatography (SEC) including gel filtration chromatography or gel permeation chromatography, chromatofocusing, affinity chromatography such as immuno-affinity, immobilized metal affinity chromatography, and the like. Chromatography, including single-, two- or more-dimensional chromatography, can be used as a peptide fractionation method in conjunction with a further peptide analysis method, such as for example, with a downstream mass spectrometry analysis as described elsewhere in this specification.


Further peptide or polypeptide separation, identification or quantification methods can be used, optionally in conjunction with any of the above described analysis methods, for measuring biomarkers in the present disclosure. Such methods include, without limitation, chemical extraction partitioning, isoelectric focusing (IEF) including capillary isoelectric focusing (CIEF), capillary isotachophoresis (CITP), capillary electrochromatography (CEC), and the like, one-dimensional polyacrylamide gel electrophoresis (PAGE), two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), capillary gel electrophoresis (CGE), capillary zone electrophoresis (CZE), micellar electrokinetic chromatography (MEKC), free flow electrophoresis (FFE), etc.


In the context of the invention, the term “capture agent” refers to a compound that can specifically bind to a target, in particular a biomarker. The term includes antibodies, antibody fragments, nucleic acid-based protein binding reagents (e.g. aptamers, Slow Off-rate Modified Aptamers (SOMAmer™)), protein-capture agents, natural ligands (i.e. a hormone for its receptor or vice versa), small molecules or variants thereof.


Capture agents can be configured to specifically bind to a target, in particular a biomarker. Capture agents can include but are not limited to organic molecules, such as polypeptides, polynucleotides and other non polymeric molecules that are identifiable to a skilled person. In the embodiments disclosed herein, capture agents include any agent that can be used to detect, purify, isolate, or enrich a target, in particular a biomarker. Any art-known affinity capture technologies can be used to selectively isolate and enrich/concentrate biomarkers that are components of complex mixtures of biological media for use in the disclosed methods.


Antibody capture agents that specifically bind to a biomarker can be prepared using any suitable methods known in the art. See, e.g., Coligan, Current Protocols in Immunology (1991); Harlow & Lane, Antibodies: A Laboratory Manual (1988); Goding, Monoclonal Antibodies: Principles and Practice (2d ed. 1986). Antibody capture agents can be any immunoglobulin or derivative thereof, whether natural or wholly or partially synthetically produced. All derivatives thereof which maintain specific binding ability are also included in the term. Antibody capture agents have a binding domain that is homologous or largely homologous to an immunoglobulin binding domain and can be derived from natural sources, or partly or wholly synthetically produced. Antibody capture agents can be monoclonal or polyclonal antibodies. In some embodiments, an antibody is a single chain antibody. Those of ordinary skill in the art will appreciate that antibodies can be provided in any of a variety of forms including, for example, humanized, partially humanized, chimeric, chimeric humanized, etc. Antibody capture agents can be antibody fragments including, but not limited to, Fab, Fab′, F(ab′)2, scFv, Fv, dsFv diabody, and Fd fragments. An antibody capture agent can be produced by any means. For example, an antibody capture agent can be enzymatically or chemically produced by fragmentation of an intact antibody and/or it can be recombinantly produced from a gene encoding the partial antibody sequence. An antibody capture agent can comprise a single chain antibody fragment. Alternatively or additionally, antibody capture agent can comprise multiple chains which are linked together, for example, by disulfide linkages.; and, any functional fragments obtained from such molecules, wherein such fragments retain specific-binding properties of the parent antibody molecule. Because of their smaller size as functional components of the whole molecule, antibody fragments can offer advantages over intact antibodies for use in certain immunochemical techniques and experimental applications.


Suitable capture agents useful for practicing the invention also include aptamers. Aptamers are oligonucleotide sequences that can bind to their targets specifically via unique three dimensional (3-D) structures. An aptamer can include any suitable number of nucleotides and different aptamers can have either the same or different numbers of nucleotides. Aptamers can be DNA or RNA or chemically modified nucleic acids and can be single stranded, double stranded, or contain double stranded regions, and can include higher ordered structures. An aptamer can also be a photoaptamer, where a photoreactive or chemically reactive functional group is included in the aptamer to allow it to be covalently linked to its corresponding target. Use of an aptamer capture agent can include the use of two or more aptamers that specifically bind the same biomarker. An aptamer can include a tag. An aptamer can be identified using any known method, including the SELEX (systematic evolution of ligands by exponential enrichment), process. Once identified, an aptamer can be prepared or synthesized in accordance with any known method, including chemical synthetic methods and enzymatic synthetic methods and used in a variety of applications for biomarker detection. Liu et al., Curr Med Chem. 18(27):4117-25 (2011). Capture agents useful in practicing the methods of the invention also include SOMAmers (Slow Off-Rate Modified Aptamers) known in the art to have improved off-rate characteristics. Brody et al., J Mol Biol. 422(5):595-606 (2012). SOMAmers can be generated using any known method, including the SELEX method.


It is understood by those skilled in the art that biomarkers can be modified prior to analysis to improve their resolution or to determine their identity. For example, the biomarkers can be subject to proteolytic digestion before analysis. Any protease can be used. Proteases, such as trypsin, that are likely to cleave the biomarkers into a discrete number of fragments are particularly useful. The fragments that result from digestion function as a fingerprint for the biomarkers, thereby enabling their detection indirectly. This is particularly useful where there are biomarkers with similar molecular masses that might be confused for the biomarker in question. Also, proteolytic fragmentation is useful for high molecular weight biomarkers because smaller biomarkers are more easily resolved by mass spectrometry. In another example, biomarkers can be modified to improve detection resolution. For instance, neuraminidase can be used to remove terminal sialic acid residues from glycoproteins to improve binding to an anionic adsorbent and to improve detection resolution. In another example, the biomarkers can be modified by the attachment of a tag of particular molecular weight that specifically binds to molecular biomarkers, further distinguishing them. Optionally, after detecting such modified biomarkers, the identity of the biomarkers can be further determined by matching the physical and chemical characteristics of the modified biomarkers in a protein database (e.g., SwissProt).


It is further appreciated in the art that biomarkers in a sample can be captured on a substrate for detection. Traditional substrates include antibody-coated 96-well plates or nitrocellulose membranes that are subsequently probed for the presence of the proteins. Alternatively, protein-binding molecules attached to microspheres, microparticles, microbeads, beads, or other particles can be used for capture and detection of biomarkers. The protein-binding molecules can be antibodies, peptides, peptoids, aptamers, small molecule ligands or other protein-binding capture agents attached to the surface of particles. Each protein-binding molecule can include unique detectable label that is coded such that it can be distinguished from other detectable labels attached to other protein-binding molecules to allow detection of biomarkers in multiplex assays. Examples include, but are not limited to, color-coded microspheres with known fluorescent light intensities (see e.g., microspheres with xMAP technology produced by Luminex (Austin, Tex.); microspheres containing quantum dot nanocrystals, for example, having different ratios and combinations of quantum dot colors (e.g., Qdot nanocrystals produced by Life Technologies (Carlsbad, Calif.); glass coated metal nanoparticles (see e.g., SERS nanotags produced by Nanoplex Technologies, Inc. (Mountain View, Calif.); barcode materials (see e.g., sub-micron sized striped metallic rods such as Nanobarcodes produced by Nanoplex Technologies, Inc.), encoded microparticles with colored bar codes (see e.g., CellCard produced by Vitra Bioscience, vitrabio.com), glass microparticles with digital holographic code images (see e.g., CyVera microbeads produced by Illumina (San Diego, Calif.); chemiluminescent dyes, combinations of dye compounds; and beads of detectably different sizes.


In another aspect, biochips can be used for capture and detection of the biomarkers of the invention. Many protein biochips are known in the art. These include, for example, protein biochips produced by Packard BioScience Company (Meriden Conn.), Zyomyx (Hayward, Calif.) and Phylos (Lexington, Mass.). In general, protein biochips comprise a substrate having a surface. A capture reagent or adsorbent is attached to the surface of the substrate. Frequently, the surface comprises a plurality of addressable locations, each of which location has the capture agent bound there. The capture agent can be a biological molecule, such as a polypeptide or a nucleic acid, which captures other biomarkers in a specific manner. Alternatively, the capture agent can be a chromatographic material, such as an anion exchange material or a hydrophilic material. Examples of protein biochips are well known in the art.


The present disclosure also provides methods for separating pregnancies that deliver before 270 days and deliveries from pregancnies that deliver on or after 280 days comprising measuring a change in reversal value of a biomarker pair. In one embodiment, the present invention provides a method for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days comprising measuring a change in reversal value of a biomarker pair consisting of CATD and TENX, wherein said pair of biomarkers exhibits a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days. For example, a biological sample can be contacted with a panel comprising one or more polynucleotide binding agents. The expression of one or more of the biomarkers detected can then be evaluated according to the methods disclosed below, e.g., with or without the use of nucleic acid amplification methods. Skilled practitioners appreciate that in the methods described herein, a measurement of gene expression can be automated. For example, a system that can carry out multiplexed measurement of gene expression can be used, e.g., providing digital readouts of the relative abundance of hundreds of mRNA species simultaneously.


In some embodiments, nucleic acid amplification methods can be used to detect a polynucleotide biomarker. For example, the oligonucleotide primers and probes of the present invention can be used in amplification and detection methods that use nucleic acid substrates isolated by any of a variety of well-known and established methodologies (e.g., Sambrook et al., Molecular Cloning, A laboratory Manual, pp. 7.37-7.57 (2nd ed., 1989); Lin et al., in Diagnostic Molecular Microbiology, Principles and Applications, pp. 605-16 (Persing et al., eds. (1993); Ausubel et al., Current Protocols in Molecular Biology (2001 and subsequent updates)). Methods for amplifying nucleic acids include, but are not limited to, for example the polymerase chain reaction (PCR) and reverse transcription PCR (RT-PCR) (see e.g., U.S. Pat. Nos. 4,683,195; 4,683,202; 4,800,159; 4,965,188), ligase chain reaction (LCR) (see, e.g., Weiss, Science 254:1292-93 (1991)), strand displacement amplification (SDA) (see e.g., Walker et al., Proc. Natl. Acad. Sci. USA 89:392-396 (1992); U.S. Pat. Nos. 5,270,184 and 5,455,166), Thermophilic SDA (tSDA) (see e.g., European Pat. No. 0 684 315) and methods described in U.S. Pat. No. 5,130,238; Lizardi et al., BioTechnol. 6:1197-1202 (1988); Kwoh et al., Proc. Natl. Acad. Sci. USA 86:1173-77 (1989); Guatelli et al., Proc. Natl. Acad. Sci. USA 87:1874-78 (1990); U.S. Pat. Nos. 5,480,784; 5,399,491; US Publication No. 2006/46265.


In some embodiments, measuring mRNA in a biological sample can be used as a surrogate for detection of the level of the corresponding protein biomarker in a biological sample. Thus, any of the biomarkers, biomarker pairs or biomarker reversal panels described herein can also be detected by detecting the appropriate RNA. Levels of mRNA can measured by reverse transcription quantitative polymerase chain reaction (RT-PCR followed with qPCR). RT-PCR is used to create a cDNA from the mRNA. The cDNA can be used in a qPCR assay to produce fluorescence as the DNA amplification process progresses. By comparison to a standard curve, qPCR can produce an absolute measurement such as number of copies of mRNA per cell. Northern blots, microarrays, Invader assays, and RT-PCR combined with capillary electrophoresis have all been used to measure expression levels of mRNA in a sample. See Gene Expression Profiling: Methods and Protocols, Richard A. Shimkets, editor, Humana Press, 2004.


Some embodiments disclosed herein relate to methods of determining the method of determining the estimated due date (EDD) for a pregnant female. The detection of the level of expression of one or more biomarkers and/or the determination of a ratio of biomarkers can be used to determine the estimated due date (EDD) for a pregnant female. Such detection methods can be used, for example, for early diagnosis of a pregnancy-related condition, to determine whether a subject is predisposed to preterm birth, to monitor the progress of preterm birth or the progress of treatment protocols, to assess the severity of preterm birth, to forecast the outcome of preterm birth and/or prospects of recovery or birth at full term, or to aid in the determination of a suitable treatment for preterm birth.


The quantitation of biomarkers in a biological sample can be determined, without limitation, by the methods described above as well as any other method known in the art. The quantitative data thus obtained is then subjected to an analytic classification process. In such a process, the raw data is manipulated according to an algorithm, where the algorithm has been pre-defined by a training set of data, for example as described in the examples provided herein. An algorithm can utilize the training set of data provided herein, or can utilize the guidelines provided herein to generate an algorithm with a different set of data.


In some embodiments, analyzing a measurable feature to determine the estimated due date (EDD) for a pregnant female encompasses the use of a predictive model. In further embodiments, analyzing a measurable feature to determine the estimated due date (EDD) for a pregnant female encompasses comparing said measurable feature with a reference feature. As those skilled in the art can appreciate, such comparison can be a direct comparison to the reference feature or an indirect comparison where the reference feature has been incorporated into the predictive model. In further embodiments, analyzing a measurable feature to determine the estimated due date (EDD) for a pregnant female encompasses one or more of a linear discriminant analysis model, a support vector machine classification algorithm, a recursive feature elimination model, a prediction analysis of microarray model, a logistic regression model, a CART algorithm, a flex tree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, a machine learning algorithm, a penalized regression method, or a combination thereof. In particular embodiments, the analysis comprises logistic regression.


An analytic classification process can use any one of a variety of statistical analytic methods to manipulate the quantitative data and provide for classification of the sample. Examples of useful methods include linear discriminant analysis, recursive feature elimination, a prediction analysis of microarray, a logistic regression, a CART algorithm, a FlexTree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, machine learning algorithms; etc.


For creation of a random forest for prediction of GAB one skilled in the art can consider a set of k subjects (pregnant women) for whom the gestational age at birth (GAB) is known, and for whom N analytes (transitions) have been measured in a blood specimen taken several weeks prior to birth. A regression tree begins with a root node that contains all the subjects. The average GAB for all subjects can be calculated in the root node. The variance of the GAB within the root node will be high, because there is a mixture of women with different GAB's. The root node is then divided (partitioned) into two branches, so that each branch contains women with a similar GAB. The average GAB for subjects in each branch is again calculated. The variance of the GAB within each branch will be lower than in the root node, because the subset of women within each branch has relatively more similar GAB's than those in the root node. The two branches are created by selecting an analyte and a threshold value for the analyte that creates branches with similar GAB. The analyte and threshold value are chosen from among the set of all analytes and threshold values, usually with a random subset of the analytes at each node. The procedure continues recursively producing branches to create leaves (terminal nodes) in which the subjects have very similar GAB's. The predicted GAB in each terminal node is the average GAB for subjects in that terminal node. This procedure creates a single regression tree. A random forest can consist of several hundred or several thousand such trees.


Classification can be made according to predictive modeling methods that set a threshold for determining the probability that a sample belongs to a given class. The probability preferably is at least 50%, or at least 60%, or at least 70%, or at least 80% or higher. Classifications also can be made by determining whether a comparison between an obtained dataset and a reference dataset yields a statistically significant difference. If so, then the sample from which the dataset was obtained is classified as not belonging to the reference dataset class. Conversely, if such a comparison is not statistically significantly different from the reference dataset, then the sample from which the dataset was obtained is classified as belonging to the reference dataset class.


The predictive ability of a model can be evaluated according to its ability to provide a quality metric, e.g. AUROC (area under the ROC curve) or accuracy, of a particular value, or range of values. Area under the curve measures are useful for comparing the accuracy of a classifier across the complete data range. Classifiers with a greater AUC have a greater capacity to classify unknowns correctly between two groups of interest. In some embodiments, a desired quality threshold is a predictive model that will classify a sample with an accuracy of at least about 0.5, at least about 0.55, at least about 0.6, at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, at least about 0.95, or higher. As an alternative measure, a desired quality threshold can refer to a predictive model that will classify a sample with an AUC of at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, or higher.


As is known in the art, the relative sensitivity and specificity of a predictive model can be adjusted to favor either the selectivity metric or the sensitivity metric, where the two metrics have an inverse relationship. The limits in a model as described above can be adjusted to provide a selected sensitivity or specificity level, depending on the particular requirements of the test being performed. One or both of sensitivity and specificity can be at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, or higher.


The raw data can be initially analyzed by measuring the values for each biomarker, usually in triplicate or in multiple triplicates. The data can be manipulated, for example, raw data can be transformed using standard curves, and the average of triplicate measurements used to calculate the average and standard deviation for each patient. These values can be transformed before being used in the models, e.g. log-transformed, Box-Cox transformed (Box and Cox, Royal Stat. Soc., Series B, 26:211-246 (1964). The data are then input into a predictive model, which will classify the sample according to the state. The resulting information can be communicated to a patient or health care provider.


To generate a predictive model for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days, a robust data set, comprising known control samples and samples corresponding to the birth classification of interest is used in a training set. A sample size can be selected using generally accepted criteria. As discussed above, different statistical methods can be used to obtain a highly accurate predictive model.


In one embodiment, hierarchical clustering is performed in the derivation of a predictive model, where the Pearson correlation is employed as the clustering metric. One approach is to consider a given birth dataset as a “learning sample” in a problem of “supervised learning.” CART is a standard in applications to medicine (Singer, Recursive Partitioning in the Health Sciences, Springer (1999)) and can be modified by transforming any qualitative features to quantitative features; sorting them by attained significance levels, evaluated by sample reuse methods for Hotelling's T2 statistic; and suitable application of the lasso method. Problems in prediction are turned into problems in regression without losing sight of prediction, indeed by making suitable use of the Gini criterion for classification in evaluating the quality of regressions.


This approach led to what is termed FlexTree (Huang, Proc. Nat. Acad. Sci. U.S.A 101:10529-10534 (2004)). FlexTree performs very well in simulations and when applied to multiple forms of data and is useful for practicing the claimed methods. Software automating FlexTree has been developed. Alternatively, LARTree or LART can be used (Turnbull (2005) Classification Trees with Subset Analysis Selection by the Lasso, Stanford University). The name reflects binary trees, as in CART and FlexTree; the lasso, as has been noted; and the implementation of the lasso through what is termed LARS by Efron et al. (2004) Annals of Statistics 32:407-451 (2004). See, also, Huang et al., Proc. Natl. Acad. Sci. USA. 101(29):10529-34 (2004). Other methods of analysis that can be used include logic regression. One method of logic regression Ruczinski, Journal of Computational and Graphical Statistics 12:475-512 (2003). Logic regression resembles CART in that its classifier can be displayed as a binary tree. It is different in that each node has Boolean statements about features that are more general than the simple “and” statements produced by CART.


Another approach is that of nearest shrunken centroids (Tibshirani, Proc. Natl. Acad. Sci. U.S.A 99:6567-72 (2002)). The technology is k-means-like, but has the advantage that by shrinking cluster centers, one automatically selects features, as is the case in the lasso, to focus attention on small numbers of those that are informative. The approach is available as PAM software and is widely used. Two further sets of algorithms that can be used are random forests (Breiman, Machine Learning 45:5-32 (2001)) and MART (Hastie, The Elements of Statistical Learning, Springer (2001)). These two methods are known in the art as “committee methods,” that involve predictors that “vote” on outcome.


To provide significance ordering, the false discovery rate (FDR) can be determined. First, a set of null distributions of dissimilarity values is generated. In one embodiment, the values of observed profiles are permuted to create a sequence of distributions of correlation coefficients obtained out of chance, thereby creating an appropriate set of null distributions of correlation coefficients (Tusher et al., Proc. Natl. Acad. Sci. U.S.A 98, 5116-21 (2001)). The set of null distribution is obtained by: permuting the values of each profile for all available profiles; calculating the pair-wise correlation coefficients for all profile; calculating the probability density function of the correlation coefficients for this permutation; and repeating the procedure for N times, where N is a large number, usually 300. Using the N distributions, one calculates an appropriate measure (mean, median, etc.) of the count of correlation coefficient values that their values exceed the value (of similarity) that is obtained from the distribution of experimentally observed similarity values at given significance level.


The FDR is the ratio of the number of the expected falsely significant correlations (estimated from the correlations greater than this selected Pearson correlation in the set of randomized data) to the number of correlations greater than this selected Pearson correlation in the empirical data (significant correlations). This cut-off correlation value can be applied to the correlations between experimental profiles. Using the aforementioned distribution, a level of confidence is chosen for significance. This is used to determine the lowest value of the correlation coefficient that exceeds the result that would have obtained by chance. Using this method, one obtains thresholds for positive correlation, negative correlation or both. Using this threshold(s), the user can filter the observed values of the pair wise correlation coefficients and eliminate those that do not exceed the threshold(s). Furthermore, an estimate of the false positive rate can be obtained for a given threshold. For each of the individual “random correlation” distributions, one can find how many observations fall outside the threshold range. This procedure provides a sequence of counts. The mean and the standard deviation of the sequence provide the average number of potential false positives and its standard deviation.


In an alternative analytical approach, variables chosen in the cross-sectional analysis are separately employed as predictors in a time-to-event analysis (survival analysis), where the event is the occurrence of preterm birth, and subjects with no event are considered censored at the time of giving birth. Given the specific pregnancy outcome (preterm birth event or no event), the random lengths of time each patient will be observed, and selection of proteomic and other features, a parametric approach to analyzing survival can be better than the widely applied semi-parametric Cox model. A Weibull parametric fit of survival permits the hazard rate to be monotonically increasing, decreasing, or constant, and also has a proportional hazards representation (as does the Cox model) and an accelerated failure-time representation. All the standard tools available in obtaining approximate maximum likelihood estimators of regression coefficients and corresponding functions are available with this model.


In addition the Cox models can be used, especially since reductions of numbers of covariates to manageable size with the lasso will significantly simplify the analysis, allowing the possibility of a nonparametric or semi-parametric approach to prediction of time to preterm birth. These statistical tools are known in the art and applicable to all manner of proteomic data. A set of biomarker, clinical and genetic data that can be easily determined, and that is highly informative regarding the probability for preterm birth and predicted time to a preterm birth event in said pregnant female is provided. Also, algorithms provide information regarding the probability for preterm birth in the pregnant female.


Survival analyses are commonly used to understand time to occurrence of an event of interest such as birth or death. Commonly, the Kaplan-Meier estimator is used to estimate the survival function, while Cox proportional hazards models are used to estimate the effects of covariates on the hazard of event occurrence. These models conventionally assume that survival time is based on risk of exactly one type of event. However a competing risk for a different event may be present that either hinders the observation of an event of interest or modifies the chance that this event occurs. Conventional methods may be inappropriate in the presence of competing risks. Alternative methods appropriate for analysis of competing risks either assess competing hazards in subdistribution hazards models or cause-specific modified Cox proportional hazards models; or estimate cumulative incidence over competing events (Jason P. Fine & Robert J. Gray. Journal of the American Statistical Association Vol. 94, Issue 446,1999. A Proportional Hazards Model for the Subdistribution of a Competing Risk).


In the development of a predictive model, it can be desirable to select a subset of markers, i.e. at least 3, at least 4, at least 5, at least 6, up to the complete set of markers. Usually a subset of markers will be chosen that provides for the needs of the quantitative sample analysis, e.g. availability of reagents, convenience of quantitation, etc., while maintaining a highly accurate predictive model. The selection of a number of informative markers for building classification models requires the definition of a performance metric and a user-defined threshold for producing a model with useful predictive ability based on this metric. For example, the performance metric can be the AUC, the sensitivity and/or specificity of the prediction as well as the overall accuracy of the prediction model.


As will be understood by those skilled in the art, an analytic classification process can use any one of a variety of statistical analytic methods to manipulate the quantitative data and provide for classification of the sample. Examples of useful methods include, without limitation, linear discriminant analysis, recursive feature elimination, a prediction analysis of microarray, a logistic regression, a CART algorithm, a FlexTree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, and machine learning algorithms. Various methods are used in a training model. The selection of a subset of markers can be for a forward selection or a backward selection of a marker subset. The number of markers can be selected that will optimize the performance of a model without the use of all the markers. One way to define the optimum number of terms is to choose the number of terms that produce a model with desired predictive ability (e.g. an AUC>0.75, or equivalent measures of sensitivity/specificity) that lies no more than one standard error from the maximum value obtained for this metric using any combination and number of terms used for the given algorithm.


In yet another aspect, the invention provides kits for determining the EDD for a pregnant female. The kit can include one or more agents for detection of biomarkers, a container for holding a biological sample isolated from a pregnant female; and printed instructions for reacting agents with the biological sample or a portion of the biological sample to detect the presence or amount of the isolated biomarkers in the biological sample. The agents can be packaged in separate containers. The kit can further comprise one or more control reference samples and reagents for performing an immunoassay.


The kit can comprise one or more containers for compositions or reagents contained in the kit. Compositions can be in liquid form or can be lyophilized. Suitable containers for the compositions include, for example, bottles, vials, syringes, and test tubes. Containers can be formed from a variety of materials, including glass or plastic. The kit can also comprise a package insert containing written instructions for methods for separating a pregnancy that delivers before 270 days from a pregnancy that delivers on or after 280 days.


From the foregoing description, it will be apparent that variations and modifications can be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.


The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.


All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference. 5









TABLE 1







Reversals with AUC >=0.65, comprising blood draw


windows starting from day 137 to 150 of gestation.










P1
P2
p.value
AUC













CATD_VGFAEAAR
TENX_LSQLSVTDVTTSSLR
2.4E−06
0.839





CATD_VGFAEAAR
TENX_LNWEAPPGAFDSFLLR
1.7E−05
0.838





CATD_VSTLPAITLK
TENX_LNWEAPPGAFDSFLLR
7.5E−06
0.821





CATD_VSTLPAITLK
TENX_LSQLSVTDVTTSSLR
1.7E−06
0.813





CATD_VGFAEAAR
SPRL1_VLTHSELAPLR
3.0E−04
0.800





APOC3_GWVTDGFSSLK
TENX_LSQLSVTDVTTSSLR
1.9E−05
0.797





APOC3_GWVTDGFSSLK
TENX_LNWEAPPGAFDSFLLR
1.4E−05
0.792





APOC3_GWVTDGFSSLK
IBP3_FLNVLSPR
3.0E−05
0.790





APOC3_GWVTDGFSSLK
IBP3_YGQPLPGYTTK
4.6E−05
0.789





APOC3_GWVTDGFSSLK
LYAM1_SYYWIGIR
6.1E−05
0.788





APOC3_GWVTDGFSSLK
SPRL1_VLTHSELAPLR
1.6E−05
0.782





CATD_VGFAEAAR
IBP3_YGQPLPGYTTK
9.0E−04
0.782





CATD_VGFAEAAR
CHL1_VIAVNEVGR
4.1E−04
0.781





APOC3_GWVTDGFSSLK
ALS_IRPHTFTGLSGLR
4.7E−05
0.777





CATD_VSTLPAITLK
IBP3_YGQPLPGYTTK
4.9E−04
0.777





APOC3_GWVTDGFSSLK
IGF2_GIVEECCFR
7.1E−05
0.773





IBP4_QCHPALDGQR
TENX_LNWEAPPGAFDSFLLR
4.0E−06
0.773





APOC3_GWVTDGFSSLK
PGRP2_AGLLRPDYALLGHR
1.8E−04
0.773





CATD_VGFAEAAR
IGF2_GIVEECCFR
1.8E−03
0.773





VTNC_VDTVDPPYPR
TENX_LNWEAPPGAFDSFLLR
4.8E−06
0.773





APOC3_GWVTDGFSSLK
CRIS3_YEDLYSNCK
7.4E−05
0.771





APOC3_GWVTDGFSSLK
TIE1_VSWSLPLVPGPLVGDGFLLR
2.2E−05
0.770





CATD_VGFAEAAR
LYAM1_SYYWIGIR
8.4E−04
0.770





IBP4_QCHPALDGQR
TENX_LSQLSVTDVTTSSLR
7.1E−06
0.770





CATD_VGFAEAAR
TIE1_VSWSLPLVPGPLVGDGFLLR
4.7E−04
0.769





APOC3_GWVTDGFSSLK
CRIS3_AVSPPAR
1.0E−04
0.767





CATD_VSTLPAITLK
SPRL1_VLTHSELAPLR
3.0E−04
0.766





APOC3_GWVTDGFSSLK
VTDB_ELPEHTVK
2.2E−05
0.766





CATD_VGFAEAAR
PGRP2_AGLLRPDYALLGHR
2.7E−03
0.764





B2MG_VNHVTLSQPK
TENX_LSQLSVTDVTTSSLR
1.5E−05
0.763





CATD_VGFAEAAR
IBP3_FLNVLSPR
1.2E−03
0.763





VTNC_GQYCYELDEK
TENX_LNWEAPPGAFDSFLLR
1.8E−05
0.762





APOC3_GWVTDGFSSLK
HEMO_NFPSPVDAAFR
3.0E−05
0.761





CATD_VSTLPAITLK
CHL1_VIAVNEVGR
3.6E−04
0.761





VTNC_VDTVDPPYPR
TENX_LSQLSVTDVTTSSLR
2.1E−05
0.761





APOC3_GWVTDGFSSLK
HABP2_FLNWIK
1.4E−01
0.760





CD14_SWLAELQQWLKPGLK
TENX_LNWEAPPGAFDSFLLR
1.5E−05
0.760





INHBC_LDFHFSSDR
TENX_LNWEAPPGAFDSFLLR
8.6E−06
0.760





APOC3_GWVTDGFSSLK
FETUA_FSVVYAK
3.6E−05
0.759





APOC3_GWVTDGFSSLK
PEDF_TVQAVLTVPK
6.5E−05
0.759





CO5_VFQFLEK
TENX_LNWEAPPGAFDSFLLR
1.1E−05
0.758





APOC3_GWVTDGFSSLK
FETUA_HTLNQIDEVK
2.3E−05
0.758





INHBC_LDFHFSSDR
TENX_LSQLSVTDVTTSSLR
2.0E−05
0.757





APOC3_GWVTDGFSSLK
CHL1_VIAVNEVGR
6.8E−05
0.756





B2MG_VNHVTLSQPK
TENX_LNWEAPPGAFDSFLLR
8.4E−06
0.756





CATD_VGFAEAAR
CRIS3_YEDLYSNCK
2.1E−03
0.756





CATD_VSTLPAITLK
IGF2_GIVEECCFR
1.2E−03
0.755





APOC3_GWVTDGFSSLK
CO6_ALNHLPLEYNSALYSR
2.4E−05
0.755





CATD_VSTLPAITLK
IBP3_FLNVLSPR
7.0E−04
0.753





CATD_VGFAEAAR
CRIS3_AVSPPAR
7.7E−03
0.752





IBP4_QCHPALDGQR
SPRL1_VLTHSELAPLR
1.3E−04
0.752





APOC3_GWVTDGFSSLK
CBPN_EALIQFLEQVHQGIK
2.0E−04
0.751





KNG1_QVVAGLNFR
TENX_LNWEAPPGAFDSFLLR
2.4E−05
0.751





CD14_SWLAELQQWLKPGLK
TENX_LSQLSVTDVTTSSLR
8.0E−05
0.750





APOC3_GWVTDGFSSLK
KNG1_DIPTNSPELEETLTHTITK
2.4E−05
0.749





CATD_VGFAEAAR
ALS_IRPHTFTGLSGLR
2.9E−03
0.747





KNG1_QVVAGLNFR
TENX_LSQLSVTDVTTSSLR
4.1E−05
0.747





APOC3_GWVTDGFSSLK
ANGT_DPTFIPAPIQAK
6.4E−05
0.746





CATD_VGFAEAAR
FETUA_HTLNQIDEVK
2.3E−02
0.746





APOC3_GWVTDGFSSLK
NCAM1_GLGEISAASEFK
1.6E−04
0.745





B2MG_VNHVTLSQPK
LYAM1_SYYWIGIR
9.1E−05
0.745





VTNC_VDTVDPPYPR
IBP3_YGQPLPGYTTK
1.2E−04
0.745





APOC3_GWVTDGFSSLK
BGH3_LTLLAPLNSVFK
4.5E−05
0.744





APOC3_GWVTDGFSSLK
PTGDS_GPGEDFR
2.4E−03
0.744





APOC3_GWVTDGFSSLK
AFAM_DADPDTFFAK
1.0E−04
0.744





B2MG_VNHVTLSQPK
CRIS3_AVSPPAR
5.3E−04
0.743





APOC3_GWVTDGFSSLK
APOH_ATVVYQGER
7.0E−04
0.742





CATD_VSTLPAITLK
TIE1_VSWSLPLVPGPLVGDGFLLR
5.3E−04
0.742





B2MG_VNHVTLSQPK
SPRL1_VLTHSELAPLR
2.1E−04
0.741





LBP_ITGFLKPGK
TENX_LNWEAPPGAFDSFLLR
9.1E−05
0.741





B2MG_VNHVTLSQPK
IBP3_YGQPLPGYTTK
1.8E−04
0.741





CATD_VGFAEAAR
NCAM1_GLGEISAASEFK
6.8E−04
0.741





CO5_VFQFLEK
TENX_LSQLSVTDVTTSSLR
4.6E−05
0.741





CD14_LTVGAAQVPAQLLVGALR
TENX_LNWEAPPGAFDSFLLR
4.1E−05
0.740





APOC3_GWVTDGFSSLK
AFAM_HFQNLGK
1.6E−04
0.740





APOC3_GWVTDGFSSLK
SOM2.CSH_NYGLLYCFR
3.6E−04
0.740





B2MG_VNHVTLSQPK
CHL1_VIAVNEVGR
1.3E−03
0.739





CATD_VSTLPAITLK
LYAM1_SYYWIGIR
8.1E−04
0.739





APOC3_GWVTDGFSSLK
CO8A_SLLQPNK
1.4E−04
0.739





APOC3_GWVTDGFSSLK
SHBG_IALGGLLFPASNLR
5.1E−04
0.739





CATD_VGFAEAAR
PEDF_TVQAVLTVPK
5.9E−03
0.739





CO5_VFQFLEK
SPRL1_VLTHSELAPLR
3.7E−04
0.739





APOC3_GWVTDGFSSLK
CSH_AHQLAIDTYQEFEETYIPK
3.9E−04
0.738





APOC3_GWVTDGFSSLK
KNG1_QVVAGLNFR
1.7E−04
0.738





B2MG_VEHSDLSFSK
TENX_LSQLSVTDVTTSSLR
6.1E−05
0.738





CO5_VFQFLEK
IBP3_YGQPLPGYTTK
4.0E−04
0.738





CO5_VFQFLEK
LYAM1_SYYWIGIR
1.2E−04
0.737





IBP6_HLDSVLQQLQTEVYR
TENX_LNWEAPPGAFDSFLLR
6.4E−05
0.737





ITIH3_ALDLSLK
LYAM1_SYYWIGIR
9.4E−04
0.737





APOC3_GWVTDGFSSLK
C163A_INPASLDK
1.0E−04
0.737





B2MG_VEHSDLSFSK
TENX_LNWEAPPGAFDSFLLR
4.6E−05
0.737





CATD_VGFAEAAR
PTGDS_GPGEDFR
1.1E−03
0.736





VTNC_GQYCYELDEK
TENX_LSQLSVTDVTTSSLR
7.7E−05
0.736





CATD_VGFAEAAR
FETUA_FSVVYAK
3.2E−02
0.736





CATD_VSTLPAITLK
PGRP2_AGLLRPDYALLGHR
2.3E−03
0.736





APOC3_GWVTDGFSSLK
F13B_GDTYPAELYITGSILR
2.0E−04
0.735





CATD_VGFAEAAR
AFAM_DADPDTFFAK
1.1E−02
0.735





APOC3_GWVTDGFSSLK
PEDF_LQSLFDSPDFSK
4.9E−04
0.735





B2MG_VNHVTLSQPK
IGF2_GIVEECCFR
4.7E−04
0.735





APOC3_GWVTDGFSSLK
CBPN_NNANGVDLNR
4.8E−04
0.734





APOC3_GWVTDGFSSLK
THBG_AVLHIGEK
7.8E−05
0.734





CATD_VSTLPAITLK
CRIS3_YEDLYSNCK
1.8E−03
0.734





CO5_TLLPVSKPEIR
TENX_LNWEAPPGAFDSFLLR
6.0E−05
0.734





APOC3_GWVTDGFSSLK
PSG3_VSAPSGTGHLPGLNPL
4.1E−04
0.734





ENPP2_TYLHTYESEI
TENX_LNWEAPPGAFDSFLLR
8.7E−04
0.734





LBP_ITGFLKPGK
LYAM1_SYYWIGIR
1.7E−03
0.733





CATD_VGFAEAAR
AFAM_HFQNLGK
8.4E−03
0.733





CATD_VGFAEAAR
CBPN_EALIQFLEQVHQGIK
5.6E−03
0.733





SOM2.CSH_SVEGSCGF
TENX_LNWEAPPGAFDSFLLR
3.8E−04
0.733





ANGT_DPTFIPAPIQAK
TENX_LNWEAPPGAFDSFLLR
1.6E−04
0.732





B2MG_VNHVTLSQPK
CRIS3_YEDLYSNCK
2.5E−04
0.732





CATD_VGFAEAAR
HEMO_NFPSPVDAAFR
4.5E−03
0.732





CD14_LTVGAAQVPAQLLVGALR
TENX_LSQLSVTDVTTSSLR
2.1E−04
0.732





LBP_ITLPDFTGDLR
LYAM1_SYYWIGIR
1.1E−03
0.732





LBP_ITLPDFTGDLR
TENX_LNWEAPPGAFDSFLLR
8.9E−05
0.732





APOC3_GWVTDGFSSLK
CLUS_LFDSDPITVTVPVEVSR
1.6E−04
0.732





APOC3_GWVTDGFSSLK
CO8B_QALEEFQK
3.5E−04
0.731





CATD_VGFAEAAR
CO6_ALNHLPLEYNSALYSR
3.7E−03
0.731





CATD_VGFAEAAR
F13B_GDTYPAELYITGSILR
2.6E−03
0.731





IBP6_HLDSVLQQLQTEVYR
TENX_LSQLSVTDVTTSSLR
8.9E−05
0.731





APOH_ATVVYQGER
TENX_LNWEAPPGAFDSFLLR
1.9E−04
0.730





ENPP2_TYLHTYESEI
TENX_LSQLSVTDVTTSSLR
9.9E−04
0.730





VTNC_GQYCYELDEK
IBP3_YGQPLPGYTTK
6.7E−04
0.730





APOC3_GWVTDGFSSLK
CLUS_ASSIIDELFQDR
2.6E−04
0.730





APOC3_GWVTDGFSSLK
IBP6_GAQTLYVPNCDHR
3.9E−04
0.730





APOC3_GWVTDGFSSLK
ITIH4_ILDDLSPR
3.2E−04
0.730





CATD_VSTLPAITLK
ALS_IRPHTFTGLSGLR
2.1E−03
0.730





CFAB_YGLVTYATYPK
TENX_LNWEAPPGAFDSFLLR
1.2E−04
0.730





PEDF_LQSLFDSPDFSK
TENX_LNWEAPPGAFDSFLLR
2.8E−04
0.730





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
TENX_LSQLSVTDVTTSSLR
1.2E−03
0.729





APOC3_GWVTDGFSSLK
CO5_TLLPVSKPEIR
4.3E−04
0.728





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
TENX_LNWEAPPGAFDSFLLR
9.2E−04
0.728





HEMO_NFPSPVDAAFR
TENX_LNWEAPPGAFDSFLLR
1.5E−04
0.727





IBP4_QCHPALDGQR
CRIS3_YEDLYSNCK
1.6E−04
0.727





KNG1_DIPTNSPELEETLTHTITK
TENX_LNWEAPPGAFDSFLLR
9.0E−05
0.727





LBP_ITGFLKPGK
TENX_LSQLSVTDVTTSSLR
1.4E−04
0.727





IBP4_QCHPALDGQR
CRIS3_AVSPPAR
2.3E−04
0.727





CATD_VGFAEAAR
VTDB_ELPEHTVK
5.4E−03
0.727





CO8B_QALEEFQK
TENX_LNWEAPPGAFDSFLLR
7.6E−05
0.727





LBP_ITGFLKPGK
CHL1_VIAVNEVGR
2.2E−03
0.727





VTNC_VDTVDPPYPR
IBP3_FLNVLSPR
3.2E−04
0.726





CATD_VGFAEAAR
SHBG_IALGGLLFPASNLR
7.7E−03
0.726





APOC3_GWVTDGFSSLK
CD14_LTVGAAQVPAQLLVGALR
3.5E−04
0.726





CATD_VGFAEAAR
THBG_AVLHIGEK
1.0E−02
0.726





CO5_TLLPVSKPEIR
TENX_LSQLSVTDVTTSSLR
1.5E−04
0.725





IBP4_QCHPALDGQR
IBP3_YGQPLPGYTTK
2.4E−04
0.725





B2MG_VNHVTLSQPK
IBP3_FLNVLSPR
2.9E−04
0.724





CO5_VFQFLEK
IBP3_FLNVLSPR
9.6E−04
0.724





APOC3_GWVTDGFSSLK
CD14_SWLAELQQWLKPGLK
8.2E−04
0.724





IBP4_QCHPALDGQR
CHL1_VIAVNEVGR
5.6E−04
0.723





ITIH3_ALDLSLK
TENX_LNWEAPPGAFDSFLLR
1.1E−04
0.723





LBP_ITLPDFTGDLR
CRIS3_YEDLYSNCK
2.4E−04
0.723





IBP4_QCHPALDGQR
LYAM1_SYYWIGIR
2.6E−04
0.722





PEDF_LQSLFDSPDFSK
TENX_LSQLSVTDVTTSSLR
3.8E−04
0.722





LBP_ITGFLKPGK
CRIS3_YEDLYSNCK
2.2E−04
0.722





APOC3_GWVTDGFSSLK
CSH_ISLLLIESWLEPVR
1.4E−03
0.722





CATD_VGFAEAAR
HABP2_FLNWIK
4.0E−01
0.722





ENPP2_TYLHTYESEI
CRIS3_YEDLYSNCK
1.0E−02
0.722





ENPP2_TYLHTYESEI
LYAM1_SYYWIGIR
1.1E−02
0.722





A2GL_DLLLPQPDLR
TENX_LSQLSVTDVTTSSLR
8.5E−04
0.721





KNG1_QVVAGLNFR
CHL1_VIAVNEVGR
1.1E−03
0.721





LBP_ITGFLKPGK
IBP3_YGQPLPGYTTK
9.0E−04
0.721





CATD_VSTLPAITLK
CRIS3_AVSPPAR
5.6E−03
0.721





KNG1_QVVAGLNFR
SPRL1_VLTHSELAPLR
9.0E−04
0.721





LBP_ITLPDFTGDLR
CHL1_VIAVNEVGR
1.8E−03
0.721





A2GL_DLLLPQPDLR
TENX_LNWEAPPGAFDSFLLR
2.1E−04
0.720





LBP_ITLPDFTGDLR
TENX_LSQLSVTDVTTSSLR
1.4E−04
0.720





APOC3_GWVTDGFSSLK
IBP6_HLDSVLQQLQTEVYR
4.1E−04
0.720





APOC3_GWVTDGFSSLK
PAPP1_DIPHWLNPTR
1.1E−03
0.720





ITIH3_ALDLSLK
TENX_LSQLSVTDVTTSSLR
1.8E−04
0.720





KNG1_DIPTNSPELEETLTHTITK
TENX_LSQLSVTDVTTSSLR
1.8E−04
0.720





APOC3_GWVTDGFSSLK
PRG2_WNFAYWAAHQPWSR
1.2E−03
0.719





CO5_VFQFLEK
CHL1_VIAVNEVGR
4.6E−04
0.719





INHBC_LDFHFSSDR
IBP3_YGQPLPGYTTK
7.5E−04
0.719





ITIH4_ILDDLSPR
TENX_LNWEAPPGAFDSFLLR
1.3E−04
0.719





LBP_ITLPDFTGDLR
IBP3_YGQPLPGYTTK
1.3E−03
0.719





CATD_VSTLPAITLK
FETUA_HTLNQIDEVK
1.6E−02
0.718





CATD_VSTLPAITLK
PTGDS_GPGEDFR
1.6E−03
0.718





CO8B_QALEEFQK
TENX_LSQLSVTDVTTSSLR
2.7E−04
0.718





VTNC_VDTVDPPYPR
ALS_IRPHTFTGLSGLR
1.3E−03
0.718





KNG1_QVVAGLNFR
IBP3_YGQPLPGYTTK
1.0E−03
0.717





VTNC_VDTVDPPYPR
CRIS3_YEDLYSNCK
4.6E−04
0.717





CATD_VGFAEAAR
PAPP1_DIPHWLNPTR
3.5E−03
0.717





APOC3_GWVTDGFSSLK
VTNC_GQYCYELDEK
3.6E−04
0.716





VTNC_GQYCYELDEK
IBP3_FLNVLSPR
1.6E−03
0.716





CO8A_SLLQPNK
TENX_LNWEAPPGAFDSFLLR
4.1E−04
0.716





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
CRIS3_YEDLYSNCK
7.9E−03
0.716





LBP_ITLPDFTGDLR
CRIS3_AVSPPAR
4.1E−04
0.716





APOC3_GWVTDGFSSLK
CO5_VFQFLEK
1.0E−03
0.716





LBP_ITGFLKPGK
CRIS3_AVSPPAR
6.2E−04
0.716





VTNC_GQYCYELDEK
LYAM1_SYYWIGIR
8.7E−04
0.716





CATD_VGFAEAAR
IBP6_GAQTLYVPNCDHR
3.8E−03
0.715





APOH_ATVVYQGER
TENX_LSQLSVTDVTTSSLR
3.4E−04
0.715





VTNC_VDTVDPPYPR
SPRL1_VLTHSELAPLR
6.0E−04
0.715





ENPP2_TYLHTYESEI
CRIS3_AVSPPAR
1.5E−02
0.714





CATD_VGFAEAAR
CBPN_NNANGVDLNR
1.5E−02
0.714





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
LYAM1_SYYWIGIR
1.1E−02
0.714





APOC3_GWVTDGFSSLK
ITIH4_NPLVWVHASPEHVVVTR

0.713





B2MG_VEHSDLSFSK
LYAM1_SYYWIGIR
6.3E−04
0.713





VTNC_VDTVDPPYPR
LYAM1_SYYWIGIR
1.3E−03
0.713





CATD_VGFAEAAR
PRG2_WNFAYWAAHQPWSR
2.4E−03
0.713





CD14_SWLAELQQWLKPGLK
IBP3_YGQPLPGYTTK
5.4E−04
0.713





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
CRIS3_AVSPPAR
1.2E−02
0.713





IBP4_QCHPALDGQR
IBP3_FLNVLSPR
3.7E−04
0.712





ITIH4_ILDDLSPR
TENX_LSQLSVTDVTTSSLR
3.0E−04
0.712





CATD_VGFAEAAR
ITIH4_ILDDLSPR
1.0E−02
0.711





VTNC_VDTVDPPYPR
CHL1_VIAVNEVGR
6.2E−04
0.711





B2MG_VEHSDLSFSK
CHL1_VIAVNEVGR
3.5E−03
0.711





B2MG_VEHSDLSFSK
SPRL1_VLTHSELAPLR
1.4E−03
0.711





CFAB_YGLVTYATYPK
TENX_LSQLSVTDVTTSSLR
5.4E−04
0.711





HEMO_NFPSPVDAAFR
TENX_LSQLSVTDVTTSSLR
6.7E−04
0.711





C1QB_VPGLYYFTYHASSR
TENX_LNWEAPPGAFDSFLLR
2.7E−03
0.710





CSH_AHQLAIDTYQEFEETYIPK
TENX_LNWEAPPGAFDSFLLR
9.6E−04
0.710





CATD_VGFAEAAR
KNG1_DIPTNSPELEETLTHTITK
1.3E−02
0.710





ITIH3_ALDLSLK
CHL1_VIAVNEVGR
3.8E−03
0.710





VTNC_VDTVDPPYPR
IGF2_GIVEECCFR
8.6E−04
0.710





APOC3_GWVTDGFSSLK
VTNC_VDTVDPPYPR
5.6E−04
0.709





VTNC_GQYCYELDEK
IGF2_GIVEECCFR
3.7E−03
0.709





INHBC_LDFHFSSDR
IBP3_FLNVLSPR
8.8E−04
0.709





ITIH3_ALDLSLK
CRIS3_AVSPPAR
1.7E−03
0.708





KNG1_QVVAGLNFR
LYAM1_SYYWIGIR
9.7E−04
0.708





ITIH3_ALDLSLK
CRIS3_YEDLYSNCK
1.5E−03
0.707





SOM2.CSH_SVEGSCGF
TENX_LSQLSVTDVTTSSLR
7.0E−04
0.707





CLUS_ASSIIDELFQDR
TENX_LSQLSVTDVTTSSLR
5.1E−04
0.706





CATD_VGFAEAAR
C163A_INPASLDK
1.3E−02
0.705





ITIH4_ILDDLSPR
CHL1_VIAVNEVGR
2.6E−03
0.705





VTNC_VDTVDPPYPR
CRIS3_AVSPPAR
7.1E−04
0.705





CLUS_ASSIIDELFQDR
TENX_LNWEAPPGAFDSFLLR
2.2E−04
0.705





CO5_VFQFLEK
CRIS3_YEDLYSNCK
6.7E−04
0.705





ITIH3_ALDLSLK
SPRL1_VLTHSELAPLR
3.5E−03
0.705





INHBC_LDFHFSSDR
SPRL1_VLTHSELAPLR
1.5E−03
0.705





B2MG_VNHVTLSQPK
TIE1_VSWSLPLVPGPLVGDGFLLR
3.8E−03
0.703





CATD_VGFAEAAR
IBP6_HLDSVLQQLQTEVYR
5.5E−03
0.703





VTNC_GQYCYELDEK
ALS_IRPHTFTGLSGLR
3.5E−03
0.703





VTNC_GQYCYELDEK
CHL1_VIAVNEVGR
1.7E−03
0.703





LBP_ITLPDFTGDLR
SPRL1_VLTHSELAPLR
6.9E−04
0.703





B2MG_VEHSDLSFSK
CRIS3_YEDLYSNCK
8.6E−04
0.702





CO5_VFQFLEK
CRIS3_AVSPPAR
6.2E−04
0.702





CO5_VFQFLEK
IGF2_GIVEECCFR
1.3E−03
0.702





ANGT_DPTFIPAPIQAK
TENX_LSQLSVTDVTTSSLR
3.6E−04
0.702





B2MG_VNHVTLSQPK
ALS_IRPHTFTGLSGLR
1.4E−03
0.702





CATD_VGFAEAAR
ANGT_DPTFIPAPIQAK
1.2E−02
0.702





CATD_VGFAEAAR
SOM2.CSH_NYGLLYCFR
2.5E−03
0.702





IBP2_LIQGAPTIR
TENX_LNWEAPPGAFDSFLLR
5.3E−03
0.702





VTDB_ELPEHTVK
TENX_LNWEAPPGAFDSFLLR
3.8E−04
0.702





CATD_VGFAEAAR
PEDF_LQSLFDSPDFSK
8.2E−03
0.701





APOC3_GWVTDGFSSLK
IBP4_QCHPALDGQR
1.3E−03
0.701





C1QB_VPGLYYFTYHASSR
TENX_LSQLSVTDVTTSSLR
2.8E−03
0.701





CATD_VGFAEAAR
APOH_ATVVYQGER
1.4E−02
0.701





CD14_SWLAELQQWLKPGLK
IBP3_FLNVLSPR
1.2E−03
0.701





CO5_TLLPVSKPEIR
IBP3_YGQPLPGYTTK
1.3E−03
0.701





CO5_VFQFLEK
ALS_IRPHTFTGLSGLR
3.7E−03
0.701





INHBC_LDFHFSSDR
CHL1_VIAVNEVGR
9.3E−04
0.701





ITIH4_ILDDLSPR
LYAM1_SYYWIGIR
3.7E−03
0.700





B2MG_VEHSDLSFSK
CRIS3_AVSPPAR
2.1E−03
0.700





B2MG_VEHSDLSFSK
IBP3_YGQPLPGYTTK
7.1E−04
0.700





INHBC_LDFHFSSDR
IGF2_GIVEECCFR
1.3E−03
0.700





LBP_ITGFLKPGK
IBP3_FLNVLSPR
1.2E−03
0.700





APOC3_GWVTDGFSSLK
FBLN1_TGYYFDGISR
2.3E−02
0.699





CO5_VFQFLEK
TIE1_VSWSLPLVPGPLVGDGFLLR
3.3E−03
0.699





INHBC_LDFHFSSDR
LYAM1_SYYWIGIR
1.1E−03
0.699





CFAB_YGLVTYATYPK
IBP3_FLNVLSPR
5.3E−03
0.699





CO5_TLLPVSKPEIR
SPRL1_VLTHSELAPLR
6.5E−03
0.699





CO6_ALNHLPLEYNSALYSR
TENX_LNWEAPPGAFDSFLLR
1.1E−03
0.699





IBP4_QCHPALDGQR
PGRP2_AGLLRPDYALLGHR
2.4E−03
0.699





KNG1_QVVAGLNFR
CRIS3_YEDLYSNCK
8.5E−04
0.699





LBP_ITGFLKPGK
SPRL1_VLTHSELAPLR
9.0E−04
0.699





CATD_VSTLPAITLK
CO6_ALNHLPLEYNSALYSR
3.3E−03
0.698





LBP_ITGFLKPGK
PGRP2_AGLLRPDYALLGHR
2.5E−03
0.698





VTNC_GQYCYELDEK
CRIS3_AVSPPAR
1.2E−03
0.698





B2MG_VEHSDLSFSK
IGF2_GIVEECCFR
1.4E−03
0.698





CATD_VSTLPAITLK
HEMO_NFPSPVDAAFR
4.9E−03
0.698





CATD_VSTLPAITLK
PEDF_TVQAVLTVPK
5.6E−03
0.698





CFAB_YGLVTYATYPK
IBP3_YGQPLPGYTTK
2.6E−03
0.698





CO8B_QALEEFQK
IBP3_YGQPLPGYTTK
1.2E−03
0.698





IBP4_QCHPALDGQR
IGF2_GIVEECCFR
7.1E−04
0.698





INHBC_LDFHFSSDR
TIE1_VSWSLPLVPGPLVGDGFLLR
3.3E−03
0.698





LBP_ITLPDFTGDLR
IBP3_FLNVLSPR
1.3E−03
0.698





SOM2.CSH_NYGLLYCFR
TENX_LNWEAPPGAFDSFLLR
1.4E−03
0.698





A2GL_DLLLPQPDLR
LYAM1_SYYWIGIR
2.8E−03
0.697





AFAM_HFQNLGK
TENX_LNWEAPPGAFDSFLLR
9.2E−04
0.697





CATD_VGFAEAAR
PSG3_VSAPSGTGHLPGLNPL
1.2E−02
0.697





CFAB_YGLVTYATYPK
LYAM1_SYYWIGIR
1.1E−03
0.697





IBP6_GAQTLYVPNCDHR
TENX_LNWEAPPGAFDSFLLR
9.3E−04
0.697





A2GL_DLLLPQPDLR
SPRL1_VLTHSELAPLR
9.2E−03
0.697





INHBC_LDFHFSSDR
CRIS3_AVSPPAR
1.5E−03
0.697





VTNC_GQYCYELDEK
SPRL1_VLTHSELAPLR
2.9E−03
0.697





CATD_VGFAEAAR
BGH3_LTLLAPLNSVFK
1.5E−02
0.696





CSH_AHQLAIDTYQEFEETYIPK
TENX_LSQLSVTDVTTSSLR
2.2E−03
0.696





ENPP2_TYLHTYESEI
IBP3_YGQPLPGYTTK
4.4E−03
0.696





AFAM_DADPDTFFAK
TENX_LNWEAPPGAFDSFLLR
7.6E−04
0.695





CATD_VSTLPAITLK
NCAM1_GLGEISAASEFK
1.4E−03
0.695





CATD_VSTLPAITLK
FETUA_FSVVYAK
2.3E−02
0.695





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
CHL1_VIAVNEVGR
3.4E−03
0.695





B2MG_VEHSDLSFSK
IBP3_FLNVLSPR
1.1E−03
0.694





CO5_TLLPVSKPEIR
LYAM1_SYYWIGIR
1.2E−03
0.694





LBP_ITGFLKPGK
IGF2_GIVEECCFR
1.7E−03
0.694





APOC3_GWVTDGFSSLK
B2MG_VNHVTLSQPK
3.3E−03
0.694





CO8B_QALEEFQK
IBP3_FLNVLSPR
2.1E−03
0.694





ENPP2_TYLHTYESEI
CHL1_VIAVNEVGR
3.3E−03
0.694





CATD_VSTLPAITLK
PAPP1_DIPHWLNPTR
3.2E−03
0.693





CATD_VSTLPAITLK
PRG2_WNFAYWAAHQPWSR
2.5E−03
0.693





CD14_SWLAELQQWLKPGLK
ALS_IRPHTFTGLSGLR
1.9E−03
0.693





CFAB_YGLVTYATYPK
CHL1_VIAVNEVGR
5.6E−03
0.693





VTNC_VDTVDPPYPR
VTDB_ELPEHTVK
2.5E−03
0.693





CATD_VSTLPAITLK
VTDB_ELPEHTVK
4.9E−03
0.693





CBPN_NNANGVDLNR
TENX_LNWEAPPGAFDSFLLR
1.9E−03
0.693





CD14_SWLAELQQWLKPGLK
LYAM1_SYYWIGIR
1.8E−03
0.693





CSH_ISLLLIESWLEPVR
TENX_LNWEAPPGAFDSFLLR
1.4E−03
0.693





LBP_ITGFLKPGK
ALS_IRPHTFTGLSGLR
5.5E−03
0.693





ENPP2_TYLHTYESEI
IGF2_GIVEECCFR
1.4E−02
0.693





LBP_ITGFLKPGK
TIE1_VSWSLPLVPGPLVGDGFLLR
2.0E−03
0.693





LBP_ITLPDFTGDLR
PGRP2_AGLLRPDYALLGHR
2.3E−03
0.693





A2GL_DLLLPQPDLR
IBP3_YGQPLPGYTTK
1.6E−03
0.692





CATD_VGFAEAAR
CO5_TLLPVSKPEIR
1.4E−02
0.692





VTNC_GQYCYELDEK
CRIS3_YEDLYSNCK
1.3E−03
0.692





AFAM_HFQNLGK
TENX_LSQLSVTDVTTSSLR
1.6E−03
0.692





ENPP2_TYLHTYESEI
IBP3_FLNVLSPR
5.5E−03
0.692





INHBC_LDFHFSSDR
CRIS3_YEDLYSNCK
1.2E−03
0.692





LBP_ITLPDFTGDLR
ALS_IRPHTFTGLSGLR
4.4E−03
0.692





CATD_VSTLPAITLK
F13B_GDTYPAELYITGSILR
3.6E−03
0.691





CO5_TLLPVSKPEIR
IBP3_FLNVLSPR
2.9E−03
0.691





INHBC_LDFHFSSDR
PEDF_TVQAVLTVPK
1.2E−03
0.691





KNG1_QVVAGLNFR
IBP3_FLNVLSPR
1.4E−03
0.691





PEDF_TVQAVLTVPK
TENX_LNWEAPPGAFDSFLLR
1.1E−03
0.691





PEDF_TVQAVLTVPK
TENX_LSQLSVTDVTTSSLR
2.0E−03
0.691





CATD_VSTLPAITLK
AFAM_DADPDTFFAK
1.0E−02
0.691





AFAM_DADPDTFFAK
TENX_LSQLSVTDVTTSSLR
1.1E−03
0.690





CFAB_YGLVTYATYPK
ALS_IRPHTFTGLSGLR
1.2E−02
0.690





ITIH4_ILDDLSPR
SPRL1_VLTHSELAPLR
1.2E−02
0.690





CATD_VSTLPAITLK
AFAM_HFQNLGK
7.4E−03
0.690





CATD_VSTLPAITLK
HABP2_FLNWIK
3.9E−01
0.690





APOC3_GWVTDGFSSLK
A2GL_DLLLPQPDLR
5.4E−03
0.689





ITIH3_ALDLSLK
IBP3_YGQPLPGYTTK
2.0E−03
0.689





VTNC_VDTVDPPYPR
TIE1_VSWSLPLVPGPLVGDGFLLR
1.1E−03
0.689





A2GL_DLLLPQPDLR
CRIS3_YEDLYSNCK
1.4E−03
0.689





C1QB_VPGLYYFTYHASSR
IBP3_YGQPLPGYTTK
3.5E−03
0.689





CATD_VGFAEAAR
CLUS_ASSIIDELFQDR
1.7E−02
0.689





ENPP2_TYLHTYESEI
ALS_IRPHTFTGLSGLR
1.9E−02
0.689





ENPP2_TYLHTYESEI
SPRL1_VLTHSELAPLR
6.8E−03
0.689





IBP4_QCHPALDGQR
ALS_IRPHTFTGLSGLR
3.8E−03
0.689





INHBC_LDFHFSSDR
ALS_IRPHTFTGLSGLR
2.3E−03
0.689





CATD_VSTLPAITLK
SHBG_IALGGLLFPASNLR
8.6E−03
0.688





CD14_SWLAELQQWLKPGLK
SPRL1_VLTHSELAPLR
1.5E−03
0.688





C1QB_VPGLYYFTYHASSR
LYAM1_SYYWIGIR
5.8E−03
0.688





CATD_VGFAEAAR
CLUS_LFDSDPITVTVPVEVSR
1.6E−02
0.688





CO8A_SLLQPNK
TENX_LSQLSVTDVTTSSLR
1.5E−03
0.688





IBP6_GAQTLYVPNCDHR
TENX_LSQLSVTDVTTSSLR
7.5E−04
0.688





ITIH3_ALDLSLK
PGRP2_AGLLRPDYALLGHR
1.8E−03
0.688





CLUS_ASSIIDELFQDR
IBP3_YGQPLPGYTTK
3.0E−03
0.688





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
IBP3_YGQPLPGYTTK
3.3E−03
0.688





LBP_ITGFLKPGK
CO6_ALNHLPLEYNSALYSR
5.2E−03
0.688





LBP_ITGFLKPGK
FETUA_HTLNQIDEVK
2.0E−03
0.688





LBP_ITLPDFTGDLR
TIE1_VSWSLPLVPGPLVGDGFLLR
2.4E−03
0.688





CBPN_NNANGVDLNR
TENX_LSQLSVTDVTTSSLR
4.2E−03
0.687





IBP2_LIQGAPTIR
TENX_LSQLSVTDVTTSSLR
3.0E−03
0.687





SOM2.CSH_NYGLLYCFR
TENX_LSQLSVTDVTTSSLR
3.4E−03
0.687





ENPP2_TYLHTYESEI
BGH3_LTLLAPLNSVFK
1.1E−02
0.687





ITIH4_NPLVWVHASPEHVVVTR
TENX_LNWEAPPGAFDSFLLR
1.5E−03
0.687





LBP_ITGFLKPGK
PEDF_TVQAVLTVPK
3.6E−03
0.687





VTDB_ELPEHTVK
TENX_LSQLSVTDVTTSSLR
1.5E−03
0.687





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
SPRL1_VLTHSELAPLR
6.4E−03
0.686





APOC3_GWVTDGFSSLK
B2MG_VEHSDLSFSK
3.1E−03
0.686





CATD_VGFAEAAR
KNG1_QVVAGLNFR
1.4E−02
0.686





ITIH4_NPLVWVHASPEHVVVTR
TENX_LSQLSVTDVTTSSLR
2.2E−03
0.685





LBP_ITGFLKPGK
CO8A_SLLQPNK
9.9E−03
0.685





LBP_ITLPDFTGDLR
IGF2_GIVEECCFR
1.8E−03
0.685





F13B_GDTYPAELYITGSILR
TENX_LNWEAPPGAFDSFLLR
8.1E−04
0.685





FBLN3_IPSNPSHR
TENX_LNWEAPPGAFDSFLLR
4.7E−03
0.685





LBP_ITLPDFTGDLR
FETUA_HTLNQIDEVK
1.7E−03
0.685





ENPP2_TYLHTYESEI
PGRP2_AGLLRPDYALLGHR
3.4E−02
0.684





F13B_GDTYPAELYITGSILR
TENX_LSQLSVTDVTTSSLR
1.7E−03
0.684





LBP_ITLPDFTGDLR
BGH3_LTLLAPLNSVFK
3.0E−03
0.684





IBP4_QCHPALDGQR
TIE1_VSWSLPLVPGPLVGDGFLLR
5.3E−03
0.684





A2GL_DLLLPQPDLR
CRIS3_AVSPPAR
3.3E−03
0.684





CATD_VSTLPAITLK
CBPN_EALIQFLEQVHQGIK
9.6E−03
0.684





CFAB_YGLVTYATYPK
CRIS3_AVSPPAR
3.3E−03
0.684





ITIH4_NPLVWVHASPEHVVVTR
CHL1_VIAVNEVGR
6.5E−03
0.684





LBP_ITGFLKPGK
BGH3_LTLLAPLNSVFK
3.6E−03
0.684





CATD_VGFAEAAR
CO8A_SLLQPNK
1.0E−02
0.683





KNG1_QVVAGLNFR
CRIS3_AVSPPAR
2.7E−03
0.683





HABP2_FLNWIK
TENX_LSQLSVTDVTTSSLR
4.0E−03
0.683





THBG_AVLHIGEK
TENX_LNWEAPPGAFDSFLLR
7.7E−04
0.683





INHBC_LDFHFSSDR
FETUA_HTLNQIDEVK
1.6E−03
0.683





CATD_VGFAEAAR
CSH_AHQLAIDTYQEFEETYIPK
5.1E−03
0.682





CO5_TLLPVSKPEIR
CRIS3_AVSPPAR
3.5E−03
0.682





APOC3_GWVTDGFSSLK
SOM2.CSH_SVEGSCGF

0.682





CATD_VSTLPAITLK
IBP6_GAQTLYVPNCDHR
4.4E−03
0.682





FETUA_FSVVYAK
TENX_LNWEAPPGAFDSFLLR
2.4E−03
0.682





IBP4_QCHPALDGQR
FETUA_HTLNQIDEVK
6.1E−03
0.682





B2MG_VNHVTLSQPK
PEDF_TVQAVLTVPK
8.3E−03
0.682





CFAB_YGLVTYATYPK
SPRL1_VLTHSELAPLR
3.8E−03
0.682





ENPP2_TYLHTYESEI
TIE1_VSWSLPLVPGPLVGDGFLLR
2.4E−02
0.682





HABP2_FLNWIK
TENX_LNWEAPPGAFDSFLLR
3.2E−03
0.682





FETUA_FSVVYAK
TENX_LSQLSVTDVTTSSLR
3.7E−03
0.681





CATD_VSTLPAITLK
CBPN_NNANGVDLNR
2.5E−02
0.680





CO5_TLLPVSKPEIR
CHL1_VIAVNEVGR
4.3E−03
0.680





KNG1_QVVAGLNFR
IGF2_GIVEECCFR
3.2E−03
0.680





LBP_ITLPDFTGDLR
SHBG_IALGGLLFPASNLR
7.7E−03
0.680





CD14_SWLAELQQWLKPGLK
CRIS3_YEDLYSNCK
1.1E−03
0.680





CLUS_ASSIIDELFQDR
CHL1_VIAVNEVGR
9.8E−03
0.680





B2MG_VNHVTLSQPK
FETUA_HTLNQIDEVK
1.2E−02
0.679





C1QB_VPGLYYFTYHASSR
CRIS3_YEDLYSNCK
7.5E−03
0.679





CD14_LTVGAAQVPAQLLVGALR
IBP3_YGQPLPGYTTK
1.7E−03
0.679





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
TIE1_VSWSLPLVPGPLVGDGFLLR
1.6E−02
0.679





FETUA_HTLNQIDEVK
TENX_LNWEAPPGAFDSFLLR
1.0E−02
0.679





VTNC_VDTVDPPYPR
HEMO_NFPSPVDAAFR
3.2E−03
0.679





APOC3_GWVTDGFSSLK
CFAB_YGLVTYATYPK
1.6E−03
0.679





CD14_SWLAELQQWLKPGLK
CRIS3_AVSPPAR
2.6E−03
0.679





CD14_SWLAELQQWLKPGLK
IGF2_GIVEECCFR
3.7E−03
0.679





KNG1_DIPTNSPELEETLTHTITK
LYAM1_SYYWIGIR
5.1E−03
0.679





B2MG_VNHVTLSQPK
PTGDS_GPGEDFR
6.8E−03
0.678





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
CBPN_EALIQFLEQVHQGIK
2.2E−02
0.678





LBP_ITGFLKPGK
SHBG_IALGGLLFPASNLR
9.1E−03
0.678





VTDB_ELPEHTVK
CHL1_VIAVNEVGR
1.5E−02
0.678





CATD_VGFAEAAR
FBLN1_TGYYFDGISR
1.3E−02
0.678





APOH_ATVVYQGER
IBP3_YGQPLPGYTTK
3.7E−03
0.677





CATD_VSTLPAITLK
PSG3_VSAPSGTGHLPGLNPL
1.3E−02
0.677





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
PGRP2_AGLLRPDYALLGHR
3.9E−02
0.677





LBP_ITLPDFTGDLR
CO8A_SLLQPNK
6.5E−03
0.677





ANGT_DPTFIPAPIQAK
IBP3_YGQPLPGYTTK
2.2E−03
0.677





C1QB_VPGLYYFTYHASSR
CRIS3_AVSPPAR
9.1E−03
0.677





CD14_SWLAELQQWLKPGLK
CHL1_VIAVNEVGR
4.1E−03
0.677





CFAB_YGLVTYATYPK
IGF2_GIVEECCFR
4.8E−03
0.677





CSH_ISLLLIESWLEPVR
TENX_LSQLSVTDVTTSSLR
2.7E−03
0.677





ENPP2_TYLHTYESEI
FETUA_HTLNQIDEVK
2.4E−02
0.677





KNG1_DIPTNSPELEETLTHTITK
CRIS3_YEDLYSNCK
4.5E−03
0.677





LBP_ITGFLKPGK
C163A_INPASLDK
4.3E−03
0.677





CFAB_YGLVTYATYPK
CRIS3_YEDLYSNCK
3.5E−03
0.676





ITIH4_ILDDLSPR
IBP3_YGQPLPGYTTK
3.0E−03
0.676





CO8B_QALEEFQK
LYAM1_SYYWIGIR
3.2E−03
0.676





A2GL_DLLLPQPDLR
CHL1_VIAVNEVGR
4.4E−03
0.676





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
IGF2_GIVEECCFR
6.6E−03
0.676





KNG1_QVVAGLNFR
ALS_IRPHTFTGLSGLR
4.1E−03
0.676





CD14_LTVGAAQVPAQLLVGALR
SPRL1_VLTHSELAPLR
4.8E−03
0.675





CO5_VFQFLEK
CO6_ALNHLPLEYNSALYSR
2.9E−02
0.675





FBLN3_IPSNPSHR
TENX_LSQLSVTDVTTSSLR
3.6E−03
0.675





KNG1_DIPTNSPELEETLTHTITK
SPRL1_VLTHSELAPLR
1.4E−02
0.675





LBP_ITGFLKPGK
FETUA_FSVVYAK
4.0E−03
0.675





LBP_ITGFLKPGK
THBG_AVLHIGEK
1.3E−02
0.675





LBP_ITLPDFTGDLR
CO6_ALNHLPLEYNSALYSR
4.0E−03
0.675





LBP_ITLPDFTGDLR
PEDF_TVQAVLTVPK
3.0E−03
0.675





THBG_AVLHIGEK
TENX_LSQLSVTDVTTSSLR
1.5E−03
0.675





VTNC_VDTVDPPYPR
FETUA_HTLNQIDEVK
2.1E−03
0.675





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
BGH3_LTLLAPLNSVFK
1.1E−02
0.675





ITIH3_ALDLSLK
SHBG_IALGGLLFPASNLR
6.8E−03
0.675





LBP_ITLPDFTGDLR
VTDB_ELPEHTVK
5.3E−03
0.675





C1QB_VPGLYYFTYHASSR
SPRL1_VLTHSELAPLR
2.3E−02
0.674





ENPP2_TYLHTYESEI
PEDF_TVQAVLTVPK
3.8E−02
0.674





INHBC_LDFHFSSDR
HEMO_NFPSPVDAAFR
1.3E−02
0.674





KNG1_DIPTNSPELEETLTHTITK
CHL1_VIAVNEVGR
6.3E−03
0.674





B2MG_VEHSDLSFSK
TIE1_VSWSLPLVPGPLVGDGFLLR
1.3E−02
0.674





CATD_VGFAEAAR
CSH_ISLLLIESWLEPVR
4.3E−03
0.674





CATD_VSTLPAITLK
C163A_INPASLDK
1.2E−02
0.674





CO6_ALNHLPLEYNSALYSR
TENX_LSQLSVTDVTTSSLR
3.0E−03
0.674





CO8B_QALEEFQK
SPRL1_VLTHSELAPLR
2.7E−03
0.674





ENPP2_TYLHTYESEI
FETUA_FSVVYAK
3.0E−02
0.674





LBP_ITGFLKPGK
VTDB_ELPEHTVK
4.2E−03
0.674





PSG2_IHPSYTNYR
TENX_LNWEAPPGAFDSFLLR
2.1E−02
0.674





PTGDS_GPGEDFR
TENX_LSQLSVTDVTTSSLR
5.5E−03
0.674





THBG_AVLHIGEK
CHL1_VIAVNEVGR
2.1E−02
0.674





CATD_VSTLPAITLK
IBP6_HLDSVLQQLQTEVYR
6.8E−03
0.673





KNG1_DIPTNSPELEETLTHTITK
IBP3_YGQPLPGYTTK
4.0E−03
0.673





VTNC_VDTVDPPYPR
PGRP2_AGLLRPDYALLGHR
5.3E−03
0.673





C1QB_VPGLYYFTYHASSR
IBP3_FLNVLSPR
7.3E−03
0.673





CATD_VSTLPAITLK
APOH_ATVVYQGER
1.8E−02
0.673





CD14_LTVGAAQVPAQLLVGALR
CRIS3_YEDLYSNCK
2.3E−03
0.673





IBP2_LIQGAPTIR
CRIS3_YEDLYSNCK
1.2E−02
0.673





IBP6_HLDSVLQQLQTEVYR
IBP3_YGQPLPGYTTK
3.0E−03
0.673





ITIH3_ALDLSLK
IBP3_FLNVLSPR
4.1E−03
0.673





KNG1_DIPTNSPELEETLTHTITK
IBP3_FLNVLSPR
4.2E−03
0.673





LBP_ITGFLKPGK
HEMO_NFPSPVDAAFR
4.1E−03
0.673





LBP_ITLPDFTGDLR
FETUA_FSVVYAK
3.2E−03
0.673





APOC3_GWVTDGFSSLK
PSG1_FQLPGQK
4.3E−01
0.672





C1QB_VPGLYYFTYHASSR
IGF2_GIVEECCFR
7.0E−03
0.672





CATD_VGFAEAAR
CO5_VFQFLEK
1.7E−02
0.672





CO8B_QALEEFQK
IGF2_GIVEECCFR
5.0E−03
0.672





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
ALS_IRPHTFTGLSGLR
9.1E−03
0.672





B2MG_VNHVTLSQPK
PGRP2_AGLLRPDYALLGHR
3.0E−03
0.672





INHBC_LDFHFSSDR
PGRP2_AGLLRPDYALLGHR
3.5E−03
0.672





INHBC_LDFHFSSDR
PTGDS_GPGEDFR
4.3E−03
0.672





ITIH3_ALDLSLK
TIE1_VSWSLPLVPGPLVGDGFLLR
2.2E−02
0.672





LBP_ITLPDFTGDLR
C163A_INPASLDK
5.5E−03
0.672





VTNC_VDTVDPPYPR
NCAM1_GLGEISAASEFK
7.4E−03
0.672





AFAM_HFQNLGK
IBP3_YGQPLPGYTTK
6.0E−03
0.671





CATD_VGFAEAAR
CD14_LTVGAAQVPAQLLVGALR
6.9E−03
0.671





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
IBP3_FLNVLSPR
3.7E−03
0.671





INHBC_LDFHFSSDR
FETUA_FSVVYAK
3.3E−03
0.671





CO5_TLLPVSKPEIR
CRIS3_YEDLYSNCK
3.3E−03
0.671





KNG1_QVVAGLNFR
TIE1_VSWSLPLVPGPLVGDGFLLR
3.7E−03
0.671





IBP2_LIQGAPTIR
LYAM1_SYYWIGIR
2.1E−02
0.670





APOH_ATVVYQGER
IBP3_FLNVLSPR
6.6E−03
0.670





ENPP2_TYLHTYESEI
HABP2_FLNWIK
2.2E−01
0.670





IBP6_HLDSVLQQLQTEVYR
CHL1_VIAVNEVGR
1.6E−02
0.670





IBP6_HLDSVLQQLQTEVYR
SPRL1_VLTHSELAPLR
9.2E−03
0.670





PSG2_IHPSYTNYR
TENX_LSQLSVTDVTTSSLR
2.5E−02
0.670





CO8B_QALEEFQK
ALS_IRPHTFTGLSGLR
1.5E−02
0.670





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
PAPP1_DIPHWLNPTR
1.7E−02
0.670





ITIH3_ALDLSLK
IGF2_GIVEECCFR
3.3E−03
0.670





A2GL_DLLLPQPDLR
IBP3_FLNVLSPR
4.0E−03
0.669





APOC3_GWVTDGFSSLK
IBP2_LIQGAPTIR
8.2E−03
0.669





C1QB_VPGLYYFTYHASSR
CHL1_VIAVNEVGR
2.1E−02
0.669





CATD_VGFAEAAR
CO8B_QALEEFQK
1.6E−02
0.669





CATD_VSTLPAITLK
THBG_AVLHIGEK
1.2E−02
0.669





CD14_LTVGAAQVPAQLLVGALR
IBP3_FLNVLSPR
3.4E−03
0.669





PTGDS_GPGEDFR
TENX_LNWEAPPGAFDSFLLR
3.0E−03
0.669





VTDB_ELPEHTVK
LYAM1_SYYWIGIR
8.7E−03
0.669





B2MG_VNHVTLSQPK
FETUA_FSVVYAK
2.2E−02
0.669





ENPP2_TYLHTYESEI
CBPN_EALIQFLEQVHQGIK
3.9E−02
0.669





KNG1_DIPTNSPELEETLTHTITK
CRIS3_AVSPPAR
7.9E−03
0.669





VTNC_VDTVDPPYPR
CBPN_EALIQFLEQVHQGIK
1.0E−02
0.669





PEDF_LQSLFDSPDFSK
CHL1_VIAVNEVGR
7.2E−03
0.668





SOM2.CSH_SVEGSCGF
LYAM1_SYYWIGIR
1.5E−02
0.668





CATD_VGFAEAAR
VTNC_GQYCYELDEK
2.8E−02
0.668





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
FETUA_HTLNQIDEVK
1.7E−02
0.668





INHBC_LDFHFSSDR
CO6_ALNHLPLEYNSALYSR
1.1E−02
0.668





ITIH4_NPLVWVHASPEHVVVTR
LYAM1_SYYWIGIR
6.9E−03
0.668





CATD_VSTLPAITLK
ITIH4_ILDDLSPR
1.3E−02
0.667





CFAB_YGLVTYATYPK
TIE1_VSWSLPLVPGPLVGDGFLLR
3.0E−02
0.667





CLUS_ASSIIDELFQDR
IBP3_FLNVLSPR
5.3E−03
0.667





CO5_VFQFLEK
PGRP2_AGLLRPDYALLGHR
5.4E−03
0.667





LBP_ITLPDFTGDLR
HEMO_NFPSPVDAAFR
3.3E−03
0.667





CATD_VSTLPAITLK
BGH3_LTLLAPLNSVFK
1.1E−02
0.667





ENPP2_TYLHTYESEI
HEMO_NFPSPVDAAFR
4.4E−02
0.667





IBP6_HLDSVLQQLQTEVYR
CRIS3_YEDLYSNCK
4.8E−03
0.667





INHBC_LDFHFSSDR
AFAM_DADPDTFFAK
8.9E−03
0.667





THBG_AVLHIGEK
LYAM1_SYYWIGIR
4.3E−03
0.667





VTNC_GQYCYELDEK
TIE1_VSWSLPLVPGPLVGDGFLLR
5.4E−03
0.667





A2GL_DLLLPQPDLR
IGF2_GIVEECCFR
6.2E−03
0.666





ENPP2_TYLHTYESEI
CO6_ALNHLPLEYNSALYSR
2.6E−02
0.666





IBP2_LIQGAPTIR
CHL1_VIAVNEVGR
3.4E−02
0.666





IBP2_LIQGAPTIR
CRIS3_AVSPPAR
2.8E−02
0.666





INHBC_LDFHFSSDR
CBPN_EALIQFLEQVHQGIK
4.4E−03
0.666





SOM2.CSH_SVEGSCGF
CHL1_VIAVNEVGR
1.1E−02
0.666





A2GL_DLLLPQPDLR
TIE1_VSWSLPLVPGPLVGDGFLLR
9.9E−03
0.666





ANGT_DPTFIPAPIQAK
CRIS3_YEDLYSNCK
3.3E−03
0.666





ANGT_DPTFIPAPIQAK
LYAM1_SYYWIGIR
7.6E−03
0.666





ANGT_DPTFIPAPIQAK
SPRL1_VLTHSELAPLR
4.7E−03
0.666





B2MG_VNHVTLSQPK
SHBG_IALGGLLFPASNLR
1.7E−02
0.666





CATD_VSTLPAITLK
KNG1_DIPTNSPELEETLTHTITK
1.4E−02
0.666





CD14_LTVGAAQVPAQLLVGALR
LYAM1_SYYWIGIR
3.9E−03
0.666





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
SHBG_IALGGLLFPASNLR
4.4E−02
0.665





FETUA_HTLNQIDEVK
TENX_LSQLSVTDVTTSSLR
1.5E−02
0.665





AFAM_DADPDTFFAK
IBP3_YGQPLPGYTTK
7.5E−03
0.665





LBP_ITLPDFTGDLR
THBG_AVLHIGEK
1.3E−02
0.665





PEDF_LQSLFDSPDFSK
IBP3_YGQPLPGYTTK
6.1E−03
0.665





VTNC_VDTVDPPYPR
F13B_GDTYPAELYITGSILR
7.2E−02
0.665





CO8B_QALEEFQK
CHL1_VIAVNEVGR
8.9E−03
0.665





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
FETUA_FSVVYAK
2.5E−02
0.665





CLUS_ASSIIDELFQDR
CRIS3_YEDLYSNCK
2.7E−03
0.664





HEMO_NFPSPVDAAFR
IBP3_YGQPLPGYTTK
4.1E−03
0.664





LBP_ITGFLKPGK
NCAM1_GLGEISAASEFK
1.1E−02
0.664





NCAM1_GLGEISAASEFK
TENX_LNWEAPPGAFDSFLLR
4.5E−03
0.664





C1QB_VPGLYYFTYHASSR
SHBG_IALGGLLFPASNLR
4.3E−02
0.664





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
HABP2_FLNWIK
1.7E−01
0.664





SOM2.CSH_SVEGSCGF
CRIS3_YEDLYSNCK
9.3E−03
0.664





VTDB_ELPEHTVK
IBP3_YGQPLPGYTTK
4.7E−03
0.664





ANGT_DPTFIPAPIQAK
CHL1_VIAVNEVGR
1.1E−02
0.663





B2MG_VEHSDLSFSK
ALS_IRPHTFTGLSGLR
3.6E−03
0.663





CATD_VSTLPAITLK
SOM2.CSH_NYGLLYCFR
3.6E−03
0.663





CBPN_EALIQFLEQVHQGIK
TENX_LSQLSVTDVTTSSLR
2.1E−02
0.663





CLUS_ASSIIDELFQDR
ALS_IRPHTFTGLSGLR
1.7E−02
0.663





IBP6_HLDSVLQQLQTEVYR
LYAM1_SYYWIGIR
1.9E−02
0.663





LBP_ITLPDFTGDLR
PRG2_WNFAYWAAHQPWSR
1.3E−02
0.663





SOM2.CSH_SVEGSCGF
IGF2_GIVEECCFR
1.3E−02
0.663





HEMO_NFPSPVDAAFR
SPRL1_VLTHSELAPLR
1.5E−02
0.663





IBP6_GAQTLYVPNCDHR
IBP3_YGQPLPGYTTK
6.7E−03
0.663





KNG1_DIPTNSPELEETLTHTITK
IGF2_GIVEECCFR
1.1E−02
0.663





CD14_LTVGAAQVPAQLLVGALR
CHL1_VIAVNEVGR
1.1E−02
0.662





CO5_TLLPVSKPEIR
IGF2_GIVEECCFR
4.9E−03
0.662





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
PRG2_WNFAYWAAHQPWSR
1.9E−02
0.662





ITIH4_ILDDLSPR
CRIS3_YEDLYSNCK
5.7E−03
0.662





VTNC_VDTVDPPYPR
HABP2_FLNWIK
3.6E−01
0.662





ANGT_DPTFIPAPIQAK
CRIS3_AVSPPAR
4.2E−03
0.662





CD14_SWLAELQQWLKPGLK
TIE1_VSWSLPLVPGPLVGDGFLLR
5.5E−03
0.662





CLUS_LFDSDPITVTVPVEVSR
TENX_LNWEAPPGAFDSFLLR
6.7E−03
0.662





CO8B_QALEEFQK
CRIS3_AVSPPAR
6.0E−03
0.662





FBLN3_IPSNPSHR
CHL1_VIAVNEVGR
6.0E−02
0.662





B2MG_VNHVTLSQPK
NCAM1_GLGEISAASEFK
2.0E−02
0.661





CLUS_ASSIIDELFQDR
LYAM1_SYYWIGIR
5.9E−03
0.661





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
CLUS_LFDSDPITVTVPVEVSR
2.4E−02
0.661





SOM2.CSH_SVEGSCGF
IBP3_YGQPLPGYTTK
6.9E−03
0.661





SOM2.CSH_SVEGSCGF
SPRL1_VLTHSELAPLR
1.2E−02
0.661





APOC3_GWVTDGFSSLK
IBP1_VVESLAK
1.7E−02
0.660





CATD_VGFAEAAR
PSG1_FQLPGQK
2.8E−01
0.660





CO5_TLLPVSKPEIR
TIE1_VSWSLPLVPGPLVGDGFLLR
2.2E−02
0.660





CO8B_QALEEFQK
CRIS3_YEDLYSNCK
6.1E−03
0.660





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
VTDB_ELPEHTVK
3.0E−02
0.660





ENPP2_TYLHTYESEI
PAPP1_DIPHWLNPTR
3.2E−02
0.660





ENPP2_TYLHTYESEI
SHBG_IALGGLLFPASNLR
3.4E−02
0.660





ENPP2_TYLHTYESEI
VTDB_ELPEHTVK
4.7E−02
0.660





IBP4_QCHPALDGQR
SHBG_IALGGLLFPASNLR
1.8E−02
0.660





LBP_ITGFLKPGK
CO8B_QALEEFQK
2.3E−02
0.660





PSG11_LFIPQITPK
TENX_LNWEAPPGAFDSFLLR
4.5E−03
0.660





B2MG_VNHVTLSQPK
CO6_ALNHLPLEYNSALYSR
2.9E−02
0.660





B2MG_VNHVTLSQPK
HEMO_NFPSPVDAAFR
1.3E−02
0.660





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
C163A_INPASLDK
7.7E−03
0.660





IBP6_HLDSVLQQLQTEVYR
IBP3_FLNVLSPR
5.3E−03
0.660





IBP6_HLDSVLQQLQTEVYR
IGF2_GIVEECCFR
8.7E−03
0.660





ITIH3_ALDLSLK
PAPP1_DIPHWLNPTR
6.3E−03
0.660





ITIH4_ILDDLSPR
IBP3_FLNVLSPR
5.7E−03
0.660





KNG1_QVVAGLNFR
NCAM1_GLGEISAASEFK
1.2E−02
0.660





LBP_ITGFLKPGK
PRG2_WNFAYWAAHQPWSR
1.2E−02
0.660





VTNC_VDTVDPPYPR
CO6_ALNHLPLEYNSALYSR
1.0E−02
0.660





ANGT_DPTFIPAPIQAK
IBP3_FLNVLSPR
3.9E−03
0.659





APOC3_GWVTDGFSSLK
ITIH4_QLGLPGPPDVPDHAAYHPF

0.659





CO8A_SLLQPNK
IBP3_YGQPLPGYTTK
6.9E−03
0.659





PSG9_LFIPQITR
TENX_LNWEAPPGAFDSFLLR
1.5E−02
0.659





CATD_VSTLPAITLK
PEDF_LQSLFDSPDFSK
1.0E−02
0.659





CFAB_YGLVTYATYPK
PGRP2_AGLLRPDYALLGHR
2.0E−02
0.659





HEMO_NFPSPVDAAFR
CHL1_VIAVNEVGR
1.6E−02
0.659





INHBC_LDFHFSSDR
HABP2_FLNWIK
3.0E−01
0.659





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
CO6_ALNHLPLEYNSALYSR
1.6E−02
0.659





INHBC_LDFHFSSDR
BGH3_LTLLAPLNSVFK
1.0E−02
0.659





VTDB_ELPEHTVK
SPRL1_VLTHSELAPLR
1.8E−02
0.659





CLUS_ASSIIDELFQDR
CRIS3_AVSPPAR
4.8E−03
0.658





SOM2.CSH_SVEGSCGF
CRIS3_AVSPPAR
5.9E−03
0.658





ENPP2_TYLHTYESEI
THBG_AVLHIGEK
6.2E−02
0.658





ITIH3_ALDLSLK
PRG2_WNFAYWAAHQPWSR
6.2E−03
0.658





LBP_ITGFLKPGK
IBP6_GAQTLYVPNCDHR
1.3E−02
0.658





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
PEDF_TVQAVLTVPK
2.7E−02
0.657





APOC3_GWVTDGFSSLK
ITIH3_ALDLSLK
3.3E−02
0.657





CATD_VSTLPAITLK
FBLN1_TGYYFDGISR
1.8E−02
0.657





PEDF_LQSLFDSPDFSK
LYAM1_SYYWIGIR
8.4E−03
0.657





SOM2.CSH_SVEGSCGF
IBP3_FLNVLSPR
9.6E−03
0.657





VTNC_VDTVDPPYPR
PAPP1_DIPHWLNPTR
7.8E−03
0.657





INHBC_LDFHFSSDR
APOH_ATVVYQGER
5.0E−02
0.657





CATD_VGFAEAAR
CD14_SWLAELQQWLKPGLK
1.0E−02
0.656





CBPN_EALIQFLEQVHQGIK
TENX_LNWEAPPGAFDSFLLR
1.1E−02
0.656





VTNC_VDTVDPPYPR
FETUA_FSVVYAK
9.4E−03
0.656





CATD_VSTLPAITLK
CLUS_LFDSDPITVTVPVEVSR
1.5E−02
0.656





ITIH4_ILDDLSPR
CRIS3_AVSPPAR
8.2E−03
0.656





ITIH4_NPLVWVHASPEHVVVTR
IBP3_YGQPLPGYTTK
7.9E−03
0.656





LBP_ITGFLKPGK
CO5_TLLPVSKPEIR
2.1E−02
0.656





THBG_AVLHIGEK
SPRL1_VLTHSELAPLR
2.6E−02
0.656





CD14_LTVGAAQVPAQLLVGALR
ALS_IRPHTFTGLSGLR
6.1E−03
0.655





CFAB_YGLVTYATYPK
FETUA_FSVVYAK
5.5E−02
0.655





ENPP2_TYLHTYESEI
KNG1_DIPTNSPELEETLTHTITK
6.5E−02
0.655





PEDF_LQSLFDSPDFSK
SPRL1_VLTHSELAPLR
1.7E−02
0.655





PSG9_LFIPQITR
TENX_LSQLSVTDVTTSSLR
2.1E−02
0.655





APOH_ATVVYQGER
CHL1_VIAVNEVGR
1.7E−02
0.655





KNG1_QVVAGLNFR
FETUA_HTLNQIDEVK
1.6E−02
0.655





AFAM_HFQNLGK
IBP3_FLNVLSPR
1.4E−02
0.654





LBP_ITLPDFTGDLR
HABP2_FLNWIK
2.6E−01
0.654





CATD_VGFAEAAR
B2MG_VEHSDLSFSK
1.9E−02
0.654





ENPP2_TYLHTYESEI
PRG2_WNFAYWAAHQPWSR
3.2E−02
0.654





INHBC_LDFHFSSDR
F13B_GDTYPAELYITGSILR
1.2E−02
0.654





LBP_ITLPDFTGDLR
F13B_GDTYPAELYITGSILR
9.9E−03
0.654





PSG11_LFIPQITPK
TENX_LSQLSVTDVTTSSLR
8.1E−03
0.654





VTNC_GQYCYELDEK
PGRP2_AGLLRPDYALLGHR
6.5E−03
0.654





VTNC_VDTVDPPYPR
AFAM_DADPDTFFAK
1.0E−02
0.654





ENPP2_TYLHTYESEI
CO8A_SLLQPNK
6.0E−02
0.653





IBP6_HLDSVLQQLQTEVYR
CRIS3_AVSPPAR
8.4E−03
0.653





LBP_ITGFLKPGK
HABP2_FLNWIK
2.3E−01
0.653





PEDF_LQSLFDSPDFSK
CRIS3_AVSPPAR
3.8E−03
0.653





PSG9_DVLLLVHNLPQNLPGYFWYK
TENX_LNWEAPPGAFDSFLLR
9.9E−03
0.653





AFAM_DADPDTFFAK
IBP3_FLNVLSPR
1.5E−02
0.653





CATD_VSTLPAITLK
CSH_AHQLAIDTYQEFEETYIPK
6.2E−03
0.653





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
HEMO_NFPSPVDAAFR
2.9E−02
0.653





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
THBG_AVLHIGEK
3.7E−02
0.653





ENPP2_TYLHTYESEI
AFAM_HFQNLGK
6.4E−02
0.653





IBP2_LIQGAPTIR
SPRL1_VLTHSELAPLR
6.2E−02
0.653





KNG1_QVVAGLNFR
PGRP2_AGLLRPDYALLGHR
1.1E−02
0.653





LBP_ITLPDFTGDLR
CBPN_EALIQFLEQVHQGIK
6.5E−03
0.653





LBP_ITLPDFTGDLR
CO5_TLLPVSKPEIR
2.0E−02
0.653





VTNC_GQYCYELDEK
VTDB_ELPEHTVK
1.4E−02
0.653





APOC3_GWVTDGFSSLK
HLACI_WAAVVVPSGEEQR
3.2E−02
0.653





B2MG_VNHVTLSQPK
PRG2_WNFAYWAAHQPWSR
2.0E−02
0.653





CBPN_NNANGVDLNR
IBP3_YGQPLPGYTTK
1.8E−02
0.653





CD14_LTVGAAQVPAQLLVGALR
CRIS3_AVSPPAR
5.3E−03
0.653





CD14_LTVGAAQVPAQLLVGALR
IGF2_GIVEECCFR
1.1E−02
0.653





CO8A_SLLQPNK
IBP3_FLNVLSPR
1.2E−02
0.653





ENPP2_TYLHTYESEI
PTGDS_GPGEDFR
5.1E−02
0.653





ENPP2_TYLHTYESEI
SOM2.CSH_NYGLLYCFR
4.3E−02
0.653





IBP6_GAQTLYVPNCDHR
IBP3_FLNVLSPR
1.0E−02
0.653





LBP_ITLPDFTGDLR
NCAM1_GLGEISAASEFK
1.2E−02
0.653





VTNC_GQYCYELDEK
FETUA_FSVVYAK
1.4E−02
0.653





APOH_ATVVYQGER
LYAM1_SYYWIGIR
1.1E−02
0.652





CO5_VFQFLEK
NCAM1_GLGEISAASEFK
2.2E−02
0.652





LBP_ITGFLKPGK
CFAB_YGLVTYATYPK
5.7E−02
0.652





LBP_ITGFLKPGK
PSG3_VSAPSGTGHLPGLNPL
6.4E−02
0.652





PSG9_DVLLLVHNLPQNLPGYFWYK
TENX_LSQLSVTDVTTSSLR
1.0E−02
0.652





APOC3_GWVTDGFSSLK
INHBC_LDFHFSSDR
9.4E−03
0.652





CBPN_NNANGVDLNR
CHL1_VIAVNEVGR
4.2E−02
0.652





HEMO_NFPSPVDAAFR
CRIS3_YEDLYSNCK
6.8E−03
0.652





INHBC_LDFHFSSDR
AFAM_HFQNLGK
1.1E−02
0.652





VTNC_GQYCYELDEK
FETUA_HTLNQIDEVK
8.6E−03
0.652





VTNC_VDTVDPPYPR
AFAM_HFQNLGK
1.1E−02
0.652





A2GL_DLLLPQPDLR
ALS_IRPHTFTGLSGLR
1.6E−02
0.651





CO5_VFQFLEK
VTDB_ELPEHTVK
1.1E−02
0.651





LBP_ITGFLKPGK
PTGDS_GPGEDFR
1.5E−02
0.651





PEDF_LQSLFDSPDFSK
IBP3_FLNVLSPR
9.4E−03
0.651





VTNC_VDTVDPPYPR
SHBG_IALGGLLFPASNLR
3.2E−02
0.651





CATD_VGFAEAAR
CATD_VSTLPAITLK
2.3E−02
0.651





CLUS_ASSIIDELFQDR
SPRL1_VLTHSELAPLR
1.1E−02
0.651





ENPP2_TYLHTYESEI
AFAM_DADPDTFFAK
5.6E−02
0.651





ENPP2_TYLHTYESEI
C163A_INPASLDK
1.5E−02
0.651





LBP_ITGFLKPGK
CBPN_EALIQFLEQVHQGIK
7.2E−03
0.651





LBP_ITGFLKPGK
PAPP1_DIPHWLNPTR
1.6E−02
0.651





LBP_ITLPDFTGDLR
IBP6_GAQTLYVPNCDHR
1.1E−02
0.651





APOH_ATVVYQGER
CRIS3_AVSPPAR
9.3E−03
0.650





INHBC_LDFHFSSDR
CLUS_LFDSDPITVTVPVEVSR
3.2E−02
0.650





INHBC_LDFHFSSDR
PEDF_LQSLFDSPDFSK
1.4E−02
0.650





VTDB_ELPEHTVK
CRIS3_AVSPPAR
9.7E−03
0.650





VTDB_ELPEHTVK
IBP3_FLNVLSPR
1.1E−02
0.650





CO5_TLLPVSKPEIR
PGRP2_AGLLRPDYALLGHR
1.9E−02
0.650





HEMO_NFPSPVDAAFR
LYAM1_SYYWIGIR
8.7E−03
0.650





IBP4_QCHPALDGQR
FETUA_FSVVYAK
7.6E−03
0.650





NCAM1_GLGEISAASEFK
TENX_LSQLSVTDVTTSSLR
7.9E−03
0.650





PEDF_LQSLFDSPDFSK
CRIS3_YEDLYSNCK
3.0E−03
0.650









The following examples are provided by way of illustration, not limitation.


EXAMPLES
Example 1. Development of an Estimated Due Date (EDD) Predictor (EDDp)

This example provides a new due date and time to birth prediction for a pregnancy. It identifies those pregnancies, with high accuracy, that will deliver earlier than the official EDD and/or TTB as derived from LMP and/or US dating.


Blood was drawn in blood draw window 140 to 153 days. Blood was subsequently processed including depletion, digestion into peptides, inclusion of synthetic peptides, analyzed my MRM-MS with protein transitions (fragments) of CATD and TENX measured relative to the synthetic peptide analogues of CATD and TENX. If CATD/TENX was larger than threshold T=0.50 then new_EDD was set to the official_EDD. If CATD/TENX was equal to or less than threshold T=0.50 then new_EDD was set to the official_EDD-16 days. The 16 day decrement was derived from studies of actual pregnancies. Other decrements may be selected depending on the optimization criteria. Additionally, the threshold T=0.50 can be adjusted depending on the optimization criteria and/or subpopulation.


Performance of the EDDmp can be measured in multiple ways. Presented below are some key metrics of performance. Performance of the test has been assessed on a dataset of 357 subjects with known outcomes and official EDDs.


The protein ratio CATD/TENX measured within blood draw window 140 to 153 days had an AUC of 82% in separating those subjects that gave birth significantly earlier (i.e. before 270 days) than the population average of 280 days. The kinetic plot of this ratio over the blood draw day (GABD) is shown in FIG. 1.


From FIG. 1, a threshold of T=0.5 for separating group A (<270 days) and group B (>=280 days) is a reasonable choice. This could be optimized by making T a function of GABD. With these parameters, performance of this molecular test (CATD, TENX, T) was evaluated and a Due Date Prediction (DDP) was developed where 10 days are added to those subjects the test identifies as being early (group A). Additional observations about the sensivity and specificity are as follows:


Sensitivity 280|280:


63%. The majority of pregnancies delivering earlier than expected are detected by the test.


Sensitivity 270|280:


86%. The large majority of pregnancies delivering much earlier than expected are detected by the test.


Specificity 280|280:


68%. The majority of pregnancies delivering as expected are not identified as early by the test.


PPV 280|280:


84%. When the test is positive, it is very likely the pregnancy will be earlier than predicted.


Average Error of Official_EDD Estimate:


12.1 days.


Average Error of EDDmp Estimate:


9.6 days (This is a 21% improvement). Here, error is calculated as follows:






error
=





i
n



Actual






Delivery
i



-
280

n





Example 2. Further Models for Development of an Estimated Due Date (EDD) Molecular Predictor (EDDmp)

This example illustrates three additional methods for due date prediction for a pregnancy (TTB or EDD).


Prediction


The terms estimated due date (EDD) and time to birth (TTB) are used interchangeably in the context of predictors for DD. The EDD can be used to predict TTB and vice-versa. Explicitly, if the estimated gestational age of a pregnancy is X at the time of blood draw then TTB can be estimated from EDD as follows: TTB=EDD−X. And DD can be estimated from a TTB predictor as follows: EDD=X+TTB, where the units used are days.


Furthermore, the time of blood draw can be estimated using standard clinical practice such as Last Menstrual Period (LMP), Ultrasound Dating (US) and/or a combination of LMP and US. Formulae for these estimates are readily available in the literature and practice guidelines [https://www.acog.org/Clinical-Guidance-and-Publications/Committee-Opinions/Committee-on-Obstetric-Practice/Methods-for-Estimating-the-Due-Date and references therein].


Performance of Prediction


The performance of a TTB (or EDD) predictor can be measured in numerous ways. One approach is accuracy and precision. Accuracy being how far from the actual TTB (or EDD) the estimated TTB (or EDD) actually is. Precision is the variability around this estimate. Standard metrics for precision are the standard deviation or variation. Alternatively, performance statements can indicate accuracy as the percentage of time the TTB predictor is correct within a specified number of days before or after the actual TTB (or EDD). Such statements provide insight into both the accuracy and precision of the estimation.


Performance in Clinical Practice


In the Proteomic Assessment of Preterm_Risk (PAPR) study (Saade et al. Development and validation of a spontaneous preterm delivery predictor in asymptomatic women. Am J Obstet Gynecol 2016; 214:633.e1-24.), the TTB estimates, based on standard clinical dating, were accurate to within +/−5 days of the actual TTB about 35% of the time for deliveries that were term (i.e. delivered 37 weeks or later in gestation). This establishes a baseline to compare models for predicting TTB (or EDD).


Model 1: Linear Regression Model


Generalized linear regression models were built using the estimated due date from clinical practice (i.e. based on LMP and/or US dating) and the ratio of two peptide measurements. To illustrate, using the following two peptide measurement ratio:





CRIS3_YEDLYSNCK/ADA12_FGFGGSTDSGPIR


The model details are as follows:












Generalized Linear regression model


y~1 + x1 + x2


Distribution = Normal












Estimate
SE
tStat
pValue















(Intercept)
3.5404
6.8273
0.51856
0.60526


x1
0.92355
0.069505
13.288
1.7723e−23


x2
6.2221
1.4261
4.3629
3.2316e−05









For term deliveries without complications (such as preeclampsia) and for multiparous pregnancies, this model correctly predicted the TTB within +/−5 days, 61% of the time whereas standard clinical practice was correct about 38% of the time. All pairs of such peptides with performance above 60% appear in Table 2. Similarly, for all term deliveries for nulliparous pregnancies, all pairs of such peptides with performance above 60% appear in Table 3.









TABLE 2







Best Reversals, Term, Multiparous











Percentage within 5


Numerator
Denominator
days





‘ALS_IRPHTFTGLSGLR’
‘CO8B_QALEEFQK’
0.61





‘APOH_ATVVYQGER’
‘ITIH3_ALDLSLK’
0.62





‘APOH_ATVVYQGER’
C1QA_SLGFCDTTNK’
0.64





‘APOH_ATVVYQGER’
‘C1QC_TNQVNSGGVLLR’
0.61





‘APOH_ATVVYQGER’
‘PCD12_AHDADLGINGK’
0.61





‘CBPN_NNANGVDLNR’
‘DPEP2_LTLEQIDLIR’
0.62





‘CO8A_SLLQPNK’
‘PCD12_AHDADLGINGK’
0.62





‘CO8B_QALEEFQK’
‘ANT3_TSDQIHFFFAK’
0.61





‘CO8B_QALEEFQK’
‘C1QB_LEQGENVFLQATDK’
0.61





‘CO8B_QALEEFQK’
‘C1QC_FNAVLTNPOGDYDTSTGK’
0.61





‘CO8B_QALEEFQK’
‘CADH5_YEIVVEAR’
0.61





‘CO8B_QALEEFQK’
‘CADH5_YTFVVPEDTR’
0.61





‘CO8B_QALEEFQK’
‘CNTN1_FIPLIPIPER’
0.61





‘CRIS3_YEDLYSNCK’
‘SHBG_IALGGLLFPASNLR’
0.61





‘CRIS3_YEDLYSNCK’
‘SHBG_IALGGLLFPASNLR.2’
0.61





‘CRIS3_YEDLYSNCK’
‘ADA12_FGFGGSTDSGPIR’
0.61





‘CRIS3_YEDLYSNCK’
‘SHBG_IALGGLLFPASNLR’
0.61





‘CRIS3_YEDLYSNCK’
‘PCD12_AHDADLGINGK’
0.61





‘ITIH4_ILDDLSPR’
‘DPEP2_ALEVSQAPVIFSHSAAR’
0.61





‘ITIH4_NPLVWVHASPEHVVVTR‘
‘GELS_TASDFITK’
0.61





‘ITIH4_NPLVWVHASPEHVVVTR’
‘CNTN1_FIPLIPIPER’
0.61





‘KNG1_QVVAGLNFR’
‘C1QA_DQPRPAFSAIR’
0.61





‘PTGDS_GPGEDFR’
‘ECM1_LLPAQLPAEK’
0.61





‘IBP4_QCHPALDGQR.2’
‘CNTN1_FIPLIPIPER’
0.61





‘C1QA_DQPRPAFSAIRT
‘PROS_FSAEFDFR’
0.61





‘C1QA_SLGFCDTTNKT’
‘PROS_FSAEFDFR’
0.62





‘C1QB_LEQGENVFLQATDK’
‘PROS_FSAEFDFR’
0.61





‘C1QC_FNAVLTNPQGDYDTSTGK’
‘PROS_FSAEFDFR’
0.61





‘C1QC_TNQVNSGGVLLR’
‘PROS_FSAEFDFR’
0.62





‘LEP_DLLHVLAFSK’
‘DPEP2_ALEVSQAPVIFSHSAAR’
0.61





‘PTGDS_AQGFTEDTIVFLPQTDK’
‘CNTN1_FIPLIPIPER’
0.61





‘CAMP_AIDGINQR’
‘SVEP1_LLSDFPVVPTATR’
0.61
















TABLE 3







Best Reversals, Term, Nulliparous











Percentage within


Numerator
Denominator
5 days












‘IBP4_QCHPALDGQR’
‘TETN_LDTLAQEVALLK’
0.62962963





‘IBP4_QCHPALDGQR.2’
‘TETN_LDTLAQEVALLK’
0.611111111





‘ADA12_FGFGGSTDSG
‘GELS_AQPVQVAEGSEPDGFWEAL
0.611111111


PIR’
GGK’





‘ADA12_FGFGGSTDSG
‘PROS_FSAEFDFR’
0.611111111


PIR’









Consequently, depending on the parity of the pregnancy, the corresponding predictive model for TTB (or EDD) can be used.


Model 2: Tree Models


This section describes a conditional inference tree and its development. Conditional inference trees embed tree-structured regression models into a well-defined theory of conditional inference procedures. This non-parametric class of regression trees is applicable to categorical and numeric regression analyses, including multivariate models and arbitrary measurement scales of the covariates.


Step 1) Boosted ElasticNet to Select Predictive Variables.


523 Term subjects and clinical numeric variables were repeatedly sampled to generate partial data sets, then used to train ElasticNet models predicting GAB or TTB. The penalty mixture parameter was varied between 0 (full lasso) and 1 (full ridge). Analytes and clinical numeric variables were ranked by the number of times they were present in models. The intersection of high-ranking variables for GAB and TTB prediction resulted in the selection of the following 75 of 197 available variables:










1.
APOH_ATVVYQGER





2.
CD14_LTVGAAQVPAQLLVGALR





3.
CD14_SWLAELQQWLKPGLK





4.
CHL1_VIAVNEVGR





5.
CLUS_ASSIIDELFQDR





6.
CLUS_LFDSDPITVTVPVEVSR





7.
CO6_ALNHLPLEYNSALYSR





8.
CO8B_QALEEFQK





9.
CRIS3_AVSPPAR





10.
CRIS3_YEDLYSNCK





11.
CSH_AHQLAIDTYQEFEETYIPK





12.
CSH_ISLLLIESWLEPVR





13.
ENPP2_TEFLSNYLTNVDDITLVPGTLGR





14.
ENPP2_TYLHTYESEI





15.
F13B_GDTYPAELYITGSILR





16.
FBLN1_TGYYFDGISR





17.
HABP2_FLNWIK





18.
HEMO_NFPSPVDAAFR





19.
IBP1_VVESLAK





20.
KNG1_DIPTNSPELEETLTHTITK





21.
KNG1_QVVAGLNFR





22.
LYAM1_SYYWIGIR





23.
PAPP1_DIPHWLNPTR





24.
PGRP2_AGLLRPDYALLGHR





25.
PRG2_WNFAYWAAHQPWSR





26.
PSG1_FQLPGQK





27.
PSG2_IHPSYTNYR





28.
PSG9_LFIPQITR





29.
PTGDS_GPGEDFR





30.
SOM2_CSH_NYGLLYCFR





31.
SOM2_CSH_SVEGSCGF





32.
SPRL1_VLTHSELAPLR





33.
TENX_LNWEAPPGAFDSFLLR





34.
TENX_LSQLSVTDVTTSSLR





35.
GPX3_QEPGENSEILPTLK





36.
IBP4_Q.CHPALDGQR





37.
ADA12_FGFGGSTDSGPIR





38.
FA9_FGSGYVSGWGR





39.
FA9_SALVLQYLR





40.
ANT3_TSDQIHFFFAK





41.
TIMP1_HLACLPR





42.
IGF1_GFYFNKPTGYGSSSR





43.
GELS_AQPVQVAEGSEPDGFWEALGGK





44.
GELS_TASDFITK





45.
PAEP_HLWYLLDLK





46.
PAEP_VHITSLLPTPEDNLEIVLHR





47.
EGLN_GPITSAAELNDPQSILLR





48.
VGFR1_YLAVPTSK





49.
AOC1_AVHSFLWSK





50.
AOC1_DNGPNYVQR





51.
MUC18_EVTVPVFYPTEK





52.
SEPP1_LVYHLGLPFSFLTFPYVEEAIK





53.
CNTN1_FIPLIPIPER





54.
MFAP5_LYSVHRPVK





55.
SVEP1_LLSDFPVVPTATR





56.
ISM2_TRPCGYGCTATETR





57.
NOTUM_GLADSGWFLDNK





58.
PAPP2_LLLRPEVLAEIPR





59.
PCD12_AHDADLGINGK





60.
PCD12_YQVSEEVPSGTVIGK





61.
MDHTC





62.
LABPGAW





63.
LABGAD





64.
GABD





65.
IPMLOS





66.
GABD.





67.
NpregComp





68.
NdelComp





69.
PriorPTBvTerm





70.
cDM (chronic diabetes mellitus)





71.
cHTN (chronic hypertension)





72.
Bleeding





73.
Cervix





74.
PriorSPTB





75.
InvParity






Step 2) Build Whole-Data-Set ElasticNet Models Predicting TTB Difference from the Median TTB to Further Down-Select Predictive Variables.


Beginning with the 75 variables selected by boosting in step 1 and adding subsets of non-selected variables, ElasticNet was repeatedly used to select models predicting the difference between 532 Term subjects' TTB and the median TTB across all Term subjects. Cross-validation was used to select the degree of shrinkage of each ElasticNet model, with the penalty mixture fixed at 50:50 ridge & lasso regression. Models were selected wherein cross-validation selected a significant model with SD of TTB difference from the median TTB <=7 days. A significant model is defined as one that retains features (is not the null model) and shows performance within 1 SD (in cross validation) of the maximum performance observed. Models were ranked by the SD of the TTB difference from the median TTB. 42 of the previously selected variables remained in the top performing model, which showed an SD of 6.56 days (Table 2). 28 of these 42 variables were also selected in step 1.









TABLE 4







42 variables and their coefficients in best-


performing ElasticNet model reducing SD of


predicted TTB - median TTB, selected by Step 2.










Variable
Coefficient














AFAM_HFQNLGK
0.837750667







APOC3_GWVTDGFSSLK
0.321658826







CATD_VSTLPAITLK
−0.168168895







CHL1_VIAVNEVGR
−0.275132675







CRIS3_AVSPPAR
−0.322009195







CRIS3_YEDLYSNCK
−1.461737374







ENPP2_TEFLSNYLTNVDDITLVPGTLGR
0.359267642







ENPP2_TYLHTYESEI
0.992405023







KNG1_DIPTNSPELEETLTHTITK
0.348982569







PSG1_FQLPGQK
0.175481153







PTGDS_GPGEDFR
−1.428859538







SPRL1_VLTHSELAPLR
−0.269526267







TENX_LNWEAPPGAFDSFLLR
−1.619671074







THBG_AVLHIGEK
3.115902267







AACT_EIGELYLPK
0.059616842







IBP4_Q.CHPALDGQR
0.574729040







ADA12_FGFGGSTDSGPIR
3.016398873







FA9_SALVLQYLR
0.413311773







AMBP_ETLLQDFR
0.841283058







TETN_CFLAFTQTK
−0.324854826







GELS_AQPVQVAEGSEPDGFWEALGGK
−0.018002056







PAEP_HLWYLLDLK
−0.012537300







EGLN_GPITSAAELNDPQSILLR
0.035853781







VGFR1_YLAVPTSK
−0.252293075







CADH5_YTFVVPEDTR
−0.071423172







PTGDS_AQGFTEDTIVFLPQTDK
−0.377531783







MUC18_EVTVPVFYPTEK
−0.241983821







SEPP1_VSLATVDK
0.262838312







SVEP1_LLSDFPVVPTATR
0.558871111







PRG4_ITEVWGIPSPIDTVFTR
0.481197951







MDHT
0.005398994







LABPGAW
1.314846931







GABD
0.346278498







IPMLOS
−0.279300039







GABD.
0.343634891







NpregComp
0.838803565







InvParity.
−0.557343349







InvCSecParity
−0.432671923







cDM
0.338073730







cHTN
0.595655360







PriorSPTB
1.897198024







PEspec
0.977028773










Step 3) Build Conditional Inference Trees


Conditional inference trees were built using the party package in R, on all 532 Term subjects, restricting the analysis to variables selected in step 2. Trees predicted the difference between a subject's TTB and the median TTB. Trees were restricted to 4 levels of branching and were grown by selecting new variables at each node via the best single-test significance of improved prediction. These trees use variables more efficiently than ElasticNet—there are fewer than a dozen variables per model used in decisions. Trees were observed to split the subjects by GABD week, then use 2-6 analytes+clinical variables to predict TTB-median TTB. An example inference tree appears in FIG. 2.


Model 3: Rolling Window Models


The regression results in Model 1 and tree results in Model 2 suggest that a model can also use distinct analytes and clinical variables to predict TTB in different GABD windows.


These models demonstrate that a combination of GABD, parity and analytes aligned with GABD and parity provides robust accuracy in estimating TTB. This analysis confirms and extends the findings of Model 1 linear regression analysis and Model 2 conditional inference tree analysis, and provides motivation to survey models that split subjects by GABD, parity or both, to identify the best analytes and analyte pairs for each subset of the population.









TABLE 5







Performance of models containing 2 analytes and/or


clinical variables plus GABD in subjects of all parities


and without regard to pregnancy complications, with


GABD between 23(0/7) and 28(6/7).










Variable 1
Variable 2
% in 5 days
95% CI













ADA12_FGFGGSTD
CRIS3_AVSPPAR
0.5363
0.4450:0.6275


SGPIR





ADA12_FGFGGSTD
CRIS3_YEDLYSNCK
0.5308
0.4475:0.6140


SGPIR





AMBP_ETLLQDFR
ENPP2_TEFLSNYLTNVDDITL
0.5317
0.4511:0.6122



VPGTLGR





AMBP_ETLLQDFR
GELS_AQPVQVAEGSEPDGF
0.5354
0.4392:0.6317



WEALGGK





InvParity.
TENX_LNWEAPPGAFDSFLLR
0.5312
0.4512:0.6112





InvParity.
FA9_SALVLQYLR
0.532
0.4501:0.6140





InvParity.
SVEP1_LLSDFPVVPTATR
0.5307
0.4396:0.6218





InvParity.
ADA12_FGFGGSTDSGPIR
0.543
0.4582:0.6279





NpregComp
ADA12_FGFGGSTDSGPIR
0.5301
0.4357:0.6244









Example 3. Further Models for Development of an Estimated Due Date (EDD) Molecular Predictor (EDDmp)

This example shows the utility of discovering optimal analyte pairs for subjects with limited, prespecified ranges of GABD and Parity. It is an aspect of this invention to discover that 1) predictors of TTB vary with GABD; 2) predictors of TTB vary with Parity; and 3) prediction of TTB for nulliparous women, but not for multiparous women, improves with increasing GABD. To reduce these discoveries to practice, we surveyed all possible predictor pairs within the contexts of 3 model types described below, and discovered highly accurate predictors for each model type.


Performance of predictor pairs was evaluated by comparing models containing predictor pairs to null models containing prespecified covariates (GABD, InvParity. and/or AACT) but no predictor pairs. Null model accuracies were estimated by bootstrapping, using subjects in GA weeks 23-28. Table 6 shows null model performance for the various subject splits and model types described in Example 3. As specified below, Example 3 models explored all possible analyte, but a subset with highest performance is reported in Tables 2-27. The 2-analyte model thresholds correspond to null models for Example 3 Model 1 and Example 3 Model 2. A 3-analyte threshold corresponds to the null model for Example 3 Model 3. Example 3 model 3 was explored only for Parity 0; this is the subset of subjects with most apparent effect of inclusion of AACT. In building Tables 2-27, For cases where the null model threshold returned more than 10% of all possible analyte pairs, the accuracy threshold was incremented by 0.25% iteratively until 10% or fewer of the pairs were returned. Therefore, all reported analyte combinations exceeded the accuracy reported by the corresponding null model.









TABLE 6







Accuracy thresholds specified for reporting of analyte pairs.










2-analyte models
3-analyte models


Parity
(Include GABD; and
(include AACT, GABD; and


restriction on
InvParity if Parity
InvParity if Parity is not


subjects
is not restricted)
restricted)












All
0.5157
0.5188


0
0.4322
0.4784


1
0.5568
0.5579


 2+
0.5769
0.6019









For each subject subset and model type described in this Example, 2 columns representing analyte pairs are reported in the tables below. Each table comprises 2 columns: (1) Analyte1 (abbreviated) and, for each analyte in column 1, (2) column 2 provides abbreviated names for all other analytes participating in models with Analyte1 whose accuracy exceeded a specified threshold as a comma-separated list. Table 28 below lists the full names corresponding to each of the abbreviated analytes. In the models described in this example, accuracy is defined as the percentage of subjects whose absolute value (actual TTB−predicted TTB) is less than or equal to (<=) 5 days.


Time to birth (TTB), in days, was calculated from date and time of blood draw, and date and time of delivery. Estimated time to birth (ETTB)=280−GA at blood draw. Here 280 as a constant was not required but was left for clarity, based on the US method of TTB estimation: 280 days-gestational age (GA) at assessment. Parity is defined by ACOG as the number of pregnancies progressing to 200/7 weeks' GA or beyond. It was estimated here as the maximum of the number of living children or the total of previous full-term births, spontaneous preterm births and stillbirths, not counting the current pregnancy. InvParity: Inverse Parity as used herein is calculated as 1/(Parity−0.5). This transform emphasizes Parity differences at low Parities. Analyte1 as used in this example is the log Response Ratio of the first analyte. Analyte2 as used in this example is the log Response Ratio of the second analyte.


Model 1: Two Analyte Models for Different Parity Subsets


Model 1 (TTB˜ETB+Analyte1+Analyte2) was run for 171 analytes in all possible pairs, in 3 subsets of subjects by estimated Parity. All TERM samples were used (975 subjects were TERM). Analytes were included not as a ratio (i.e. a reversal) to allow for different coefficients for each. The model was applied to subjects with all GAs at blood draw split by Parity: 0, 1 or 2+. The performance metric was accuracy.









TABLE 7







Parity subsets, the number of samples in each and the


minimum, median and maximum accuracy in each window.











Parity
nTERM
min
med
max














0
365
39.2
43.0
48.2


1
282
49.6
54.3
59.6


 2+
328
52.7
55.8
60.4
















TABLE 8







Two analyte models for Parity 0








Analyte1
Analyte2





A2GL_1
FETUA_2, SVEP1_1, TENX_1


AACT_1
ADA12_1, C1QC_1, C1QC_2, CAMP_1, CAMP_2, CNTN1_1, CRAC1_1,



CRAC1_2, CRAC1_3, DPEP2_1, DPEP2_2, FGFR1_1, GELS_2, IBP4_1,



IBP4_3, KIT_1, KIT_2, MUC18_1, MUC18_2, NOTUM_2, PRG4_1, PRG4_2,



PRL_2, SHBG_2, SHBG_3, TETN_1, TETN_2


ADA12_1
TETN_1


AFAM_1
FETUA_2, GELS_2


AFAM_2
GELS_2, TENX_2, TETN_1


ALS_1
AACT_1, GELS_2


AMBP_1
GELS_2, PRG4_1


ANGT_1
AACT_1, GELS_2


APOC3_1
AACT_1, ITIH3_1


APOH_1
FETUA_2


B2MG_1
AACT_1, FETUA_2, GELS_2, TENX_1


B2MG_2
AACT_1, FETUA_2, GELS_2


C163A_1
GELS_2


C1QA_2
PRG4_1


C1QB_1
PRG4_1


C1QB_2
GELS_2


C1QB_3
FBLN1_1, FETUA_2


C1QC_1
TETN_1


C1QC_2
PRG4_1


CAH1_1
AACT_1, FETUA_2, GELS_2


CAMP_1
PRG4_1


CBPN_1
AACT_1


CD14_1
AACT_1, FETUA_1, FETUA_2, GELS_2, IBP2_1, ITIH3_1, PRG4_2, PSG11_1


CFAB_1
FETUA_2


CGB1_2
GELS_2


CHL1_1
FETUA_2, GELS_2, PSG1_1, TENX_1


CLUS_1
AACT_1, FA9_2, TETN_2


CLUS_2
TETN_1, TETN_2


CNTN1_2
SVEP1_1


CO5_1
FETUA_1, FETUA_2, PRG4_1


CO5_2
AACT_1


CO6_1
PSG11_1


CO8A_1
FA9_2, FETUA_2, PSG1_1, TENX_1, TETN_1


CO8B_1
FA9_2, FETUA_2, KNG1_2, TENX_1, TETN_1


CRIS3_1
FETUA_2, GELS_2


CRIS3_2
AACT_1, FETUA_1, FETUA_2, GELS_2


CSH_1
CNTN1_2, GELS_2, PRG4_1, TENX_2, TETN_1, TETN_2


CSH_2
FETUA_2


ENPP2_1
AACT_1, FA9_2, FETUA_2


ENPP2_2
AACT_1, FA9_1, TETN_1


F13B_1
FETUA_2


FA11_1
GELS_2


FA11_2
GELS_2


FA9_1
DPEP2_2, PROS_2


FA9_2
CRAC1_2, CRAC1_3, ISM2_2, KIT_2, MUC18_1, TETN_1, TETN_2


FBLN1_1
AACT_1, FETUA_1, PRG4_2, TENX_1, TETN_2, THBG_1


FBLN3_1
AACT_1, FA9_2, FETUA_2, GELS_2, TETN_1


FETUA_1
AACT_1, C1QA_2, CNTN1_2, FA9_1, FA9_2, GELS_2, IBP4_2, IBP4_3, ISM2_1,



ISM2_2, LEP_1, MUC18_1, NOTUM_1, PRG4_1, PRG4_2, PSG11_1, TENX_1,



TENX_2, TETN_2, THRB_1, VTNC_1, VTNC_2


FETUA_2
AACT_1, AMBP_1, AOC1_1, AOC1_2, ATL4_1, ATS13_1, ATS13_2, C1QA_1,



C1QA_2, C1QB_1, C1QC_1, C1QC_2, CNTN1_2, CRAC1_2, DEF1_1, ECM1_1,



ECM1_2, EGLN_1, EGLN_2, FA11_1, FA11_2, FA5_2, FA9_1, FA9_2,



FGFR1_1, FGFR1_2, GELS_1, GPX3_1, HABP2_1, HLACI_1, IBP1_1, IBP3_1,



IBP6_1, IGF1_1, INHBC_1, IPSP_1, LEP_1, LIRB5_1, LYAM1_1, MUC18_2,



PAEP_1, PAEP_2, PAPP1_1, PRDX2_1, PRG2_1, PRG4_1, PROS_2, PSG3_1,



PSG9_2, SEPP1_2, SHBG_1, SHBG_2, SHBG_3, SPRL1_1, TENX_1, TETN_2,



THRB_1, TIE1_1, TIMP1_1, VGFR1_1, VTDB_1, VTNC_2


FGFR1_1
PRG4_2


GELS_2
ATS13_1, CADH5_1, CNTN1_1, CNTN1_2, CRAC1_2, DEF1_1, DEF1_2,



DPEP2_2, FGFR1_1, IL1R1_1, ISM2_1, KIT_1, MFAP5_1, MUC18_1, MUC18_2,



PAEP_1, PCD12_1, PROS_1, PROS_2, PTGDS_1


HABP2_1
AACT_1


HLACI_1
GELS_2


IBP1_1
TENX_1


IBP2_1
GELS_2


IBP3_1
GELS_2, TENX_1


IBP4_2
FGFR1_1, PROS_1, TETN_1


IBP4_3
C1QC_1, DPEP2_1, DPEP2_2, PRG4_2, SVEP1_1


IBP6_2
AACT_1


IGF2_1
FA9_2


IL1R1_1
PRG4_1, PRG4_2


ITIH3_1
AACT_1, PSG1_1, PSG11_1, TENX_1, TENX_2


ITIH4_1
PRG4_1


ITIH4_2
GELS_2, TETN_2


ITIH4_3
GELS_2


KNG1_1
AACT_1, KIT_1, PAPP2_1, PRG4_1, PSG1_1


KNG1_2
AACT_1, DEF1_2, IL1R1_1, ISM2_2, PRG4_1, PRL_1, PSG11_1, TETN_2


LBP_2
TETN_2


LYAM1_1
FGFR1_1, PRG4_1


PEDF_2
AACT_1


PGRP2_1
AACT_1


PRG2_1
GELS_2


PRG4_1
CRAC1_1, CRAC1_2, CRAC1_3, DPEP2_1


PRL_1
GELS_2, PRG4_1, PRG4_2, TETN_1


PRL_2
TETN_1


PROS_2
PRG4_1


PSG1_1
AACT_1, FA9_1, PRG4_1, PRG4_2, THBG_1, VTNC_2


PSG11_1
AACT_1, PRG4_1, PRG4_2, TETN_1, THBG_1, VTNC_1, VTNC_2


PSG2_1
AACT_1, PRG4_1, TETN_1, VTNC_2


PSG3_1
AACT_1, GELS_2


PSG9_1
SVEP1_1


PSG9_2
GELS_2


RET4_1
GELS_2, PRG4_1


SHBG_1
AACT_1, GELS_2, TENX_1


SHBG_2
GELS_2


SHBG_3
GELS_2


SOM2_1
TETN_2


SPRL1_1
GELS_2, TENX_1


SVEP1_1
PRG4_1


TENX_1
AACT_1, ADA12_1, ATS13_1, C1QB_1, C1QB_2, C1QC_2, CNTN1_2, EGLN_1,



EGLN_2, FGFR1_1, GELS_1, GELS_2, GPX3_1, ISM2_2, KIT_2, MFAP5_1,



NOTUM_1, NOTUM_2, PAEP_1, SEPP1_2, TETN_1, VTNC_1


TENX_2
AACT_1, ADA12_1, FGFR1_1, LEP_1, PRL_1


TETN_1
ATS13_1, CNTN1_1, CRAC1_3, FA5_2, FGFR1_1, GELS_2, IL1R1_1, KIT_2,



LEP_1, MFAP5_1, PRG4_1, PRG4_2, PROS_1, SEPP1_2


TETN_2
FGFR1_1, GELS_2, LEP_2, PRG4_1, PRG4_2


THBG_1
AACT_1, ADA12_1, DPEP2_2


TIE1_1
GELS_2


TIMP1_1
GELS_2


VTNC_1
FA9_2, GELS_2, TETN_1


VTNC_2
CRAC1_1, FGFR1_1, GELS_2, KIT_1, PRG4_1, TETN_1
















TABLE 9







Two analyte models for Parity 1








Analyte1
Analyte2





A2GL_1
FA9_1, FA9_2, HEMO_1, PCD12_1


AACT_1
FA9_1, FA9_2, PCD12_1


ADA12_1
FA9_1, FA9_2, PCD12_1, PRG4_2


AFAM_1
C1QA_1


AFAM_2
FA9_2


ALS_1
FA9_1, FA9_2, PCD12_1


ANGT_1
BGH3_1, CLUS_1, CLUS_2, FA9_1, FA9_2, ITIH4_1, NOTUM_1, PCD12_1,



SEPP1_2, TETN_2


ANT3_1
PCD12_1, TETN_2


AOC1_1
PCD12_1


AOC1_2
PCD12_1


APOC3_1
CHL1_1, FA9_1, FA9_2, PCD12_1


APOH_1
FA9_1, FA9_2, PCD12_1


ATL4_1
PCD12_1


ATS13_2
PCD12_1


B2MG_1
CLUS_1, EGLN_1, FA9_1, FA9_2, FGFR1_1, ITIH4_1, LIRB5_1, NOTUM_1,



PCD12_1, PGRP2_1, PRG2_1, SEPP1_1


B2MG_2
EGLN_1, FA9_1, FGFR1_1, FGFR1_2, HEMO_1, ITIH4_1, KIT_2, PCD12_1,



SEPP1_1


BGH3_1
FA9_1, FA9_2, PCD12_1, PCD12_2


C163A_1
CHL1_1, CLUS_1, FA9_1, FA9_2, FGFR1_2


C1QA_1
PCD12_1, PRG4_1


C1QA_2
PCD12_1


C1QB_1
PCD12_1


C1QB_2
PCD12_1


C1QB_3
CLUS_2, EGLN_1, FA9_1, FA9_2, HEMO_1, ITIH4_1, PCD12_1, PTGDS_1,



SVEP1_1


C1QC_1
AMBP_1, ISM2_2, MUC18_1, PCD12_1


C1QC_2
PCD12_1


CADH5_1
CAMP_1, CAMP_2, PCD12_1


CADH5_2
PCD12_1, SVEP1_1


CAH1_1
CHL1_1, CNTN1_2, FA9_1, FA9_2, HEMO_1, PCD12_1


CAMP_1
PCD12_1


CAMP_2
PCD12_1


CATD_1
FA9_1, FA9_2, PCD12_1


CATD_2
FA9_1, FA9_2, PCD12_1


CBPN_1
FA9_2, PCD12_1


CBPN_2
FA9_1, FA9_2, INHBC_1, PCD12_1


CD14_1
FA9_1, FA9_2, HEMO_1, ITIH4_1, PCD12_1


CD14_2
FA9_1, FA9_2, PCD12_1


CFAB_1
PCD12_1


CHL1_1
ADA12_1, ANT3_1, AOC1_1, CLUS_1, CO6_1, CO8B_1, DPEP2_2, EGLN_1,



FA5_1, FA5_2, FA9_1, FA9_2, HEMO_1, IBP3_2, IBP6_2, IGF2_1, IPSP_1,



IPSP_2, ITIH4_1, ITIH4_3, LYAM1_1, PAPP2_1, PCD12_1, PRL_2, PTGDS_1,



SEPP1_2, SVEP1_1, TENX_1, TETN_2, VGFR1_1


CLUS_1
AOC1_1, AOC1_2, ATL4_1, CADH5_1, CADH5_2, CAMP_1, CAMP_2, CO8B_1,



CRIS3_1, DEF1_1, EGLN_1, F13B_1, FA5_1, FA9_1, FA9_2, FGFR1_1,



FGFR1_2, HEMO_1, IL1R1_1, IPSP_1, KNG1_1, NOTUM_1, PCD12_1,



PGRP2_1, PROS_2, PSG9_2, PTGDS_2, SVEP1_1, TIE1_1


CLUS_2
CRIS3_2, FA9_1, FA9_2, FGFR1_1, PCD12_1


CNTN1_1
PCD12_1


CO5_1
FA9_2, NOTUM_1, PCD12_1


CO5_2
FA9_1, FA9_2, ITIH4_1, PCD12_1


CO6_1
FA9_1, FA9_2, PCD12_1


CO8A_1
FA9_1, FA9_2, PCD12_1, TETN_2


CO8B_1
FA9_1, FA9_2, PCD12_1, PRG4_1, PTGDS_1


CRIS3_1
ATS13_2, EGLN_1, FA9_1, FA9_2, FETUA_2, IBP3_1, IGF2_1, SEPP1_2


CRIS3_2
ATS13_2, C1QC_1, CADH5_1, DPEP2_2, FA5_1, FA9_1, FA9_2, FETUA_2,



FGFR1_2, HABP2_1, IGF2_1, PCD12_1, SEPP1_2, SVEP1_1, THBG_1


CSH_1
FA9_1, PCD12_1


DEF1_1
PCD12_1


DEF1_2
PCD12_1


DPEP2_1
PCD12_1


DPEP2_2
PCD12_1


ECM1_1
PCD12_1


ECM1_2
PCD12_1


EGLN_1
EGLN_2, LEP_1, PCD12_1, PRG4_2


EGLN_2
PCD12_1


ENPP2_1
PCD12_1


F13B_1
FA9_1, FA9_2, PCD12_1


FA11_1
PCD12_1


FA11_2
PCD12_1


FA5_1
PCD12_1, SVEP1_1


FA5_2
PCD12_1


FA9_1
ANT3_1, AOC1_1, AOC1_2, ATL4_1, ATS13_1, ATS13_2, C1QB_1, C1QC_1,



C1QC_2, CADH5_1, CADH5_2, CAMP_1, CAMP_2, CNTN1_1, CNTN1_2,



CRAC1_1, CRAC1_2, CRAC1_3, DEF1_1, DEF1_2, DPEP2_1, DPEP2_2,



ECM1_1, EGLN_1, EGLN_2, FA11_1, FA11_2, FA5_1, FA5_2, FA9_2,



FGFR1_1, FGFR1_2, GELS_1, GELS_2, IGF1_1, IL1R1_1, IPSP_1, IPSP_2,



ISM2_1, ISM2_2, KIT_1, KIT_2, LEP_1, LEP_2, MFAP5_1, MUC18_1,



MUC18_2, NOTUM_1, NOTUM_2, PAEP_1, PAEP_2, PAPP2_1, PCD12_1,



PRL_1, PRL_2, PROS_1, PROS_2, PTGDS_1, RET4_1, SEPP1_1, SEPP1_2,



SHBG_2, SVEP1_1, TETN_1, TETN_2, THRB_1, TIMP1_1, VGFR1_1


FA9_2
ANT3_1, AOC1_1, AOC1_2, ATL4_1, ATS13_1, ATS13_2, C1QC_1, C1QC_2,



CADH5_1, CADH5_2, CRAC1_1, CRAC1_3, DEF1_1, DEF1_2, DPEP2_1,



DPEP2_2, ECM1_1, EGLN_1, FA11_1, FA11_2, FA5_1, FA5_2, FGFR1_1,



FGFR1_2, GELS_2, IGF1_1, IL1R1_1, IPSP_1, IPSP_2, ISM2_1, ISM2_2,



KIT_1, LEP_2, MFAP5_1, MUC18_2, NOTUM_1, NOTUM_2, PAEP_1, PAEP_2,



PAPP2_1, PCD12_1, PRL_1, PRL_2, PROS_1, PROS_2, PTGDS_1, RET4_1,



SEPP1_1, SEPP1_2, SHBG_2, SVEP1_1, TETN_1, TETN_2, THRB_1,



TIMP1_1, VGFR1_1


FBLN1_1
FA9_1, FA9_2, PCD12_1


FBLN3_1
FA9_1, FA9_2, IBP4_1, PCD12_1


FETUA_1
FA9_1, PCD12_1, PTGDS_1


FETUA_2
PCD12_1, PRG4_1


FGFR1_1
PCD12_1


FGFR1_2
CNTN1_2, PCD12_1


GELS_2
PCD12_1


GPX3_1
FA9_1, FA9_2, PCD12_1


GPX3_2
FA9_1, FA9_2, PCD12_1


HABP2_1
FA9_1, PSG11_1


HEMO_1
AOC1_1, AOC1_2, DPEP2_1, FA5_1, FA9_1, FA9_2, FGFR1_2, IBP4_2,



ISM2_1, KIT_1, LBP_2, LYAM1_1, NOTUM_1, NOTUM_2, PAEP_2, PCD12_1,



PGRP2_1, PSG9_2, SEPP1_1, TETN_2, VTDB_1, VTNC_2


HLACI_1
FA9_1, FA9_2, PCD12_1, PCD12_2


IBP1_1
FA9_1, PCD12_1


IBP2_1
PCD12_1


IBP3_1
FA9_1, FA9_2, PCD12_1, PCD12_2


IBP3_2
FA9_1, FA9_2, PCD12_1


IBP4_1
FA9_1, FA9_2, PCD12_1, SEPP1_1


IBP4_2
FA9_1, FA9_2, PCD12_1


IBP4_3
FA9_1, FA9_2, PCD12_1


IBP6_1
PCD12_1


IBP6_2
FA9_1, FA9_2, PCD12_1


IGF1_1
IPSP_1, PCD12_1, SEPP1_2


IGF2_1
FA9_1, FA9_2, PCD12_1


IL1R1_1
PCD12_1


INHBC_1
DPEP2_2, ITIH4_1, KIT_1, LBP_1, PTGDS_2, SVEP1_1, TENX_1


IPSP_1
CADH5_1, NOTUM_1, PCD12_1, SVEP1_1


IPSP_2
ATL4_1, PCD12_1


ISM2_1
PCD12_1


ISM2_2
PCD12_1


ITIH3_1
FA9_1, FA9_2, LBP_2, PCD12_1, THBG_1


ITIH4_1
FA9_1, FGFR1_2, IBP4_1, KNG1_1, KNG1_2, LIRB5_1, PAPP1_1, PCD12_1,



PGRP2_1, SVEP1_1, TENX_2


ITIH4_2
FA9_1, FA9_2, PCD12_1


ITIH4_3
FA9_1, PCD12_1, PCD12_2


KIT_1
PCD12_1


KIT_2
PCD12_1


KNG1_1
FA9_1, FA9_2, PCD12_1, PCD12_2, PTGDS_1


KNG1_2
FA9_1, FA9_2, PCD12_1


LBP_1
FA9_1, FA9_2, PCD12_1, PTGDS_1, TETN_2


LBP_2
ADA12_1, CRAC1_1, DPEP2_2, EGLN_1, FGFR1_1, IGF1_1, PTGDS_1


LEP_1
PCD12_1, PCD12_2


LEP_2
PCD12_1


LIRB5_1
CNTN1_2, FA9_1, FA9_2, PCD12_1


LYAM1_1
FA9_1, FA9_2, PCD12_1


MFAP5_1
PCD12_1


MUC18_1
PCD12_1


MUC18_2
SVEP1_1


NOTUM_1
PCD12_1


NOTUM_2
PCD12_1


PAEP_1
PCD12_1


PAEP_2
PCD12_1


PAPP1_1
FA9_1, FA9_2, PCD12_1


PAPP2_1
PCD12_1


PCD12_1
CRAC1_1, CRAC1_2, THRB_1


PEDF_2
FA9_1


PGRP2_1
C1QC_1, FA9_1, FA9_2, IPSP_2, PAEP_2, PCD12_1, PCD12_2, PTGDS_2,



SEPP1_2, THBG_1


PRDX2_1
FA9_1, FA9_2, PCD12_1


PRG2_1
ATL4_1, CADH5_2, FA9_1, FA9_2, IPSP_1, PCD12_1


PRG4_1
PCD12_1


PRL_1
PCD12_1


PRL_2
PCD12_1


PROS_1
PCD12_1


PROS_2
PCD12_1


PSG1_1
FA9_1, FA9_2, PCD12_1, TETN_2


PSG11_1
FA9_1, PCD12_1


PSG2_1
FA9_1, PCD12_1, SEPP1_2


PSG3_1
FA9_1, FA9_2, PCD12_1


PSG9_1
FA9_1, FA9_2, LIRB5_1, PCD12_1


PSG9_2
FA9_1, FA9_2, PCD12_1, TENX_2, TETN_2


PTGDS_1
PCD12_1, SVEP1_1


PTGDS_2
FA9_1, FA9_2, FGFR1_2, PCD12_1


RET4_1
IPSP_1, PCD12_1


SEPP1_1
NOTUM_2, PCD12_1


SEPP1_2
NOTUM_1, PCD12_1


SHBG_1
FA9_1, FA9_2, PCD12_1, PCD12_2


SHBG_2
PCD12_1


SHBG_3
FA9_1, FA9_2, PCD12_1


SOM2_1
PCD12_1, SVEP1_1


SOM2_2
FA9_1, PCD12_1


SPRL1_1
FA9_1, FA9_2, PCD12_1, PCD12_2


SVEP1_1
NOTUM_2, PCD12_1, PCD12_2, PRG4_1, PRG4_2


TENX_1
FA9_1, FA9_2, PCD12_1, TETN_2


TENX_2
FA9_1, FA9_2, IPSP_1, PCD12_1


TETN_1
PCD12_1, PTGDS_1


TETN_2
FGFR1_2, GELS_2, NOTUM_1, PCD12_1


THBG_1
KIT_1, PCD12_1, PTGDS_1


TIE1_1
FA9_1, FA9_2, PCD12_1, PCD12_2


TIMP1_1
IPSP_1, PCD12_1


VGFR1_1
PCD12_1


VTDB_1
FA9_1, FA9_2, PCD12_1


VTNC_1
FA9_2


VTNC_2
FA9_1, PCD12_1, PTGDS_1, SVEP1_1
















TABLE 10







Two analyte models for Parity 2+








Analyte1
Analyte2





A2GL_1
ADA12_1, AFAM_2, CD14_1, CD14_2, CNTN1_1, CRAC1_1, FBLN3_1, TETN_1


AACT_1
CNTN1_1, GELS_2, PRL_1


ADA12_1
ATL4_1, ATS13_1, C1QA_2, C1QB_1, CNTN1_1, CNTN1_2, CRAC1_1,



CRAC1_3, DPEP2_1, DPEP2_2, FA9_2, FGFR1_2, GELS_1, GELS_2, KIT_1,



KIT_2, LEP_1, MFAP5_1, PAEP_1, PAEP_2, PCD12_1, PRL_1, SHBG_2,



TETN_1


AFAM_1
CD14_1, CRAC1_3, IBP4_1, TETN_1


AFAM_2
ATL4_1, CRAC1_2, CSH_1, PRL_1, TETN_1


ALS_1
CD14_1, CD14_2, CNTN1_1, TETN_1


AMBP_1
ATL4_1, CNTN1_1, GELS_1, MUC18_1, TETN_1


ANGT_1
CD14_1, CD14_2, CNTN1_1, TETN_1


ANT3_1
ATL4_1, CRAC1_3, KIT_1, PAEP_1, TETN_1, TETN_2


AOC1_1
CNTN1_1, CRAC1_3


AOC1_2
CNTN1_1


APOC3_1
ADA12_1


APOH_1
CD14_1, CD14_2, CNTN1_1


B2MG_1
ADA12_1, CD14_1, CD14_2, CNTN1_1, CRAC1_1, FA9_1, PEDF_1, TETN_1,



TETN_2


B2MG_2
CD14_2


BGH3_1
CD14_1, CD14_2, CNTN1_1, TETN_1


C163A_1
ADA12_1, CD14_1, CD14_2, CNTN1_1, CSH_1, TETN_1


C1QA_1
CNTN1_1, TETN_1


C1QA_2
CNTN1_1, TETN_1


C1QB_1
TETN_1


C1QB_2
AMBP_1, TETN_1


C1QB_3
CD14_1, CD14_2, CNTN1_1, TETN_1, TETN_2


C1QC_1
CNTN1_1


C1QC_2
CNTN1_1, TETN_1


CADH5_1
CNTN1_1


CADH5_2
CNTN1_1


CAH1_1
CD14_1, CD14_2, CNTN1_1, TETN_1


CAMP_1
CNTN1_1


CAMP_2
CNTN1_1


CATD_1
CD14_1, CNTN1_1, TETN_1


CATD_2
ADA12_1, CD14_1, CD14_2, CNTN1_1, CRAC1_1, CRAC1_3, CSH_1,



FBLN3_1, TETN_1


CBPN_1
CD14_2, CNTN1_1, TETN_1


CBPN_2
CD14_1, CD14_2


CD14_1
AACT_1, ADA12_1, AMBP_1, ANT3_1, AOC1_1, AOC1_2, ATL4_1, ATS13_1,



ATS13_2, C1QA_1, C1QA_2, C1QB_1, C1QB_2, C1QC_1, C1QC_2, CADH5_1,



CADH5_2, CAMP_1, CAMP_2, CD14_2, CGB1_1, CGB1_2, CHL1_1, CLUS_1,



CLUS_2, CNTN1_1, CNTN1_2, CO5_1, CO5_2, CO8A_1, CO8B_1, CRAC1_1,



CRIS3_1, CRIS3_2, CSH_1, CSH_2, ECM1_1, ECM1_2, EGLN_1, EGLN_2,



ENPP1_1, ENPP2_2, F13B_1, FA11_2, FA5_1, FA5_2, FA9_1, FA9_2,



FBLN1_1, FBLN3_1, FETUA_2, FGFR1_1, FGFR1_2, GELS_1, GELS_2,



GPX3_1, HABP2_1, HEMO_1, HLACI_1, IBP1_1, IBP2_1, IBP3_1, IBP4_1,



IBP4_2, IBP6_1, IBP6_2, IGF1_1, IGF2_1, IL1R1_1, INHBC_1, IPSP_1, ISM2_1,



ITIH3_1, ITIH4_1, ITIH4_2, ITIH4_3, KIT_1, KIT_2, KNG1_2, LBP_1, LBP_2,



LEP_1, LEP_2, LIRB5_1, LYAM1_1, MFAP5_1, MUC18_1, MUC18_2,



NOTUM_1, NOTUM_2, PAEP_1, PAEP_2, PCD12_1, PCD12_2, PEDF_1,



PGRP2_1, PRDX2_1, PRG4_1, PRG4_2, PROS_1, PROS_2, PSG11_1,



PSG2_1, PSG3_1, PSG9_1, PSG9_2, PTGDS_1, PTGDS_2, RET4_1, SEPP1_1,



SHBG_1, SHBG_2, SHBG_3, SOM2_1, SOM2_2, SPRL1_1, SVEP1_1, TENX_1,



TENX_2, TETN_1, TETN_2, THBG_1, THRB_1, TIE1_1, TIMP1_1, VTDB_1,



VTNC_1


CD14_2
AACT_1, ADA12_1, AMBP_1, ANT3_1, ATL4_1, ATS13_1, ATS13_2, C1QA_2,



C1QB_1, C1QB_2, C1QC_1, C1QC_2, CADH5_1, CADH5_2, CAMP_1,



CAMP_2, CFAB_1, CGB1_1, CGB1_2, CHL1_1, CLUS_2, CNTN1_1, CNTN1_2,



CO5_1, CO5_2, CO6_1, CO8A_1, CO8B_1, CRAC1_1, CRAC1_3, CRIS3_1,



CRIS3_2, CSH_1, CSH_2, DEF1_1, DEF1_2, DPEP2_1, DPEP2_2, ECM1_1,



ECM1_2, EGLN_1, EGEN_2, ENPP2_1, FT3B_1, FA11_1, FA11_2, FA5_1,



FA9_1, FBLN1_1, FBLN3_1, FETUA_1, FETUA_2, FGR1_1, F6FR1_2,



GELS_1, GELS_2, GPX3_1, GPX3_2, HABP2_1, HEMO_1, IBP1_1, IBP2_1,



IBP3_1, IBP3_2, IBP4_1, IBP4_2, IBP4_3, IBP6_1, IBP6_2, IGF1_1, IGF2_1,



IL1R1_1, IPSP_1, IPSP_2, ISM2_1, ITIH3_1, ITIH4_1, ITIH4_2, ITIH4_3, KIT_1,



KIT_2, KNG1_1, KNG1_2, LBP_1, LBP_2, LEP_1, LEP_2, LIRB5_1, MFAP5_1,



MUC18_2, NOTUM_1, PAEP_1, PAEP_2, PAPP2_1, PCD12_1, PCD12_2,



PEDF_1, PEDF_2, PGRP2_1, PRDX2_1, PRG2_1, PRG4_1, PRG4_2, PRL_1,



PROS_1, PROS_2, PSG1_1, PSG11_1, PSG2_1, PSG3_1, PSG9_1, PSG9_2,



PTGDS_1, PTG5S_2, RET4_1, SEPP1_1, SHBG_1, SHBG_2, SHBG_3,



SOM2_1, SPRL1_1, SVEP1_1, TENX_1, TENX_2, TETN_1, TETN_2, THRB_1,



TIMP1_1, VTDB_1, VTNC_1, VTNC_2


CFAB_1
ADA12_1, CNTN1_1, TETN_1


CGB1_1
CNTN1_1, CRAC1_1, TETN_1


CGB1_2
ATL4_1, CNTN1_1, CRAC1_1, TETN_1


CHL1_1
ADA12_1, CNTN1_1, CO5_1, CO5_2, CO8A_1, CSH_1, FA5_1, IBP4_2,



PSG11_1, PSG2_1, TETN_1, TETN_2, THBG_1, VTNC_2


CLUS_1
CNTN1_1


CLUS_2
ADA12_1, CRAC1_3, CSH_1, FBLN3_1


CNTN1_1
ATS13_1, ATS13_2, CRAC1_1, CRAC1_2, DPEP2_1, DPEP2_2, MFAP5_1,



NOTUM_1, PCD12_1, PCD12_2, PRG4_1, SVEP1_1


CNTN1_2
CRAC1_1


CO5_1
ATL4_1, CNTN1_1, CRAC1_1, CRAC1_3, FBLN1_1, FBLN3_1, GELS_2, KIT_2,



SHBG_1, SHBG_2, TETN_1


CO5_2
ADA12_1, CRAC1_1, FBLN3_1, TETN_1


CO8A_1
ADA12_1, CNTN1_1, CRAC1_3, CSH_1, FBLN1_1, PRL_1, TETN_1, TETN_2


CO8B_1
ADA12_1, ATL4_1, CNTN1_1, FBLN1_1, TETN_1, TETN_2


CRIS3_1
CNTN1_1


CRIS3_2
CNTN1_1, CSH_1


CSH_1
AACT_1, ADA12_1, AMBP_1, ANT3_1, ATL4_1, ATS13_1, CNTN1_1, CNTN1_2,



CRAC1_1, CRAC1_2, CRAC1_3, DPEP2_1, DPEP2_2, ENPP2_2, FA11_2,



FA5_2, FA9_1, FBLN3_1, FETUA_1, FETUA_2, FGFR1_2, IBP1_1, IBP4_2,



ITIH3_1, KIT_1, LIRB5_1, PEDF_1, PRG2_1, PRL_1, PSG1_1, SHBG_1,



SHBG_2, SHBG_3, SPRL1_1, TENX_1, TETN_1, TETN_2, THBG_1, TIE1_1,



TIMP1_1, VTDB_1, VTNC_2


CSH_2
CNTN1_1, TETN_1


EGLN_2
CNTN1_1


ENPP2_1
CRAC1_3


F13B_1
CNTN1_1, TETN_1


FA11_1
CNTN1_1, TETN_1


FA11_2
CNTN1_1, TETN_1


FA5_1
ATL4_1, CNTN1_1


FA5_2
ATL4_1, CNTN1_1, CNTN1_2


FA9_1
CNTN1_1, FGFR1_2, GELS_2, MUC18_1, TETN_1


FA9_2
ATL4_1, CNTN1_1, CNTN1_2, CRAC1_3, FGFR1_2, GELS_1, TETN_1, TETN_2


FBLN1_1
ADA12_1, AMBP_1, GELS_2, TETN_1


FBLN3_1
AACT_1, CNTN1_1, CRAC1_1, FA5_2, IBP4_2, PRL_1, PSG11_1, TETN_1


FETUA_1
CNTN1_1, TETN_1


FETUA_2
CNTN1_1, TETN_1


FGFR1_1
CNTN1_1


FGFR1_2
CNTN1_1


GELS_1
CNTN1_1, EGLN_1, PROS_1


GELS_2
EGLN_1, PROS_1


GPX3_1
ADA12_1, TETN_1


GPX3_2
CNTN1_1


HEMO_1
CNTN1_1


HLACI_1
CNTN1_1


IBP2_1
TETN_1


IBP3_1
CNTN1_1, TETN_2


IBP3_2
CNTN1_1, TETN_1


IBP4_1
CNTN1_1, PAEP_1, TETN_1


IBP4_2
CNTN1_1, CNTN1_2, SHBG_2, TETN_1


IBP4_3
CNTN1_1, TETN_1


IBP6_1
CNTN1_1, TETN_1


IBP6_2
ADA12_1, CNTN1_1, TETN_2


IGF1_1
CNTN1_1


IGF2_1
CNTN1_1, TETN_1


INHBC_1
CRAC1_3, TETN_1


IPSP_1
CNTN1_1, TETN_1


IPSP_2
CNTN1_1


ITIH3_1
CNTN1_1, TETN_1


ITIH4_1
ADA12_1, CNTN1_1, TETN_1


ITIH4_2
CNTN1_1


ITIH4_3
TETN_1


KIT_1
CNTN1_1


KIT_2
CNTN1_1


KNG1_1
ATL4_1, CNTN1_1


KNG1_2
CNTN1_1


LBP_1
CNTN1_1, TETN_1


LBP_2
CNTN1_1, TETN_1


LEP_1
CNTN1_1


LEP_2
CNTN1_1


LIRB5_1
CNTN1_1, TETN_1


LYAM1_1
TETN_1


PAEP_1
CRAC1_3, FA5_2


PAPP1_1
CNTN1_1, TETN_1


PEDF_1
AACT_1, ADA12_1, CNTN1_1, CNTN1_2, CRAC1_1, CRAC1_3, GELS_1,



TETN_1, TETN_2


PEDF_2
TETN_1


PGRP2_1
TETN_1


PRDX2_1
CNTN1_1, TETN_1


PRG2_1
ADA12_1, CNTN1_1, TETN_1


PRL_1
ATL4_1, CNTN1_1, CNTN1_2, GELS_1, GELS 2, PROS_1, TETN_1


PRL_2
ATL4_1, CNTN1_1, CRAC1_1, GELS_2, TETN_1


PROS_1
CNTN1_1, CNTN1_2, CRAC1_3


PSG11_1
AACT_1, ADA12_1, ATL4_1, CNTN1_1, KIT_1, PSG2_1, TETN_1, VTNC_2


PSG2_1
AACT_1, ADA12_1, AMBP_1, ATL4_1, CNTN1_1, CNTN1_2, CRAC1_1,



GELS_1, GELS_2, KIT_1, PAEP_1, PSG9_1, TETN_1


PSG3_1
TETN_1


PSG9_1
CNTN1_1, TETN_1


PSG9_2
TETN_1


PTGDS_1
CNTN1_1


PTGDS_2
CNTN1_1, TETN_1


RET4_1
CNTN1_1, TETN_1, TETN_2


SEPP1_2
CNTN1_1


SHBG_1
ADA12_1, CNTN1_1, CRAC1_3, TENX_2, TETN_1, TETN_2


SHBG_2
CNTN1_1, TETN_1, TETN_2


SHBG_3
CNTN1_1, CRAC1_3, TETN_1, TETN_2


SOM2_1
ADA12_1, CNTN1_1, TETN_1


SOM2_2
ADA12_1, CRAC1_1, FA9_2, KIT_1, TETN_1


SPRL1_1
CNTN1_1, TETN_1


SVEP1_1
CRAC1_3


TENX_1
TETN_1


TENX_2
ADA12_1, CNTN1_1, TETN_1


TETN_1
ATL4_1, ATS13_1, ATS13_2, CADH5_1, CADH5_2, CNTN1_1, CRAC1_3,



DPEP2_1, DPEP2_2, ECM1_2, EGLN_1, EGLN_2, FA5_1, FA5_2, FGFR1_1,



FGFR1_2, GELS_1, KIT_2, LEP_1, LEP_2, MFAP5_1, NOTUM_1, PAEP_1,



PCD12_1, PCD12_2, PRG4_1, PROS_2, PTGDS_1, SEPP1_1, SEPP1_2,



TETN_2, THRB_1


TETN_2
ATL4_1, CNTN1_1, KIT_1, PCD12_1, PROS_1


THBG_1
CNTN1_1, CRAC1_1, TETN_1


TIE1_1
ADA12_1, ATL4_1, CNTN1_1, CNTN1_2, CRAC1_3, TETN_1, TETN_2


TIMP1_1
CNTN1_1, TETN_1


VTDB_1
CNTN1_1


VTNC_1
CNTN1_1, CRAC1_3, KIT_1


VTNC_2
ADA12_1, CNTN1_1









Model 2: Two Analyte Models Containing InvParity as a Variable for Overlapping GABD Windows


Model 2 (TTB˜ETB+InvParity+Analyte1+Analyte2) was run for 171 analytes in all possible pairs, in overlapping three-week windows with an overlap of one week. All TERM samples were used (975 subjects were TERM). Analytes were included not as a ratio (i.e. a reversal) to allow for different coefficients for each. This model was applied to subjects of all Parities for GA windows:—180/7 to 286/7—and in 3-week GA windows from 180/7 to 206/7, 190/7 to 216/7, etc. to 260/7 to 286/7. The performance metric was accuracy.









TABLE 11







Overlapping windows of GA at blood draw, the number of samples in


each and the minimum, median and maximum accuracy in each


window. Nomenclature: for example [126-147) means GA day


126 ≤ GA at blood draw day < GA day 147.











Windows
nTERM
min
med
max














[126-147)
262
46.9
50.4
54.2


[133-154)
267
44.9
48.7
53.2


[140-161)
265
45.7
48.7
54.0


[147-168)
265
45.3
48.7
53.2


[154-175)
266
47.4
52.3
56.4


[161-182)
264
45.5
50.4
54.9


[168-189)
271
48.3
51.3
56.8


[175-196)
261
44.8
49.0
54.0


[182-203)
269
47.2
51.3
56.1


[126-203)
975
48.5
50.2
52.6
















TABLE 12







Analyte pairs in models containing InvParity for GABD 126-147








Analyte1
Analyte2





A2GL_1
AFAM_2, CD14_1, CFAB_1, CHL1_1, FA9_1, FA9_2, FGFR1_1, IBP1_1, ITIH3_1,



ITIH4_2, LIRB5_1, PRG4_1, PRG4_2, VTNC_2


AACT_1
CNTN1_2, CRAC1_1, FA9_1, FA9_2, GELS_2, KIT_1, SHBG_3


AFAM_1
AACT_1, AOC1_2, APOH_1, ATL4_1, B2MG_1, C1QA_1, C1Q2B_3, CAMP_1,



CBPN_1, CBPN_2, CD14_1, CFAB_1, CGB1_1, CHL1_1, CNTNT_1, CNTNT1_2,



CO5_1, CO5_2, CO8A_1, CRIS3_1, CRIS3_2, DPEP2_2, EGLN_2, FA9_1, FA9_2,



FGFR1_1, GELS_2, IBP4_1, IBP4_2, IBP4_3, IBP6_2, IGF2_1, IL1R1_1, INHBC_1,



ITIH3_1, KIT_2, KNG1_2, LBP_1, LBP_2, LIRB5_1, MUC18_1, PAEP_2, PEDF_-1,



PRG4_1, PSG1_1, PSG11_1, PSG3_1, PSG9_2, PTGDS_2, SHBG_2, SHBG_3,



SOM2_1, SPRLT1_1, THBG_1, TIMP1_1, VGFR1_1, VTNC_2


AFAM_2
AACT_1, ADA12_1, ANT3_1, ATL4_1, C1QA_1, C1QB_3, CADH5_1, CFAB_1,



CHL1_1, CLUS_1, CNTN1_2, CO8A_1, CRAE1_1, CRIS3_1, DPEP2_2, EGTN_1,



EGLN_2, ENPP2_2, FGFR1_1, IBP1_1, IGF2_1, ITIH3_1, KIT_1, LIRB5_1,



LYAM1_1, PAPP1_1, PEDF_1, PRG4_1, PRG4_2, PSG2_1, PSG9_1, RET4_1,



SEPP1_1, SHBG_1, SHBG_2, SHBG_3, TETN_1, THBG_1, VTNC_2


AMBP_1
CNTN1_2, LEP_1, PRG4_1, PRG4_2, SHBG_2


ANT3_1
LEP_1, PRG4_2, SHBG_2, TETN_1


AOC1_1
PRG4_1, PRG4_2


AOC1_2
PRG4_2


APOC3_1
CHL1_1, ENPP2_2, FA9_1, FGFR1_1, ITIH3_1, LEP_1, SOM2_2


APOH_1
CHL1_1, FA9_1, PRG4_2, SHBG_2, SHBG_3, VTNC_2


ATL4_1
CRAC1_1, PRG4_2


ATS13_2
PRG4_1, PRG4_2


B2MG_1
B2MG_2, CRIS3_1, FA9_1, IBP4_1, KIT_2, LEP_2


B2MG_2
PRG4_2, THBG_1, VTNC_2


BGH3_1
C1QC_1, CFAB_1, FA9_2, KIT_1, LBP_2, PEDF_1


C163A_1
CFAB_1, CHL1_1, GELS_2


C1QA_1
CRAC1_1, DPEP2_1, ECM1_2, PRG4_1, PRG4_2, SHBG_2, TETN_1


C1QA_2
C1QC_1, PRG4_1, PRG4_2


C1QB_1
C1QC_1, PRG4_1, PRG4_2, SHBG_2


C1QB_2
GELS_2, PRG4_2, SHBG_2, TETN_1


C1QB_3
CATD_1, CFAB_1, CHL1_1, CO8A_1, CRAC1_1, ECM1_2, ENPP2_1, FA9_1,



FBLN3_1, IBP1_1, IBP6_2, IGF1_1, IGF2_1, ISM2_1, ITIH3_1, MUC18_1,



NOTUM_2, PRG4_1, PRG4_2, PTGDS_1, THBG_1, TIE1_1


C1QC_1
AOC1_2, C1QC_2, CAMP_1, CAMP_2, CNTN1_2, CRAC1_2, CRAC1_3, DEF1_1,



DPEP2_1, DPEP2_2, ECM1_1, ECM1_2, FGFR1_1, FGFR1_2, IGF1_1, IL1R1_1,



IPSP_1, KIT_2, LEP_2, NOTUM_1, PAEP_2, PAPP2_1, PCD12_1, PTGDS_1,



SEPP1_1, VGFR1_1


C1QC_2
PRG4_1, PRG4_2, SHBG_2


CADH5_1
CNTN1_2, PRG4_1, PRG4_2, PTGDS_1


CADH5_2
PRG4_1, PRG4_2


CAH1_1
C1QC_1, CHL1_1, KIT_1, PRDX2_1, PRG4_1, PRG4_2, TETN_1, THBG_1,



VTNC_2


CAMP_1
PRG4_1, PRG4_2


CAMP_2
PRG4_2


CATD_1
CAMP_1, CAMP_2, CHL1_1, CNTN1_2, CRAC1_1, CRAC1_3, CRIS3_1, EGLN_2,



ENPP2_1, HLACI_1, IGF2_1, ITIH3_1, KIT_1, KNG1_1, MUC18_1, PAPP1_1,



PRG2_1, SOM2_2, TETN_1, TETN_2, THBG_1


CATD_2
KIT_1


CBPN_1
CHL1_1, FA9_1, KIT_1, SHBG_2, SHBG_3, VTNC_2


CBPN_2
C1QC_1, CHL1_1


CD14_1
AACT_1, C1QA_1, C1QA_2, CFAB_1, CHL1_1, CLUS_2, CNTN1_2, CO5_2,



CO8A_1, CRIS3_2, ECM1_2, FA9_2, GELS_2, IBP1_1, ITIH3_1, ITIH4_2, KIT_2,



LIRB5_1, PRG4_1, PRG4_2, PROS_1, PROS_2, SHBG_2, SHBG_3, TENX_1,



THRB_1, VTNC_2


CD14_2
CNTN1_2, FGFR1_1, GELS_2, THRB_1


CFAB_1
AACT_1, AT513_2, CHL1_1, CLUS_1, CNTN1_2, CO6_1, CRIS3_1, DPEP2_1,



DPEP2_2, EGLN_1, ENPP2_2, FA11_2, FA9_2, FGFR1_1, FGFR1_2, IBP4_1,



IGF1_1, ISM2_1,SM2_2, ITIH3_1, ITIH4_3, KIT_1, KIT_2, LEP_1, DRB5_1,



LYAM1_1, MUC18_1, NOTUM_1, PRG4_2, PSG2_1, PTGDS_2, SEPP1_2,



TETN_1, THBG_1, THRB_1


CGB1_1
C1QC_1, CRAC1_1, FA9_1, LIRB5_1, PRG4_1, TETN_1


CGB1_2
CRAC1_1, LIRB5_1, PRG4_1


CHL1_1
AACT_1, AMBP_1, ANT3_1, AOC1_1, AOC1_2, ATL4_1, C1QA_1, C1QA_2,



C1QB_1, C1QB_2, C1QC_1, C1QC_2, CADH5_1, CADH5_2, CAMP_1, CAMP_2,



CGB1_1, CGB1_2, CLUS_1, CLUS_2, CNTN1_1, CNTN1_2, CO5_1, CO5_2,



CO8A_1, CRAC1_1, DEF1_1, DEF1_2, DPEP2_2, ECM1_1, ECM1_2, EGLN_2,



ENPP2_1, ENPP2_2, FA11_1, FA11_2, FA9_1, FBLN1_1, FBLN3_1, FETUA_2,



FGFR1_1, FGFR1_2, GELS_1, GPX3_1, GPX3_2, HABP2_1, HLACI_1, IBP1_1,



IBP3_2, IBP6_1, IBP6_2, IGF1_1, IGF2_1, IL1R1_1, INHBC_1, IPSP_1, IPSP_2,



ISM2_1, ITIH3_1, ITIH4_1, ITIH4_3, KIT_1, KNG1_1, KNG1_2, LEP_1, LEP_2,



LIRB5_1, LYAM1_1, MUC18_1, MUC18_2, NOTUM_1, NOTUM_2, PAEP_2,



PAPP1_1, PEDF_1, PEDF_2, PRDX2_1, PRG2_1, PRG4_1, PRG4_2, PROS_1,



PROS_2, PSG1_1, PSG11_1, PSG3_1, PSG9_1, PSG9_2, PTGDS_1, PTGDS_2,



SEPP1_1, SEPP1_2, SHBG_2, SHBG_3, SPRL1_1, TENX_1, TETN_1, THBG_1,



THRB_1, TIE1_1, VGFR1_1, VTNC_2


CLUS_1
EGLN_2, FA9_2, INHBC_1, KIT_1, LEP_1, PRG4_1, PRG4_2, TETN_1, VTNC_2


CLUS_2
FA9_1, ITIH3_1, PEDF_1, PRG4_1, PRG4_2, SHBG_1, VTNC_2


CNTN1_1
PRG4_1, PRG4_2


CNTN1_2
ATL4_1, DPEP2_2, NOTUM_1, PRG4_1, THRB_1


CO5_1
C1QC_1, CNTN1_2, CRIS3_1, IBP1_1, PRG4_1, PRG4_2


CO5_2
AACT_1, C1QC_1, CNTN1_2, FA9_1, FGFR1_1, HEMO_1, IGF2_1, ITIH4_2, KIT_1,



KIT_2, LEP_1, PEDF_1, PRG4_2, SEPP1_1, THBG_1, VTNC_2


CO6_1
GELS_2


CO8A_1
AACT_1, ATL4_1, C1QA_1, C1QA_2, C1QC_1, CADH5_1, CNTN1_1, CNTN1_2,



CRAC1_1, DPEP2_2, EGLN_2, ENPP2_1, ENPP2_2, FA9_1, HLACI_1, IBP1_1,



IGF2_1, ILIR1_1, ITIH3_1, LIRB5_1, LYAM1_1, MFAP5_1, MUC18_1, MUC18_2,



PAPP1_1, PCD12_1, PRG4_1, PRG4_2, PSG2_1, PSG3_1, PSG9_1, PSG9_2,



SHBG_2, SHBG_3, SPRL1_1, TETN_1, THBG_1, VTNC_2


CRIS3_1
AACT_1, CRIS3_2, FA9_2, FBLN1_1, FGFR1_1, LIRB5_1, PRG4_1, PTGDS_1,


CRIS3_1
THBG-_1, VTNC_-2


CRIS3_2
AACT_1, DPEP2_2, ENPP2_2, FGFR1_1, IGF2_1, ITIH4_2, ITIH4_3, KIT_1, LEP_1,



PEDF_1, PRG4_1, PRG4_2, PSG2_1, TETN_1, TIMP1_1


CSH_1
ENPP2_2, FA9_1, GELS_2, ITIH3_1, TETN_1, THBG_1


CSH_2
C1QC_1, ENPP2_2, FA9_1, ITIH3_1, TETN_1, VTNC_1, VTNC_2


DEF1_1
PRG4_2


DEF1_2
PRG4_2


ECM1_1
PRG4_1, PRG4_2


ECM1_2
CRAC1_1, PRG4_1, PRG4_2


EGLN_2
CNTN1_2, CRAC1_1, MUC18_2


ENPP2_1
C1QC_1, ITIH3_1, KIT_1, PRG4_1, PRG4_2, SHBG_2, SHBG_3, TETN_1


ENPP2_2
AACT_1, ATS13_2, C1QA_1, CADH5_1, ECM1_1, ECM1_2, EGLN_2, FA9_1,



FA9_2, FGFR1_1, GELS_1, ITIH3_1, KIT_1, KIT_2, LBP_2, LIRB5_1, LYAM1_1,



PCD12_1, PRG4_2, SHBG_3, TENX_1, TETN_1, THBG_1


F13B_1
FA9_1, PRG4_2


FA11_1
FA11_2, SHBG_2, TETN_1


FA5_2
CNTN1_2, CRAC1_3, PRG4_2


FA9_1
AMBP_1, ANT3_1, ATL4_1, C1QB_1, C1QB_2, C1QC_1, C1QC_2, CNTN1_2,



CRAC1_2, CRAC1_3, DPEP2_1, DPEP2_2, ECM1_2, FA11_2, FA9_2, FGFR1_1,



FGFR1_2, GELS_1, GELS_2, ILIR1_1, KIT_1, LEP_2, MFAP5_1, MUC18_1,



MUC18_2, PCD12_2, PRG4_1, PRL_1, PRL_2, PROS_1, PROS_2, SEPP1_1,



SHBG_2, TETN_1, THRB_1, TIMP1_1


FA9_2
ANT3_1, C1QA_1, C1QA_2, C1QC_1, CRAC1_1, FGFR1_1, FGFR1_2, MUC18_1,



PRG4_2, PROS_1, PROS_2, RET4_1, TETN_1, TETN_2, THRB_1


FBLN1_1
C1QC_1, PRG4_2


FBLN3_1
CNTN1_2, IGF2_1, KIT_1, PRG4_2, SHBG_2, THBG_1, VTNC_2


FETUA_1
C1QC_1


FETUA_2
AACT_1, C1QC_1, ITIH3_1, PRG4_1, PRG4_2, VTNC_2


FGFR1_1
CNTN1_2, CRAC1_2, LEP_1, MFAP5_1, MUC18_2


FGFR1_2
LEP_1, PRG4_1, PRG4_2


GELS_1
CRAC1_1, FGFR1_1, KIT_1, LEP_1, PRG4_1


GELS_2
DPEP2_2, ECM1_1, FGFR1_1, LEP_2, MUC18_2, PRG4_1, PRG4_2, PTGDS_1


GPX3_1
C1QC_1, ECM1_2, FA9_1


GPX3_2
C1QA_1, CRAC1_1, FA9_1, SHBG_2, TETN_1


HABP2_1
C1QC_1, ITIH3_1, LIRB5_1, PRG4_1, PRG4_2, SHBG_2, SHBG_3, VTNC_2


HEMO_1
ATL4_1, CRAC1_2, IL1R1_1, TETN_1


HLACI_1
CNTN1_2, PRG4_1, PRG4_2, SHBG_3, TETN_1, VTNC_2


IBP1_1
C1QA_1, C1QA_2, C1QC_1, CADH5_1, CRAC1_1, IBP4_1, IGF2_1, KIT_1,



PRG4_1, PRG4_2, SHBG_2, VTNC_2


IBP2_1
C1QC_1


IBP3_1
C1QC_1, IGF2_1, SHBG_2, VTNC_2


IBP3_2


IBP4_1
FA9_1, GELS_2, LEP_1


IBP4_2
AACT_1, DPEP2_2, FA9_1, FGFR1_1, KIT_1, PRG4_1, PRG4_2, THBG_1


IBP4_3
FA9_1, FGFR1_1, KIT_1


IBP6_1
LEP_1


IBP6_2
C1QC_1, CRAC1_1, KIT_1, LIRB5_1, PRG4_2


IGF1_1
PRG4_1, PRG4_2, TETN_1


IGF2_1
AACT_1, AOC1_1, ATL4_1, CNTN1_1, CNTN1_2, DEF1_1, EGLN_2, GELS_2,



LBP_1, LIRB5_1, LYAM1_1, MUC18_2, PAPP1_1, PRG4_1, PRG4_2, PSG9_1,



PSG9_2, SEPP1_1, SHBG_1, SHBG_2, SHBG_3, SPRL1_1, TETN_1, THBG_1,



VTNC_2


IL1R1_1
CNTN1_2, CRAC1_1, DEF1_2, LEP_1, PRG4_1


INHBC_1
C1QC_1, CNTN1_2, CRAC1_1, FGFR1_1, LIRB5_1, MFAP5_1, PRG4_1, PRG4_2,



SHBG_2, SHBG_3, THBG_1, VTNC_2


IPSP_1
GELS_2, PRG4_1, PRG4_2, TETN_1


IPSP_2
GELS_2, LEP_1, PRG4_2


ITIH3_1
AACT_1, ADA12_1, C1QA_2, CAMP_1, CAMP_2, CRAC1_3, ECM1_1, ECM1_2,



FA9_1, FA9_2, FGFR1_1, GELS_2, IBP4_3, IGF1_1, IPSP_2, KIT_1, KIT_2, LBP_1,



LBP_2, LYAM1_1, MUC18_1, PEDF_1, PRDX2_1, PRG4_1, PSG11_1, PSG2_1,



PTGDS_1, SOM2_1, SOM2_2, THBG_1, TIE1_1, VTNC_1, VTNC_2


ITIH4_1
C1QC_1, PRG4_1, PRG4_2, SHBG_2, SHBG_3, TETN_1, THBG_1


ITIH4_2
ATL4_1, C1QC_1, CNTN1_2, FA9_1, GELS_2, LYAM1_1, MUC18_1, PRG2_1,



SHBG_1, SHBG_2, TETN_1, THBO_1


ITIH4_3
AACT_1, C1QC_1, CNTN1_2, CRAC1_1, DEF1_2, FA9_1, GELS_2, KIT_1, LEP_1,



SHBG_1, THBG_1, VTNC_2


KIT_1
AOC1_2, ATL4_1, CADH5_1, CNTN1_2, DPEP2_2, FGFR1_1, LEP_1, MUC18_1,



NOTUM_1, SEPP1_1, SEPP1_2, VGFR1_1


KIT_2
FGFR1_1, ISM2_2, LEP_1


KNG1_1
C1QC_1, CNTN1_2, LIRB5_1, PRG4_1, PRG4_2, THBG_1, VTNC_2


KNG1_2
C1QC_1, CNTN1_2, PRG4_2, VTNC_2


LBP_1
ATL4_1, CRAC1_1, CRAC1_3, FGFR1_1, KIT_1, LIRB5_1, PSG1_1, PSG11_1,



PTGDS_1, VTNC_2


LBP_2
CNTN1_2, CRAC1_1, FA9_1, FGFR1_1, IL1R1_1, PSG1_1, VTNC_2


LEP_1
ATS13_2, CRAC1_1, PCD12_1, PTGDS_1, SEPP1_1, THRB_1


LIRB5_1
C1QA_2, C1QC_1, CRAC1_1, FA9_1, FA9_2, KIT_1, KIT_2, MUC18_1, MUC18_2,



PRG4_1, PRG4_2, TETN_1


LYAM1_1
EGLN_2, FA9_2, KIT_1, LIRB5_1, PCD12_1, PRG2_1, PRG4_2, PTGDS_1,



TETN_1, THB_1, TIE1_1


MFAP5_1
PRG4_2


MUC18_2
DPEP2_2, PRG4_1, PRG4_2


PAEP_1
ECM1_2, PRG4_1


PAPP1_1
FA9_1, FGFR1_1, GELS_2


PEDF_1
AACT_1, CADH5_1, CNTN1_2, CRAC1_1, EGLN_2, FA9_1, GELS_1, KIT_2,



LEP_1, PSG2_1, TETN_1, THBG_1, TIE1_1, VTNC_2


PEDF_2
C1QC_1, PRG4_2, SHBG_2, SHBG_3


PGRP2_1
GELS_2


PRDX2_1
PRG4_1, PRG4_2, TETN_1, THBG_1


PRG2_1
GELS_2, TETN_1


PRG4_1
DPEP2_2, PCD12_1, PRG4_2


PRG4_2
DPEP2_1, DPEP2_2, PCD12_1


PROS_2
EGLN_2


PSG1_1
FA9_2, TETN_1, THBG_1


PSG11_1
C1QC_1, FA9_1, THBG_1


PSG2_1
C1QC_1, FA9_1, FA9_2, GELS_2, IL1R1_1, VTNC_2


PSG3_1
PRG4_1, PRG4_2, SHBG_2, SHBG_3, VTNC_2


PSG9_1
CADH5_1, CNTN1_2, PRG4_1, PRG4_2, SHBG_2, SHBG_3, TETN_1, THBG_1,



VTNC_2


PSG9_2
C1QC_1, KIT_1, PRG4_1, PRG4_2, SHBG_2, SHBG_3


PTGDS_1
CRAC1_2, MUC18_2


PTGDS_2
AACT_1, C1QC_1, FA9_2, LIRB5_1, PRG4_2, TETN_1


RET4_1
GELS_2, KIT_1, PRG4_1, PRG4_2, TETN_1


SEPP1_1
CRAC1_1, PRG4_1, PRG4_2


SEPP1_2
PCD12_1


SHBG_1
ATL4_1, CADH5_1, CNTN1_2, CRAC1_1, DPEP2_2, ECM1_2, FA9_1, FGFR1_1,



FGFR1_2, GPX3_1, GPX3_2, KIT_1, LIRB5_1, NOTUM_1, PRG4_1, PRG4_2,



RET4_1, SHBG_2, SHBG_3, THBG_1, VTNC_2


SHBG_2
AOC1_2, ATL4_1, CADH5_1, CADH5_2, CAMP_1, CAMP_2, CNTN1_1, CNTN1_2,



CRAC1_1, DPEP2_2, EGLN_2, FGFR1_1, FGFR1_2, IGF1_1, PRG4_1, PRG4_2,



PROS_1, SEPP1_1, VGFR1_1


SHBG_3
AMBP_1, ANT3_1, ATL4_1, C1QA_1, C1QB_2, C1QC_2, CADH5_1, CNTN1_1,



CNTN1_2, CRAC1_1, DPEP2_2, EGLN_2, FGFR1_1, FGFR1_2, IPSP_1, LIRB5_1,



PCD12_1, PRG4_1, PRG4_2, PROS_1, SEPP1_1, VGFR1_1


SOM2_1
FA9_1, SHBG_2, TETN_1, THBG_1


SOM2_2
FA9_1, GELS_2, PRG4_2


SPRL1_1
PRG4_1, PRG4_2, SHBG_2, SHBG_3, VTNC_2


SVEP1_1
CRAC1_3


TENX_1
CRAC1_1, FA9_1, PRG4_1, PRG4_2


TENX_2
FGFR1_1, KIT_2


TETN_1
AOC1_1, CAMP_1, CNTN1_1, DEF1_1, DEF1_2, ECM1_1, ECM1_2, EGLN_1,



FGFR1_1, ISM2_2, LEP_1, LEP_2, MFAP5_1, PROS_2, PTGDS_1, SEPP1_1,



SEPP1_2, THRB_1, VGFR1_1


TETN_2
KIT_1


THBG_1
AACT_1, ANT3_1, ATL4_1, ATS13_2, C1QB_1, C1QC_1, CADH5_2, CAMP_1,



CNTN1_1, CNTN1_2, CRAC1_1, DEF1_1, DEF1_2, DPEP2_1, DPEP2_2, ECM1_2,



EGLN_1, FA9_1, FA9_2, FGFR1_1, FGFR1_2, GPX3_2, IBP4_1, IGF1_1, IL1R1_1,



KIT_1, KIT_2, LEP_1, LIRB5_1, MUC18_1, MUC18_2, PAEP_1, PAEP_2, PRG4_2,



PTGDS_1, SEPP1_1, SHBG_2, SHBG_3, TETN_1, THRB_1, VTNC_1, VTNC_2


TIE1_1
C1QC_1, CNTN1_2, FA9_1, KIT_2, VTNC_2


TIMP1_1
ATL4_1, CRAC1_1, GELS_2


VGFR1_1
PRG4_1, PRG4_2


VTDB_1
C1QC_1, VTNC_2


VTNC_1
CRAC1_1, FA9_1, FGFR1_1, LIRB5_1, THRB_1, VTNC_2


VTNC_2
AACT_1, AMBP_1, ANT3_1, AOC1_1, C1QB_1, C1QC_2, CADH5_1, CAMP_2,



CNTN1_1, CNTN1_2, CRAC1_1, DEF1_1, DEF1_2, DPEP2_1, DPEP2_2, ECM1_1,



ECM1_2, EGLN_1, EGLN_2, FA11_2, FA5_2, FA9_1, FA9_2, FGFR1_1, FGFR1_2,



GPX3_1, GPX3_2, IPSP_1, KIT_1, KIT_2, LIRB5_1, MFAP5_1, MUC18_1, PAEP_1,



PRG4_1, PRG4_2, PROS_1, PTGDS_1, RET4_1, SEPP1_1, SEPP1_2, SHBG_2,



SHBG_3, TETN_1, THRB_1, TIMP1_1, VGFR1_1
















TABLE 13







Analyte pairs in models containing InvParity for GABD 126-203








Analyte1
Analyte2





A2GL_1
FA9_2


AACT_1
ANT3_1, CRAC1_1, CRAC1_3, FA9_1, FA9_2, GELS_2, SVEP1_1


ADA12_1
FA9_1, FA9_2


AFAM_2
AACT_1, FGFR1_1


ALS_1
CD14_1, FA9_1, FA9_2


AMBP_1
SVEP1_1, TETN_1


ANGT_1
AACT_1, FA9_1, FA9_2


ANT3_1
TETN_1


APOC3_1
FA9_2


APOH_1
FA9_1, FA9_2


B2MG_1
FA9_1, FA9_2, SVEP1_1


B2MG_2
FA9_2


C163A_1
FA9_1


C1QA_1
CRAC1_3


C1QB_3
CD14_1, FA9_1, FA9_2


C1QC_1
CRAC1_3, TETN_1


CAH1_1
FA9_1, FA9_2


CATD_1
SVEP1_1


CATD_2
FA9_1


CBPN_1
FA9_1, FA9_2


CBPN_2
FA9_1, FA9_2


CD14_1
ADA12_1, ANT3_1, AOC1_1, C1QA_1, CD14_2, CHL1_1, CNTN1_1, CO5_2,



CRIS3_2, ECM1_2, FA5_2, FA9_1, FA9_2, FBLN1_1, FETUA_1, GELS_2,



HABP2_1, HLACI_1, IBP4_1, IBP6_2, ISM2_1, ITIH3_1, ITIH4_2, LIRB5_1,



NOTUM_1, PAEP_1, PCD12_2, PROS_2, PSG1_1, PSG11_1, PSG2_1, PSG9_1,



SVEP1_1, TENX_2, TETN_1, TIMP1_1, VTDB_1


CD14_2
FA9_2


CGB1_1
FA9_1


CGB1_2
FA9_1


CHL1_1
FA9_1, FA9_2


CLUS_1
FA9_1, FA9_2


CLUS_2
FA9_1, FA9_2


CO5_1
FA9_1, FA9_2


CO5_2
FA9_1, FA9_2, SVEP1_1


CO6_1
FA9_2


CO8A_1
FA9_1, FA9_2


CO8B_1
FA9_1, FA9_2


CRIS3_1
AACT_1


CRIS3_2
FA9_1, FA9_2, IBP4_1


CSH_1
FA9_1, FA9_2


CSH_2
FA9_2


ENPP2_2
FA9_1


F13B_1
FA9_2


FA5_1
CNTN1_1


FA5_2
CNTN1_1, SVEP1_1


FA9_1
ANT3_1, ATL4_1, ATS13_1, ATS13_2, C1QA_1, C1QB_1, C1QB_2, C1QC_1,



C1QC_2, CADH5_2, CAMP_1, CAMP_2, CNTN1_1, CNTN1_2, CRAC1_2,



CRAC1_3, DEF1_1, DPEP2_2, ECM1_1, ECM1_2, EGLN_2, FA9_2, FGFR1_2,



GELS_2, IL1R1_1, IPSP_1, ISM2_2, KIT_1, KIT_2, LEP_1, MUC18_1, NOTUM_1,



PAEP_1, PAEP_2, PCD12_2, PROS_1, PROS_2, PTGDS_1, SEPP1_1, SEPP1_2,



SVEP1_1, THRB_1, TIMP1_1


FA9_2
AMBP_1, ANT3_1, AOC1_1, ATS13_1, ATS13_2, C1QA_1, C1QA_2, C1QB_1,



C1QB_2, C1QC_1, C1QC_2, CADH5_1, CAMP_1, CAMP_2, CNTN1_1, CNTN1_2,



CRAC1_1, CRAC1_2, CRAC1_3, DEF1_1, DEF1_2, DPEP2_1, DPEP2_2, ECM1_1,



ECM1_2, EGLN_1, EGLN_2, FA11_1, FA11_2, FA5_1, FGFR1_2, GELS_1,



GELS_2, IGF1_1, IL1R1_1, IPSP_1, IPSP_2, ISM2_1, ISM2_2, KIT_1, KIT_2,



MUC18_1, MUC18_2, NOTUM_1, NOTUM_2, PAEP_1, PAEP_2, PCD12_1,



PCD12_2, PRG4_1, PROS_1, PROS_2, SEPP1_1, SEPP1_2, SHBG_2, SVEP1_1,



TETN_1, TETN_2, TIMP1_1, VGFR1_1


FBLN1_1
FA9_1, FA9_2


FETUA_1
FA9_1, FA9_2


FETUA_2
FA9_1, FA9_2


GELS_1
FGFR1_1


GELS_2
FGFR1_1, PCD12_2


GPX3_1
FA9_2


GPX3_2
FA9_2


HABP2_1
C1QC_1


HLACI_1
FA9_1, FA9_2


IBP1_1
FA9_2


IBP2_1
FA9_2


IBP3_1
FA9_1, FA9_2


IBP3_2
FA9_2


IBP4_1
FA9_1, FA9_2, SVEP1_1, TETN_1


IBP4_2
AACT_1, FA9_1, FA9_2, SVEP1_1


IBP4_3
FA9_1, FA9_2


IBP6_1
FA9_1, FA9_2


IBP6_2
FA9_1, FA9_2


IGF2_1
FA9_2


IPSP_1
TETN_1


ITIH3_1
SVEP1_1


ITIH4_1
FA9_1, FA9_2


ITIH4_3
FA9_1, FA9_2


KNG1_1
FA9_1, PCD12_1


KNG1_2
AACT_1, FA9_1, FA9_2


LIRB5_1
FA9_1, FA9_2


LYAM1_1
THBG_1


PAPP1_1
FA9_2


PEDF_1
GELS_2, SVEP1_1


PEDF_2
FA9_1, FA9_2


PGRP2_1
FA9_2


PRDX2_1
FA9_1, FA9_2


PRG2_1
FA9_1, FA9_2


PRL_1
TETN_1


PRL_2
TETN_1


PSG1_1
AACT_1, FA9_1, FA9_2


PSG11_1
AACT_1, FA9_1, FA9_2


PSG2_1
FA9_2, TETN_1


PSG3_1
FA9_1, FA9_2


PSG9_1
FA9_2


PSG9_2
FA9_1, FA9_2


PTGDS_2
FA9_1


SHBG_3
FA9_2


SOM2_1
FA9_1, FA9_2


SOM2_2
FA9_2


SPRL1_1
FA9_2


SVEP1_1
CRAC1_3, PRG4_1


TENX_1
FA9_1, FA9_2


TENX_2
FA9_1, FA9_2, TETN_1


TETN_1
FA5_1, FA5_2, FGFR1_1, LEP_1


THBG_1
ADA12_1, SVEP1_1, TETN_1


TIE1_1
FA9_2


VTDB_1
FA9_1, FA9_2


VTNC_1
FA9_2


VTNC_2
ADA12_1, EGLN_1, SVEP1_1
















TABLE 14







Analyte pairs in models containing InvParity for GABD 133-154








Analyte1
Analyte2





APOH_1
CD14_1


B2MG_1
CHL1_1, CO5_2, FGFR1_1, HEMO_1, KIT_2, RET4_1, THBG_1


B2MG_2
CHL1_1, SEPP1_1


C163A_1
CO5_2


C1QB_3
CHL1_1


C1QC_1
CRAC1_1


CAH1_1
ADA12_1, CHL1_1, FETUA_1, ITIH4_3, KNG1_1, LEP_2, NOTUM_2, PTGDS_1,



TIE1_1


CBPN_2
C1QC_1


CD14_1
CNTN1_1, CO5_2, RET4_1, SEPP1_1


CD14_2
CNTN1_1, CO5_2, RET4_1


CFAB_1
CHL1_1, CNTN1_1, CNTN1_2, CO5_2, FGFR1_1, IL1R1_1, THRB_1


CHL1_1
ATL4_1, C1QA_2, C1QB_2, C1QC_1, CLUS_2, CNTN1_2, CO5_2, CSH_2,



ECM1_1, ECM1_2, ENPP2_1, ENPP2_2, IBP1_1, IBP4_1, IBP6_2, IL1R1_1,



INHBC_1, LEP_1, PRDX2_1, PSG9_2, PTGDS_2, SEPP1_2, SHBG_1, SHBG_2,



SHBG_3, THBG_1, VTNC_2


CLUS_2
PRDX2_1


CNTN1_1
ECM1_2


CO5_2
ANT3_1, ENPP2_1, FGFR1_1, HEMO_1, IPSP_2, MUC18_1, PEDF_1, PRG2_1,



PTGDS_1, SEPP1_1, THBG_1, THRB_1


CO6_1
PRDX2_1


CO8A_1
MUC18_2


ECM1_2
ATL4_1


ENPP2_2
LIRB5_1, RET4_1


FA5_1
CNTN1_1


FA9_1
CNTN1_2


FA9_2
CNTN1_1


FGFR1_1
MUC18_1


HEMO_1
KIT_2, PRDX2_1


IBP6_2
CNTN1_2


IL1R1_1
SEPP1_1


INHBC_1
CNTN1_1, CNTN1_2


ITIH4_2
PRDX2_1


ITIH4_3
CNTN1_2


PEDF_1
CNTN1_1, CNTN1_2, SEPP1_1


PRDX2_1
C1QC_1, FA9_1, IPSP_2, THBG_1


PTGDS_1
CNTN1_2


RET4_1
MUC18_1


SHBG_1
IL1R1_1, LIRB5_1, RET4_1, SEPP1_1


THBG_1
CNTN1_1, GELS_2, KIT_1, KIT_2, MFAP5_1, RET4_1
















TABLE 15







Analyte pairs in models containing InvParity for GABD 140-161








Analyte1
Analyte2





ADA12_1
FGFR1_1


AFAM_1
FBLN1_1


ANGT_1
FGFR1_1


B2MG_1
C1QB_1, FBLN1_1, FGFR1_1, FGFR1_2


B2MG_2
AMBP_1, C1QB_1, FGFR1_1, LIRB5_1, PEDF_1, PROS_2, TIE1_1, VTDB_1


C1QB_1
FGFR1_1, TETN_1


C1QB_3
PEDF_1


CATD_1
FBLN1_1


CATD_2
C1QB_1, FA11_2, FA5_2, FBLN1_1, FGFR1_1, THRB_1


CBPN_2
FGFR1_1


CD14_1
C1QB_1, FBLN1_1, FGFR1_1, HEMO_1, TETN_1, TIE1_1, VTDB_1


CD14_2
FGFR1_2


CO5_2
ANT3_1, TETN_1, VTDB_1


CO6_1
FGFR1_1


ENPP2_1
FGFR1_1


ENPP2_2
FGFR1_1


FA9_2
FGFR1_2


FBLN1_1
CADH5_1, CGB1_1, FGFR1_1, GELS_2, HABP2_1, KIT_2, PEDF_1, TETN_1


FGFR1_1
FA5_2, FGFR1_2, MUC18_1, PAPP2_1, PCD12_2, PTGDS_1, SVEP1_1


FGFR1_2
FA5_2, THRB_1


GELS_2
FGFR1_1


GPX3_1
FGFR1_1


GPX3_2
FGFR1_1


HABP2_1
AMBP_1, C1QB_1, FA9_1, FGFR1_2, IBP2_1, PEDF_1, RET4_1, THRB_1,



VTDB_1


HEMO_1
IBP4_3


IBP1_1
FGFR1_1


IBP2_1
FGFR1_1, PEDF_1


IBP3_1
FGFR1_1


IBP3_2
FGFR1_1


ITIH4_2
FGFR1_2


LBP_1
FGFR1_1


LIRB5_1
FGFR1_1


LYAM1_1
FGFR1_2


PEDF_1
ANT3_1, C1QB_1, FGFR1_1, FGFR1_2, IL1R1_1, PSG11_1, SPRL1_1, TETN_1


PEDF_2
FGFR1_1


PSG1_1
FGFR1_1


PTGDS_2
FGFR1_1


SPRL1_1
FGFR1_1


TENX_2
FGFR1_1


TETN_1
FA5_1, FGFR1_1


THBG_1
FGFR1_1, VTDB_1


TIMP1_1
FGFR1_1


VTDB_1
IBP4_3, LEP_1


VTNC_2
FGFR1_1
















TABLE 16







Analyte pairs in models containing InvParity for GABD 147-168








Analyte1
Analyte2





ADA12_1
PAEP_1, TETN_1


ALS_1
HABP2_1


ANT3_1
CAMP_2, ECM1_1, SEPP1_2, SVEP1_1, TETN_1


APOC3_1
TETN_1


APOH_1
ANT3_1


B2MG_1
FBLN1_1, PSG1_1


B2MG_2
FBLN1_1, PSG1_1, TETN_1


C163A_1
ANT3_1


C1QB_3
TETN_1


CATD_2
TETN_1


CBPN_1
TETN_1


CBPN_2
TETN_1


CD14_1
TETN_1


CD14_2
ANT3_1, TETN_1


CGB1_1
ANT3_1


CLUS_2
ANT3_1


CO5_2
ANT3_1


CO6_1
TETN_1


CO8A_1
TETN_1


CO8B_1
TETN_1


CSH_1
ANT3_1, TETN_1


FA11_2
TETN_1


FA9_1
PAEP_1


FA9_2
ANT3_1, TETN_1


FBLN1_1
ANT3_1, ISM2_1, PCD12_2, TENX_2, TETN_1, TETN_2


HABP2_1
PEDF_1, PRL_2, TETN_1


HEMO_1
TETN_1


HLACI_1
ANT3_1


IBP1_1
TETN_1


IBP2_1
ANT3_1


IBP3_2
TETN_1


IBP4_1
TETN_1


IBP4_3
ANT3_1, TETN_1


IBP6_1
ANT3_1, TETN_1


IBP6_2
ANT3_1, TETN_1


IGF2_1
TETN_1


ITIH4_1
TETN_1


ITIH4_2
ANT3_1


ITIH4_3
TETN_1


LIRB5_1
TETN_1


PEDF_1
TETN_1


PRL_1
TETN_1


PRL_2
TETN_1


PSG1_1
TETN_1


PSG11_1
ANT3_1, TETN_1


PSG3_1
TETN_1


PSG9_2
TETN_1


SOM2_2
ANT3_1, TETN_1


SPRL1_1
ANT3_1, TETN_1


TENX_1
TETN_1


TENX_2
PAEP_2, TETN_1


TETN_1
ATL4_1, ATS13_1, CADH5_2, CNTN1_2, DEF1_1, DEF1_2, DPEP2_1, ECM1_1,



EGLN_1, EGLN_2, FGFR1_2, GELS_2, KIT_1, KIT_2, MFAP5_1, PAEP_1,



PCD12_1, PCD12_2, PROS_2, PTGDS_1, SEPP1_2, SVEP1_1, TETN_2


TIE1_1
TETN_1
















TABLE 17







Analyte pairs in models containing InvParity for GABD 154-175








Analyte1
Analyte2





A2GL_1
ADA12_1, APOH_1, B2MG_1, B2MG_2, CO5_2, IBP4_3, LYAM1_1, PRDX2_1,



PSG11_1, TETN_1, TETN_2


AACT_1
ADA12_1, IBP4_3, SVEP1_1, TETN_1


ADA12_1
AMBP_1, ANT3_1, ATS13_1, ATS13_2, C1QA_1, C1QB_1, C1QB_2, CAMP_1,



CNTN1_1, CRAC1_1, CRAC1_2, EGLN_1, FA11_1, FA11_2, FA5_2, FA9_1,



FA9_2, FGFR1_2, LIRB5_1, NOTUM_2, PAEP_1, PAEP_2, PRL_1, PRL_2,



PROS_1, PROS_2, RET4_1, TETN_2, THRB_1, TIMP1_1


AFAM_2
B2MG_1, CRIS3_2


ALS_1
APOH_1, B2MG_2, IBP4_3


AMBP_1
SVEP1_1, TETN_1, TETN_2


ANGT_1
ADA12_1, B2MG_1, B2MG_2, CNTN1_2, CRAC1_1, CRAC1_3, CRIS3_2,



CSH_1, EGLN_2, FA9_1, IBP4_3, PAEP_1, PRL_2, PSG1_1, SOM2_1,



SVEP1_1, TENX_2


ANT3_1
EGLN_1


APOC3_1
APOH_1, B2MG_1, B2MG_2, CO5_2, IBP4_3, LYAM1_1, SVEP1_1, TETN_2


APOH_1
AACT_1, AMBP_1, ATL4_1, ATS13_2, B2MG_1, B2MG_2, C1QB_3, CAMP_1,



CAMP_2, CATD_2, CD14_2, CFAB_1, CLUS_2, CNTN1_2, CO5_1, CO5_2,



CO6_1, CO8B_1, CSH_1, CSH_2, DPEP2_1, DPEP2_2, ECM1_2, EGLN_2,



ENPP2_1, FA11_1, FA11_2, FA9_1, FA9_2, FETUA_1, FETUA_2, FGFR1_1,



FGFR1_2, GELS_1, GELS_2, GPX3_2, HLACI_1, IBP1_1, IBP3_2, IBP4_1,



IBP4_2, IBP4_3, IBP6_1, IBP6_2, IGF1_1, IPSP_1, IPSP_2, ITIH3_1, ITIH4_1,



ITIH4_2, KIT_2, KNG1_2, LBP_1, LBP_2, MFAP5_1, PAEP_1, PAEP_2,



PCD12_1, PEDF_1, PEDF_2, PGRP2_1, PRL_1, PRL_2, PROS_2, PSG11_1,



PSG2_1, PSG3_1, PSG9_1, PSG9_2, PTGDS_1, RET4_1, SHBG_1, SHBG_2,



SHBG_3, SOM2_1, SPRL1_1, SVEP1_1, TENX_1, TENX_2, TETN_1, TETN_2,



TIMP1_1


B2MG_1
AACT_1, ADA12_1, AMBP_1, ATL4_1, ATS13_1, ATS13_2, B2MG_2, BGH3_1,



C1QB_1, C1QB_3, CADH5_1, CAH1_1, CAMP_1, CAMP_2, CATD_1, CBPN_1,



CBPN_2, CFAB_1, CGB1_1, CGB1_2, CHL1_1, CLUS_2, CNTN1_2, CO5_1,



CO5_2, CO6_1, CO8A_1, CO8B_1, CRAC1_1, CRAC1_2, CRAC1_3, CRIS3_1,



CSH_1, CSH_2, DEF1_1, DEF1_2, DPEP2_1, DPEP2_2, EGLN_1, ENPP2_1,



FA11_1, FA11_2, FA9_1, FA9_2, FBLN3_1, FETUA_1, FETUA_2, FGFR1_1,



GELS_1, GELS_2, GPX3_1, GPX3_2, HABP2_1, HEMO_1, HLACI_1, IBP1_1,



IBP2_1, IBP3_1, IBP3_2, IBP4_2, IBP4_3, IBP6_1, IGF2_1, ISM2_1, ITIH3_1,



ITIH4_2, KIT_1, KIT_2, KNG1_2, LBP_1, LEP_1, LIRB5_1, LYAM1_1, MFAP5_1,



NOTUM_1, NOTUM_2, PAEP_1, PAPP2_1, PCD12_1, PCD12_2, PEDF_2,



PGRP2_1, PRDX2_1, PROS_2, PSG1_1, PSG11_1, PSG2_1, PSG3_1,



PSG9_1, PSG9_2, PTGDS_1, RET4_1, SHBG_1, SHBG_2, SHBG_3, SOM2_1,



SOM2_2, SVEP1_1, TENX_1, TENX_2, TETN_1, TETN_2, TIMP1_1, VTNC_1


B2MG_2
AACT_1, ADA12_1, AMBP_1, ATL4_1, ATS13_1, ATS13_2, BGH3_1, C1QB_2,



C1QB_3, C1QC_1, C1QC_2, CADH5_1, CAH1_1, CAMP_1, CAMP_2, CATD_2,



CBPN_1, CBPN_2, CFAB_1, CGB1_1, CGB1_2, CHL1_1, CLUS_2, CNTN1_1,



CNTN1_2, CO5_1, CO5_2, CO6_1, CO8A_1, CO8B_1, CRAC1_1, CRAC1_2,



CRAC1_3, CSH_1, CSH_2, DPEP2_1, DPEP2_2, EGLN_1, EGLN_2, ENPP2_1,



FA11_1, FA11_2, FA9_1, FA9_2, FBLN3_1, FETUA_1, FETUA_2, FGFR1_1,



GELS_1, GELS_2, GPX3_1, GPX3_2, HEMO_1, HLACI_1, IBP1_1, IBP2_1,



IBP3_1, IBP3_2, IBP4_2, IBP4_3, IBP6_1, IGF2_1, INHBC_1, IPSP_1, ISM2_1,



ISM2_2, ITIH3_1, ITIH4_1, ITIH4_2, KIT_1, KIT_2, KNG1_2, LBP_1, LBP_2,



LIRB5_1, MFAP5_1, NOTUM_2, PAEP_1, PAEP_2, PCD12_1, PCD12_2,



PEDF_1, PEDF_2, PGRP2_1, PRDX2_1, PROS_2, PSG1_1, PSG11_1,



PSG2_1, PSG3_1, PSG9_2, PTGDS_1, RET4_1, SEPP1_2, SHBG_2, SHBG_3,



SOM2_1, SOM2_2, SPRL1_1, SVEP1_1, TENX_1, TENX_2, TETN_1, TETN_2,



TIE1_1, TIMP1_1


BGH3_1
IBP4_2, IBP4_3, LEP_1, LYAM1_1


C163A_1
ADA12_1, CRIS3_2, IBP4_1


C1QB_1
SVEP1_1


C1QB_2
LEP_1


C1QB_3
ADA12_1, CSH_1, IBP4_2, IBP4_3, LYAM1_1, PAPP1_1, PSG1_1, SVEP1_1,



TETN_1, TETN_2


C1QC_1
SVEP1_1


CAH1_1
C1QC_1, FA11_1, FA9_1, IBP4_1, PEDF_2, PRDX2_1, PSG1_1, SVEP1_1


CAMP_2
SVEP1_1


CATD_1
IBP4_3, PEDF_2


CATD_2
ADA12_1, CNTN1_2, FA9_1, IBP4_2, IBP4_3, LYAM1_1


CBPN_1
CRIS3_2, FA9_1, IBP4_2, IBP4_3, LEP_1, PRDX2_1, TETN_1


CBPN_2
ADA12_1, CAMP_2, IBP4_3


CD14_1
FA9_1, FA9_2, IBP4_1, IBP4_2, IBP4_3, LYAM1_1


CD14_2
IBP4_3


CFAB_1
ADA12_1, IBP4_2, IBP4_3, LYAM1_1, PAPP1_1, TETN_1


CGB1_1
TETN_1, TETN_2


CGB1_2
TETN_1, TETN_2


CHL1_1
CRIS3_2, LYAM1_1, PAEP_1, PAEP_2, PRDX2_1, PROS_2, SEPP1_2,



SVEP1_1


CLUS_1
TETN_1


CLUS_2
CO5_2, IBP4_3, LYAM1_1, TETN_1


CO5_1
ADA12_1, IBP4_3


CO5_2
AACT_1, ATL4_1, CAMP_1, CAMP_2, CSH_1, FETUA_1, FGFR1_1, GELS_1,



HLACI_1, IBP4_1, IBP4_2, IBP4_3, IBP6_2, ISM2_1, KIT_2, KNG1_2, LBP_2,



PCD12_1, PGRP2_1, PSG11_1, PSG9_1, PSG9_2, SHBG_1, SHBG_2,



SHBG_3, SOM2_1


CO6_1
EGLN_1, IBP2_1, PRDX2_1, PSG1_1, SVEP1_1


CO8A_1
ADA12_1, FA9_1, IBP4_3, TETN_1


CO8B_1
IBP4_3, LYAM1_1, TETN_1, TETN_2


CRIS3_1
FA9_1, IBP4_2


CRIS3_2
ADA12_1, FA9_1, IBP4_2, IBP4_3, PEDF_2, PROS_2, SOM2_2, TETN_1


CSH_1
AACT_1, ADA12_1, C1QB_1, C1QB_2, C1QC_2, CAMP_1, CNTN1_2,



CRAC1_2, FA5_2, FA9_1, FA9_2, GPX3_1, IBP4_1, IBP4_2, IBP4_3, ITIH4_1,



KIT_1, LEP_1, MUC18_2, PAEP_1, PAEP_2, PAPP1_1, PRDX2_1, PROS_2,



PSG1_1, PSG11_1, RET4_1, SEPP1_2, SVEP1_1, TENX_2, TETN_1, TETN_2


CSH_2
CRAC1_2, IBP4_2, IBP4_3, LYAM1_1, TETN_1


EGLN_1
CAMP_1, LEP_1, SVEP1_1


EGLN_2
CNTN1_2, CRAC1_3, SVEP1_1


ENPP2_1
FA5_2, IBP4_3


ENPP2_2
FA5_2, IBP4_3, PEDF_2, PRDX2_1


F13B_1
IBP4_3, TETN_1


FA11_1
CAMP_2, DEF1_1, TETN_1, TETN_2


FA11_2
TETN_1, TETN_2


FA5_2
CAMP_2, CRAC1_1, DPEP2_1, SVEP1_1


FA9_1
AMBP_1, ANT3_1, C1QA_1, CAMP_1, CRAC1_1, CRAC1_3, DEF1_2, EGLN_1,



EGLN_2, FA11_1, FA11_2, GELS_2, IL1R1_1, ISM2_1, NOTUM_1, PAEP_1,



PAEP_2, PRL_1, PRL_2, PROS_1, SEPP1_2, SVEP1_1, TETN_2


FA9_2
FA11_2, GELS_2, PAEP_1, PAEP_2, PRL_1, SVEP1_1, TETN_1, TETN_2


FBLN1_1
ADA12_1, FA9_1, IBP4_3, PRDX2_1, TETN_1


FBLN3_1
FA9_1, IBP4_3, LYAM1_1, PSG1_1


FETUA_1
ADA12_1, FA9_1, FA9_2, IBP4_1, IBP4_3, PRDX2_1, PSG11_1, TETN_1


FETUA_2
IBP4_2, IBP4_3, LYAM1_1, PAPP1_1, TETN_1, TETN_2


GELS_2
FA5_2, SEPP1_2, SVEP1_1


GPX3_1
ADA12_1, FA9_1, FA9_2, IBP4_1, IBP4_3, PRL_1, PRL_2, SVEP1_1


GPX3_2
IBP4_3, SVEP1_1, TETN_1, TETN_2


HABP2_1
SVEP1_1


HEMO_1
FA9_1, IBP4_1, IBP4_2, IBP4_3


HLACI_1
IBP4_3, LYAM1_1, TETN_1, TETN_2


IBP1_1
ADA12_1, CAMP_1, CNTN1_2, DEF1_2, FA9_1, FA9_2, GPX3_1, IBP4_2,



IBP4_3, PAEP_2, PAPP1_1, TETN_1, TETN_2


IBP2_1
ADA12_1, CRAC1_1, CRAC1_2, CRAC1_3, IBP4_2, IBP4_3, PRDX2_1,



SHBG_1, SHBG_2, TETN_1, TETN_2


IBP3_1
IBP4_3, PRDX2_1


IBP3_2
IBP4_3, TETN_1


IBP4_1
ADA12_1, AMBP_1, ANT3_1, ATS13_1, CRAC1_1, DEF1_1, EGLN_1, EGLN_2,



FA11_1, FA11_2, IBP4_3, PAPP2_1, PRL_2, SVEP1_1


IBP4_2
AACT_1, ADA12_1, ATS13_1, ATS13_2, C1QB_2, C1QC_2, CADH5_1,



CAMP_1, CGB1_2, CNTN1_1, CNTN1_2, CRAC1_1, CRAC1_2, DPEP2_1,



EGLN_1, FA11_1, FA11_2, FA9_1, GPX3_2, IBP4_3, ITIH3_1, ITIH4_1, ITIH4_2,



KIT_1, KIT_2, KNG1_2, LBP_2, LIRB5_1, LYAM1_1, PAEP_1, PAEP_2,



PRDX2_1, PRL_2, PROS_1, PROS_2, PSG11_1, PSG9_1, PSG9_2, SHBG_1,



SHBG_2, SHBG_3, SVEP1_1, TENX_1, TETN_1


IBP4_3
ADA12_1, AMBP_1, ANT3_1, ATL4_1, ATS13_1, ATS13_2, C1QA_1, C1QB_1,



C1QB_2, C1QC_1, CADH5_1, CADH5_2, CGB1_1, CGB1_2, CNTN1_1,



CNTN1_2, CRAC1_1, CRAC1_2, CRAC1_3, DEF1_1, DPEP2_1, DPEP2_2,



ECM1_1, EGLN_1, EGLN_2, FA11_1, FA11_2, FA9_1, FA9_2, FGFR1_1,



FGFR1_2, GELS_1, GELS_2, IGF1_1, IL1R1_1, KIT_1, KIT_2, LEP_1, LIRB5_1,



MFAP5_1, PAEP_1, PAEP_2, PAPP2_1, PCD12_1, PCD12_2, PRL_1, PRL_2,



PROS_1, PROS_2, PTGDS_1, SEPP1_1, SEPP1_2, SHBG_2, SHBG_3,



SVEP1_1, TETN_1, TETN_2, TIMP1_1


IBP6_1
IBP4_3, LYAM1_1, PRDX2_1


IBP6_2
IBP4_3, LYAM1_1


IGF2_1
IBP4_1, PSG1_1


INHBC_1
ADA12_1, LYAM1_1


ITIH3_1
IBP4_3, LYAM1_1


ITIH4_1
FA9_1, FA9_2, IBP4_3, SOM2_1, TETN_2


ITIH4_2
ADA12_1, CAMP_2, FA9_1, FA9_2, IBP4_3, PEDF_2, PRL_2, SOM2_2,



TETN_1, TETN_2, VTNC_2


ITIH4_3
IBP4_3, PRDX2_1


KIT_1
EGLN_2, SVEP1_1


KIT_2
SVEP1_1


KNG1_2
IBP4_3, LYAM1_1, TETN_1, TETN_2


LBP_1
ADA12_1, IBP4_3, LYAM1_1, TETN_2


LBP_2
ADA12_1, IBP4_3, LYAM1_1, PRDX2_1, PRL_2, PSG11_1, SVEP1_1, TETN_1


LIRB5_1
TETN_1, TETN_2


LYAM1_1
AACT_1, ADA12_1, ATS13_2, CADH5_1, CAMP_1, CGB1_1, CGB1_2,



CNTN1_1, CRAC1_2, DPEP2_1, DPEP2_2, ECM1_1, ECM1_2, FA11_2, FA9_1,



GELS_1, GPX3_2, IBP4_1, IPSP_1, KIT_1, MFAP5_1, MUC18_1, MUC18_2,



PAEP_1, PCD12_1, PGRP2_1, PROS_1, PROS_2, PSG2_1, PSG9_2, SHBG_1,



SHBG_2, SHBG_3, TETN_2, TIMP1_1, VTNC_1


PAEP_1
CAMP_2, KIT_1, SVEP1_1


PAEP_2
KIT_1, KIT_2


PAPP1_1
CGB1_1, CGB1_2, PCD12_1, PEDF_1, PTGDS_1, SHBG_2, SVEP1_1, TENX_1


PEDF_1
IBP4_3


PEDF_2
ADA12_1, CGB1_1, FA9_1, GPX3_1, IBP4_3, PRDX2_1, PRL_1, PRL_2,



PSG11_1, PTGDS_2, SOM2_1, SOM2_2, SVEP1_1, TENX_1, TENX_2,



TETN_1, TETN_2


PGRP2_1
IBP4_3


PRDX2_1
ADA12_1, AMBP_1, CADH5_1, CAMP_1, CAMP_2, CRAC1_2, EGLN_1,



FA11_1, FA11_2, IBP4_1, NOTUM_2, PRG2_1, PTGDS_1, RET4_1, SOM2_2,



SVEP1_1, TENX_1, TENX_2, TIMP1_1


PRG2_1
FA9_1


PRL_1
C1QB_1, TETN_1


PRL_2
AMBP_1, RET4_1, TETN_1


PSG1_1
ADA12_1, C1QB_2, CNTN1_2, EGLN_2, FA9_1, FA9_2, GELS_2, GPX3_1,



IBP4_1, NOTUM_2, SHBG_1, SHBG_3, SOM2_2, SVEP1_1


PSG11_1
ADA12_1, ATS13_1, CAMP_2, CNTN1_2, FA9_1, IBP4_3, TETN_1


PSG2_1
IBP4_3, TETN_1, TETN_2


PSG3_1
IBP4_3, LEP_1


PSG9_1
IBP4_1, IBP4_3, TETN_1


PSG9_2
IBP4_1, IBP4_3, TETN_1


PTGDS_2
FA9_1, IBP4_3


RET4_1
CAMP_2, CNTN1_2, TETN_1


SEPP1_2
CAMP_2


SHBG_1
IBP4_3, PAEP_1, PAEP_2, SVEP1_1, TETN_1


SHBG_2
CAMP_2, SVEP1_1


SHBG_3
PAEP_2, TETN_1


SOM2_1
ADA12_1, C1QA_1, C1QB_1, CAMP_1, FA9_1, FA9_2, IBP4_3, LEP_1,



SEPP1_1, SVEP1_1, TENX_2, TETN_1


SOM2_2
ADA12_1, C1QB_1, CRAC1_1, CRAC1_2, DPEP2_1, FA9_1, FA9_2, IBP4_3,



LEP_1, TETN_1


SPRL1_1
ADA12_1, CAMP_2, IBP4_3, TETN_1


SVEP1_1
ATS13_1, CRAC1_2, CRAC1_3, ISM2_1, ISM2_2, NOTUM_2, PCD12_1


TENX_1
ATS13_1, IBP4_3, SVEP1_1, TETN_1


TENX_2
ADA12_1, FA5_2, FA9_1, IBP4_3, SEPP1_2, SVEP1_1, TETN_1


TETN_1
ATL4_1, ATS13_2, CADH5_1, CAMP_1, CAMP_2, CRAC1_2, CRAC1_3,



DPEP2_1, DPEP2_2, ECM1_1, ECM1_2, EGLN_1, EGLN_2, FA5_2, FGFR1_1,



GELS_2, KIT_1, KIT_2, MFAP5_1, MUC18_1, MUC18_2, PAEP_1, PAEP_2,



PCD12_2, PROS_1, PROS_2, SEPP1_1, SEPP1_2, SVEP1_1, TETN_2


TETN_2
ATS13_2, FGFR1_1, GELS_2, MFAP5_1, PAEP_1, PROS_1, SVEP1_1


TIE1_1
IBP4_3


TIMP1_1
CAMP_2, TETN_1


VTDB_1
IBP4_3
















TABLE 18







Analyte pairs in models containing InvParity for GABD 161-182








Analyte1
Analyte2





A2GL_1
IBP4_1


AACT_1
ADA12_1, CNTN1_1


ADA12_1
AMBP_1, AOC1_1, AOC1_2, C1QA_1, C1QA_2, C1QB_1, C1QC_1, C1QC_2,



CRAC1_3, DEF1_2, EGLN_1, FA9_1, FA9_2, FGFR1_1, FGFR1_2, IGF1_1,



ISM2_1, ISM2_2, KIT_1, LIRB5_1, MFAP5_1, NOTUM_1, NOTUM_2, PCD12_1,



PRG4_2, PRL_1, PRL_2, PROS_2, RET4_1, SEPP1_1, SHBG_2, TETN_1,



THRB_1, VGFR1_1


AFAM_1
AACT_1, CRIS3_2, ENPP2_1, FA9_2, LBP_2


AFAM_2
ADA12_1, B2MG_1, C1QA_2, C1QB_1, CBPN_1, CFAB_1, CNTN1_2, FA9_1,



FA9_2, LBP_2, PRDX2_1, PRL_1, PRL_2, PSG9_2


ALS_1
ADA12_1, ANGT_1, C1QB_1, CD14_2, CHL1_1, CNTN1_2, CRIS3_2, IBP4_1,



LBP_2, LEP_2, PEDF_2, PGRP2_1, TETN_2, VTDB_1, VTNC_1


AMBP_1
DEF1_1, ECM1_2, PCD12_1


ANGT_1
B2MG_1, C1QB_1, CD14_2, CRIS3_2, FA9_2, FETUA_1, FETUA_2, IBP2_1,



PGRP2_1, PTGDS_1, THBG_1, VTDB_1


ANT3_1
IL1R1_1


APOC3_1
ADA12_1, B2MG_1, B2MG_2, C1QB_1, CRIS3_1, CRIS3_2, IBP4_2, IBP4_3,



PRL_1, PRL_2, SOM2_2, SVEP1_1


APOH_1
B2MG_2, CD14_1, CNTN1_1, CO8A_1, CRIS3_2, KIT_2, LYAM1_1, PCD12_1,



PGRP2_1, THBG_1


ATL4_1
PCD12_1


B2MG_1
ADA12_1, ATL4_1, C163A_1, C1QB_1, CD14_1, CHL1_1, CNTN1_1, CNTN1_2,



CO5_1, CO8A_1, CRAC1_3, CRIS3_1, CRIS3_2, ENPP2_2, FA9_2, KIT_2,



LYAM1_1, PCD12_1, SOM2_2, SVEP1_1, THBG_1, VTDB_1


B2MG_2
ATL4_1, BGH3_1, C163A_1, C1QB_2, C1QC_1, CBPN_1, CD14_2, CHL1_1,



CLUS_2, CNTN1_1, CNTN1_2, CO8A_1, CO8B_1, CRAC1_1, CRAC1_2,



CRIS3_2, DPEP2_2, ENPP2_2, FA11_2, FA9_2, FETUA_1, FETUA_2, GELS_1,



HLACI_1, IBP4_1, IBP6_2, IGF2_1, IL1R1_1, ISM2_1, ITIH4_1, ITIH4_2, KIT_1,



KIT_2, LBP_1, LIRB5_1, PAEP_2, PCD12_1, PCD12_2, PEDF_1, PEDF_2,



PGRP2_1, PRDX2_1, PRG2_1, PSG2_1, PSG9_2, RET4_1, SHBG_2, SHBG_3,



SOM2_2, SVEP1_1, TIE1_1, TIMP1_1, VTDB_1


BGH3_1
CD14_1, CD14_2, CO8A_1, ENPP2_1, FA9_1, IBP4_2, IBP4_3, LYAM1_1,



VTNC_1


C163A_1
ATL4_1, CD14_1, CHL1_1, CNTN1_1, CO8A_1, CRIS3_1, EGLN_1, FA9_1,



FA9_2, KIT_2, LYAM1_1, PCD12_1, PGRP2_1, PRDX2_1


C1QA_1
CNTN1_2, EGLN_1


C1QA_2
CNTN1_2, EGLN_1, TETN_2


C1QB_1
C1QC_1, C1QC_2, CAMP_2, ECM1_2, EGLN_1, FGFR1_1, IL1R1_1, ISM2_2,



LEP_1, MFAP5_1, NOTUM_1, NOTUM_2, PCD12_1, PROS_2, PTGDS_1,



SEPP1_1, SVEP1_1, TETN_2, VGFR1_1


C1QB_2
PCD12_1


C1QB_3
CD14_1, CNTN1_1, CO8A_1, CRIS3_2, FA9_1, FA9_2, LYAM1_1


CADH5_2
CNTN1_1


CAH1_1
C1QB_1, CRIS3_2, FA9_1, IBP4_3, LYAM1_1, PRDX2_1, TETN_2, VTDB_1,



VTNC_2


CATD_1
ATL4_1, CHL1_1, CRIS3_2, FA9_2, GPX3_1, IBP2_1, KIT_2, NOTUM_1,



PSG3_1, SVEP1_1, TETN_1, VTDB_1


CATD_2
C1QB_1, CD14_1, CNTN1_1, CO8A_1, FA9_2, LYAM1_1, VTDB_1


CBPN_1
C1QB_1, CRIS3_2, FA9_1, FA9_2


CBPN_2
C1QB_1, CRIS3_2, FA9_2, PCD12_1, PGRP2_1, PRDX2_1, VTDB_1


CD14_1
AMBP_1, ATL4_1, ATS13_2, C1QA_2, C1QB_1, C1QB_2, C1QC_1, CAMP_2,



CFAB_1, CGB1_1, CGB1_2, CLUS_1, CLUS_2, CNTN1_1, CNTN1_2, CO5_1,



CO5_2, CO8A_1, CO8B_1, CRAC1_2, CRAC1_3, CSH_1, DPEP2_2, ECM1_2,



EGLN_1, EGLN_2, ENPP2_1, ENPP2_2, FA11_2, FA9_1, FA9_2, FBLN1_1,



FBLN3_1, FETUA_1, FETUA_2, FGFR1_1, GPX3_1, HLACI_1, IBP2_1, IBP4_3,



IBP6_1, IBP6_2, ISM2_1, ISM2_2, ITIH3_1, ITIH4_1, ITIH4_3, KIT_1, KNG1_2,



LBP_1, LBP_2, LEP_1, LYAM1_1, NOTUM_1, PAEP_1, PAEP_2, PCD12_1,



PCD12_2, PEDF_1, PEDF_2, PGRP2_1, PRDX2_1, PRL_1, PROS_2,



PSG11_1, PSG2_1, PSG9_1, PSG9_2, PTGDS_1, PTGDS_2, RET4_1,



SEPP1_1, SEPP1_2, SHBG_2, SHBG_3, SOM2_1, SOM2_2, SVEP1_1,



TENX_1, TETN_2, TIE1_1, TIMP1_1, VTDB_1, VTNC_1


CD14_2
ADA12_1, ATL4_1, ATS13_2, C1QA_2, C1QB_1, CGB1_1, CGB1_2, CHL1_1,



CLUS_1, CLUS_2, CNTN1_1, CNTN1_2, CO5_1, CO5_2, CO8A_1, CO8B_1,



CRAC1_1, CRAC1_2, CRAC1_3, CRIS3_2, DPEP2_1, EGLN_2, FA11_2,



FA9_1, FA9_2, FBLN3_1, GPX3_1, HLACI_1, IBP2_1, IBP3_2, IBP4_3, IBP6_2,



IGF2_1, IL1R1_1, KIT_1, LBP_2, LEP_2, LYAM1_1, MFAP5_1, NOTUM_1,



PAEP_1, PGRP2_1, PRDX2_1, PSG1_1, SEPP1_2, SOM2_1, SOM2_2,



SVEP1_1, TETN_2, VTDB_1, VTNC_1


CFAB_1
ADA12_1, C1QA_2, CHL1_1, CRIS3_1, CRIS3_2, EGLN_1, ENPP2_2, FA9_1,



GPX3_1, LYAM1_1, PCD12_1, PGRP2_1, VTNC_1


CGB1_1
ADA12_1, C1QB_1, FA9_2, TETN_1


CGB1_2
ADA12_1, C1QB_1, FA9_1, FA9_2, KIT_2, PCD12_1, PRG4_2, SVEP1_1,



TETN_1, TETN_2


CHL1_1
ADA12_1, ANT3_1, AOC1_2, CNTN1_1, CNTN1_2, CO8B_1, CRIS3_1,



CRIS3_2, DEF1_1, DEF1_2, ECM1_1, ECM1_2, ENPP2_1, FA11_2, FA9_1,



HABP2_1, HLACI_1, IBP4_1, IBP6_1, INHBC_1, IPSP_1, ITIH4_2, LYAM1_1,



PCD12_1, PEDF_1, PGRP2_1, PRDX2_1, PSG1_1, SEPP1_2, SOM2_1,



SOM2_2, SVEP1_1, TENX_2, TETN_2, THBG_1, TIMP1_1, VTDB_1, VTNC_1


CLUS_1
C1QB_1, CNTN1_1, CRIS3_2, FA9_1, FA9_2, IBP4_3, SOM2_2, VTDB_1


CLUS_2
C1QB_1, CNTN1_1, CO8A_1, CRIS3_2, LYAM1_1, SOM2_1, THBG_1, VTDB_1


CNTN1_1
ATL4_1, CRAC1_1, CRAC1_2, CRAC1_3, DPEP2_1, DPEP2_2, ISM2_1,



ISM2_2, MFAP5_1, NOTUM_1, NOTUM_2, PCD12_1, PCD12_2


CNTN1_2
ATL4_1, ECM1_2, PCD12_1, SVEP1_1


CO5_1
ADA12_1, C1QB_1, CNTN1_2, CO8A_1, CRIS3_2, ECM1_1, ECM1_2,



EGLN_1, FA9_1, GPX3_1, HLACI_1, INHBC_1, KIT_2, LIRB5_1, LYAM1_1,



PCD12_1, PGRP2_1, PRDX2_1, PTGDS_1, SVEP1_1, TENX_1, VTDB_1,



VTNC_1


CO5_2
C1QA_2, C1QB_1, CNTN1_2, CO8A_1, CRIS3_1, CRIS3_2, FA9_1, FA9_2,



LYAM1_1, PCD12_1, PGRP2_1, PRDX2_1, PSG1_1, SOM2_2, TETN_2


CO6_1
CO8A_1, CRIS3_2, EGLN_1, FA9_1, ITIH3_1, PGRP2_1, VTDB_1


CO8A_1
ADA12_1, AMBP_1, ATL4_1, C1QA_2, C1QB_1, C1QB_2, CGB1_1, CGB1_2,



CNTN1_1, CNTN1_2, CRAC1_1, CRAC1_2, CRIS3_2, CSH_1, DEF1_2,



DPEP2_1, DPEP2_2, ECM1_1, ECM1_2, EGLN_2, FA11_2, FA9_2, FBLN1_1,



FBLN3_1, FETUA_1, FETUA_2, FGFR1_2, GELS_1, GPX3_1, HEMO_1,



HLACI_1, IBP6_1, IBP6_2, ISM2_1, ISM2_2, ITIH4_1, ITIH4_3, KIT_2, LBP_1,



LIRB5_1, LYAM1_1, MFAP5_1, NOTUM_1, PAEP_1, PAEP_2, PAPP1_1,



PCD12_1, PCD12_2, PGRP2_1, PRDX2_1, PROS_1, PSG2_1, PSG9_1,



PSG9_2, PTGDS_2, RET4_1, SHBG_1, SHBG_2, SHBG_3, SOM2_1, SOM2_2,



TENX_1, TIE1_1, TIMP1_1, VTDB_1


CO8B_1
ADA12_1, AMBP_1, C1QB_1, CNTN1_1, CNTN1_2, CRIS3_1, CRIS3_2, FA9_2,



IBP4_1, IBP4_2, LYAM1_1, PGRP2_1, SVEP1_1, TENX_1, TETN_1, VTDB_1,



VTNC_1


CRIS3_1
CNTN1_1, CNTN1_2, EGLN_1, FA9_1, FA9_2, HABP2_1, IBP4_2, ITIH4_3,



KIT_2, LEP_1, MUC18_2, PRDX2_1, PRG2_1, SOM2_2, SPRL1_1, SVEP1_1,



TETN_1, TETN_2, VTNC_1


CRIS3_2
AACT_1, ADA12_1, AMBP_1, ATL4_1, ATS13_1, C1QB_1, C1QC_2, CADH5_1,



CADH5_2, CNTN1_1, CNTN1_2, CRAC1_1, CRAC1_2, CRAC1_3, CSH_1,



DPEP2_1, DPEP2_2, EGLN_1, FA11_2, FA5_1, FA9_1, FA9_2, FBLN1_1,



FBLN3_1, FGFR1_1, GELS_1, GPX3_1, HABP2_1, IBP2_1, IBP3_1, IBP3_2,



IBP4_2, IBP4_3, IGF2_1, IPSP_1, IPSP_2, ITIH3_1, ITIH4_3, KIT_1, KIT_2,



KNG1_1, KNG1_2, LBP_1, LBP_2, LYAM1_1, NOTUM_1, PAEP_1, PAEP_2,



PAPP1_1, PCD12_1, PEDF_1, PGRP2_1, PRDX2_1, PROS_1, PROS_2,



PSG1_1, PSG2_1, PSG3_1, PTGDS_1, PTGDS_2, RET4_1, SHBG_1, SOM2_1,



SOM2_2, SPRL1_1, SVEP1_1, TENX_1, TETN_1, TETN_2, THRB_1, VTDB_1,



VTNC_1, VTNC_2


CSH_1
FA9_1, LYAM1_1


CSH_2
CNTN1_1, LYAM1_1


DPEP2_1
PCD12_1


EGLN_1
CNTN1_1, LEP_1, NOTUM_1, NOTUM_2, PRG4_1


ENPP2_1
C1QA_2, C1QB_1, FGFR1_2, IBP4_2, IBP4_3, INHBC_1, ITIH4_2, LIRB5_1,



PCD12_1, VTDB_1, VTNC_1


ENPP2_2
AOC1_1, AOC1_2, C1QA_1, C1QA_2, C1QC_1, C1QC_2, CNTN1_2, FBLN1_1,



IBP4_2, INHBC_1, ITIH4_2, LBP_2, LEP_1, NOTUM_1, NOTUM_2, PAPP1_1,



PCD12_1, PGRP2_1, PRG2_1, PROS_2, PSG2_1, RET4_1, VGFR1_1,



VTNC_1


F13B_1
FA9_1, FA9_2, PRDX2_1


FA11_2
CNTN1_1, TETN_2


FA9_1
AMBP_1, ANT3_1, ATL4_1, ATS13_2, C1QA_1, C1QA_2, C1QB_1, C1QB_2,



C1QC_1, C1QC_2, CADH5_1, CADH5_2, CNTN1_1, CNTN1_2, CRAC1_1,



CRAC1_2, CRAC1_3, DEF1_2, EGLN_1, FA11_2, FA9_2, FGFR1_2, GELS_1,



IPSP_1, IPSP_2, ISM2_1, ISM2_2, KIT_1, KIT_2, LEP_1, NOTUM_1,



NOTUM_2, PCD12_2, PRL_2, PROS_1, PTGDS_1, RET4_1, SEPP1_1,



SEPP1_2, SHBG_2, SVEP1_1, TETN_1, TETN_2, TIMP1_1


FA9_2
AMBP_1, AOC1_1, AOC1_2, ATL4_1, ATS13_2, C1QA_1, C1QA_2, C1QC_1,



C1QC_2, CAMP_1, CNTN1_2, CRAC1_2, DPEP2_1, DPEP2_2, ECM1_1,



ECM1_2, EGLN_1, EGLN_2, FA11_2, FGFR1_2, IL1R1_1, IPSP_1, IPSP_2,



ISM2_2, MUC18_1, PAPP2_1, PRL_1, PRL_2, PROS_2, PTGDS_1, RET4_1,



SEPP1_1, SVEP1_1, TETN_1


FBLN1_1
CNTN1_1, CNTN1_2, FA9_1, FA9_2, HABP2_1, SOM2_1, VTNC_1


FBLN3_1
C1QB_1, CNTN1_1, IBP4_3


FETUA_1
C1QB_1, CNTN1_1, FA9_1, FA9_2, GELS_2, KIT_1, LYAM1_1, THBG_1,



VTDB_1


FETUA_2
C1QB_1, CNTN1_1, FA9_2, GELS_2, LYAM1_1, VTDB_1, VTNC_1


FGFR1_1
CNTN1_1, CRAC1_3


GELS_1
ATL4_1, CNTN1_1, CNTN1_2, KIT_1


GELS_2
CNTN1_1, CNTN1_2


GPX3_1
ADA12_1, CNTN1_1, CNTN1_2, ECM1_2, FA9_1, FA9_2, IBP4_1, IBP4_3,



IPSP_2, PCD12_1


GPX3_2
CNTN1_1, FA9_1, FA9_2


HABP2_1
C1QA_2, FA9_1, GPX3_1, IBP4_1, IBP6_2, ITIH4_2, LYAM1_1, PGRP2_1,



PRG2_1, PSG3_1


HEMO_1
ADA12_1, IBP4_3, LBP_2, LYAM1_1


HLACI_1
AMBP_1, C1QB_1, FA9_2, GELS_1, IBP4_2, IBP4_3, LYAM1_1, PCD12_1,



PGRP2_1, PRDX2_1, SOM2_2, VTDB_1


IBP1_1
CNTN1_1, CNTN1_2, FA9_1, SOM2_2, VTDB_1


IBP2_1
AMBP_1, C1QB_1, EGLN_1, FA9_1, FA9_2, IBP4_1, IBP4_3, IPSP_2, LBP_2,



LEP_2, SOM2_1


IBP3_1
FA9_1, FA9_2, IBP4_1, IBP4_3, LYAM1_1


IBP3_2
FA9_2, LYAM1_1, TENX_1, VTDB_1


IBP4_1
ADA12_1, ANT3_1, AOC1_1, AOC1_2, ATL4_1, C1QB_1, CRAC1_3, EGLN_1,



FA9_1, FA9_2, IPSP_1, IPSP_2, NOTUM_1, NOTUM_2, PCD12_1, SVEP1_1,



VGFR1_1


IBP4_2
AMBP_1, ANT3_1, C1QA_2, CGB1_2, CNTN1_2, EGLN_1, FA5_2, FA9_2,



GPX3_1, IBP4_1, ITIH4_2, KIT_1, LYAM1_1, PGRP2_1, PRDX2_1, PSG11_1,



TETN_1, TETN_2, THBG_1


IBP4_3
ADA12_1, AOC1_2, ATL4_1, C1QB_1, CADH5_1, CGB1_1, CGB1_2, DEF1_1,



FA9_2, FGFR1_1, IPSP_1, IPSP_2, KIT_1, NOTUM_1, PAEP_1, PCD12_1,



PRL_2, SEPP1_1, SVEP1_1, TETN_1, TETN_2


IBP6_1
CNTN1_1, FA9_1, FA9_2, IBP4_3, LBP_2, LEP_1, LYAM1_1, TETN_2, VTDB_1


IBP6_2
ADA12_1, C1QB_1, FA9_2, IBP4_3, LBP_2, LYAM1_1, VTDB_1


IGF1_1
CNTN1_2, TETN_1, TETN_2


IGF2_1
CNTN1_1, FA9_2, IBP4_3, LBP_2, LYAM1_1, PRDX2_1, TETN_2, VTDB_1


IL1R1_1
CNTN1_1, EGLN_1, PCD12_1


INHBC_1
ADA12_1, AOC1_1, C1QA_1, C1QB_1, CGB1_1, CNTN1_2, FA9_2, IPSP_2,



KIT_2, LYAM1_1, NOTUM_1, NOTUM_2, PGRP2_1, PRDX2_1, PRG2_1,



PROS_2, PTGDS_2, SOM2_2, SPRL1_1, SVEP1_1, TETN_1, TETN_2,



THRB_1, VTNC_1


IPSP_1
NOTUM_1, TETN_1


IPSP_2
ATL4_1


ITIH3_1
LYAM1_1, VTNC_1


ITIH4_1
ATL4_1, FA9_2, GPX3_1, LYAM1_1, PGRP2_1, SOM2_1, SOM2_2, VTDB_1,



VTNC_1


ITIH4_2
CNTN1_1, FA9_2, IBP4_3, LBP_2, LYAM1_1, PGRP2_1, PRDX2_1, TETN_2,



VTDB_1


ITIH4_3
C1QB_1, CNTN1_1, LYAM1_1, VTDB_1, VTNC_1


KIT_1
AOC1_2, CNTN1_2, FGFR1_1, PCD12_1, SVEP1_1


KIT_2
CNTN1_1, PCD12_1, SVEP1_1


KNG1_1
C1QB_1, FA9_1, LYAM1_1, PCD12_1, SOM2_2


KNG1_2
FA9_2, LBP_2, PGRP2_1


LBP_1
ADA12_1, CNTN1_1, FA9_1, FA9_2, LBP_2, LYAM1_1, PCD12_1


LBP_2
ADA12_1, AOC1_2, ATL4_1, C1QA_1, C1QB_1, CAMP_1, CGB1_1, CGB1_2,



CNTN1_2, DEF1_1, EGLN_1, EGLN_2, FA11_2, FA9_2, FGFR1_1, GELS_2,



IBP4_3, KIT_2, LEP_1, LYAM1_1, MUC18_2, PCD12_1, PEDF_1, PGRP2_1,



PRDX2_1, PRG2_1, PRL_1, PRL_2, PROS_2, PSG2_1, SEPP1_2, SOM2_2,



VTDB_1


LIRB5_1
C1QB_1, FA9_1


LYAM1_1
ADA12_1, ATS13_2, C1QA_1, C1QB_2, C1QC_1, C1QC_2, CGB1_1, CGB1_2,



CNTN1_1, CNTN1_2, CRAC1_2, DEF1_1, DPEP2_1, DPEP2_2, ECM1_1,



ECM1_2, EGLN_2, FA11_1, FA11_2, FGFR1_2, GELS_1, GPX3_1, IBP4_1,



IBP4_3, IL1R1_1, ISM2_1, ISM2_2, KIT_1, LIRB5_1, MFAP5_1, NOTUM_1,



PAEP_1, PAEP_2, PAPP1_1, PCD12_1, PCD12_2, PEDF_1, PEDF_2,



PGRP2_1, PRG2_1, PROS_1, PSG1_1, PSG11_1, PSG2_1, PSG3_1, PSG9_1,



PSG9_2, PTGDS_1, PTGDS_2, SEPP1_1, SHBG_1, SHBG_2, SHBG_3,



SOM2_1, SOM2_2, TENX_2, TETN_1, TETN_2, THBG_1, TIE1_1, TIMP1_1,



VGFR1_1, VTDB_1, VTNC_1


NOTUM_1
PCD12_1


NOTUM_2
PAPP2_1, PCD12_1


PAEP_1
CNTN1_1


PAEP_2
CNTN1_1


PAPP1_1
ADA12_1, ANT3_1, C1QA_2, C1QB_1, CNTN1_1, FA9_1, FA9_2, IBP4_1,



IBP4_3, KIT_1, PRDX2_1, TETN_1, TIMP1_1, VTNC_1


PCD12_1
CRAC1_2


PEDF_1
FA9_1, IBP4_1, TENX_1, VTNC_1


PEDF_2
ADA12_1, FA9_1, SVEP1_1, THBG_1, VTDB_1


PGRP2_1
ADA12_1, AMBP_1, C1QA_2, C1QB_1, CADH5_2, CGB1_2, CNTN1_1,



CNTN1_2, CRAC1_1, CRAC1_2, CRAC1_3, FA5_2, FA9_1, FA9_2, GELS_2,



GPX3_1, IBP4_3, IPSP_2, LIRB5_1, PCD12_1, PRDX2_1, PROS_2, PSG1_1,



PSG3_1, SEPP1_1, SOM2_1, SOM2_2, SPRL1_1, TETN_2, THBG_1, VTDB_1,



VTNC_1


PRDX2_1
ADA12_1, AMBP_1, AOC1_1, C1QA_2, C1QC_2, CNTN1_2, CRAC1_3,



DPEP2_2, ECM1_2, FA9_1, FA9_2, GPX3_1, IBP4_3, IL1R1_1, IPSP_1,



THBG_1, VGFR1_1, VTDB_1


PRG2_1
ADA12_1, AMBP_1, C1QB_1, CNTN1_1, FA9_2, IBP4_1, KIT_1, PCD12_1,



THRB_1, VTNC_1


PRL_2
C1QB_1, TETN_1


PROS_1
CNTN1_1


PSG1_1
ATL4_1, C1QB_1, FA9_1, FA9_2, IBP4_1, KIT_1, KIT_2, PCD12_1, TENX_1,



TETN_2, VTDB_1


PSG11_1
ADA12_1, FA9_2, IBP4_3


PSG2_1
CNTN1_1, VTNC_1


PSG3_1
C1QB_1, FA9_1


PSG9_1
ADA12_1, CNTN1_1, FA9_1, THBG_1, VTNC_1


PSG9_2
C1QB_1, CNTN1_1, FA9_1, FA9_2


PTGDS_2
AMBP_1, FA9_1, FA9_2, IBP4_3, VTNC_1


SHBG_1
ADA12_1, FA9_1


SHBG_3
ADA12_1


SOM2_1
AOC1_1, C1QB_1, CRAC1_2, FA9_1, IL1R1_1, KIT_2, LEP_1, MFAP5_1,



PCD12_1, SHBG_3, TENX_1, TENX_2, TETN_1, THBG_1, VTDB_1, VTNC_1


SOM2_2
C1QA_2, C1QB_1, CRAC1_2, FA9_1, FA9_2, GPX3_1, IBP4_1, IBP4_3,



IL1R1_1, KIT_2, LEP_1, NOTUM_1, NOTUM_2, PCD12_1, SEPP1_2, TENX_1,



TENX_2, TETN_1, TETN_2, THBG_1, VGFR1_1, VTDB_1


SPRL1_1
ADA12_1, C1QB_1, IBP4_3, VTNC_1


SVEP1_1
ISM2_1, ISM2_2, NOTUM_2


TENX_1
AOC1_2, C1QC_2, EGLN_1, FA5_2, FA9_1, FA9_2, IL1R1_1, ISM2_1, KIT_1,



LIRB5_1, SVEP1_1, VTDB_1


TENX_2
AMBP_1, CNTN1_2, EGLN_1, FA9_1, FA9_2


TETN_2
ATL4_1, CNTN1_1, CNTN1_2, DPEP2_1, EGLN_1, FGFR1_1, NOTUM_1,



PCD12_1, SVEP1_1


THBG_1
ADA12_1, C1QB_2, EGLN_1, FA9_1, GPX3_1, IBP4_3, IGF1_1, IL1R1_1,



SHBG_2, SHBG_3, SVEP1_1, TETN_1, VTNC_2


TIE1_1
CNTN1_1, FA9_1, FA9_2


TIMP1_1
C1QB_1, CNTN1_2, KIT_1


VGFR1_1
MFAP5_1


VTDB_1
ADA12_1, ATS13_1, ATS13_2, C1QB_1, C1QC_1, C1QC_2, CAMP_2,



CNTN1_1, CRAC1_3, EGLN_1, EGLN_2, FA11_2, FA9_1, FA9_2, FGFR1_1,



FGFR1_2, GPX3_1, GPX3_2, IL1R1_1, IPSP_1, IPSP_2, KIT_1, KIT_2,



LIRB5_1, MFAP5_1, PAEP_1, PAEP_2, PCD12_1, PTGDS_1, RET4_1,



SEPP1_1, SEPP1_2, SVEP1_1, TETN_2, TIMP1_1, VGFR1_1, VTNC_1


VTNC_1
ADA12_1, AOC1_1, AOC1_2, C1QB_2, CADH5_1, CNTN1_2, CRAC1_2,



CRAC1_3, DEF1_1, DEF1_2, DPEP2_1, EGLN_1, FA11_2, FGFR1_1,



FGFR1_2, GELS_1, GELS_2, IBP4_1, IL1R1_1, ISM2_1, ISM2_2, MFAP5_1,



NOTUM_1, NOTUM_2, PAEP_1, PCD12_1, PROS_1, SVEP1_1, VGFR1_1


VTNC_2
ADA12_1, IGF1_1, PRL_1, SVEP1_1
















TABLE 19







Analyte pairs in models containing InvParity for GABD 168-189








Analyte1
Analyte2





A2GL_1
F13B_1, PCD12_1


AACT_1
CGB1_1, CGB1_2, CRAC1_2, FA11_1, FA9_1, FA9_2, GELS_2, KIT_2,



PCD12_1, PCD12_2


ADA12_1
AMBP_1, C1QA_1, FA11_1, FA11_2, FA5_2, FA9_1, FA9_2, PCD12_1,



PCD12_2, PRG4_1, PRG4_2, PROS_1, TETN_1


AFAM_1
CD14_1, CRIS3_2, PCD12_1


AFAM_2
FA9_2, PCD12_1


ALS_1
C1QB_1, CAMP_2, CD14_1, CD14_2, CHL1_1, CO8B_1, CRIS3_2, ECM1_1,



ECM1_2, ENPP2_1, ENPP2_2, FA5_2, FA9_2, HABP2_1, IBP4_1, IBP4_2,



IBP4_3, LBP_2, PCD12_1, VTDB_1


AMBP_1
EGLN_1, FA5_1, IPSP_1, PCD12_1, TETN_2


ANGT_1
AMBP_1, C1QB_1, CATD_1, CD14_1, CD14_2, CO8A_1, CRAC1_2, CRIS3_2,



ECM1_1, FA9_2, GELS_1, HABP2_1, LEP_1, MUC18_1, PCD12_1, PCD12_2,



SPRL1_1, TETN_1, VTDB_1


ANT3_1
PCD12_1


AOC1_1
PAPP2_1, PCD12_1


AOC1_2
CNTN1_2, PCD12_1


APOC3_1
AACT_1, ATS13_2, C1QB_1, C1QC_1, CATD_1, CD14_1, CO5_2, CO6_1,



CO8B_1, CRAC1_2, CRIS3_1, CRIS3_2, ECM1_1, ECM1_2, ENPP2_2,



F13B_1, FA9_1, FA9_2, FGFR1_1, GELS_1, GELS_2, IBP4_3, INHBC_1,



IPSP_1, IPSP_2, ISM2_2, ITIH4_1, ITIH4_3, LBP_1, LBP_2, LEP_1, PED12_1,



PEDF_2, PGRP2_1, PRDX2_1, PSG1_1, PSG9_1, PSG9_2, PTGDS_2,



SPRL1_1, TETN_1, TIMP1_1, VTDB_1


APOH_1
CD14_1, CO8A_1, ENPP2_2, FA9_1, PCD12_1, PCD12_2


ATL4_1
PCD12_1, PCD12_2


ATS13_1
PCD12_1, PCD12_2


ATS13_2
PCD12_1, PCD12_2


B2MG_1
CD14_1, CD14_2, CO8A_1, CO8B_1, ENPP2_2, FA9_1, FA9_2, IBP6_1,



PCD12_1, PCD12_2


B2MG_2
CD14_1, CD14_2, CGB1_2, CHL1_1, ENPP2_2, FA9_1, HABP2_1, PCD12_1


BGH3_1
ATL4_1, F13B_1, FA9_1, PCD12_1


C163A_1
CD14_1, CO8A_1, CO8B_1, FA11_1, FA9_1, FA9_2, PCD12_1, PCD12_2


C1QA_1
PCD12_1, PCD12_2, PRG4_1, TETN_1


C1QA_2
PCD12_1, PCD12_2


C1QB_1
PCD12_1, PCD12_2


C1QB_2
PCD12_1, PCD12_2


C1QB_3
CO8A_1, CO8B_1, ENPP2_2, FA9_1, FA9_2, PCD12_1


C1QC_1
GELS_1, PCD12_1, PCD12_2


C1QC_2
PCD12_1


CADH5_2
PCD12_1


CAH1_1
CD14_1, FA9_1, FA9_2, PCD12_1


CAMP_1
ECM1_2, PCD12_1


CAMP_2
PCD12_1, PCD12_2


CATD_1
AACT_1, AOC1_2, CD14_1, CNTN1_2, CO8A_1, CO8B_1, CRAC1_2, CRIS3_2,



ECM1_1, FA11_1, FA9_1, IBP2_1, INHBC_1, LEP_1, LYAM1_1, PCD12_1,



PCD12_2, PEDF_2, PRG2_1, SPRL1_1, TETN_2, VGFR1_1, VTDB_1


CATD_2
CD14_1, CRAC1_2, FA9_1, PCD12_1, PCD12_2


CBPN_1
PCD12_1


CBPN_2
CD14_1, PCD12_1


CD14_1
AACT_1, ADA12_1, ANT3_1, AOC1_1, AOC1_2, ATL4_1, ATS13_1, ATS13_2,



C1QA_1, C1QB_1, C1QB_2, C1QC_1, C1QC_2, CADH5_1, CADH5_2,



CFAB_1, CGB1_2, CLUS_2, CNTN1_2, CO5_2, CO6_1, CO8A_1, CO8B_1,



CRAC1_1, CRAC1_2, CRAC1_3, CRIS3_1, CRIS3_2, CSH_1, CSH_2, DEF1_1,



DPEP2_1, DPEP2_2, ECM1_1, ECM1_2, EGLN_1, EGLN_2, ENPP2_1,



ENPP2_2, F13B_1, FA11_1, FA5_1, FA5_2, FA9_1, FA9_2, FBLN1_1,



FBLN3_1, FETUA_1, FETUA_2, FGFR1_1, FGFR1_2, GELS_1, GELS_2,



GPX3_1, GPX3_2, HABP2_1, HEMO_1, HLACI_1, IBP1_1, IBP2_1, IBP3_1,



IBP3_2, IBP4_3, IBP6_1, IBP6_2, IGF1_1, IGF2_1, INHBC_1, IPSP_1, IPSP_2,



ISM2_1, ISM2_2, ITIH3_1, ITIH4_1, ITIH4_2, ITIH4_3, KIT_1, KIT_2, KNG1_1,



KNG1_2, LBP_1, LBP_2, LEP_1, LEP_2, LIRB5_1, LYAM1_1, MFAP5_1,



MUC18_1, NOTUM_2, PAEP_1, PAEP_2, PAPP2_1, PCD12_1, PCD12_2,



PEDF_1, PEDF_2, PGRP2_1, PRDX2_1, PROS_1, PROS_2, PSG1_1,



PSG11_1, PSG2_1, PSG3_1, PSG9_2, PTGDS_1, RET4_1, SEPP1_1,



SEPP1_2, SHBG_1, SHBG_2, SOM2_1, SOM2_2, SVEP1_1, TETN_1,



THBG_1, THRB_1, TIE1_1, TIMP1_1, VTDB_1, VTNC_1


CD14_2
AACT_1, ADA12_1, ATS13_2, CGB1_2, CHL1_1, CNTN1_1, CNTN1_2,



CO8A_1, CO8B_1, CRAC1_1, CRAC1_2, CRIS3_1, CRIS3_2, ENPP2_1,



ENPP2_2, FA9_1, FA9_2, FBLN1_1, HEMO_1, HLACI_1, IBP2_1, IBP3_1,



IBP6_1, KIT_2, LYAM1_1, PAEP_1, PAPP2_1, PCD12_1, PCD12_2, PRDX2_1,



PSG1_1, TETN_2, THBG_1, VTDB_1


CFAB_1
CO8A_1, CO8B_1, FA9_1, FA9_2, PCD12_1, PCD12_2


CGB1_1
AMBP_1, C1QA_1, FA9_1, FA9_2, ISM2_2, NOTUM_2, PCD12_1


CGB1_2
C1QC_1, FA9_2, ISM2_2, PAPP2_1, PCD12_1


CHL1_1
ADA12_1, ENPP2_1, ENPP2_2, F13B_1, FA11_1, FA9_1, FA9_2, FBLN1_1,



IBP4_1, IBP4_2, IBP4_3, IBP6_1, INHBC_1, LBP_2, PCD12_1, PSG1_1


CLUS_1
PCD12_1


CLUS_2
CO8A_1, FA9_1, FA9_2, PCD12_1


CNTN1_1
PCD12_1, PCD12_2


CNTN1_2
PCD12_1, PCD12_2


CO5_1
CO8A_1, CRAC1_2, FA9_1, PCD12_1, PCD12_2


CO5_2
CO8B_1, FA11_1, FA9_1, PCD12_1, PCD12_2, RET4_1


CO6_1
CO8B_1, FA5_2, PCD12_1


CO8A_1
ADA12_1, AMBP_1, ANT3_1, ATS13_1, ATS13_2, CGB1_1, CGB1_2,



CRAC1_3, CRIS3_1, CRIS3_2, DEF1_1, DEF1_2, EGLN_2, ENPP2_1,



ENPP2_2, FA5_1, FA9_1, FA9_2, FETUA_1, FETUA_2, FGFR1_2, GPX3_1,



GPX3_2, HLACI_1, IBP2_1, IBP4_1, IBP4_2, IGF2_1, INHBC_1, IPSP_2,



ITIH4_1, KNG1_1, LBP_1, LEP_1, LEP_2, LIRB5_1, MFAP5_1, PAEP_1,



PAEP_2, PCD12_1, PCD12_2, PEDF_1, PROS_2, PSG11_1, PSG3_1,



PTGDS_1, SHBG_1, SHBG_2, SOM2_1, SOM2_2, SVEP1_1, TETN_2,



THBG_1, THRB_1, TIE1_1, VTDB_1


CO8B_1
AACT_1, ANT3_1, ATS13_2, C1QA_1, C1QA_2, C1QC_1, CRAC1_1,



CRAC1_2, CRAC1_3, CRIS3_1, CRIS3_2, CSH_1, EGLN_2, ENPP2_2,



F13B_1, FA9_1, FA9_2, FBLN1_1, GELS_2, HLACI_1, IBP2_1, IBP4_1,



IL1R1_1, INHBC_1, ISM2_1, ISM2_2, KNG1_1, LBP_1, LBP_2, LEP_1,



LIRB5_1, MUC18_1, NOTUM_2, PCD12_1, PCD12_2, PEDF_1, PGRP2_1,



PRDX2_1, PSG1_1, PSG3_1, SOM2_2, TENX_2, TETN_1, THBG_1, VTDB_1,



VTNC_1


CRIS3_1
AACT_1, ECM1_1, ENPP2_2, FAS_2, FA9_1, GELS_1, HABP2_1, NOTUM_1,



PCD12_1, PCD12_2, TENX_1, THBG_1, VTDB_1


CRIS3_2
AACT_1, ADA12_1, ECM1_1, ECM1_2, EGLN_1, F13B_1, FA11_1, FA11_2,



FAS_2, FA9_1, FA9_2, HABP2_1, IBP4_1, KNG1_2, PCD12_1, PCD12_2,



PROS_2, TETN_2, THBG_1, VTDB_1


CSH_1
FA9_1, PCD12_1, PCD12_2


CSH_2
PCD12_1


DEF1_1
PCD12_1, PCD12_2


DEF1_2
PCD12_1


DPEP2_1
PCD12_1, PCD12_2


DPEP2_2
PCD12_1, PCD12_2


ECM1_1
PAPP2_1, PCD12_1, PCD12_2, PRG4_1


ECM1_2
PCD12_1


EGLN_1
ECM1_1, PCD12_1, PCD12_2


EGLN_2
PCD12_1


ENPP2_1
C1QC_2, ECM1_2, F13B_1, FA5_2, FA9_2, IBP4_1, ITIH3_1, PCD12_1,



PCD12_2, PEDF_1, SHBG_3, TETN_2, VGFR1_1


ENPP2_2
AACT_1, C1QA_1, C1QA_2, C1QB_1, CGB1_1, CGB1_2, CNTN1_2, CRAC1_1,



CRAC1_2, ECM1_1, ECM1_2, F13B_1, FA11_1, FA11_2, FA5_1, FA5_2,



FA9_2, GELS_1, GELS_2, GPX3_1, HABP2_1, IBP1_1, IBP3_1, IBP3_2,



IBP4_1, IBP4_3, IBP6_1, IGF1_1, IGF2_1, INHBC_1, ISM2_2, ITIH3_1, ITIH4_1,



KIT_2, KNG1_1, KNG1_2, LBP_2, LIRB5_1, MUC18_2, PAEP_1, PAEP_2,



PAPP1_1, PCD12_1, PCD12_2, PEDF_1, PROS_2, PSG9_2, PTGDS_2,



SEPP1_1, SEPP1_2, SHBG_1, SHBG_2, SHBG_3, TETN_2, VTDB_1, VTNC_2


F13B_1
ATS13_2, CGB1_2, CNTN1_2, CRAC1_2, FA9_1, FBLN1_1, LBP_2, PAPP2_1,



PCD12_1, PSG1_1, VTDB_7


FA11_1
CRAC1_2, ECM1_1, EGLN_1, KIT_2, PCD12_1, TETN_2


FA11_2
IL1R1_1, PCD12_1, PCD12_2


FA5_1
PCD12_1


FA5_2
ATS13_2, PCD12_1, PCD12_2, PRG4_2, SVEP1_1


FA9_1
ANT3_1, ATS13_1, C1QA_1, C1QA_2, C1QB_1, C1QB_2, C1QC_1, C1QC_2,



CADH5_2, CRAC1_1, CRAC1_2, CRAC1_3, DEF1_1, DPEP2_1, DPEP2_2,



ECM1_1, EGLN_1, FA11_1, FA11_2, FA5_1, FA5_2, FA9_2, FGFR1_1,



FGFR1_2, GELS_2, IGF1_1, ISM2_1, ISM2_2, KIT_1, KIT_2, LEP_1, LEP_2,



MFAP5_1, MUC18_1, NOTUM_1, NOTUM_2, PAEP_2, PAPP2_1, PCD12_1,



PCD12_2, PRL_2, PROS_1, PROS_2, RET4_1, SEPP1_1, SEPP1_2, SHBG_2,



SVEP1_1, TETN_1, TETN_2, THRB_1, TIMP1_1


FA9_2
ANT3_1, AOC1_1, ATS13_1, C1QA_1, C1QA_2, C1QB_1, C1QB_2, DEF1_1,



DPEP2_1, DPEP2_2, ECM1_1, EGLN_1, FA5_2, FGFR1_1, LEP_1, NOTUM_1,



NOTUM_2, PAEP_1, PAEP_2, PAPP2_1, PCD12_1, PCD12_2, SEPP1_2,



SVEP1_1, TETN_1, VGFR1_1


FBLN1_1
ADA12_1, CRAC1_1, HABP2_1, KNG1_1, PAPP2_1, PCD12_1, PCD12_2,



PSG1_1, PSG3_1, SVEP1_1, VTDB_1


FBLN3_1
IBP4_3, PCD12_1, PCD12_2


FETUA_1
FA9_1, FA9_2, IBP6_1, PCD12_1, PCD12_2


FETUA_2
FA9_1, IBP6_1, PCD12_1, PCD12_2


FGFR1_1
CRAC1_3, PCD12_1, PCD12_2


FGFR1_2
PCD12_1, PCD12_2


GELS_1
PCD12_1, PCD12_2


GELS_2
PCD12_1, PCD12_2


GPX3_1
PCD12_1, PCD12_2


GPX3_2
FA9_1, FA9_2, PCD12_1, PCD12_2


HABP2_1
ADA12_1, AMBP_1, ATL4_1, C1QA_2, CGB1_1, CGB1_2, CNTN1_2, ECM1_1,



ECM1_2, EGLN_1, FA5_2, FA9_1, GELS_1, GELS_2, HLACI_1, IBP4_1,



IBP4_3, KNG1_2, MFAP5_1, NOTUM_1, PAPP1_1, PCD12_1, PEDF_1,



PGRP2_1, PSG11_1, PSG3_1, PTGDS_2, SHBG_2, TETN_1, TETN_2, TIE1_1


HEMO_1
PCD12_1, PCD12_2, PEDF_1


HLACI_1
FA11_1, FA9_2, IBP4_1, IBP4_2, PCD12_1, VTNC_1


IBP1_1
FA9_2, PCD12_1, PCD12_2


IBP2_1
AACT_1, CNTN1_2, FA9_1, FA9_2, PCD12_1, PCD12_2


IBP3_1
FA11_1, FA9_1, IBP4_1, PCD12_1, PCD12_2


IBP3_2
FA9_1, PCD12_1, PCD12_2


IBP4_1
FA11_1, FA11_2, FA5_2, FA9_1, FA9_2, PCD12_1, PCD12_2


IBP4_2
ADA12_1, CRAC1_2, FA9_1, IGF1_1, PCD12_1, PCD12_2, TETN_1


IBP4_3
AOC1_2, CAMP_2, FA11_1, PCD12_1, PCD12_2, PRL_2


IBP6_1
ATS13_1, ATS13_2, CNTN1_2, DEF1_1, EGLN_2, FA9_1, GPX3_1, GPX3_2,



KIT_2, LIRB5_1, PAEP_2, PCD12_1, PGRP2_1, PTGDS_1, SHBG_1, SHBG_2


IBP6_2
FA9_1, FA9_2, GELS_2, PCD12_1, PGRP2_1


IGF1_1
ECM1_1, ECM1_2, PCD12_1


IGF2_1
FA9_1, CD12_1, PCD12_2


IL1R1_1
PAPP2_1, PCD12_1


INHBC_1
ADA12_1, C1QA_2, CNTN1_2, CRAC1_3, ECM1_1, FA11_1, FA9_1, KIT_2,



NOTUM_2, PCD12_1, PCD12_2, PGRP2_1, PSG9_2, TETN_1


IPSP_1
CRAC1_3, PCD12_1, PCD12_2, PRG4_2


IPSP_2
ATS13_1, ECM1_1, PCD12_1


ISM2_1
PAPP2_1, PCD12_1


ISM2_2
PAPP2_1, PCD12_1, PCD12_2


ITIH3_1
FA11_2, FA9_1, PCD12_1, PCD12_2, PRG4_1


ITIH4_1
FA11_1, FA11_2, FA9_2, PCD12_1, PCD12_2, PEDF_1, THBG_1, VTDB_1


ITIH4_2
CNTN1_2, PCD12_1, PCD12_2


ITIH4_3
CRAC1_3, FA9_2, ISM2_1, PCD12_1, PCD12_2


KIT_1
ECM1_1, PCD12_1


KIT_2
PAPP2_1, PCD12_1


KNG1_1
FA9_1, FA9_2, LBP_2, PCD12_1, PEDF_1


KNG1_2
FA9_1, FA9_2, PCD12_1


LBP_1
ATS13_2, FA9_1, PCD12_1, PCD12_2


LBP_2
ECM1_1, EGLN_1, FA11_1, VTDB_1


LEP_1
PCD12_1, PCD12_2


LEP_2
PCD12_1


LIRB5_1
FA9_1, FA9_2, PCD12_1, PCD12_2


LYAM1_1
ECM1_2, IBP4_1, PCD12_1, PRG4_1, PRG4_2, VTDB_1


MFAP5_1
PCD12_1


MUC18_2
PCD12_1


NOTUM_1
PCD12_1


NOTUM_2
PAPP2_1, PCD12_1


PAEP_1
PCD12_1


PAEP_2
PCD12_1, PCD12_2


PAPP1_1
FA9_1, PAPP2_1, PCD12_1, VTNC_1


PAPP2_1
PCD12_2


PCD12_1
CRAC1_1, CRAC1_2, CRAC1_3, PCD12_2, THRB_1


PCD12_2
CRAC1_1, CRAC1_2, CRAC1_3, THRB_1


PEDF_1
ADA12_1, ANT3_1, ATL4_1, ATS13_2, C1QB_2, CGB1_2, CNTN1_2, EGLN_1,



FA9_1, IPSP_2, PCD12_1, PCD12_2, RET4_1, VTNC_1


PEDF_2
IPSP_2, PCD12_1, TETN_1, VTDB_1


PGRP2_1
CGB1_2, CNTN1_2, FA9_1, FA9_2, ISM2_1, KIT_1, PCD12_1, VTDB_1


PRDX2_1
AMBP_1, FA9_1, FA9_2, PCD12_1


PRG2_1
ADA12_1, FA9_1, PCD12_1


PRG4_1
PCD12_1, PCD12_2


PRG4_2
PCD12_1


PRL_1
PCD12_1


PRL_2
CNTN1_2, CRAC1_3, PCD12_1


PROS_1
PCD12_1


PROS_2
PCD12_1, PCD12_2


PSG1_1
AMBP_1, CRAC1_3, FA11_1, FA9_1, FA9_2, PCD12_1, PRG4_1, PSG9_1


PSG11_1
PCD12_1


PSG2_1
FA9_1, FA9_2, PCD12_1, PCD12_2


PSG3_1
FA11_1, FA9_1, PCD12_1


PSG9_1
ADA12_1, CGB1_1, CGB1_2, IBP4_1, IBP4_3, IGF1_1, KIT_2, PCD12_1,



PCD12_2


PSG9_2
CRAC1_2, IBP4_1, PCD12_1, PCD12_2


PTGDS_1
PCD12_1


PTGDS_2
FA9_1, FA9_2, PCD12_1


RET4_1
PCD12_1


SEPP1_1
PCD12_1


SEPP1_2
PCD12_1


SHBG_1
FA9_1, PCD12_1, PCD12_2


SHBG_2
PCD12_1, PCD12_2


SHBG_3
AOC1_1, FA9_1, PCD12_1, PCD12_2


SOM2_1
FA9_1, PCD12_1, PCD12_2


SOM2_2
IPSP_2, PCD12_1


SPRL1_1
PCD12_1


SVEP1_1
CRAC1_2, PCD12_1, PCD12_2


TENX_1
ATL4_1, FA9_1, FA9_2, GELS_2, PCD12_1, PCD12_2


TENX_2
FA11_1, FA11_2, FA9_1, PCD12_1, PCD12_2, RET4_1


TETN_1
FA5_2, PAPP2_1, PCD12_1, PCD12_2


TETN_2
PCD12_1


THBG_1
ECM1_1, GELS_1, KIT_2, PCD12_1, PCD12_2, VTDB_1


TIE1_1
FA9_1, FA9_2, PCD12_1, PCD12_2


TIMP1_1
FA11_1, PCD12_1


VGFR1_1
PAPP2_1, PCD12_1


VTDB_1
AACT_1, ADA12_1, ATL4_1, ATS13_2, ECM1_2, EGLN_1, FA11_1, FA9_1,



FA9_2, FGFR1_1, IBP4_3, KIT_1, PCD12_1, PCD12_2, PRL_2


VTNC_1
ADA12_1, ECM1_1, ECM1_2, FA9_1, FA9_2, ISM2_1, PAPP2_1, PCD12_1


VTNC_2
PCD12_1
















TABLE 20







Analyte pairs in models containing InvParity for GABD 175-196








Analyte1
Analyte2





A2GL_1
ADA12_1, CD14_1


AACT_1
ADA12_1, PRG4_1


ADA12_1
AMBP_1, AOC1_2, ATL4_1, ATS13_2, C1QA_1, C1QA_2, C1QB_1,



C1QC_1, CAMP_1, CRAC1_2, CRAC1_3, DEF1_1, DEF1_2, DPEP2_1,



ECM1_1, EGLN_1, EGLN_2, FA11_1, FA11_2, FA5_1, FA5_2, GELS_2,



IL1R1_1, IPSP_1, IPSP_2, ISM2_2, KIT_1, LEP_1, LEP_2, LIRB5_1,



NOTUM_1, NOTUM_2, PAEP_1, PAEP_2, PAPP2_1, PCD12_1, PRL_1,



PRL_2, PROS_1, PROS_2, SEPP1_2, SHBG_2, TETN_1, TETN_2, THRB_1,



TIMP1_1


AFAM_1
AACT_1, DEF1_1, DEF1_2, FA5_2


AFAM_2
AMBP_1


ALS_1
CGB1_1, DEF1_1, FA5_1, ITIH3_1, TIE1_1


AMBP_1
FGFR1_1, FGFR1_2, IPSP_2, PAEP_1, SVEP1_1


ANGT_1
AACT_1, ADA12_1, AMBP_1, ANT3_1, ATL4_1, CAH1_1, CGB1_1,



CGB1_2, FA5_2, PAPP2_1, PEDF_1, PRDX2_1, SVEP1_1


APOC3_1
ADA12_1


B2MG_1
ADA12_1, AMBP_1


B2MG_2
CD14_1


BGH3_1
ADA12_1


C163A_1
AACT_1, ADA12_1, ATL4_1, ATS13_1


C1QA_2
PAPP2_1


C1QB_3
ADA12_1


CAH1_1
CATD_2


CATD_1
ADA12_1


CATD_2
ADA12_1, FA5_2


CBPN_2
ADA12_1


CD14_1
AACT_1, ADA12_1, C1QA_2, C1QB_1, CGB1_1, DEF1_2, FA5_1, FA9_1,



FGFR1_1, GELS_2, HABP2_1, IBP4_1, ITIH3_1, LIRB5_1, LYAM1_1,



PAEP_1, PROS_2, SVEP1_1, VTNC_1


CD14_2
AACT_1, ADA12_1


CGB1_1
ADA12_1, ATL4_1, PAPP2_1, SVEP1_1


CGB1_2
ADA12_1, PAPP2_1


CLUS_2
AMBP_1


CO5_1
ADA12_1, ANT3_1, ECM1_2, EGLN_1, FA9_1, ITIH3_1, PAEP_1, PAEP_2,



PCD12_1, SVEP1_1


CO5_2
ADA12_1, ATL4_1, FGFR1_1


CO6_1
ADA12_1, AMBP_1, GELS_1


CO8A_1
ADA12_1, CGB1_2, DEF1_1


CO8B_1
ADA12_1


CRIS3_2
ADA12_1


DEF1_1
CRAC1_3


DEF1_2
PAPP2_1


ECM1_1
SVEP1_1


FA5_1
SVEP1_1


FA5_2
ISM2_1, NOTUM_2, PCD12_1, SVEP1_1


FA9_1
KIT_1


FA9_2
KIT_1


FBLN1_1
ADA12_1, AMBP_1


FBLN3_1
ADA12_1, PAPP2_1


GELS_1
FA5_2


HABP2_1
ADA12_1, AMBP_1, FA5_1, IPSP_2


IBP1_1
ADA12_1


IBP3_1
ADA12_1


IBP4_1
ADA12_1, FA5_1


IBP4_2
ADA12_1


IBP4_3
ADA12_1, AMBP_1


IBP6_1
ADA12_1


IBP6_2
ADA12_1, AMBP_1


INHBC_1
PRG2_1


IPSP_1
SVEP1_1


IPSP_2
GELS_2, SVEP1_1


ITIH3_1
ADA12_1, PCD12_1


ITIH4_1
ADA12_1


KNG1_1
ADA12_1, AMBP_1, FA5_2, LIRB5_1, PAEP_2, PCD12_1


LIRB5_1
AMBP_1, FA5_2


PAEP_1
FA5_2, PAPP2_1


PAEP_2
FA5_2


PAPP1_1
ADA12_1


PEDF_1
ADA12_1, CAMP_1, CAMP_2, DEF1_2, SEPP1_2


PEDF_2
ADA12_1


PGRP2_1
ADA12_1, FA5_2, SVEP1_1


PRG2_1
ADA12_1


PSG11_1
ADA12_1


PSG9_1
ADA12_1, AMBP_1, SVEP1_1


PTGDS_2
ADA12_1


SHBG_1
ADA12_1, SVEP1_1


SHBG_3
ADA12_1


SOM2_2
ADA12_1


SPRL1_1
PAPP2_1


SVEP1_1
CRAC1_2, ISM2_1


TENX_1
PCD12_1


TENX_2
AMBP_1


TETN_1
FA5_2


TETN_2
FA5_2


TIE1_1
ADA12_1, CGB1_1


VTDB_1
ADA12_1, FA5_2


VTNC_1
FA9_2


VTNC_2
ADA12_1
















TABLE 21







Analyte pairs in models containing InvParity for GABD 182-203








Analyte1
Analyte2





A2GL_1
AACT_1, ADA12_1, AFAM_2, ANGT_1, FA5_1, IPSP_2, KNG1_1, LBP_2,



MUC18_1, PCD12_1, SOM2_1, SVEP1_1


AACT_1
ADA12_1, AMBP_1, AOC1_1, AOC1_2, ATS13_2, C1QA_1, C1QA_2,



C1QB_2, CADH5_1, CADH5_2, CAMP_1, CAMP_2, CGB1_1, CGB1_2,



CNTN1_2, CRAC1_1, CRAC1_2, CRAC1_3, DEF1_2, EGLN_2, FA11_2,



FA5_1, FA5_2, FGFR1_1, GELS_1, GELS_2, GPX3_2, IL1R1_1, ISM2_2,



KIT_1, KIT_2, LEP_1, LEP_2, LIRB5_1, MUC18_1, PAEP_1, PAPP2_1,



PCD12_2, PRG4_1, PRG4_2, PRL_1, PROS_1, PROS_2, SEPP1_1,



SEPP1_2, SHBG_2, SHBG_3, SVEP1_1, TETN_1, THRB_1


ADA12_1
AMBP_1, ANT3_1, AOC1_1, AOC1_2, ATL4_1, ATS13_1, ATS13_2, C1QA_1,



C1QA_2, C1QB_1, C1QB_2, C1QC_1, C1QC_2, CADH5_1, CADH5_2,



CAMP_1, CAMP_2, CNTN1_1, CNTN1_2, CRAC1_1, CRAC1_2, CRAC1_3,



DEF1_1, DEF1_2, DPEP2_1, DPEP2_2, ECM1_1, ECM1_2, EGLN_1,



EGLN_2, FA11_1, FA11_2, FA5_1, FA5_2, FA9_1, FA9_2, FGFR1_1,



FGFR1_2, GELS_1, GELS_2, IGF1_1, IL1R1_1, IPSP_1, IPSP_2, ISM2_1,



ISM2_2, KIT_1, KIT_2, LEP_1, LEP_2, LIRB5_1, MFAP5_1, MUC18_1,



MUC18_2, NOTUM_1, NOTUM_2, PAEP_1, PAEP_2, PAPP2_1, PCD12_1,



PCD12_2, PRG4_1, PRG4_2, PRL_1, PRL_2, PROS_1, PROS_2, PTGDS_1,



RET4_1, SEPP1_1, SEPP1_2, SHBG_2, SVEP1_1, TETN_1, TETN_2,



THRB_1, TIMP1_1, VGFR1_1


AFAM_1
AACT_1, ADA12_1, AFAM_2, CO5_1, SVEP1_1, TETN_2, VTNC_2


AFAM_2
AACT_1, ADA12_1, ALS_1, AMBP_1, ANGT_1, ANT3_1, AOC1_1, AOC1_2,



APOH_1, ATL4_1, ATS13_1, ATS13_2, B2MG_2, BGH3_1, C1QA_1,



C1QA_2, C1QB_1, C1QB_2, C1QB_3, C1QC_1, C1QC_2, CADH5_1,



CADH5_2, CAH1_1, CAMP_1, CAMP_2, CATD_1, CATD_2, CBPN_1,



CBPN_2, CD14_2, CGB1_1, CGB1_2, CHL1_1, CLUS_1, CNTN1_1, CO5_1,



CO6_1, CO8A_1, CO8B_1, CRAC1_1, CRAC1_2, CRAC1_3, CRIS3_1,



CRIS3_2, CSH_1, CSH_2, DEF1_1, DEF1_2, DPEP2_2, ECM1_1, ECM1_2,



ENPP2_2, F13B_1, FA11_1, FA11_2, FA5_1, FBLN3_1, FETUA_1, FETUA_2,



FGFR1_1, FGFR1_2, GELS_1, GELS_2, HLACI_1, IBP1_1, IBP3_1, IBP3_2,



IBP4_1, IBP4_2, IBP4_3, IBP6_1, IBP6_2, IGF1_1, IGF2_1, IL1R1_1, ISM2_1,



ISM2_2, ITIH3_1, ITIH4_1, ITIH4_2, ITIH4_3, KIT_1, KIT_2, KNG1_1,



KNG1_2, LBP_1, LBP_2, LEP_1, LEP_2, LIRB5_1, LYAM1_1, MFAP5_1,



MUC18_1, NOTUM_1, NOTUM_2, PAEP_1, PAEP_2, PAPP1_1, PAPP2_1,



PCD12_1, PEDF_2, PRDX2_1, PRG2_1, PRG4_1, PRL_1, PRL_2, PROS_2,



PSG1_1, PSG11_1, PSG2_1, PSG3_1, PSG9_1, PSG9_2, PTGDS_1,



PTGDS_2, RET4_1, SEPP1_1, SEPP1_2, SHBG_1, SHBG_2, SHBG_3,



SOM2_1, SOM2_2, SPRL1_1, SVEP1_1, TENX_1, TENX_2, TETN_2,



THRB_1, TIMP1_1, VGFR1_1, VTDB_1, VTNC_1, VTNC_2


ALS_1
AACT_1, ADA12_1, SVEP1_1


AMBP_1
DEF1_1, DPEP2_1, DPEP2_2, ECM1_2, FA5_2, FGFR1_2, GELS_2, IPSP_1,



IPSP_2, LEP_1, MUC18_1, MUC18_2, PAEP_1, PAPP2_1, PCD12_1,



PRG4_1, PROS_2, PTGDS_1, SVEP1_1, TETN_1, THRB_1


ANGT_1
AACT_1, ADA12_1, AMBP_1, ANT3_1, C1QB_3, CAMP_1, CAMP_2,



CATD_2, CBPN_1, CGB1_1, CO8B_1, CRAC1_1, CRIS3_2, DEF1_1,



DPEP2_2, ECM1_2, FA5_1, FA5_2, FA9_1, FETUA_1, GELS_2, IBP1_1,



IBP4_3, IPSP_1, IPSP_2, ITIH4_3, KIT_1, KNG1_1, LEP_1, MUC18_1,



PAEP_1, PAPP1_1, PAPP2_1, PCD12_1, PRG4_1, PSG1_1, PSG2_1,



PTGDS_2, SPRL1_1, SVEP1_1, TENX_1, TETN_1, VTDB_1, VTNC_1


ANT3_1
AMBP_1, FA5_1


AOC1_1
SVEP1_1


APOC3_1
AACT_1, ADA12_1, CD14_1, FA5_1, FA5_2, GELS_1, IBP6_2, IPSP_1,



SEPP1_2, SVEP1_1


APOH_1
AACT_1, ADA12_1, SEPP1_2, SVEP1_1


B2MG_1



B2MG_2
ADA12_1, KNG1_2


BGH3_1
AACT_1, ADA12_1, CD14_1, FA5_1, SEPP1_2


C163A_1
ADA12_1


C1QA_1
FA5_1, GELS_1, SVEP1_1


C1QA_2
FA5_1, SVEP1_1


C1QB_1
FA5_1, SVEP1_1


C1QB_2
FA5_1


C1QB_3
AACT_1, ADA12_1, FA5_1, SVEP1_1


C1QC_1
AMBP_1, FA5_1


C1QC_2
FA5_1


CAH1_1
AACT_1, ADA12_1, FA5_1, SEPP1_2


CAMP_1
SVEP1_1


CAMP_2
DEF1_1, SVEP1_1


CATD_1
AACT_1, ADA12_1, CRAC1_3, FA5_1, IPSP_2, KNG1_2, SVEP1_1


CATD_2
AACT_1, ADA12_1, C1QA_1, CRAC1_3, FA5_1, IBP4_1, IPSP_1, IPSP_2,



KNG1_2, PRG4_1, SVEP1_1


CBPN_1
ADA12_1, CD14_1, FA5_1


CBPN_2
AACT_1, ADA12_1, FA5_1


CD14_1
AACT_1, ADA12_1, ANT3_1, ATL4_1, C1QB_1, C1QC_2, CAMP_1, CAMP_2,



CRAC1_1, CRAC1_2, DEF1_2, DPEP2_1, DPEP2_2, ECM1_2, EGLN_1,



FA5_1, FA5_2, FA9_1, FGFR1_1, GELS_1, GELS_2, IBP4_1, IBP4_2, IBP4_3,



IBP6_1, IBP6_2, IPSP_1, ISM2_2, ITIH4_3, KIT_1, KNG1_1, KNG1_2, LBP_1,



LBP_2, LEP_1, LIRB5_1, MUC18_2, NOTUM_1, NOTUM_2, PAPP2_1,



PEDF_1, PGRP2_1, PRG2_1, PRL_2, PSG1_1, PSG11_1, PSG2_1, PSG3_1,



PTGDS_2, SEPP1_1, SEPP1_2, SOM2_2, SPRL1_1, SVEP1_1, TENX_2,



TETN_1, TETN_2, THRB_1


CD14_2
ADA12_1, FA5_1, KNG1_2, LIRB5_1, SEPP1_2


CFAB_1
GELS_1


CGB1_1
ADA12_1, FA5_1


CGB1_2
ADA12_1, FA5_1


CHL1_1
AACT_1, ADA12_1


CLUS_1
AACT_1, ADA12_1, DEF1_2, FA5_1


CLUS_2
ADA12_1


CO5_1
AACT_1, ADA12_1, CRAC1_1, FA9_1, FGFR1_2, GELS_1, IBP1_1, IBP6_2,



MUC18_1, PAPP1_1, SVEP1_1


CO5_2
ADA12_1, FGFR1_2, GELS_1, PAPP2_1, PRG4_1, PRG4_2


CO6_1
AACT_1, ADA12_1, FA5_1


CO8A_1
ADA12_1, SEPP1_2, SVEP1_1


CO8B_1
AACT_1, ADA12_1, GELS_1, KNG1_1, KNG1_2, LIRB5_1, PAEP_1


CRIS3_1
ADA12_1, FA5_1, SEPP1_2


CRIS3_2
ADA12_1, FA5_1, VTNC_2


CSH_1
AACT_1, ADA12_1, FA11_2, FA5_1, LBP_2, TENX_1


CSH_2
ADA12_1, FA5_1


DEF1_1
PRG4_1


EGLN_1
SEPP1_2


EGLN_2
SEPP1_2


ENPP2_1
AACT_1, ADA12_1, FA5_1, FA5_2, GELS_1, KNG1_1, MUC18_2


ENPP2_2
AACT_1, ADA12_1, FA5_1, SVEP1_1


F13B_1
AACT_1, ADA12_1, FA5_1, IPSP_1, IPSP_2, LBP_2, SEPP1_2, SVEP1_1


FA11_1
DPEP2_2, FA5_1, MUC18_1, SVEP1_1


FA11_2
DPEP2_2, FA5_1, MUC18_1, SVEP1_1


FA5_1
AOC1_1, AOC1_2, ATS13_1, CADH5_1, CADH5_2, CRAC1_1, CRAC1_2,



CRAC1_3, DEF1_1, DEF1_2, DPEP2_1, ECM1_2, EGLN_2, IL1R1_1, ISM2_1,



ISM2_2, LEP_2, MFAP5_1, MUC18_1, MUC18_2, NOTUM_1, NOTUM_2,



PAPP2_1, PCD12_1, PCD12_2, PRG4_1, PRG4_2, SEPP1_1, SVEP1_1,



THRB_1, VGFR1_1


FA5_2
CRAC1_1, CRAC1_2, SVEP1_1


FA9_1
AMBP_1, FA5_1


FA9_2
GELS_1


FBLN1_1
ADA12_1, AMBP_1, DEF1_1, FA5_1


FBLN3_1
AACT_1, ADA12_1, FA5_1


FETUA_1
AACT_1, ADA12_1, FA5_1


FETUA_2
AACT_1, ADA12_1, FA5_1, SVEP1_1


FGFR1_1
FA5_1


FGFR1_2
CRAC1_3, FA5_1, FA5_2


GELS_1
AOC1_1, DEF1_1, DEF1_2, ECM1_2, FA5_1, FA5_2, LEP_2, PCD12_1,



PCD12_2, PRG4_1, PRG4_2, SEPP1_1


GELS_2
DEF1_1, ECM1_2, FA5_1, FA5_2, PRG4_2, SEPP1_2, SVEP1_1


GPX3_1
ADA12_1, FA5_1


GPX3_2
ADA12_1, FA5_1


HABP2_1
AACT_1, ADA12_1, GELS_1, GELS_2, LEP_1, PTGDS_1, SVEP1_1


HEMO_1
ADA12_1, SVEP1_1


HLACI_1
ADA12_1


IBP1_1
ADA12_1, FA5_1


IBP2_1
AACT_1, ADA12_1, FA5_1


IBP3_1
AACT_1, ADA12_1, GELS_2, IBP6_2, IL1R1_1, KNG1_2, LEP_1, PSG1_1,



PTGDS_2, SVEP1_1, TETN_1


IBP3_2
AACT_1, ADA12_1, GELS_2, SVEP1_1


IBP4_1
ADA12_1, FA5_1, GELS_1, GELS_2, PRG4_1, SEPP1_2, SVEP1_1


IBP4_2
AACT_1, ADA12_1, FA5_1, KNG1_2, SVEP1_1


IBP4_3
ADA12_1, FA5_1, IPSP_2


IBP6_1
AACT_1, ADA12_1


IBP6_2
ADA12_1, AMBP_1, CRAC1_1, FA5_1, INHBC_1, KNG1_2, PEDF_2,



PRG4_1, PRG4_2, VTNC_1


IGF1_1
FA5_1, GELS_1, SVEP1_1


IGF2_1
AACT_1, ADA12_1, FA5_1, SVEP1_1


INHBC_1
AACT_1, ADA12_1, FA5_1, GELS_1


IPSP_1
ATL4_1, CRAC1_1, CRAC1_2, CRAC1_3, FA5_1, GELS_2, PRG4_1,



PRG4_2, SEPP1_2


IPSP_2
ATL4_1, CNTN1_1, CNTN1_2, CRAC1_1, CRAC1_3, DEF1_1, DEF1_2,



ECM1_1, FA5_1, FA5_2, MUC18_1, PAEP_1, PRG4_1, SEPP1_2


ITIH3_1
ADA12_1, ANT3_1, IPSP_2, SVEP1_1


ITIH4_1
ADA12_1, AMBP_1, FA5_1, SVEP1_1


ITIH4_2
ADA12_1, FA5_1


ITIH4_3
AACT_1, ADA12_1, FA5_1, IPSP_2, KNG1_2, PRG4_1, SEPP1_2


KIT_1
FA5_1, SVEP1_1


KIT_2
FA5_1, PCD12_1, SVEP1_1


KNG1_1
AACT_1, ADA12_1, ANT3_1, C1QA_1, CRAC1_1, CRAC1_2, CRAC1_3,



FA5_1, GELS_1, LIRB5_1, PCD12_1, SVEP1_1


KNG1_2
AACT_1, ADA12_1, ATL4_1, CRAC1_1, FA5_1, IL1R1_1, IPSP_1, KIT_2,



LEP_1, LIRB5_1, PAPP1_1, PCD12_1, PRG2_1, PRG4_1, PSG1_1,



PSG11_1, PSG9_1, SEPP1_1, SHBG_3, SPRL1_1, SVEP1_1, TETN_2


LBP_1
ADA12_1


LBP_2
AACT_1, ADA12_1, CADH5_2, CRAC1_1, FA11_1, FA5_1, FGFR1_2,



GELS_1, PSG3_1, SVEP1_1


LEP_1
DEF1_1, PRG4_1, PRG4_2, SEPP1_2


LIRB5_1
AMBP_1, FA5_1, FA5_2, PAPP2_1, PRG4_1, PRL_1


LYAM1_1
AACT_1, ADA12_1, FA5_1


MUC18_1
PAPP2_1, SVEP1_1


NOTUM_1
PRG4_1


PAEP_1
DEF1_1, FA5_1


PAEP_2
FA5_1


PAPP1_1
AACT_1, ADA12_1, AMBP_1, FA5_1, KIT_2, SPRL1_1


PCD12_2
CRAC1_1


PEDF_1
ADA12_1, AMBP_1, FA5_1, SEPP1_2, SVEP1_1


PEDF_2
ADA12_1, GELS_1, SVEP1_1


PGRP2_1
AACT_1, ADA12_1, FA5_1


PRDX2_1
AACT_1, ADA12_1, FA5_1


PRG2_1
ADA12_1, FA5_1, SEPP1_2


PRG4_1
PAPP2_1, PCD12_1


PRL_1
AMBP_1, CRAC1_1, CRAC1_3, FA5_1, GELS_1, IPSP_1, IPSP_2, MUC18_1,



PCD12_2, PRL_2, TETN_1


PRL_2
AMBP_1, GELS_1, IPSP_1


PROS_2
FA5_1


PSG1_1
AACT_1, ADA12_1, AMBP_1, FA5_1, SEPP1_2


PSG11_1
ADA12_1, FA5_1, FA5_2, SVEP1_1


PSG2_1
ADA12_1, AMBP_1, SVEP1_1, TENX_1


PSG3_1
ADA12_1


PSG9_1
AACT_1, ADA12_1, FA5_1


PSG9_2
ADA12_1, AMBP_1, VTDB_1


PTGDS_2
ADA12_1, FA5_1, GELS_1, SVEP1_1


RET4_1
FA5_1


SEPP1_1
PRG4_1, SVEP1_1


SEPP1_2
CAMP_1, CAMP_2, ISM2_2, PAPP2_1, SVEP1_1


SHBG_1
AACT_1, ADA12_1, FA5_1, SVEP1_1


SHBG_2
FA5_1, GELS_1


SHBG_3
ADA12_1, FA5_1, GELS_1, IPSP_2


SOM2_1
ADA12_1, FA5_1


SOM2_2
ADA12_1, FA5_1


SPRL1_1
ADA12_1, ANT3_1, GELS_1, SVEP1_1


SVEP1_1
ATL4_1, ATS13_2, CRAC1_3, PRG4_1, PRG4_2


TENX_1
AACT_1, ADA12_1, FA5_1, IBP4_1, IGF1_1, IPSP_2, LIRB5_1, PRG4_1,



SEPP1_2, SVEP1_1


TENX_2
AACT_1, ADA12_1, AMBP_1, FA5_1, FA5_2, IBP4_1, PCD12_2, PRL_1,



SEPP1_2


TETN_1
FA5_1, PRG4_1


TETN_2
FA5_1, PRG4_1, SVEP1_1


THBG_1
ADA12_1, GELS_1


TIE1_1
ADA12_1, FA5_1, GELS_1


TIMP1_1
FA5_1, SVEP1_1


VTDB_1
ADA12_1, ANT3_1, CRAC1_1, DEF1_2, FA5_1, IPSP_1, LIRB5_1, PAEP_1,



PAEP_2, SVEP1_1


VTNC_1
AACT_1, ADA12_1, DEF1_1, GELS_1, IPSP_1, SVEP1_1


VTNC_2
AACT_1, ADA12_1, GELS_1, PCD12_1, SVEP1_1









Model 3: Overlapping GABD Windows, Parity 0, AACT Plus Analyte Pairs


Model 3 (TTB˜ETB+AACT_EIGELYLPK+Analyte1+Analyte2) was run for 171 analytes and 28 log-transformed numeric clinical variables in all possible pairs, in overlapping three-week windows with an overlap of one week. All TERM samples were used (204 nulliparous subjects were TERM). Analytes were included not as a ratio (i.e. a reversal) to allow for different coefficients for each. AACT_EIGELYLPK was chosen as the 3rd analyte in exemplifying trivariate performance based on an initial scan showing strong performance for this analyte in women of Parity 0 with blood drawn in GA weeks 23-28 weeks. In particular, this model was applied to subjects with Parity 0 and late GAs at blood draw, in 3-week GA windows from 230/7 to 256/7, 240/7 to 266/7, 250/7 to 276/7, and 260/7 to 286/7. The performance metric was accuracy.









TABLE 22







Overlapping windows of GA at blood draw, the number of samples in


each and the minimum, median and maximum accuracy in each window.


Nomenclature: for example [161-182) means 161 ≤ GA at blood


draw < 182.











Windows
nTERM
min
med
max














[161-182)
99
38.4
44.4
54.5


[168-189)
108
39.8
46.3
53.7


[175-196)
100
39.0
45.0
55.0


[182-203)
105
41.0
47.6
57.1
















TABLE 23







Numerical clinical variables included in Model 3 assessments








Factor
Definition





Bleeding
Bleeding in the second or third trimesters of the



current pregnancy


BMI
Weight in kilograms over height in meters squared


cDM
History of diabetes pre-existing prior to the current



pregnancy


Cervix
Cervical abnormalities or transvaginal cervical



ultrasound in this pregnancy


cHTN
History of hypertension pre-existing prior to the



current pregnancy


DM
Notation of gestational diabetes in the current



pregnancy or history of pre-existing diabetes,



with each assigned a distinct value


GABD
GA at blood draw as recorded by clinical staff


GABD.
GA at blood draw calculated from the dates of



blood draw and estimated delivery


GDM
Notation of gestational diabetes in the current



pregnancy


Gravidity.
Number of recorded current and prior pregnancies



of any duration, calculated as Parity plus the



number of spontaneous and therapeutic abortions



and ectopic pregnancies


InvGravidity.
1/(Gravidity + 0.5), a transform emphasizing



differences between low Gravidities


InvParity.
1/(Parity + 0.5), a transform emphasizing differences



between low Parities


IPMLOS
Maternal length of stay in hospital for the current



delivery


LABGAD
Day of GA week of blood draw as recorded by clinical



staff


LABPGAW
GA week of blood draw as recorded by clinical staff


MAGE
Maternal age in years


MDHT
Maternal height in centimeters


MDHTC
Maternal height in inches


MDWT
Maternal weight in kilograms


MDWTC
Maternal weight in pounds


NdelComp
Number of adverse delivery complications



recorded for the current delivery


NpregComp
Number of adverse pregnancy complications



recorded for the current pregnancy


Parity.
Number of recorded prior pregnancies carried to 20 0/7



weeks' GA


PEspec
Notation of preeclampsia, pregnancy-induced or



gestational hypertension in the current pregnancy, with



each assigned a distinct value


PriorPTBvTerm
Difference between count of prior spontaneous preterm



births and prior full-term births, with absence of



obstetric history as a distinct value


PriorSPTB
Count of prior spontaneous preterm births


User
Number of substances used by the subject including



tobacco and alcohol; opiates are counted doubly as the



fetus also becomes dependent.
















TABLE 24







Analyte pairs in trianalyte models containing AACT for nulliparous


women with gestational age at blood draws days 161-182








Analyte1
Analyte2





A2GL_1
ADA12_1, ALS_1, ANGT_1, ANT3_1, APOH_1, ATS13_1, CATD_1, CD14_1,



CLUS_1, CNTN1_1, CO6_1, CRAC1_1, ENPP2_2, FA9_1, FETUA_1, IBP4_1,



IBP4_3, IGF1_1, ISM2_1, ITIH4_1, LEP_2, MDHT., MUC18_2, NpregC,



PRG2_1, PRG4_2, PRL_1, PRL_2, SEPP1_2, TENX_1, TETN_2, THRB_1,



TIMP1_1, VTNC_2


AACT_1
FETUA_2, IBP4_1, MDHT.


ADA12_1
A2GL_1, AFAM_2, ALS_1, AOC1_2, ATS13_2, CADH5_1, CD14_1, CLUS_1,



CO5_2, CRAC1_1, FETUA_1, FETUA_2, IBP4_1, IBP4_3, IGF1_1, IGF2_1,



IL1R1_1, InvGra, ISM2_1, ITIH4_2, LBP_1, LYAM1_1, MDHT., NOTUM_2,



PAPP1_1, PAPP2_1, PRL_2, PSG1_1, SEPP1_1, SHBG_1, VGFR1_1,



VTDB_1, VTNC_1, VTNC_2


AFAM_1
cHTN, FETUA_2, MDHT., MDWT., PRL_1


AFAM_2
ADA12_1, BMI, CNTN1_1, FETUA_2, LEP_1, MDWT., PEDF_2, PRL_1,



PRL_2, SHBG_1, SHBG_3, SVEP1_1


ALS_1
A2GL_1, ADA12_1, Bleedi, cHTN, FETUA_1, ITIH4_2, MDWT., PRDX2_1


AMBP_1
FETUA_2, IBP4_1, MDHT.


ANGT_1
A2GL_1, FETUA_2


ANT3_1
A2GL_1, cHTN, FETUA_2, IBP4_1, MDHT.


AOC1_1
FETUA_2, MDHT.


AOC1_2
ADA12_1, FETUA_2, IBP4_1


APOC3_1
FETUA_2, IBP4_1, MDHT.


APOH_1
A2GL_1, FETUA_2, IBP4_1, MDHT., MDWT.


ATL4_1
cHTN, FETUA_2, MDHT.


ATS13_1
A2GL_1, FETUA_2, IBP4_1


ATS13_2
ADA12_1, FETUA_1, FETUA_2, IBP4_1, LBP_1, MDHT.


B2MG_1
FETUA_2, ITIH4_2, MDHT., MUC18_1


B2MG_2
cHTN, FETUA_2, IBP4_1, MDHT.


BGH3_1
cHTN, FETUA_2, IBP4_1, MDHT.


Bleedi
ALS_1, FETUA_2, MDHT., PAPP2_1


BMI
AFAM_2, cHTN, CRAC1_1, FETUA_1, FETUA_2, MDHT., MDWT., MUC18_1,



SEPP1_1, VTNC_1, VTNC_2


C163A_1
FETUA_2, IBP4_1, MDHT.


C1QA_1
SEPP1_1


C1QA_2
FETUA_2, MDHT.


C1QB_1
FETUA_2, IBP4_1


C1QB_3
FETUA_2


C1QC_1
FETUA_2, MDWT.


C1QC_2
IBP4_1, LEP_1


CADH5_1
ADA12_1, PRG4_1, PRG4_2, VTNC_2


CADH5_2
FBLN1_1, PRL_1, SEPP1_1


CAH1_1
FETUA_2, MDHT.


CAMP_1
cHTN, FETUA_1, FETUA_2


CAMP_2
FETUA_1, FETUA_2, IBP4_1


CATD_1
A2GL_1, FETUA_1, IBP4_1, LBP_1


CATD_2
FETUA_2, IBP4_1, MDHT.


CBPN_1
FETUA_2, IBP4_1, MDHT.


CBPN_2
FETUA_1, FETUA_2, MDHT.


CD14_1
A2GL_1, ADA12_1, FETUA_2, IBP4_1


CD14_2
FETUA_2, IBP4_1, MDHT., PRL_2


cDM
FETUA_2, IBP4_1, MDHT.


Cervix
cHTN, FETUA_2, IBP4_1, MDHT.


CFAB_1
FETUA_2, IBP4_1, IGF1_1, MUC18_1


CGB1_1
FETUA_2


CGB1_2
FETUA_2, MDHT.


CHL1_1
FETUA_2, IBP4_1, MDHT.


cHTN
AFAM_1, ALS_1, ANT3_1, ATL4_1, B2MG_2, BGH3_1, BMI, CAMP_1, Cervix,



CNTN1_2, CO8B_1, CRAC1_3, CRIS3_2, ECM1_1, ENPP2_1, F13B_1,



FBLN1_1, FBLN3_1, FETUA_1, FETUA_2, FGFR1_1, FGFR1_2, GELS_2,



GPX3_1, HABP2_1, HEMO_1, IBP4_1, IBP4_2, IBP6_1, IGF1_1, InvGra,



ITIH4_1, KNG1_1, LBP_1, LBP_2, LEP_1, MAGE, MDHT., MDWT., MUC18_1,



NOTUM_1, PAEP_1, PAPP2_1, PEspec, PRDX2_1, PRG2_1, PRL_1, PRL_2,



PROS_1, PROS_2, PSG2_1, PSG9_1, PSG9_2, SEPP1_1, SHBG_1,



SVEP1_1, TENX_1, TIE1_1, VTNC_1


CLUS_1
A2GL_1, ADA12_1, FETUA_2, IBP4_1, MDWT.


CLUS_2
FETUA_2, MDHT., MUC18_1


CNTN1_1
A2GL_1, AFAM_2, CRAC1_1, FETUA_1, FETUA_2, IBP4_1, IGF1_1, MDHT.,



PAPP2_1, PRL_2


CNTN1_2
cHTN, FETUA_2, IBP4_1, MDHT.


CO5_1
FETUA_2, IBP4_1, MDHT.


CO5_2
ADA12_1, IBP4_1, SEPP1_1


CO6_1
A2GL_1


CO8A_1
FETUA_2, MDHT.


CO8B_1
cHTN, FETUA_2, IBP4_1, MDHT.


CRAC1_1
A2GL_1, ADA12_1, BMI, CNTN1_1, FETUA_2, MDHT., MUC18_1, MUC18_2,



SEPP1_1


CRAC1_2
FETUA_1, FETUA_2, ITIH4_2, MDHT., MUC18_1


CRAC1_3
cHTN, FETUA_2, IBP4_1, MDHT.


CRIS3_2
cHTN


CSH_1
FETUA_1, FETUA_2, IBP4_1, MDHT.


CSH_2
FETUA_2, IBP4_1, MDHT.


DEF1_1
FETUA_2, MDHT.


DEF1_2
FETUA_2, IBP4_1, MDHT.


DM
FETUA_2, IBP4_1


DPEP2_1
FETUA_2, MDHT.


DPEP2_2
FETUA_1, FETUA_2, IBP4_1, MDHT., MDWT.


ECM1_1
cHTN, FETUA_2, MDHT.


ECM1_2
FETUA_2, MDHT.


EGLN_1
FETUA_2, IBP4_1, MAGE, MDHT., MUC18_1


EGLN_2
FETUA_2, IBP4_1


ENPP2_1
cHTN, FETUA_2, IBP4_1, MDHT.


ENPP2_2
A2GL_1, FETUA_2, MDHT.


F13B_1
cHTN, FETUA_2, MDHT.


FA11_1
MDHT


FA11_2
FA9_2


FA5_1
FETUA_2, MDHT.


FA5_2
FETUA_1, FETUA_2, IBP4_1, IPMLOS, SHBG_1


FA9_1
A2GL_1, FETUA_1, FETUA_2, IBP4_1, MDWT.


FA9_2
FA11_2, FETUA_1


FBLN1_1
CADH5_2, cHTN, FETUA_2, IBP4_1, IGF1_1, ITIH4_2, LBP_1, LBP_2,



MDHT., MDWT., PEspec


FBLN3_1
cHTN, MDHT.


FETUA_1
A2GL_1, ADA12_1, ALS_1, ATS13_2, BMI, CAMP_1, CAMP_2, CATD_1,



CBPN_2, cHTN, CNTN1_1, CRAC1_2, CSH_1, DPEP2_2, FA5_2, FA9_1,



FA9_2, FETUA_2, IBP3_2, IBP4_1, IBP4_3, IGF1_1, ISM2_1, ITIH4_1,



ITIH4_2, KIT_1, KIT_2, LBP_1, LBP_2, LEP_1, LYAM1_1, MAGE, MDHT.,



MDWT., MUC18_1, MUC18_2, NdelCo, PAPP2_1, PRG4_1, PRG4_2, PRL_1,



PRL_2, PROS_2, PSG2_1, PSG9_1, PSG9_2, RET4_1, SEPP1_1, SOM2_2,



TENX_1, THRE3_1, User


FETUA_2
AACT_1, ADA12_1, AFAM_1, AFAM_2, AMBP_1, ANGT_1, ANT3_1, AOC1_1,



AOC1_2, APOC3_1, APOH_1, ATL4_1, ATS13_1, ATS13_2, B2MG_1,



B2MG_2, BGH3_1, Bleedi, BMI, C163A_1, C1QA_2, C1QB_1, C1QB_3,



C1QC_1, CAH1_1, CAMP_1, CAMP_2, CATD_2, CBPN_1, CBPN_2, CD14_1,



CD14_2, cDM, Cervix, CFAB_1, CGB1_1, CGB1_2, CHL1_1, cHTN, CLUS_1,



CLUS_2, CNTN1_1, CNTN1_2, CO5_1, CO8A_1, CO8B_1, CRAC1_1,



CRAC1_2, CRAC1_3, CSH_1, CSH_2, DEF1_1, DEF1_2, DM, DPEP2_1,



DPEP2_2, ECM1_1, ECM1_2, EGLN_1, EGLN_2, ENPP2_1, ENPP2_2,



F13B_1, FA5_1, FA5_2, FA9_1, FBLN1_1, FETUA_1, GABD., GDM, GELS_1,



GELS_2, GPX3_1, HABP2_1, HEMO_1, HLACI_1, IBP1_1, IBP4_1, IBP4_2,



IBP4_3, IBP6_1, IGF1_1, IGF2_1, INHBC_1, InvGra, InvPar, IPSP_1, IPSP_2,



ISM2_1, ISM2_2, ITIH3_1, ITIH4_1, ITIH4_2, ITIH4_3, KIT_1, KIT_2, KNG1_2,



LBP_1, LBP_2, LYAM1_1, MAGE, MDHT., MDWT., MFAP5_1, MUC18_1,



MUC18_2, NdelCo, NOTUM_1, NOTUM_2, NpregC, PAEP_1, PAEP_2,



PAPP1_1, PCD12_1, PCD12_2, PEDF_1, PEDF_2, PEspec, PGRP2_1,



PRG2_1, PriorP, PRL_1, PRL_2, PROS_1, PROS_2, PSG1_1, PSG11_1,



PSG2_1, PSG3_1, PSG9_1, PSG9_2, PTGDS_1, RET4_1, SEPP1_1,



SEPP1_2, SHBG_1, SHBG_3, SOM2_2, SPRL1_1, SVEP1_1, TENX_1,



TENX_2, TIE1_1, TIMP1_1, User, VGFR1_1, VTDB_1, VTNC_1, VTNC_2


FGFR1_1
cHTN, MDHT.


FGFR1_2
cHTN


GABD.
FETUA_2, IBP4_1, MDHT.


GDM
FETUA_2, IBP4_1, MDHT.


GELS_1
FETUA_2


GELS_2
cHTN, FETUA_2, HEMO_1


GPX3_1
cHTN, FETUA_2, IBP4_1, MDHT.


GPX3_2
IBP4_1


HABP2_1
cHTN, FETUA_2


HEMO_1
cHTN, FETUA_2, GELS_2, IBP4_1, SEPP1_1


HLACI_1
FETUA_2, MDWT., MUC18_1


IBP1_1
FETUA_2, MDHT.


IBP2_1
IBP4_1


IBP3_1
MDHT., MUC18_1


IBP3_2
FETUA_1, MDHT.


IBP4_1
A2GL_1, AACT_1, ADA12_1, AMBP_1, ANT3_1, AOC1_2, APOC3_1,



APOH_1, ATS13_1, ATS13_2, B2MG_2, BGH3_1, C163A_1, C1QB_1,



C1QC_2, CAMP_2, CATD_1, CATD_2, CBPN_1, CD14_1, CD14_2, cDM,



Cervix, CFAB_1, CHL1_1, cHTN, CLUS_1, CNTN1_1, CNTN1_2, CO5_1,



CO5_2, CO8B_1, CRAC1_3, CSH_1, CSH_2, DEF1_2, DM, DPEP2_2,



EGLN_1, EGLN_2, ENPP2_1, FA5_2, FA9_1, FBLN1_1, FETUA_1, FETUA_2,



GABD., GDM, GPX3_1, GPX3_2, HEMO_1, IBP2_1, IBP4_3, IBP6_1, IGF2_1,



INHBC_1, InvPar, IPMLOS, ISM2_1, ITIH4_2, KNG1_1, LBP_1, LBP_2,



LIRB5_1, LYAM1_1, MDHT., MDWT., NpregC, PAEP_1, PAEP_2, PEDF_1,



PEDF_1, PEspec, PGRP2_1, PriorP, PROS_1, PROS_2, PSG3_1, PSG9_1,



RET4_1, SEPP1_1, SEPP1_2, SHBG_1, SHBG_3, SOM2_1, TENX_1,



TENX_2, TETN_2, THBG_1, TIE1_1, TIMP1_1


IBP4_2
cHTN, FETUA_2, MDHT., PRL_2


IBP4_3
A2GL_1, ADA12_1, FETUA_1, FETUA_2, IBP4_1


IBP6_1
cHTN, FETUA_2, IBP4_1, MUC18_1


IBP6_2
MDHT.


IGF1_1
A2GL_1, ADA12_1, CFAB_1, cHTN, CNTN1_1, FBLN1_1, FETUA_1,



FETUA_2, MDHT., MUC18_1, SVEP1_1


IGF2_1
ADA12_1, FETUA_2, IBP4_1, MDHT.


IL1R1_1
ADA12_1, MDHT., MDWT., PRL_1, SHBG_1, SVEP1_1


INHBC_1
FETUA_2, IBP4_1, MDHT.


InvGra
ADA12_1, cHTN, FETUA_2


InvPar
FETUA_2, IBP4_1, MDHT.


IPMLOS
FA5_2, IBP4_1, ITIH4_2


IPSP_1
FETUA_2


IPSP_2
FETUA_2, MDHT.


ISM2_1
A2GL_1, ADA12_1, FETUA_1, FETUA_2, IBP4_1, MDHT., PRL_1, PRL_2


ISM2_2
FETUA_2, MDHT., PRL_1


ITIH3_1
FETUA_2, MDHT., PRL_2


ITIH4_1
A2GL_1, cHTN, FETUA_1, FETUA_2, MDHT., MDWT.


ITIH4_2
ADA12_1, ALS_1, B2MG_1, CRAC1_2, FBLN1_1, FETUA_1, FETUA_2,



IBP4_1, IPMLOS, MDHT., MUC18_1, PRG4_2, PRL_1, SEPP1_2, TENX_1


ITIH4_3
FETUA_2


KIT_1
FETUA_1, FETUA_2, MDHT.


KIT_2
FETUA_1, FETUA_2, MDHT.


KNG1_1
cHTN, IBP4_1, MDWT.


KNG1_2
FETUA_2, MDHT.


LBP_1
ADA12_1, ATS13_2, CATD_1, cHTN, FBLN1_1, FETUA_1, FETUA_2, IBP4_1,



MDHT., MUC18_1, PRL_1, SEPP1_1, SHBG_1, SOM2_2


LBP_2
cHTN, FBLN1_1, FETUA_1, FETUA_2, IBP4_1, MDHT., SEPP1_1, SHBG_1,



SOM2_2


LEP_1
AFAM_2, C1QC_2, cHTN, FETUA_1, LYAM1_1, MDHT., PRG4_2, SEPP1_1,



VTNC_2


LEP_2
A2GL_1


LIRB5_1
IBP4_1, MUC18_1


LYAM1_1
ADA12_1, FETUA_1, FETUA_2, IBP4_1, LEP_1, MDHT., User


MAGE
cHTN, EGLN_1, FETUA_1, FETUA_2


MDHT.
A2GL_1, AACT_1, ADA12_1, AFAM_1, AMBP_1, ANT3_1, AOC1_1,



APOC3_1, APOH_1, ATL4_1, ATS13_2, B2MG_1, B2MG_2, BGH3_1, Bleedi,



BMI, C163A_1, C1QA_2, CAH1_1, CATD_2, CBPN_1, CBPN_2, CD14_2,



cDM, Cervix, CGB1_2, CHL1_1, cHTN, CLUS_2, CNTN1_1, CNTN1_2,



CO5_1, CO8A_1, CO8B_1, CRAC1_1, CRAC1_2, CRAC1_3, CSH_1, CSH_2,



DEF1_1, DEF1_2, DPEP2_1, DPEP2_2, ECM1_1, ECM1_2, EGLN_1,



ENPP2_1, ENPP2_2, F13B_1, FA5_1, FBLN1_1, FBLN3_1, FETUA_1,



FETUA_2, FGFR1_1, GABD., GDM, GPX3_1, IBP1_1, IBP3_1, IBP3_2,



IBP4_1, IBP4_2, IBP6_2, IGF1_1, IGF2_1, IL1R1_1, INHBC_1, InvPar,



IPSP_2, ISM2_1, ISM2_2, ITIH3_1, ITIH4_1, ITIH4_2, KIT_1, KIT_2, KNG1_2,



LBP_1, LBP_2, LEP_1, LYAM1_1, MDWT., MFAP5_1, NOTUM_1, NpregC,



PAEP_1, PAEP_2, PAPP1_1, PAPP2_1, PCD12_1, PCD12_2, PEDF_1,



PEDF_2, PGRP2_1, PRG2_1, PriorP, PRL_1, PRL_2, PROS_1, PROS_2,



PSG1_1, PSG2_1, PSG3_1, PSG9_1, PSG9_2, PTGDS_1, SEPP1_1,



SHBG_1, SHBG_3, SPRL1_1, SVEP1_1, TENX_1, TENX_2, TIE1_1,



TIMP1_1, VGFR1_1, VTNC_1, VTNC_2


MDWT.
AFAM_1, AFAM_2, ALS_1, APOH_1, BMI, C1QC_1, cHTN, CLUS_1,



DPEP2_2, FA9_1, FBLN1_1, FETUA_1, FETUA_2, HLACI_1, IBP4_1,



IL1R1_1, ITIH4_1, KNG1_1, MDHT., MUC18_1, NOTUM_1, PRG4_1,



PRG4_2, PRL_2, PSG1_1, SEPP1_1, SEPP1_2, SHBG_1, VGFR1_1,



VTNC_1, VTNC_2


MFAP5_1
FETUA_2, MDHT.


MUC18_1
B2MG_1, BMI, CFAB_1, cHTN, CLUS_2, CRAC1_1, CRAC1_2, EGLN_1,



FETUA_1, FETUA_2, HLACI_1, IBP3_1, IBP6_1, IGF1_1, ITIH4_2, LBP_1,



LIRB5_1, MDWT., PAPP2_1, PEspec, PRG2_1, PROS_1, SEPP1_2, TENX_2,



TIMP1_1


MUC18_2
A2GL_1, CRAC1_1, FETUA_1, FETUA_2, SHBG_1


NdelCo
FETUA_1, FETUA_2


NOTUM_1
cHTN, FETUA_2, MDHT., MDWT.


NOTUM_2
ADA12_1, FETUA_2, PRL_1


NpregC
A2GL_1, FETUA_2, IBP4_1, MDHT.


PAEP_1
cHTN, FETUA_2, IBP4_1, MDHT.


PAEP_2
FETUA_2, IBP4_1, MDHT.


PAPP1_1
ADA12_1, FETUA_2, MDHT.


PAPP2_1
ADA12_1, Bleedi, cHTN, CNTN1_1, FETUA_1, MDHT., MUC18_1, PEDF_2,



PEspec


PCD12_1
FETUA_2, MDHT.


PCD12_2
FETUA_2, MDHT.


PEDF_1
FETUA_2, IBP4_1, MDHT., PRL_1, SEPP1_1


PEDF_2
AFAM_2, FETUA_2, IBP4_1, MDHT., PAPP2_1, SEPP1_1, VTNC_1


PEspec
cHTN, FBLN1_1, FETUA_2, IBP4_1, MUC18_1, PAPP2_1, PRL_1


PGRP2_1
FETUA_2, IBP4_1, MDHT.


PRDX2_1
ALS_1, cHTN, SEPP1_1


PRG2_1
A2GL_1, cHTN, FETUA_2, MDHT., MUC18_1


PRG4_1
CADH5_1, FETUA_1, MDWT.


PRG4_2
A2GL_1, CADH5_1, FETUA_1, ITIH4_2, LEP_1, MDWT., SHBG_1


PriorP
FETUA_2, IBP4_1, MDHT.


PRL_1
A2GL_1, AFAM_1, AFAM_2, CADH5_2, cHTN, FETUA_1, FETUA_2, IL1R1_1,



ISM2_1, ISM2_2, ITIH4_2, LBP_1, MDHT., NOTUM_2, PEDF_1, PEspec,



TENX_1, VGFR1_1


PRL_2
A2GL_1, ADA12_1, AFAM_2, CD14_2, cHTN, CNTN1_1, FETUA_1,



FETUA_2, IBP4_2, ISM2_1, ITIH3_1, MDHT., MDWT., PROS_1, TENX_1,



VGFR1_1


PROS_1
cHTN, FETUA_2, IBP4_1, MDHT., MUC18_1, PRL_2


PROS_2
cHTN, FETUA_1, FETUA_2, IBP4_1, MDHT.


PSG1_1
ADA12_1, FETUA_2, MDHT., MDWT.


PSG11_1
FETUA_2


PSG2_1
cHTN, FETUA_1, FETUA_2, MDHT.


PSG3_1
FETUA_2, IBP4_1, MDHT.


PSG9_1
cHTN, FETUA_1, FETUA_2, IBP4_1, MDHT.


PSG9_2
cHTN, FETUA_1, FETUA_2, MDHT.


PTGDS_1
FETUA_2, MDHT.


RET4_1
FETUA_1, FETUA_2, IBP4_1


SEPP1_1
ADA12_1, BMI, C1QA_1, CADH5_2, cHTN, CO5_2, CRAC1_1, FETUA_1,



FETUA_2, HEMO_1, IBP4_1, LBP_1, LBP_2, LEP_1, MDHT., MDWT.,



PEDF_1, PEDF_2, PRDX2_1, SHBG_1, SHBG_3


SEPP1_2
A2GL_1, FETUA_2, IBP4_1, ITIH4_2, MDWT., MUC18_1


SHBG_1
ADA12_1, AFAM_2, cHTN, FA5_2, FETUA_2, IBP4_1, IL1R1_1, LBP_1,



LBP_2, MDHT., MDWT., MUC18_2, PRG4_2, SEPP1_1, VGFR1_1, VTNC_1,



VTNC_2


SHBG_3
AFAM_2, FETUA_2, IBP4_1, MDHT., SEPP1_1


SOM2_1
IBP4_1


SOM2_2
FETUA_1, FETUA_2, LBP_1, LBP_2


SPRL1_1
FETUA_2, MDHT.


SVEP1_1
AFAM_2, cHTN, FETUA_2, IGF1_1, IL1R1_1, MDHT.


TENX_1
A2GL_1, cHTN, FETUA_1, FETUA_2, IBP4_1, ITIH4_2, MDHT., PRL_1,



PRL_2


TENX_2
FETUA_2, IBP4_1, MDHT., MUC18_1


TETN_2
A2GL_1, IBP4_1


THBG_1
IBP4_1


THRB_1
A2GL_1, FETUA_1


TIE1_1
cHTN, FETUA_2, IBP4_1, MDHT.


TIMP1_1
A2GL_1, FETUA_2, IBP4_1, MDHT., MUC18_1


User
FETUA_1, FETUA_2, LYAM1_1


VGFR1_1
ADA12_1, FETUA_2, MDHT., MDWT., PRL_1, PRL_2, SHBG_1


VTDB_1
ADA12_1, FETUA_2


VTNC_1
ADA12_1, BMI, cHTN, FETUA_2, MDHT., MDWT., PEDF_2, SHBG_1



A2GL_1, ADA12_1, BMI, CADH5_1, FETUA_2, LEP_1, MDHT., MDWT.,


VTNC_2
SHBG_1
















TABLE 25







Analyte pairs in trianalyte models containing AACT for nulliparous


women with gestational age at blood draws days 168-189








Analyte1
Analyte2





A2GL_1
CAH1_1, FETUA_2, PAEP_2, TENX_2


AACT_1
FETUA_2, IBP4_1, PAEP_1, PAEP_2


ADA12_1
AMBP_1, Bleedi, FETUA_2, IBP4_1, PAEP_1, PAEP_2, TENX_2


AFAM_1
ENPP2_2, FETUA_2, PAEP_1, TENX_2


AFAM_2
FETUA_2, TENX_2


ALS_1
FETUA_1, FETUA_2, ITIH4_2, ITIH4_3, PSG1_1, TENX_1, TENX_2


AMBP_1
ADA12_1, FETUA_2, IBP4_1, PRL_1, PRL_2


ANGT_1
DPEP2_1, FETUA_2, IBP4_1, PAEP_1, PAEP_2, PRL_2, VTNC_2


ANT3_1
FETUA_2, PRL_1, PRL_2


AOC1_1
IBP4_1, PAEP_1, PAEP_2


AOC1_2
IBP4_1


APOC3_1
IBP4_1, PAEP_1, PAEP_2


APOH_1
FETUA_2, IBP4_1, ITIH4_2, PAEP_2


ATL4_1
PAEP_1


ATS13_1
FETUA_2, IBP4_1, PAEP_1, PAEP_2


ATS13_2
FETUA_2, IBP4_1, PAEP_1, PAEP_2


B2MG_1
FETUA_2, ITIH4_2


B2MG_2
FETUA_2, ITIH4_2, ITIH4_3, PSG1_1


BGH3_1
PAEP_1, PAEP_2


Bleedi
ADA12_1, PAEP_1


BMI
FETUA_2, IBP4_1, ITIH4_2, KNG1_1, LBP_1, PAEP_2, RET4_1, VTNC_2


C163A_1
CLUS_1, FETUA_2, TENX_2


C1QA_1
CLUS_1, IBP4_1, IPSP_1, PAEP_1, PRL_1


C1QA_2
CBPN_2, FETUA_2, IBP4_1, IPSP_1, PAEP_1, PAEP_2


C1QB_1
IBP4_1, LEP_1, PAPP2_1, PSG9_1, PSG9_2


C1QB_2
PAEP_1, PAEP_2


C1QB_3
FETUA_2


C1QC_1
CBPN_2, IBP4_1


C1QC_2
DPEP2_2, IGF1_1, IPSP_1, ITIH4_2, PAPP2_1, SOM2_1, VTDB_1


CADH5_2
CBPN_1, FETUA_2


CAH1_1
A2GL_1, FETUA_1, IGF1_1, PGRP2_1, TENX_2


CAMP_1
PAEP_1, PAEP_2


CAMP_2
PAEP_1


CATD_1
FETUA_2, IBP4_1


CATD_2
FETUA_2, IBP4_1, PAEP_1


CBPN_1
CADH5_2, CLUS_1, ECM1_1, FETUA_1, FETUA_2, ITIH4_2, PEspec,



TENX_1, TENX_2


CBPN_2
C1QA_2, C1QC_1, CLUS_1, FETUA_1, FETUA_2, LEP_1, MDWT., PAEP_1,



PSG1_1, TENX_1, TENX_2


CD14_1
FETUA_2, IBP4_1, PRDX2_1


cDM
FETUA_2, IBP4_1, PAEP_1, PAEP_2


Cervix
FETUA_2, IBP4_1, ITIH4_2


CFAB_1
IBP4_1, ITIH4_3, LIRB5_1, PAEP_1, PAEP_2, PSG1_1, TENX_2


CGB1_1
FETUA_2, IBP4_1, PAEP_1, TENX_2


CGB1_2
FETUA_2, IBP4_1, TENX_2


CHL1_1
IBP4_1, PAEP_1


cHTN
FETUA_2, IBP4_1, PAEP_1, PAEP_2


CLUS_1
C163A_1, C1QA_1, CBPN_1, CBPN_2, FETUA_1, FETUA_2, HEMO_1,



IBP4_1, LIRB5_1, PRDX2_1, SPRL1_1, TENX_1, TIMP1_1


CLUS_2
FETUA_2, IBP4_1, PAEP_1, PAEP_2


CNTN1_1
PAEP_1, PAEP_2


CNTN1_2
FETUA_2, IBP4_1, PAEP_1


CO5_1
FETUA_2, IBP4_1, LIRB5_1


CO5_2
FETUA_2, IBP4_1, PAEP_1, PAEP_2


CO6_1
IBP4_1, PAEP_2


CO8A_1
FETUA_2, ITIH4_2, PRL_1, RET4_1


CO8B_1
FETUA_2, IBP4_1


CRAC1_1
FETUA_2


CRAC1_2
IBP4_1, PAEP_1, PAEP_2, TENX_2


CRAC1_3
FETUA_2, PAEP_1, PAEP_2


CRIS3_1
FETUA_2, IBP4_1, TENX_2


CRIS3_2
FETUA_2, IBP4_1, PAEP_1, PRL_1, PRL_2, TENX_2


CSH_1
FETUA_2, PRL_1


CSH_2
HEMO_1, PAEP_2


DEF1_1
FETUA_2


DEF1_2
FETUA_2, PAEP_2


DM
IBP4_1, PAEP_1, PRL_1


DPEP2_1
ANGT_1, FETUA_2


DPEP2_2
C1QC_2, FETUA_2, RET4_1


ECM1_1
CBPN_1, FETUA_2, PRDX2_1, PRL_1, PRL_2, PSG1_1, TENX_2


ECM1_2
FETUA_2, PAEP_1


EGLN_1
IBP4_1, PAEP_2


EGLN_2
FETUA_2, GELS_2, PCD12_1, PSG1_1


ENPP2_1
FETUA_2, IBP4_1, PAEP_1


ENPP2_2
AFAM_1, FETUA_2, PRL_1


F13B_1
RET4_1


FA11_1
FETUA_2, IBP4_1, PRL_1, TENX_2


FA11_2
FETUA_2, LEP_1


FA5_1
FETUA_2, PAEP_1, RET4_1, TENX_2


FA5_2
IBP4_1


FBLN1_1
FETUA_2, IBP4_1


FBLN3_1
FETUA_2, IBP4_1, TENX_2


FETUA_1
ALS_1, CAH1_1, CBPN_1, CBPN_2, CLUS_1, FETUA_2, IBP4_3, ITIH4_3,



PCD12_1, PRL_1, PRL_2, PSG1_1, PSG9_1, RET4_1


FETUA_2
A2GL_1, AACT_1, ADA12_1, AFAM_1, AFAM_2, ALS_1, AMBP_1, ANGT_1,



ANT3_1, APOH_1, ATS13_1, ATS13_2, B2MG_1, B2MG_2, BMI, C163A_1,



C1QA_2, C1QB_3, CADH5_2, CATD_1, CATD_2, CBPN_1, CBPN_2, CD14_1,



cDM, Cervix, CGB1_1, CGB1_2, cHTN, CLUS_1, CLUS_2, CNTN1_2, CO5_1,



CO5_2, CO8A_1, CO8B_1, CRAC1_1, CRAC1_3, CRIS3_1, CRIS3_2, CSH_1,



DEF1_1, DEF1_2, DPEP2_1, DPEP2_2, ECM1_1, ECM1_2, EGLN_2,



ENPP2_1, ENPP2_2, FA11_1, FA11_2, FA5_1, FBLN1_1, FBLN3_1, FETUA_1,



GABD., GDM, GELS_1, GPX3_1, GPX3_2, HABP2_1, HEMO_1, HLACI_1,



IBP2_1, IBP3_1, IBP3_2, IBP4_2, IBP4_3, IBP6_1, IBP6_2, IGF1_1, INHBC_1,



InvGra, InvPar, IPMLOS, IPSP_1, IPSP_2, ITIH4_2, ITIH4_3, KIT_1, KIT_2,



KNG1_1, KNG1_2, LBP_1, LBP_2, LEP_2, LYAM1_1, MDHT., MDWT.,



MFAP5_1, NdelCo, PAEP_1, PAEP_2, PCD12_1, PCD12_2, PEDF_2, PEspec,



PGRP2_1, PriorP, PRL_1, PRL_2, PROS_1, PROS_2, PSG1_1, PSG11_1,



PSG2_1, PSG3_1, PSG9_1, PSG9_2, PTGDS_1, PTGDS_2, RET4_1,



SEPP1_1, SEPP1_2, SHBG_1, SHBG_3, SOM2_2, SPRL1_1, SVEP1_1,



TENX3, TENX_2, TIMP1_1, User, VTDB_1


FGFR1_2
IBP4_1, LIRB5_1, PCD12_1


GABD.
FETUA_2, IBP4_1, PAEP_1, PAEP_2


GDM
FETUA_2, IBP4_1


GELS_1
FETUA_2, HEMO_1, PAEP_2


GELS_2
EGLN_2, HEMO_1, PAEP_1, TENX_2


GPX3_1
FETUA_2, IBP4_1, PAEP_2


GPX3_2
FETUA_2, HEMO_1, IBP4_1, PRL_1


HABP2_1
FETUA_2, IBP4_1, PAEP_1, PAEP_2


HEMO_1
CLUS_1, CSH_2, FETUA_2, GELS_1, GELS_2, GPX3_2, IBP4_1, KNG1_2,



LIRB5_1, PAEP_1, PAPP1_1, PRG4_2, PSG9_1, TENX_2, VTNC_2


HLACI_1
FETUA_2, IBP4_1, PAEP_1, PAEP_2


IBP1_1
TENX_2


IBP2_1
FETUA_2, PAEP_1, PAEP_2


IBP3_1
FETUA_2, PAEP_1


IBP3_2
FETUA_2, IBP4_1, PAEP_2


IBP4_1
AACT_1, ADA12_1, AMBP_1, ANGT_1, AOC1_1, AOC1_2, APOC3_1,



APOH_1, ATS13_1, ATS13_2, BMI, C1QA_1, C1QA_2, C1QB_1, C1QC_1,



CATD_1, CATD_2, CD14_1, cDM, Cervix, CFAB_1, CGB1_1, CGB1_2,



CHL1_1, cHTN, CLUS_1, CLUS_2, CNTN1_2, CO5_1, CO5_2, CO6_1,



CO8B_1, CRAC1_2, CRIS3_1, CRIS3_2, DM, EGLN_1, ENPP2_1, FA11_1,



FA5_2, FBLN1_1, FBLN3_1, FGFR1_2, GABD., GDM, GPX3_1, GPX3_2,



HABP2_1, HEMO_1, HLACI_1, IBP3_2, IBP4_2, IBP4_3, IBP6_2, InvGra,



InvPar, IPSP_2, ISM2_1, ISM2_2, ITIH3_1, ITIH4_2, KIT_1, KIT_2, KNG1_2,



LBP_1, LEP_2, MDHT., MDWT., MFAP5_1, NOTUM_2, PAEP_1, PAEP_2,



PAPP1_1, PAPP2_1, PCD12_2, PEDF_1, PEDF_2, PEspec, PGRP2_1, PriorP,



PROS_1, PROS_2, PSG2_1, PSG3_1, SEPP1_1, SHBG_1, SOM2_1,



SVEP1_1, TETN_2, THRB_1, TIE1_1, TIMP1_1, User, VGFR1_1, VTDB_1


IBP4_2
FETUA_2, IBP4_1, PRL_1


IBP4_3
FETUA_1, FETUA_2, IBP4_1, ITIH4_2, PAEP_1


IBP6_1
FETUA_2, PAEP_1


IBP6_2
FETUA_2, IBP4_1, PAEP_1


IGF1_1
C1QC_2, CAH1_1, FETUA_2, ITIH4_2


IL1R1_1
PRL_1, PSG1_1


INHBC_1
FETUA_2, PAEP_1, PAEP_2


InvGra
FETUA_2, IBP4_1, PAEP_2


InvPar
FETUA_2, IBP4_1, PAEP_1, PAEP_2


IPMLOS
FETUA_2, PEspec, TENX_2


IPSP_1
C1QA_1, C1QA_2, C1QC_2, FETUA_2


IPSP_2
FETUA_2, IBP4_1, PAEP_1, PAEP_2


ISM2_1
IBP4_1, PRL_1


ISM2_2
IBP4_1, PAEP_1, PAEP_2, PRL_1


ITIH3_1
IBP4_1, PAEP_1, PAEP_2


ITIH4_2
ALS_1, APOH_1, B2MG_1, B2MG_2, BMI, C1QC_2, CBPN_1, Cervix,



CO8A_1, FETUA_2, IBP4_1, IBP4_3, IGF1_1, LBP_1, LIRB5_1, MDWT.,



PriorP, PRL_1, PRL_2, RET4_1, SEPP1_1, SEPP1_2, TENX_2


ITIH4_3
ALS_1, B2MG_2, CFAB_1, FETUA_1, FETUA_2, LEP_1, LIRB5_1, PAEP_1


KIT_1
FETUA_2, IBP4_1


KIT_2
FETUA_2, IBP4_1, LIRB5_1


KNG1_1
BMI, FETUA_2, MDWT., PAEP_1


KNG1_2
FETUA_2, HEMO_1, IBP4_1, PAEP_1, PRL_1


LBP_1
BMI, FETUA_2, IBP4_1, ITIH4_2


LBP_2
FETUA_2


LEP_1
C1QB_1, CBPN_2, FA11_2, ITIH4_3, LYAM1_1, PAEP_1, PSG1_1, RET4_1,



TENX_1, TENX_2


LEP_2
FETUA_2, IBP4_1, PAEP_1, PAEP_2


LIRB5_1
CFAB_1, CLUS_1, CO5_1, FGFR1_2, HEMO_1, ITIH4_2, ITIH4_3, KIT_2,



PEDF_1, PEspec, PRDX2_1, PROS_1, PROS_2


LYAM1_1
FETUA_2, LEP_1, TENX_2


MDHT.
FETUA_2, IBP4_1


MDWT.
CBPN_2, FETUA_2, IBP4_1, ITIH4_2, KNG1_1, RET4_1


MFAP5_1
FETUA_2, IBP4_1, PAEP_1, PAEP_2


MUC18_1
RET4_1


NdelCo
FETUA_2, PAEP_2, TENX_2


NOTUM_1
PAEP_2


NOTUM_2
IBP4_1, PAEP_2


PAEP_1
AACT_1, ADA12_1, AFAM_1, ANGT_1, AOC1_1, APOC3_1, ATL4_1,



ATS13_1, ATS13_2, BGH3_1, Bleedi, C1QA_1, C1QA_2, C1QB_2, CAMP_1,



CAMP_2, CATD_2, CBPN_2, cDM, CFAB_1, CGB1_1, CHL1_1, cHTN,



CLUS_2, CNTN1_1, CNTN1_2, CO5_2, CRAC1_2, CRAC1_3, CRIS3_2, DM,



ECM1_2, ENPP2_1, FA5_1, FETUA_2, GABD., GELS_2, HABP2_1, HEMO_1,



HLACI_1, IBP2_1, IBP3_1, IBP4_1, IBP4_3, IBP6_1, IBP6_2, INHBC_1, InvPar,



IPSP_2, ISM2_2, ITIH3_1, ITIH4_3, KNG1_1, KNG1_2, LEP_1, LEP_2,



MFAP5_1, PAEP_2, PAPP1_1, PAPP2_1, PCD12_2, PEDF_1, PEDF_2,



PEspec, PGRP2_1, PRL_2, PSG9_2, PTGDS_1, PTGDS_2, SEPP1_1,



SEPP1_2, SHBG_1, SHBG_3, SOM2_1, SVEP1_1, TENX_1, TENX_2,



TIMP1_1, VGFR1_1, VTDB_1


PAEP_2
A2GL_1, AACT_1, ADA12_1, ANGT_1, AOC1_1, APOC3_1, APOH_1,



ATS13_1, ATS13_2, BGH3_1, BMI, C1QA_2, C1QB_2, CAMP_1, cDM,



CFAB_1, cHTN, CLUS_2, CNTN1_1, CO5_2, CO6_1, CRAC1_2, CRAC1_3,



CSH_2, DEF1_2, EGLN_1, FETUA_2, GABD., GELS_1, GPX3_1, HABP2_1,



HLACI_1, IBP2_1, IBP3_2, IBP4_1, INHBC_1, InvGra, InvPar, IPSP_2, ISM2_2,



ITIH3_1, LEP_2, MFAP5_1, NdelCo, NOTUM_1, NOTUM_2, PAEP_1,



PAPP1_1, PAPP2_1, PEDF_1, PEDF_2, PGRP2_1, PRG2_1, PRL_2, PSG2_1,



PSG9_2, PTGDS_1, PTGDS_2, SEPP1_2, SHBG_1, SOM2_1, SPRL1_1,



SVEP1_1, TENX_1, TENX_2, TIMP1_1, VGFR1_1, VTDB_1


PAPP1_1
HEMO_1, IBP4_1, PAEP_1, PAEP_2


PAPP2_1
C1QB_1, C1QC_2, IBP4_1, PAEP_1, PAEP_2, TENX_2


PCD12_1
EGLN_2, FETUA_1, FETUA_2, FGFR1_2, PRDX2_1, PRL_1, PRL_2, RET4_1,



TENX_2, TIE1_1, User


PCD12_2
FETUA_2, IBP4_1, PAEP_1, TENX_2


PEDF_1
IBP4_1, LIRB5_1, PAEP_1, PAEP_2


PEDF_2
FETUA_2, IBP4_1, PAEP_1, PAEP_2, RET4_1


PEspec
CBPN_1, FETUA_2, IBP4_1, IPMLOS, LIRB5_1, PAEP_1, RET4_1, TENX_2


PGRP2_1
CAH1_1, FETUA_2, IBP4_1, PAEP_1, PAEP_2


PRDX2_1
CD14_1, CLUS_1, ECM1_1, LIRB5_1, PCD12_1, TENX_2


PRG2_1
PAEP_2


PRG4_2
HEMO_1


PriorP
FETUA_2, IBP4_1, ITIH4_2


PRL_1
AMBP_1, ANT3_1, C1QA_1, CO8A_1, CRIS3_2, CSH_1, DM, ECM1_1,



ENPP2_2, FA11_1, FETUA_1, FETUA_2, GPX3_2, IBP4_2, IL1R1_1, ISM2_1,



ISM2_2, ITIH4_2, KNG1_2, PCD12_1, RET4_1, SHBG_3, SOM2_1, TENX_1,



TENX_2, TIE1_1, TIMP1_1, VTNC_1


PRL_2
AMBP_1, ANGT_1, ANT3_1, CRIS3_2, ECM1_1, FETUA_1, FETUA_2,



ITIH4_2, PAEP_1, PAEP_2, PCD12_1, SEPP1_1, TENX_1, TENX_2


PROS_1
FETUA_2, IBP4_1, LIRB5_1, RET4_1


PROS_2
FETUA_2, IBP4_1, LIRB5_1


PSG1_1
ALS_1, B2MG_2, CBPN_2, CFAB_1, ECM1_1, EGLN_2, FETUA_1, FETUA_2,



IL1R1_1, LEP_1, RET4_1, SOM2_2, TENX_2, TIE1_1


PSG11_1
FETUA_2


PSG2_1
FETUA_2, IBP4_1, PAEP_2


PSG3_1
FETUA_2, IBP4_1, TENX_1


PSG9_1
C1QB_1, FETUA_1, FETUA_2, HEMO_1, TENX_2


PSG9_2
C1QB_1, FETUA_2, PAEP_1, PAEP_2, TENX_1, TENX_2, TIE1_1


PTGDS_1
FETUA_2, PAEP_1, PAEP_2


PTGDS_2
FETUA_2, PAEP_1, PAEP_2


RET4_1
BMI, CO8A_1, DPEP2_2, F13B_1, FA5_1, FETUA_1, FETUA_2, ITIH4_2,



LEP_1, MDWT., MUC18_1, PCD12_1, PEDF_2, PEspec, PRL_1, PROS_1,



PSG1_1, TENX_1, TIMP1_1, VTDB_1


SEPP1_1
FETUA_2, IBP4_1, ITIH4_2, PAEP_1, PRL_2, SPRL1_1


SEPP1_2
FETUA_2, ITIH4_2, PAEP_1, PAEP_2


SHBG_1
FETUA_2, IBP4_1, PAEP_1, PAEP_2


SHBG_3
FETUA_2, PAEP_1, PRL_1


SOM2_1
C1QC_2, IBP4_1, PAEP_1, PAEP_2, PRL_1


SOM2_2
FETUA_2, PSG1_1


SPRL1_1
CLUS_1, FETUA_2, PAEP_2, SEPP1_1, TENX_2


SVEP1_1
FETUA_2, IBP4_1, PAEP_1, PAEP_2


TENX_1
ALS_1, CBPN_1, CBPN_2, CLUS_1, FETUA_2, LEP_1, PAEP_1, PAEP_2,



PRL_1, PRL_2, PSG3_1, PSG9_2, RET4_1


TENX_2
A2GL_1, ADA12_1, AFAM_1, AFAM_2, ALS_1, C163A_1, CAH1_1, CBPN_1,



CBPN_2, CFAB_1, CGB1_1, CGB1_2, CRAC1_2, CRIS3_1, CRIS3_2,



ECM1_1, FA11_1, FA5_1, FBLN3_1, FETUA_2, GELS_2, HEMO_1, IBP1_1,



IPMLOS, ITIH4_2, LEP_1, LYAM1_1, NdelCo, PAEP_1, PAEP_2, PAPP2_1,



PCD12_1, PCD12_2, PEspec, PRDX2_1, PRL_1, PRL_2, PSG1_1, PSG9_1,



PSG9_2, SPRL1_1, TETN_2, VTNC_2


TETN_2
IBP4_1, TENX_2


THRB_1
IBP4_1


TIE1_1
IBP4_1, PCD12_1, PRL_1, PSG1_1, PSG9_2


TIMP1_1
CLUS_1, FETUA_2, IBP4_1, PAEP_1, PAEP_2, PRL_1, RET4_1


User
FETUA_2, IBP4_1, PCD12_1


VGFR1_1
IBP4_1, PAEP_1, PAEP_2


VTDB_1
C1QC_2, FETUA_2, IBP4_1, PAEP_1, PAEP_2, RET4_1


VTNC_1
PRL_1


VTNC_2
ANGT_1, BMI, HEMO_1, TENX_2
















TABLE 26







Analyte pairs in trianalyte models containing AACT for nulliparous


women with gestational age at blood draws days 175-196








Analyte1
Analyte2





A2GL_1
ADA12_1, AFAM_1, AFAM_2, ALS_1, APOH_1, ATS13_2, B2MG_1, BMI,



C1QB_1, C1QC_1, CBPN_2, CLUS_1, CO8B_1, CRAC1_3, CSH_2, FA11_1,



FA11_2, FETUA_2, GELS_1, GELS_2, IBP2_1, IPMLOS, KNG1_1, LEP_1,



LEP_2, MDHT., MDWT., NdelCo, PAEP_1, PAEP_2, PEDF_1, PSG9_1,



PSG9_2, RET4_1, SEPP1_1, SEPP1_2, SOM2_1, SPRL1_1, TENX_1, TENX_2,



TETN_1, TETN_2, TIMP1_1, VTDB_1, VTNC_2


AACT_1
KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2, RET4_1


ADA12_1
A2GL_1, AOC1_1, B2MG_1, C1QA_2, C1QC_1, CADH5_2, CATD_1, CGB1_1,



CGB1_2, CO6_1, CRAC1_2, CRAC1_3, CRIS3_1, CSH_2, ECM1_1, ECM1_2,



EGLN_2, FGFR1_2, ITIH4_2, KNG1_1, LEP_2, MDHT., PAEP_1, PAEP_2,



PRG2_1, PROS_2, PSG9_1, PSG9_2, RET4_1, SEPP1_2, SOM2_2, TENX_1,



VGFR1_1, VTDB_1


AFAM_1
A2GL_1, BMI, C1QA_1, C1QA_2, C1QB_1, C1QB_2, C1QC_1, C1QC_2,



CGB1_1, CGB1_2, CRAC1_1, FETUA_1, IBP2_1, KIT_1, KIT_2, KNG1_1,



LEP_2, MDWT., NpregC, PEDF_2, PRG2_1, PSG1_1, PSG9_1, PSG9_2,



SEPP1_2, TENX_2


AFAM_2
A2GL_1, C1QA_2, C1QB_2, C1QC_1, ECM1_1, GELS_2, IBP2_1, KNG1_1,



LEP_1, MDWT., PAEP_1, SEPP1_1, SHBG_3, TENX_1, TENX_2


ALS_1
A2GL_1, C1QC_1, GELS_2, PAEP_1, PEDF_1, TENX_1


AMBP_1
KNG1_1, LEP_1, LEP_2, PAEP_1, PSG9_2, RET4_1


ANGT_1
CSH_2, ECM1_1, GPX3_1, KNG1_1, PAEP_1, PAEP_2, RET4_1


ANT3_1
GELS_2, KNG1_1, TENX_2


AOC1_1
ADA12_1, KNG1_1, LEP_1, PAEP_1, PEDF_1, PSG9_1, PSG9_2, RET4_1,



VTDB_1


AOC1_2
GELS_2, KNG1_1, LEP_1, PSG9_2, RET4_1


APOC3_1
CO8B_1, KNG1_1, PAEP_1, SOM2_1


APOH_1
A2GL_1, BMI, CAMP_1, CAMP_2, GELS_2, IGF2_1, KNG1_1, LEP_1, MDWT.,



PAEP_1, PSG9_1, PSG9_2, RET4_1


ATL4_1
KNG1_1, LEP_1, PSG9_2, RET4_1


ATS13_1
CBPN_1, EGLN_2, KNG1_1, LEP_1, PAEP_1, PROS_2, PSG9_1, PSG9_2,



RET4_1, SEPP1_1, SPRL1_1


ATS13_2
A2GL_1, C1QB_1, C1QB_2, CSH_2, IBP2_1, KNG1_1, LEP_1, LEP_2,



PAEP_1, PAEP_2, PSG9_1, PSG9_2, TENX_1, VTDB_1


B2MG_1
A2GL_1, ADA12_1, CBPN_1, CD14_1, CGB1_1, CGB1_2, CRAC1_2, GELS_2,



IBP2_1, KIT_1, MUC18_1, MUC18_2, PAEP_1, PRDX2_1, RET4_1, SVEP1_1


B2MG_2
GELS_2, KNG1_1, PAEP_1, PSG9_2, RET4_1


BGH3_1
GELS_2, KNG1_1, PAEP_1


Bleedi
BMI, KNG1_1, LEP_2, PAEP_1, PROS_2, PSG9_2, RET4_1, VTDB_1


BMI
A2GL_1, AFAM_1, APOH_1, Bleedi, C1QA_2, CBPN_1, cHTN, CO5_2, CO6_1,



CSH_2, FETUA_1, FGFR1_2, IBP3_2, IL1R1_1, ITIH4_1, KIT_1, KNG1_1,



KNG1_2, LEP_1, LEP_2, MDHT., MDWT., PCD12_1, PRG2_1, PSG9_1,



PSG9_2, RET4_1, SEPP1_1, SHBG_3, SPRL1_1, THBG_1, VTDB_1


C163A_1
CO6_1, KNG1_1, LEP_1, PSG9_2


C1QA_1
AFAM_1, CGB1_2, CO6_1, KNG1_1, LEP_1, PEDF_1, PSG9_1, PSG9_2,



RET4_1, SPRL1_1


C1QA_2
ADA12_1, AFAM_1, AFAM_2, BMI, ECM1_1, FA5_2, IBP1_1, LEP_1, PAEP_1,



PSG9_2, RET4_1


C1QB_1
A2GL_1, AFAM_1, ATS13_2, C1QB_3, CBPN_1, CLUS_1, CRIS3_1, LEP_1,



PSG9_1, RET4_1, TENX_2


C1QB_2
AFAM_1, AFAM_2, ATS13_2, CBPN_1, CRIS3_1, IBP2_1, LEP_1, PSG9_2,



RET4_1


C1QB_3
C1QB_1, KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2, RET4_1


C1QC_1
A2GL_1, ADA12_1, AFAM_1, AFAM_2, ALS_1, CO6_1, ECM1_1, IGF2_1,



KNG1_1, LEP_1, PSG9_1, PSG9_2, SPRL1_1, TENX_2


C1QC_2
AFAM_1, CGB1_1, GELS_2


CADH5_2
ADA12_1, FA5_2, GELS_2, IBP2_1, IBP3_2, IBP6_1, KNG1_1, PAEP_1,



PAPP2_1, PRG4_2, PSG9_2, SVEP1_1, TENX_2


CAH1_1
KNG1_1, PAEP_1, PSG9_1, PSG9_2, RET4_1


CAMP_1
APOH_1, ECM1_1


CAMP_2
APOH_1, KNG1_1, PROS_2


CATD_1
ADA12_1, KNG1_1, LEP_1, PAEP_1, PSG1_1, PSG9_1, PSG9_2, RET4_1


CATD_2
CSH_2, GELS_2, IBP3_1, KNG1_1, LEP_1, PAEP_1, PAEP_2, PSG9_2


CBPN_1
ATS13_1, B2MG_1, BMI, C1QB_1, C1QB_2, ECM1_1, KNG1_1, LEP_1,



MDWT., PAEP_1, PAEP_2, PSG9_1, PSG9_2, RET4_1


CBPN_2
A2GL_1, CSH_2, ECM1_1, KNG1_1, LEP_1, PAEP_1, PAEP_2, PSG9_1,



PSG9_2, RET4_1


CD14_1
B2MG_1, KNG1_1, LEP_1, PAEP_1, PEDF_1, PSG9_1, PSG9_2


CD14_2
GELS_2, IBP3_1, KNG1_1, LEP_1, PAEP_1, RET4_1


cDM
KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2, RET4_1


Cervix
KNG1_1


CFAB_1
KNG1_1, PAEP_1


CGB1_1
ADA12_1, AFAM_1, B2MG_1, C1QC_2, CSH_2, ECM1_1, IBP3_2, KNG1_1,



KNG1_2, PAEP_1, PAEP_2, PSG9_1, PSG9_2, SOM2_1, VTDB_1


CGB1_2
ADA12_1, AFAM_1, B2MG_1, C1QA_1, KNG1_1, PSG9_1, PSG9_2


CHL1_1
KNG1_1, LEP_1, PSG9_2


cHTN
BMI, KNG1_1, MDWT., PAEP_1


CLUS_1
A2GL_1, C1QB_1, KNG1_1, LEP_1, PAEP_1


CLUS_2
KNG1_1, PAEP_1


CNTN1_1
KNG1_1, PAEP_1, PSG9_1, PSG9_2


CNTN1_2
KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2


CO5_1
GELS_2, KNG1_1, PAEP_1, PAEP_2, PSG9_1, PSG9_2, RET4_1


CO5_2
BMI, LEP_1, MDWT., PAEP_1, PSG9_1, PSG9_2, RET4_1


CO6_1
ADA12_1, BMI, C163A_1, C1QA_1, C1QC_1, ECM1_1, FETUA_1, LEP_1,



PAEP_1, PAEP_2, PEDF_1, PSG9_1, PSG9_2, RET4_1, SOM2_1


CO8A_1
KNG1_1, PAEP_1, PSG9_2, RET4_1


CO8B_1
A2GL_1, APOC3_1, KNG1_1, KNG1_2, LEP_1, PAEP_1, PRG4_2, PSG9_2,



VTDB_1


CRAC1_1
AFAM_1, KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2


CRAC1_2
ADA12_1, B2MG_1, KNG1_1, LEP_1, PAEP_1


CRAC1_3
A2GL_1, ADA12_1, GELS_2, KNG1_1, PAEP_1, PAEP_2


CRIS3_1
ADA12_1, C1QB_1, C1QB_2, ECM1_1, GELS_2, GPX3_1, KNG1_1, KNG1_2,



LEP_1, LEP_2, MFAP5_1, PAEP_1, PAEP_2, PROS_2, PSG1_1, PSG9_1,



PSG9_2, RET4_1, VTDB_1


CRIS3_2
ECM1_1, GELS_1, KNG1_1, LEP_1, PAEP_1, PEDF_1


CSH_1
KNG1_1, PAEP_1, PSG9_2, RET4_1


CSH_2
A2GL_1, ADA12_1, ANGT_1, ATS13_2, BMI, CATD_2, CBPN_2, CGB1_1,



ENPP2_1, GELS_2, IBP3_2, IGF2_1, KNG1_1, LEP_1, PROS_2, PSG9_2,



SVEP1_1, TENX_2, THBG_1, VTDB_1


DEF1_1
KNG1_1, LEP_1, PSG9_2, VTDB_1


DEF1_2
KNG1_1, VTDB_1


DM
KNG1_1, PAEP_1


DPEP2_1
KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2, RET4_1


DPEP2_2
KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2


ECM1_1
ADA12_1, AFAM_2, ANGT_1, C1QA_2, C1QC_1, CAMP_1, CBPN_1, CBPN_2,



CGB1_1, CO6_1, CRIS3_1, CRIS3_2, FA5_2, FBLN1_1, GELS_2, GPX3_1,



IBP3_2, IGF2_1, KNG1_1, LEP_1, LEP_2, PAEP_1, PAEP_2, PEDF_1, PRL_2,



SEPP1_2, SPRL1_1, TENX_2, TIMP1_1


ECM1_2
ADA12_1, KNG1_1, LEP_1, PAEP_1


EGLN_1
KNG1_1, LEP_1, PSG9_2, RET4_1, TENX_1


EGLN_2
ADA12_1, ATS13_1, GPX3_1, KNG1_1, LEP_1, PAEP_1, PSG9_2


ENPP2_1
CSH_2, GELS_2, KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2, RET4_1


ENPP2_2
KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2, RET4_1


F13B_1
KNG1_1, PSG9_2, RET4_1


FA11_1
A2GL_1, IBP6_2, KNG1_1


FA11_2
A2GL_1, GELS_2, IBP6_2, PSG9_2, RET4_1


FA5_1
IBP3_1, KNG1_1, PAEP_1, PSG9_2


FA5_2
C1QA_2, CADH5_2, ECM1_1, GELS_2, KNG1_1, PAEP_1, PAEP_2, PSG9_1,



PSG9_2, RET4_1


FA9_1
PEDF_1


FA9_2
KNG1_1, PAEP_1


FBLN1_1
ECM1_1, GELS_2, KNG1_1, PSG9_1, PSG9_2


FBLN3_1
GELS_2, KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2, RET4_1


FETUA_1
AFAM_1, BMI, CO6_1, IBP3_1, IBP3_2, IGF2_1, KNG1_1, KNG1_2, LEP_1,



LEP_2, MDWT., PAEP_1, PSG9_2, RET4_1


FETUA_2
A2GL_1, KNG1_2, VTDB_1


FGFR1_1
GELS_2, KNG1_1, LEP_1, PAEP_1, PAEP_2, PSG9_1, PSG9_2, RET4_1,



SEPP1_1


FGFR1_2
ADA12_1, BMI, GPX3_1, LEP_1, PAEP_1, PSG9_1, PSG9_2, RET4_1


GABD.
KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2, RET4_1


GDM
KNG1_1


GELS_1
A2GL_1, CRIS3_2, LEP_1, PAEP_1, PAEP_2, PRG4_2


GELS_2
A2GL_1, AFAM_2, ALS_1, ANT3_1, AOC1_2, APOH_1, B2MG_1, B2MG_2,



BGH3_1, C1QC_2, CADH5_2, CATD_2, CD14_2, CO5_1, CRAC1_3, CRIS3_1,



CSH_2, ECM1_1, ENPP2_1, FA11_2, FA5_2, FBLN1_1, FBLN3_1, FGFR1_1,



HABP2_1, HEMO_1, HLACI_1, IBP1_1, IBP3_1, IBP3_2, IGF1_1, IGF2_1,



InvGra, IPMLOS, ITIH4_3, KNG1_1, KNG1_2, LBP_1, LBP_2, LEP_1, LEP_2,



MDWT., MFAP5_1, MUC18_1, NdelCo, PAEP_1, PAEP_2, PEDF_2, PRG4_1,



PRG4_2, PriorP, PRL_2, PROS_1, PROS_2, PSG2_1, PSG3_1, PSG9_1,



PSG9_2, SEPP1_2, SHBG_1, SPRL1_1, THRB_1, TIMP1_1, VTDB_1


GPX3_1
ANGT_1, CRIS3_1, ECM1_1, EGLN_2, FGFR1_2, IBP2_1, ITIH4_2, KIT_1,



KNG1_1, LEP_1, NdelCo, PRG4_2, TETN_2, TFMP1_1, VTDB_1


GPX3_2
KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2, RET4_1


HABP2_1
GELS_2, KNG1_1, LEP_1, PAEP_1, PSG9_2


HEMO_1
GELS_2, HLACI_1, IBP3_1, IGF2_1, KIT_1, KIT_2, KNG1_1, PSG9_2,



SEPP1_1, TENX_1


HLACI_1
GELS_2, HEMO_1, KNG1_1, LEP_1, PAEP_1, PSG9_2, RET4_1


IBP1_1
C1QA_2, GELS_2, LEP_1, TENX_1


IBP2_1
A2GL_1, AFAM_1, AFAM_2, ATS13_2, B2MG_1, C1QB_2, CADH5_2, GPX3_1,



IBP3_1, IBP3_2, IGF2_1, KNG1_1, KNG1_2, LEP_1, PAEP_1, PCD12_1,



PSG9_1, PSG9_2, RET4_1, TENX_1, VTDB_1


IBP3_1
CATD_2, CD14_2, FA5_1, FETUA_1, GELS_2, HEMO_1, IBP2_1, IBP6_2,



KNG1_1, LYAM1_1, PAEP_1, PAEP_2, PEDF_1, PROS_2, SEPP1_1, TENX_1


IBP3_2
BMI, CADH5_2, CGB1_1, CSH_2, ECM1_1, FETUA_1, GELS_2, IBP2_1,



IBP6_2, KNG1_1, LEP_1, LEP_2, MDWT., PAEP_1, PAEP_2, PEDF_1,



TENX_1, TENX_2


IBP4_1
KNG1_1


IBP4_2
KNG1_1


IBP4_3
KNG1_1, PSG9_1, PSG9_2


IBP6_1
CADH5_2, KNG1_1, PEDF_1, RET4_1


IBP6_2
FA11_1, FA11_2, IBP3_1, IBP3_2, KNG1_1, PSG9_2, THRB_1, VTDB_1


IGF1_1
GELS_2, PAEP_1


IGF2_1
APOH_1, C1QC_1, CSH_2, ECM1_1, FETUA_1, GELS_2, HEMO_1, IBP2_1,



KNG1_1, MDWT., PAEP_1, PEDF_1, PROS_2, PSG9_2, RET4_1


IL1R1_1
BMI, KNG1_1, PAEP_1, PSG9_2, RET4_1


INHBC_1
KNG1_1, PSG9_2, RET4_1, VTDB_1


InvGra
GELS_2, KNG1_1, LEP_1, PAEP_2, PROS_2, PSG9_1, PSG9_2, RET4_1


InvPar
KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2, RET4_1


IPMLOS
A2GL_1, GELS_2, KNG1_1, PAEP_1, PSG9_2, RET4_1


IPSP_1
KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2, RET4_1


IPSP_2
KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2, RET4_1


ISM2_1
KNG1_1, LEP_1, PAEP_1, PAEP_2, PSG9_1, PSG9_2, RET4_1


ISM2_2
KNG1_1, LEP_1, NOTUM_2, PAEP_1, PEDF_1, PSG9_1, PSG9_2, TENX_2


ITIH3_1
KNG1_1


ITIH4_1
BMI, KNG1_1, PSG9_2, RET4_1


ITIH4_2
ADA12_1, GPX3_1, KNG1_1, PAEP_1, PSG9_2, RET4_1, SEPP1_2


ITIH4_3
GELS_2, KNG1_1, LEP_1, PAEP_1, PEDF_1, PSG1_1


KIT_1
AFAM_1, B2MG_1, BMI, GPX3_1, HEMO_1, KNG1_1, LEP_1, PAEP_1,



PAEP_2, PSG9_2, TENX_1


KIT_2
AFAM_1, HEMO_1, KNG1_1, PAEP_1, PAEP_2


KNG1_1
A2GL_1, AACT_1, ADA12_1, AFAM_1, AFAM_2, AMBP_1, ANGT_1, ANT3_1,



AOC1_1, AOC1_2, APOC3_1, APOH_1, ATL4_1, ATS13_1, ATS13_2, B2MG_2,



BGH3_1, Bleedi, BMI, C163A_1, C1QA_1, C1QB_3, C1QC_1, CADH5_2,



CAH1_1, CAMP_2, CATD_1, CATD_2, CBPN_1, CBPN_2, CD14_1, CD14_2,



cDM, Cervix, CFAB_1, CGB1_1, CGB1_2, CHL1_1, cHTN, CLUS_1, CLUS_2,



CNTN1_1, CNTN1_2, CO5_1, CO8A_1, CO8B_1, CRAC1_1, CRAC1_2,



CRAC1_3, CRIS3_1, CRIS3_2, CSH_1, CSH_2, DEF1_1, DEF1_2, DM,



DPEP2_1, DPEP2_2, ECM1_1, ECM1_2, EGLN_1, EGLN_2, ENPP2_1,



ENPP2_2, F13B_1, FA11_1, FA5_1, FA5_2, FA9_2, FBLN1_1, FBLN3_1,



FETUA_1, FGFR1_1, GABD., GDM, GELS_2, GPX3_1, GPX3_2, HABP2_1,



HEMO_1, HLACI_1, IBP2_1, IBP3_1, IBP3_2, IBP4_1, IBP4_2, IBP4_3, IBP6_1,



IBP6_2, IGF2_1, IL1R1_1, INHBC_1, InvGra, InvPar, IPMLOS, IPSP_1, IPSP_2,



ISM2_1, ISM2_2, ITIH3_1, ITIH4_1, ITIH4_2, ITIH4_3, KIT_1, KIT_2, KNG1_2,



LBP_1, LBP_2, LEP_1, LEP_2, LIRB5_1, LYAM1_1, MAGE, MDHT., MDWT.,



MFAP5_1, MUC18_1, NdelCo, NOTUM_1, NOTUM_2, PAEP_1, PAEP_2,



PAPP1_1, PAPP2_1, PCD12_1, PCD12_2, PEDF_2, PEspec, PGRP2_1,



PRDX2_1, PRG2_1, PRG4_1, PRG4_2, PriorP, PRL_2, PROS_1, PROS_2,



PSG11_1, PSG2_1, PSG3_1, PSG9_1, PSG9_2, PTGDS_1, PTGDS_2,



RET4_1, SEPP1_1, SEPP1_2, SHBG_1, SHBG_3, SOM2_1, SOM2_2,



SPRL1_1, TETN_1, TETN_2, THBG_1, THRB_1, TIE1_1, TIMP1_1, User,



VGFR1_1, VTDB_1, VTNC_2


KNG1_2
BMI, CGB1_1, CO8B_1, CRIS3_1, FETUA_1, FETUA_2, GELS_2, IBP2_1,



KNG1_1, LEP_1, MDWT., PAEP_1, PEDF_1, PROS_2


LBP_1
GELS_2, KNG1_1, LEP_1, TENX_2


LBP_2
GELS_2, KNG1_1


LEP_1
A2GL_1, AACT_1, AFAM_2, AMBP_1, AOC1_1, AOC1_2, APOH_1, ATL4_1,



ATS13_1, ATS13_2, BMI, C163A_1, C1QA_1, C1QA_2, C1QB_1, C1QB_2,



C1QB_3, C1QC_1, CATD_1, CATD_2, CBPN_1, CBPN_2, CD14_1, CD14_2,



cDM, CHL1_1, CLUS_1, CNTN1_2, CO5_2, CO6_1, CO8B_1, CRAC1_1,



CRAC1_2, CRIS3_1, CRIS3_2, CSH_2, DEF1_1, DPEP2_1, DPEP2_2,



ECM1_1, ECM1_2, EGLN_1, EGLN_2, ENPP2_1, ENPP2_2, FBLN3_1,



FETUA_1, FGFR1_1, FGFR1_2, GABD., GELS_1, GELS_2, GPX3_1, GPX3_2,



HABP2_1, HLACI_1, IBP1_1, IBP2_1, IBP3_2, InvGra, InvPar, IPSP_1, IPSP_2,



ISM2_1, ISM2_2, ITIH4_3, KIT_1, KNG1_1, KNG1_2, LBP_1, LEP_2, LIRB5_1,



LYAM1_1, MDHT., MDWT., NOTUM_1, PAEP_1, PAEP_2, PAPP2_1, PCD12_1,



PEspec, PGRP2_1, PRG2_1, PRL_2, PROS_1, PROS_2, PSG11_1, PSG3_1,



PSG9_1, PSG9_2, PTGDS_1, PTGDS_2, RET4_1, SEPP1_1, SHBG_1,



SHBG_3, SOM2_2, SPRL1_1, TENX_1, TENX_2, TETN_1, TETN_2, THBG_1,



THRB_1, User, VGFR1_1, VTDB_1, VTNC_1, VTNC_2


LEP_2
A2GL_1, ADA12_1, AFAM_1, AMBP_1, ATS13_2, Bleedi, BMI, CRIS3_1,



ECM1_1, FETUA_1, GELS_2, IBP3_2, KNG1_1, LEP_1, PAEP_1, PCD12_1,



PRL_1, PSG11_1, PSG9_1, PSG9_2, RET4_1, SEPP1_2, THRB_1, VTDB_1


LIRB5_1
KNG1_1, LEP_1


LYAM1_1
IBP3_1, KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2, RET4_1


MAGE
KNG1_1, PAEP_1, PSG9_1, PSG9_2, RET4_1


MDHT.
A2GL_1, ADA12_1, BMI, KNG1_1, LEP_1, MDWT., PAEP_1, PAEP_2, PSG9_2,



RET4_1, SEPP1_2


MDWT.
A2GL_1, AFAM_1, AFAM_2, APOH_1, BMI, CBPN_1, cHTN, CO5_2, FETUA_1,



GELS_2, IBP3_2, IGF2_1, KNG1_1, KNG1_2, LEP_1, MDHT., PAEP_1,



PAEP_2, PCD12_1, PRG4_2, PSG9_1, PSG9_2, RET4_1, SEPP1_1, SHBG_3,



SPRL1_1, VTDB_1


MFAP5_1
CRIS3_1, GELS_2, KNG1_1, PAEP_1, PSG9_1, PSG9_2, RET4_1, TENX_1


MUC18_1
B2MG_1, GELS_2, KNG1_1, PSG9_2


MUC18_2
B2MG_1, PAEP_1


NdelCo
A2GL_1, GELS_2, GPX3_1, KNG1_1, PAEP_1, PSG9_2


NOTUM_1
KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2


NOTUM_2
ISM2_2, KNG1_1, PAEP_1, PAEP_2, PSG9_1, PSG9_2, RET4_1


NpregC
AFAM_1


PAEP_1
A2GL_1, AACT_1, ADA12_1, AFAM_2, ALS_1, AMBP_1, ANGT_1, AOC1_1,



APOC3_1, APOH_1, ATS13_1, ATS13_2, B2MG_1, B2MG_2, BGH3_1, Bleedi,



C1QA_2, C1QB_3, CADH5_2, CAH1_1, CATD_1, CATD_2, CBPN_1, CBPN_2,



CD14_1, CD14_2, cDM, CFAB_1, CGB1_1, cHTN, CLUS_1, CLUS_2,



CNTN1_1, CNTN1_2, CO5_1, CO5_2, CO6_1, CO8A_1, CO8B_1, CRAC1_1,



CRAC1_2, CRAC1_3, CRIS3_1, CRIS3_2, CSH_1, DM, DPEP2_1, DPEP2_2,



ECM1_1, ECM1_2, EGLN_2, ENPP2_1, ENPP2_2, FA5_1, FA5_2, FA9_2,



FBLN3_1, FETUA_1, FGFR1_1, FGFR1_2, GABD., GELS_1, GELS_2, GPX3_2,



HABP2_1, HLACI_1, IBP2_1, IBP3_1, IBP3_2, IGF1_1, IGF2_1, IL1R1_1,



InvPar, IPMLOS, IPSP_1, IPSP_2, ISM2_1, ISM2_2, ITIH4_2, ITIH4_3, KIT_1,



KIT_2, KNG1_1, KNG1_2, LEP_1, LEP_2, LYAM1_1, MAGE, MDHT., MDWT.,



MFAP5_1, MUC18_2, NdelCo, NOTUM_1, NOTUM_2, PAPP1_1, PAPP2_1,



PCD12_1, PCD12_2, PEDF_1, PEDF_2, PEspec, PRDX2_1, PRG2_1, PRG4_1,



PRG4_2, PriorP, PROS_1, PROS_2, PSG2_1, PSG9_1, PSG9_2, PTGDS_2,



SEPP1_1, SEPP1_2, SHBG_1, SHBG_3, SOM2_1, SOM2_2, SPRL1_1,



TENX_1, TENX_2, TETN_1, TETN_2, THBG_1, THRB_1, TIMP1_1, User,



VGFR1_1, VTDB_1, VTNC_2


PAEP_2
A2GL_1, ADA12_1, ANGT_1, ATS13_2, CATD_2, CBPN_1, CBPN_2, CGB1_1,



CO5_1, CO6_1, CRAC1_3, CRIS3_1, ECM1_1, FA5_2, FGFR1_1, GELS_1,



GELS_2, IBP3_1, IBP3_2, InvGra, ISM2_1, KIT_1, KIT_2, KNG1_1, LEP_1,



MDHT., MDWT., NOTUM_2, PRG4_1, PRG4_2, PriorP, PROS_2, PSG2_1,



SEPP1_2, SPRL1_1, TENX_1, TENX_2, TIMP1_1


PAPP1_1
KNG1_1, PAEP_1, PSG9_1, PSG9_2, RET4_1


PAPP2_1
CADH5_2, KNG1_1, LEP_1, PAEP_1, RET4_1


PCD12_1
BMI, IBP2_1, KNG1_1, LEP_1, LEP_2, MDWT., PAEP_1, PEDF_1, PSG9_2,



RET4_1


PCD12_2
KNG1_1, PAEP_1, PSG9_1, PSG9_2, RET4_1


PEDF_1
A2GL_1, ALS_1, AOC1_1, C1QA_1, CD14_1, CO6_1, CRIS3_2, ECM1_1,



FA9_1, IBP3_1, IBP3_2, IBP6_1, IGF2_1, ISM2_2, ITIH4_3, KNG1_2, PAEP_1,



PCD12_1, PRG4_1, PRG4_2, PSG9_1, PSG9_2, PTGDS_2, RET4_1,



SEPP1_2, TENX_1, User, VTDB_1


PEDF_2
AFAM_1, GELS_2, KNG1_1, PAEP_1, PSG9_1, PSG9_2, RET4_1


PEspec
KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2, RET4_1


PGRP2_1
KNG1_1, LEP_1, PSG9_2


PRDX2_1
B2MG_1, KNG1_1, PAEP_1, PSG9_2, RET4_1


PRG2_1
ADA12_1, AFAM_1, BMI, KNG1_1, LEP_1, PAEP_1, PSG9_2, RET4_1


PRG4_1
GELS_2, KNG1_1, PAEP_1, PAEP_2, PEDF_1


PRG4_2
CADH5_2, CO8B_1, GELS_1, GELS_2, GPX3_1, KNG1_1, MDWT., PAEP_1,



PAEP_2, PEDF_1, PROS_2, TIMP1_1


PriorP
GELS_2, KNG1_1, PAEP_1, PAEP_2, PSG9_1, PSG9_2, RET4_1


PRL_1
LEP_2, PSG9_2, RET4_1


PRL_2
ECM1_1, GELS_2, KNG1_1, LEP_1, PSG9_1, PSG9_2


PROS_1
GELS_2, KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2


PROS_2
ADA12_1, ATS13_1, Bleedi, CAMP_2, CRIS3_1, CSH_2, GELS_2, IBP3_1,



IGF2_1, InvGra, KNG1_1, KNG1_2, LEP_1, PAEP_1, PAEP_2, PRG4_2,



PSG9_1, PSG9_2, RET4_1, SEPP1_2, THBG_1, VTDB_1


PSG1_1
AFAM_1, CATD_1, CRIS3_1, ITIH4_3


PSG11_1
KNG1_1, LEP_1, LEP_2, PSG9_1, PSG9_2, RET4_1


PSG2_1
GELS_2, KNG1_1, PAEP_1, PAEP_2, PSG9_1, PSG9_2, RET4_1


PSG3_1
GELS_2, KNG1_1, LEP_1, PSG9_1, PSG9_2, RET4_1


PSG9_1
A2GL_1, AACT_1, ADA12_1, AFAM_1, AOC1_1, APOH_1, ATS13_1, ATS13_2,



BMI, C1QA_1, C1QB_1, C1QB_3, C1QC_1, CAH1_1, CATD_1, CBPN_1,



CBPN_2, CD14_1, cDM, CGB1_1, CGB1_2, CNTN1_1, CNTN1_2, CO5_1,



CO5_2, CO6_1, CRAC1_1, CRIS3_1, DPEP2_1, DPEP2_2, ENPP2_1,



ENPP2_2, FA5_2, FBLN1_1, FBLN3_1, FGFR1_1, FGFR1_2, GABD., GELS_2,



GPX3_2, IBP2_1, IBP4_3, InvGra, InvPar, IPSP_1, IPSP_2, ISM2_1, ISM2_2,



KNG1_1, LEP_1, LEP_2, LYAM1_1, MAGE, MDWT., MFAP5_1, NOTUM_1,



NOTUM_2, PAEP_1, PAPP1_1, PCD12_2, PEDF_1, PEDF_2, PEspec, PriorP,



PRL_2, PROS_1, PROS_2, PSG11_1, PSG2_1, PSG3_1, PSG9_2, PTGDS_2,



RET4_1, SHBG_1, SHBG_3, TENX_1, TENX_2, TETN_1, TETN_2, TIMP1_1,



User, VGFR1_1


PSG9_2
A2GL_1, AACT_1, ADA12_1, AFAM_1, AMBP_1, AOC1_1, AOC1_2, APOH_1,



ATL4_1, ATS13_1, ATS13_2, B2MG_2, Bleedi, BMI, C163A_1, C1QA_1,



C1QA_2, C1QB_2, C1QB_3, C1QC_1, CADH5_2, CAH1_1, CATD_1, CATD_2,



CBPN_1, CBPN_2, CD14_1, cDM, CGB1_1, CGB1_2, CHL1_1, CNTN1_1,



CNTN1_2, CO5_1, CO5_2, CO6_1, CO8A_1, CO8B_1, CRAC1_1, CRIS3_1,



CSH_1, CSH_2, DEF1_1, DPEP2_1, DPEP2_2, EGLN_1, EGLN_2, ENPP2_1,



ENPP2_2, F13B_1, FA11_2, FA5_1, FA5_2, FBLN1_1, FBLN3_1, FETUA_1,



FGFR1_1, FGFR1_2, GABD., GELS_2, GPX3_2, HABP2_1, HEMO_1, HLACI_1,



IBP2_1, IBP4_3, IBP6_2, IGF2_1, IL1R1_1, INHBC_1, InvGra, InvPar, IPMLOS,



IPSP_1, IPSP_2, ISM2_1, ISM2_2, ITIH4_1, ITIH4_2, KIT_1, KNG1_1, LEP_1,



LEP_2, LYAM1_1, MAGE, MDHT., MDWT., MFAP5_1, MUC18_1, NdelCo,



NOTUM_1, NOTUM_2, PAEP_1, PAPP1_1, PCD12_1, PCD12_2, PEDF_1,



PEDF_2, PEspec, PGRP2_1, PRDX2_1, PRG2_1, PriorP, PRL_1, PRL_2,



PROS_1, PROS_2, PSG11_1, PSG2_1, PSG3_1, PSG9_1, PTGDS_2, RET4_1,



SEPP1_1, SHBG_1, SHBG_3, SOM2_1, SOM2_2, SPRL1_1, TENX_2, TETN_1,



TETN_2, THRB_1, TIE1_1, TIMP1_1, User, VGFR1_1


PTGDS_1
KNG1_1, LEP_1


PTGDS_2
KNG1_1, LEP_1, PAEP_1, PEDF_1, PSG9_1, PSG9_2, RET4_1


RET4_1
A2GL_1, AACT_1, ADA12_1, AMBP_1, ANGT_1, AOC1_1, AOC1_2, APOH_1,



ATL4_1, ATS13_1, B2MG_1, B2MG_2, Bleedi, BMI, C1QA_1, C1QA_2,



C1QB_1, C1QB_2, C1QB_3, CAH1_1, CATD_1, CBPN_1, CBPN_2, CD14_2,



cDM, CO5_1, CO5_2, CO6_1, CO8A_1, CRIS3_1, CSH_1, DPEP2_1, EGLN_1,



ENPP2_1, ENPP2_2, F13B_1, FA11_2, FA5_2, FBLN3_1, FETUA_1, FGFR1_1,



FGFR1_2, GABD., GPX3_2, HLACI_1, IBP2_1, IBP6_1, IGF2_1, IL1R1_1,



INHBC_1, InvGra, InvPar, IPMLOS, IPSP_1, IPSP_2, ISM2_1, ITIH4_1, ITIH4_2,



KNG1_1, LEP_1, LEP_2, LYAM1_1, MAGE, MDHT., MDWT., MFAP5_1,



NOTUM_2, PAPP1_1, PAPP2_1, PCD12_1, PCD12_2, PEDF_1, PEDF_2,



PEspec, PRDX2_1, PRG2_1, PriorP, PRL_1, PROS_2, PSG11_1, PSG2_1,



PSG3_1, PSG9_1, PSG9_2, PTGDS_2, SEPP1_1, SHBG_1, SHBG_3,



SOM2_1, SPRL1_1, TENX_1, THBG_1, TIE1_1, TIMP1_1, User, VGFR1_1


SEPP1_1
A2GL_1, AFAM_2, ATS13_1, BMI, FGFR1_1, HEMO_1, IBP3_1, KNG1_1,



LEP_1, MDWT., PAEP_1, PSG9_2, RET4_1


SEPP1_2
A2GL_1, ADA12_1, AFAM_1, ECM1_1, GELS_2, ITIH4_2, KNG1_1, LEP_2,



MDHT., PAEP_1, PAEP_2, PEDF_1, PROS_2, VTDB_1


SHBG_1
GELS_2, KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2, RET4_1


SHBG_3
AFAM_2, BMI, KNG1_1, LEP_1, MDWT., PAEP_1, PSG9_1, PSG9_2, RET4_1


SOM2_1
A2GL_1, APOC3_1, CGB1_1, CO6_1, KNG1_1, PAEP_1, PSG9_2, RET4_1,



TENX_2


SOM2_2
ADA12_1, KNG1_1, LEP_1, PAEP_1, PSG9_2


SPRL1_1
A2GL_1, ATS13_1, BMI, C1QA_1, C1QC_1, ECM1_1, GELS_2, KNG1_1,



LEP_1, MDWT., PAEP_1, PAEP_2, PSG9_2, RET4_1, TENX_1


SVEP1_1
B2MG_1, CADH5_2, CSH_2


TENX_1
A2GL_1, ADA12_1, AFAM_2, ALS_1, ATS13_2, EGLN_1, HEMO_1, IBP1_1,



IBP2_1, IBP3_1, IBP3_2, KIT_1, LEP_1, MFAP5_1, PAEP_1, PAEP_2, PEDF_1,



PSG9_1, RET4_1, SPRL1_1


TENX_2
A2GL_1, AFAM_1, AFAM_2, ANT3_1, C1QB_1, C1QC_1, CADH5_2, CSH_2,



ECM1_1, IBP3_2, ISM2_2, LBP_1, LEP_1, PAEP_1, PAEP_2, PSG9_1,



PSG9_2, SOM2_1


TETN_1
A2GL_1, KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2, VTDB_1


TETN_2
A2GL_1, GPX3_1, KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2


THBG_1
BMI, CSH_2, KNG1_1, LEP_1, PAEP_1, PROS_2, RET4_1


THRB_1
GELS_2, IBP6_2, KNG1_1, LEP_1, LEP_2, PAEP_1, PSG9_2


TIE1_1
KNG1_1, PSG9_2, RET4_1


TIMP1_1
A2GL_1, ECM1_1, GELS_2, GPX3_1, KNG1_1, PAEP_1, PAEP_2, PRG4_2,



PSG9_1, PSG9_2, RET4_1, VTDB_1


User
KNG1_1, LEP_1, PAEP_1, PEDF_1, PSG9_1, PSG9_2, RET4_1


VGFR1_1
ADA12_1, KNG1_1, LEP_1, PAEP_1, PSG9_1, PSG9_2, RET4_1


VTDB_1
A2GL_1, ADA12_1, AOC1_1, ATS13_2, Bleedi, BMI, CGB1_1, CO8B_1,



CRIS3_1, CSH_2, DEF1_1, DEF1_2, FETUA_2, GELS_2, GPX3_1, IBP2_1,



IBP6_2, INHBC_1, KNG1_1, LEP_1, LEP_2, MDWT., PAEP_1, PEDF_1,



PROS_2, SEPP1_2, TETN_1, TIMP1_1


VTNC_1
LEP_1


VTNC_2
A2GL_1, KNG1_1, LEP_1, PAEP_1
















TABLE 27







Analyte pairs in trianalyte models containing AACT for nulliparous


women with gestational age at blood draws days 182-203








Analyte1
Analyte2





A2GL_1
AFAM_2, IBP6_1, PRG4_1, PRG4_2, PSG2_1, TENX_2


AACT_1
PAEP_1, PRG4_1, TENX_2


ADA12_1
AFAM_1, AFAM_2, AOC1_1, AOC1_2, ATL4_1, ATS13_1, B2MG_2, BMI,



C1QA_2, C1QC_1, CAMP_1, CAMP_2, CATD_1, CBPN_2, Cervix, CGB1_1,



CGB1_2, cHTN, CLUS_1, CRAC1_2, CRIS3_1, CRIS3_2, DEF1_1, DEF1_2,



ECM1_1, FA9_1, FBLN3_1, GDM, IBP2_1, IBP6_1, IGF2_1, InvGra, IPMLOS,



IPSP_2, ISM2_2, KIT_1, LEP_2, MDWT., MUC18_2, NdelCo, PAEP_1, PAEP_2,



PAPP2_1, PEDF_1, PEDF_2, PRG2_1, PriorP, PROS_1, PSG2_1, PSG9_1,



TIMP1_1, VTNC_2


AFAM_1
ADA12_1, AFAM_2, AOC1_2, ATL4_1, C1QA_2, C1QB_2, C1QC_1, C1QC_2,



CD14_2, CGB1_1, CGB1_2, cHTN, CRIS3_2, DPEP2_2, FETUA_2, GELS_2,



IBP2_1, IBP6_2, InvGra, KNG1_1, LEP_1, LEP_2, MDHT., NOTUM_1, PAEP_1,



PAEP_2, PEspec, PRG2_1, PRG4_1, PSG1_1, PSG11_1, PSG3_1, PTGDS_2,



SOM2_1, SOM2_2, TENX_1, TENX_2, THRB_1


AFAM_2
A2GL_1, ADA12_1, AFAM_1, AMBP_1, ANGT_1, ANT3_1, APOC3_1, ATL4_1,



ATS13_1, BGH3_1, Bleedi, C1QA_2, C1QB_1, C1QB_2, C1QB_3, CADH5_1,



CADH5_2, CAMP_1, CAMP_2, CATD_1, CBPN_1, CBPN_2, CD14_2, Cervix,



CGB1_1, CGB1_2, CHL1_1, cHTN, CLUS_1, CNTN1_1, CNTN1_2, CO5_2,



CO6_1, CO8A_1, CRAC1_1, CRAC1_2, CRAC1_3, CRIS3_1, CRIS3_2, CSH_1,



DEF1_1, DEF1_2, DPEP2_1, DPEP2_2, ECM1_1, EGLN_2, FA5_1, FA9_2,



FETUA_1, FETUA_2, GELS_1, GELS_2, HEMO_1, HLACI_1, IBP2_1, IBP3_1,



IBP3_2, IBP6_1, IBP6_2, IGF1_1, IGF2_1, InvGra, IPSP_1, IPSP_2, ISM2_1,



ISM2_2, ITIH4_2, ITIH4_3, KIT_1, KIT_2, KNG1_1, KNG1_2, LBP_1, LBP_2,



LEP_2, LIRB5_1, MFAP5_1, MUC18_1, NdelCo, NOTUM_1, PAEP_1, PAEP_2,



PAPP1_1, PAPP2_1, PCD12_1, PCD12_2, PEDF_1, PEDF_2, PEspec,



PGRP2_1, PRDX2_1, PRG2_1, PRG4_1, PRG4_2, PriorP, PROS_1, PROS_2,



PSG1_1, PSG11_1, PSG2_1, PSG3_1, PSG9_1, PTGDS_2, RET4_1, SOM2_1,



SOM2_2, TENX_1, TENX_2, VTNC_1, VTNC_2


ALS_1
PAEP_1, PRG4_1, PRG4_2, TENX_2


AMBP_1
AFAM_2, BMI, PAEP_1, PRG4_1, TENX_2


ANGT_1
AFAM_2, APOH_1, CATD_1, CD14_2, cHTN, ECM1_1, IBP6_2, InvGra, IPSP_2,



ITIH4_3, KIT_1, MDHT., PAEP_1, PAEP_2, PEDF_1, PEDF_2, PRG4_1,



PRG4_2, PriorP, PSG9_1, SEPP1_1, TENX_1, TENX_2


ANT3_1
AFAM_2, ECM1_1, PRG4_1, PSG2_1, TENX_2


AOC1_1
ADA12_1, PAEP_1, PRG4_1, PRG4_2, TENX_2


AOC1_2
ADA12_1, AFAM_1, CLUS_1, PAEP_1, PRG4_1, PRG4_2, TENX_2


APOC3_1
AFAM_2, DEF1_1, PAEP_1, PAEP_2, PRG4_1, PSG1_1


APOH_1
ANGT_1, IBP6_2, IGF2_1, PAEP_1, PAEP_2, PEDF_1, PRG4_1, PRG4_2,



TENX_2


ATL4_1
ADA12_1, AFAM_1, AFAM_2, BMI, CD14_2, Cervix, ENPP2_1, IBP3_2, IBP6_1,



NdelCo, NpregC, PRG4_1, PRG4_2, SEPP1_2, TENX_2


ATS13_1
ADA12_1, AFAM_2, PAEP_1, PAEP_2, PRG4_1, TENX_2


ATS13_2
PAEP_1, PEDF_1, PRG4_1, PSG2_1, TENX_2, THRB_1


B2MG_1
IBP2_1, LEP_1, PAEP_1, PAEP_2, PSG2_1


B2MG_2
ADA12_1, PSG2_1


BGH3_1
AFAM_2, CLUS_1, IBP3_1, IBP3_2, PAEP_1, PAEP_2, PRG4_1, PRG4_2,



PSG2_1, TENX_2


Bleedi
AFAM_2, PAEP_1, PRG4_1, PRG4_2, TENX_2


BMI
ADA12_1, AMBP_1, ATL4_1, C163A_1, CAMP_2, cHTN, CRIS3_1, CRIS3_2,



F13B_1, FA5_1, FA5_2, FGFR1_1, FGFR1_2, HEMO_1, IBP2_1, IBP3_1,



IBP3_2, IBP4_1, IBP6_1, IGF2_1, InvGra, IPSP_2, LEP_2, MDHT., MDWT.,



MFAP5_1, MUC18_2, NdelCo, PAPP2_1, PCD12_1, PRG4_1, PriorP, PSG2_1,



PSG3_1, PSG9_1, PSG9_2, TENX_2, TETN_1, THRB_1, TIMP1_1


C163A_1
BMI, TENX_2


C1QA_2
ADA12_1, AFAM_1, AFAM_2, CATD_2, Cervix, ECM1_1, IBP6_1, NpregC,



PRG4_1, PRG4_2, RET4_1


C1QB_1
AFAM_2, FBLN3_1, PAEP_1, PRG4_1


C1QB_2
AFAM_1, AFAM_2, PRG4_1, RET4_1


C1QB_3
AFAM_2, C1QC_1, CLUS_1, NpregC, PAEP_1, PAEP_2, PRG4_1, PRG4_2,



THRB_1


C1QC_1
ADA12_1, AFAM_1, C1QB_3, ECM1_1, FA11_2, IBP6_1, PRG4_1, PRG4_2,



TENX_2


C1QC_2
AFAM_1, NpregC


CADH5_1
AFAM_2, PAEP_1, PRG4_1, TENX_2


CADH5_2
AFAM_2, PAEP_1, PRG4_1, PSG2_1


CAH1_1
PAEP_1, PRG4_1


CAMP_1
ADA12_1, AFAM_2, ECM1_1, PSG2_1


CAMP_2
ADA12_1, AFAM_2, BMI, ECM1_1, IBP6_1, MDWT., PSG2_1


CATD_1
ADA12_1, AFAM_2, ANGT_1, IBP4_2, KNG1_2, PAEP_1, PAEP_2, PRG4_1,



PSG2_1, TENX_2


CATD_2
C1QA_2, PAEP_1, PAEP_2, PRG4_1, PSG2_1


CBPN_1
AFAM_2, PAEP_1, PRG4_1, PRG4_2, PSG2_1


CBPN_2
ADA12_1, AFAM_2, Cervix, PSG2_1, TENX_2


CD14_1
CD14_2, CLUS_1, PAEP_1, PRG4_1, TENX_2


CD14_2
AFAM_1, AFAM_2, ANGT_1, ATL4_1, CD14_1, KNG1_1, PRG4_1, PRG4_2,



PSG2_1, TENX_2, THRB_1


cDM
PAEP_1, PRG4_1, PRG4_2, TENX_2


Cervix
ADA12_1, AFAM_2, ATL4_1, C1QA_2, CBPN_2, CRAC1_2, KNG1_1, KNG1_2,



MDWT., PAEP_1, PRG4_1, PSG11_1, PSG2_1, SEPP1_2, TENX_2, THRB_1


CGB1_1
ADA12_1, AFAM_1, AFAM_2, CGB1_2, CLUS_1, NdelCo, PRG4_1, PSG2_1


CGB1_2
ADA12_1, AFAM_1, AFAM_2, CGB1_1, PAEP_1, PRG4_1, TENX_2


CHL1_1
AFAM_2, PAEP_1, PRG4_1, PRG4_2, PSG2_1, TENX_2


cHTN
ADA12_1, AFAM_1, AFAM_2, ANGT_1, BMI, PAEP_1, PRG4_1, PRG4_2,



PSG2_1, TENX_2


CLUS_1
ADA12_1, AFAM_2, AOC1_2, BGH3_1, C1QB_3, CD14_1, CGB1_1, CRAC1_1,



CRAC1_2, DEF1_1, DPEP2_2, FA5_2, FETUA_1, IBP2_1, IBP6_1, ISM2_2,



KIT_2, MUC18_2, NOTUM_1, NOTUM_2, PAEP_1, PAEP_2, PCD12_1,



PCD12_2, PRG2_1, PRG4_1, PRG4_2, PTGDS_2, TENX_2, TETN_1, TETN_2,



VTNC_1, VTNC_2


CLUS_2
PRG4_1, THRB_1


CNTN1_1
AFAM_2, CRAC1_1, ECM1_1, PRG4_1


CNTN1_2
AFAM_2, PRG4_1, TENX_2


CO5_1
PRG4_1, TENX_2


CO5_2
AFAM_2, PSG11_1


CO6_1
AFAM_2, KNG1_1, PAEP_1, PRG4_1, PRG4_2, PSG2_1, TENX_2


CO8A_1
AFAM_2, PAEP_1, PRG4_1, TENX_2


CO8B_1
PAEP_1, PRG4_1, PSG9_1


CRAC1_1
AFAM_2, CLUS_1, CNTN1_1, IBP3_2, InvGra, KNG1_1, LBP_1, LBP_2, LEP_2,



PRG4_1, PriorP


CRAC1_2
ADA12_1, AFAM_2, Cervix, CLUS_1, FBLN1_1, HEMO_1, PRG4_1, TENX_2,



THRB_1, User


CRAC1_3
AFAM_2, KNG1_1, PRG4_1, TENX_2


CRIS3_1
ADA12_1, AFAM_2, BMI, KNG1_1, PRG4_1, PSG2_1, PSG9_1, PSG9_2


CRIS3_2
ADA12_1, AFAM_1, AFAM_2, BMI, PRG4_1


CSH_1
AFAM_2, CSH_2, ECM1_1, PAEP_1, PRG4_1, PRG4_2, PSG2_1


CSH_2
CSH_1, PAEP_1, PRG4_1, PSG2_1, TENX_2


DEF1_1
ADA12_1, AFAM_2, APOC3_1, CLUS_1, IBP6_1, NpregC, PAEP_1, PRG4_1,



PRG4_2, PSG2_1, TENX_2


DEF1_2
ADA12_1, AFAM_2, IBP6_1, KNG1_1, PRG4_1, TENX_2, THRB_1


DM
KNG1_1, PAEP_1, PRG4_1, PSG1_1, PSG2_1


DPEP2_1
AFAM_2, PEDF_1, PRG4_1, PSG2_1


DPEP2_2
AFAM_1, AFAM_2, CLUS_1, ECM1_1, PAEP_1, PRG4_1, PSG2_1, THRB_1


ECM1_1
ADA12_1, AFAM_2, ANGT_1, ANT3_1, C1QA_2, C1QC_1, CAMP_1, CAMP_2,



CNTN1_1, CSH_1, DPEP2_2, FA9_2, FBLN3_1, IBP3_1, IBP3_2, IBP6_1,



InvGra, LBP_2, MDHT., PAEP_1, PAEP_2, PRG4_1, PRG4_2, PriorP,



PSG11_1, PSG2_1, THRB_1


ECM1_2
PRG4_1


EGLN_1
PRG4_1, PSG2_1, TENX_2


EGLN_2
AFAM_2, PRG4_1, PSG2_1


ENPP2_1
ATL4_1, IBP6_2, PAEP_1, PRG4_1, PRG4_2, TENX_2


ENPP2_2
IBP6_2, PAEP_1, PRG4_1, PRG4_2, TENX_2


F13B_1
BMI, MDWT., PAEP_1, PRG4_1


FA11_1
IBP2_1, PAEP_1, PRG4_1, PSG2_1, TENX_2


FA11_2
C1QC_1, IBP2_1, PRG4_1, PRG4_2, PSG2_1


FA5_1
AFAM_2, BMI, PAEP_2, PRG4_1, TENX_2


FA5_2
BMI, CLUS_1, PRG4_1, PRG4_2, PSG2_1, TENX_2


FA9_1
ADA12_1, IBP3_2, PAEP_1, PRG4_1, PRG4_2, TENX_2, THRB_1


FA9_2
AFAM_2, ECM1_1, IBP6_2, PAEP_1, PRG4_1, PRG4_2


FBLN1_1
CRAC1_2, IBP3_2, TENX_2


FBLN3_1
ADA12_1, C1QB_1, ECM1_1, GDM, IBP6_1, NpregC, PAEP_1, PEDF_1,



PRG4_1, PRG4_2


FETUA_1
AFAM_2, CLUS_1, PAEP_1, PRG4_1, PSG2_1, TENX_2


FETUA_2
AFAM_1, AFAM_2, IBP3_2, PRG4_1, PSG2_1


FGFR1_1
BMI, PRG4_1, PRG4_2, TENX_2


FGFR1_2
BMI, PRG4_1, PSG2_1


GABD.
PAEP_1, PRG4_1, TENX_2


GDM
ADA12_1, FBLN3_1, KNG1_1, PRG4_1, PSG1_1, PSG2_1, TENX_2


GELS_1
AFAM_2, PRG4_1, PSG9_1, PSG9_2


GELS_2
AFAM_1, AFAM_2, IBP3_2, PAEP_1, PRG4_1, PRG4_2, PSG2_1, TETN_2


GPX3_1
IBP6_1, IGF2_1, PRG4_1, PRG4_2, PSG2_1, PSG9_1, TENX_2


GPX3_2
PRG4_1


HABP2_1
PSG11_1


HEMO_1
AFAM_2, BMI, CRAC1_2, PRG4_1, PSG2_1


HLACI_1
AFAM_2, PRG4_1, PRG4_2


IBP1_1
PAEP_1, PRG4_1, TENX_2


IBP2_1
ADA12_1, AFAM_1, AFAM_2, B2MG_1, BMI, CLUS_1, FA11_1, FA11_2,



IGF2_1, MUC18_2, PAEP_1, PRG4_1, PSG2_1, SEPP1_2


IBP3_1
AFAM_2, BGH3_1, BMI, ECM1_1, IBP6_2, MDWT., PAEP_1, PEDF_1, PRG4_1,



PSG9_1, TENX_2, User


IBP3_2
AFAM_2, ATL4_1, BGH3_1, BMI, CRAC1_1, ECM1_1, FA9_1, FBLN1_1,



FETUA_2, GELS_2, IBP6_2, KNG1_1, PAEP_1, PAEP_2, PEDF_1, PSG11_1,



TENX_1, TENX_2, THRB_1


IBP4_1
BMI, PRG4_1, TENX_2


IBP4_2
CATD_1, NpregC, PRG4_1, PSG9_2


IBP4_3
PRG4_1, PRG4_2


IBP6_1
A2GL_1, ADA12_1, AFAM_2, ATL4_1, BMI, C1QA_2, C1QC_1, CAMP_2,



CLUS_1, DEF1_1, DEF1_2, ECM1_1, FBLN3_1, GPX3_1, IBP6_2, IGF2_1,



InvGra, MDWT., PAEP_1, PEDF_1, PRG4_1, PRG4_2, PriorP, PSG2_1,



PSG9_1, TENX_1, TENX_2, User


IBP6_2
AFAM_1, AFAM_2, ANGT_1, APOH_1, ENPP2_1, ENPP2_2, FA9_2, IBP3_1,



IBP3_2, IBP6_1, KNG1_1, LBP_1, LBP_2, NpregC, PRG4_1, PRG4_2, PSG2_1,



PTGDS_2, SEPP1_2, TENX_2, THBG_1, THRB_1


IGF1_1
AFAM_2, PAEP_1, PRG4_1, TENX_2


IGF2_1
ADA12_1, AFAM_2, APOH_1, BMI, GPX3_1, IBP2_1, IBP6_1, KNG1_1, MDWT.,



MUC18_2, PAEP_1, PAEP_2, PEDF_1, PSG11_1, RET4_1, TENX_1, TENX_2,



THRB_1, VTNC_1


IL1R1_1
PAEP_1, PRG4_1


INHBC_1
PAEP_1, PRG4_1, PSG2_1


InvGra
ADA12_1, AFAM_1, AFAM_2, ANGT_1, BMI, CRAC1_1, ECM1_1, IBP6_1,



KNG1_1, PAEP_1, PRG4_1, PRG4_2, TENX_2


InvPar
PAEP_1, PRG4_1, TENX_2


IPMLOS
ADA12_1, PRG4_1, PSG2_1, TENX_2


IPSP_1
AFAM_2, PAEP_1, PRG4_1, PRG4_2, TENX_2


IPSP_2
ADA12_1, AFAM_2, ANGT_1, BMI, PAEP_1, PRG4_1, PRG4_2, PSG2_1


ISM2_1
AFAM_2, ISM2_2, KNG1_1, PAEP_1, PRG4_1


ISM2_2
ADA12_1, AFAM_2, CLUS_1, ISM2_1, PAEP_1, PRG4_1, PRG4_2, PSG2_1,



TENX_2


ITIH3_1
PRG4_1


ITIH4_1
PRG4_1


ITIH4_2
AFAM_2, PAEP_1, PRG4_1, TENX_2


ITIH4_3
AFAM_2, ANGT_1, PAEP_1, PRG4_1, TENX_2


KIT_1
ADA12_1, AFAM_2, ANGT_1, PRG4_1, PRG4_2, TENX_2


KIT_2
AFAM_2, CLUS_1, PAEP_1, PRG4_1, TENX_2


KNG1_1
AFAM_1, AFAM_2, CD14_2, Cervix, CO6_1, CRAC1_1, CRAC1_3, CRIS3_1,



DEF1_2, DM, GDM, IBP3_2, IBP6_2, IGF2_1, InvGra, ISM2_1, PAEP_1,



PRG4_1, PriorP, PSG9_1, TIE1_1, VTNC_1


KNG1_2
AFAM_2, CATD_1, Cervix, PEDF_1, PRG4_1, TENX_2


LBP_1
AFAM_2, CRAC1_1, IBP6_2, PAEP_1, PRG4_1, THRB_1


LBP_2
AFAM_2, CRAC1_1, ECM1_1, IBP6_2, PAEP_1, PRG4_1, PRG4_2, PSG11_1,



THRB_1


LEP_1
AFAM_1, B2MG_1


LEP_2
ADA12_1, AFAM_1, AFAM_2, BMI, CRAC1_1, PAEP_1, PRG4_1, PRG4_2,



TENX_2


LIRB5_1
AFAM_2, PRG4_1, PRG4_2, TENX_2


LYAM1_1
PAEP_1, PRG4_1, TENX_2


MAGE
PRG4_1, TENX_2


MDHT.
AFAM_1, ANGT_1, BMI, ECM1_1, PAEP_1, PRG4_1, SEPP1_2, TENX_2


MDWT.
ADA12_1, BMI, CAMP_2, Cervix, F13B_1, IBP3_1, IBP6_1, IGF2_1, MUC18_2,



PRG4_1, PSG2_1, PSG9_2, SEPP1_2, THRB_1


MFAP5_1
AFAM_2, BMI, PRG4_1, TENX_1, TENX_2


MUC18_1
AFAM_2, PAEP_1, PRG4_1, PRG4_2, PSG2_1, TENX_2


MUC18_2
ADA12_1, BMI, CLUS_1, IBP2_1, IGF2_1, MDWT., PRG4_1, PSG2_1, RET4_1,



SEPP1_2, TENX_2


NdelCo
ADA12_1, AFAM_2, ATL4_1, BMI, CGB1_1, PRG4_1, PRG4_2, PSG11_1,



PSG2_1, TENX_2


NOTUM_1
AFAM_1, AFAM_2, CLUS_1, PAEP_1, PRG4_1, PSG2_1, TENX_2


NOTUM_2
CLUS_1, PAEP_1, PRG4_1, TENX_2


NpregC
ATL4_1, C1QA_2, C1QB_3, C1QC_2, DEF1_1, FBLN3_1, IBP4_2, IBP6_2,



PAEP_1, PEDF_1, PRG4_1, PRG4_2, PSG11_1, PSG2_1, THRB_1, TIMP1_1


PAEP_1
AACT_1, ADA12_1, AFAM_1, AFAM_2, ALS_1, AMBP_1, ANGT_1, AOC1_1,



AOC1_2, APOC3_1, APOH_1, ATS13_1, ATS13_2, B2MG_1, BGH3_1, Bleedi,



C1QB_1, C1QB_3, CADH5_1, CADH5_2, CAH1_1, CATD_1, CATD_2, CBPN_1,



CD14_1, cDM, Cervix, CGB1_2, CHL1_1, cHTN, CLUS_1, CO6_1, CO8A_1,



CO8B_1, CSH_1, CSH_2, DEF1_1, DM, DPEP2_2, ECM1_1, ENPP2_1,



ENPP2_2, F13B_1, FA11_1, FA9_1, FA9_2, FBLN3_1, FETUA_1, GABD.,



GELS_2, IBP1_1, IBP2_1, IBP3_1, IBP3_2, IBP6_1, IGF1_1, IGF2_1, IL1R1_1,



INHBC_1, InvGra, InvPar, IPSP_1, IPSP_2, ISM2_1, ISM2_2, ITIH4_2, ITIH4_3,



KIT_2, KNG1_1, LBP_1, LBP_2, LEP_2, LYAM1_1, MDHT., MUC18_1,



NOTUM_1, NOTUM_2, NpregC, PAEP_2, PCD12_1, PCD12_2, PEDF_2,



PRDX2_1, PRG2_1, PRG4_1, PRG4_2, PriorP, PROS_1, PSG2_1, PSG3_1,



PSG9_1, PSG9_2, PTGDS_2, RET4_1, SEPP1_2, SOM2_1, TENX_1, TENX_2,



TETN_1, TETN_2, THRB_1, User, VGFR1_1, VTDB_1, VTNC_1, VTNC_2


PAEP_2
ADA12_1, AFAM_1, AFAM_2, ANGT_1, APOC3_1, APOH_1, ATS13_1,



B2MG_1, BGH3_1, C1QB_3, CATD_1, CATD_2, CLUS_1, ECM1_1, FA5_1,



IBP3_2, IGF2_1, PAEP_1, PRG4_1, PRG4_2, PSG2_1, PSG9_2, RET4_1,



SEPP1_1, TENX_2, THRB_1


PAPP1_1
AFAM_2, PRG4_1


PAPP2_1
ADA12_1, AFAM_2, BMI, PRG4_1, PSG2_1


PCD12_1
AFAM_2, BMI, CLUS_1, PAEP_1, PRG4_1, TENX_2, THRB_1


PCD12_2
AFAM_2, CLUS_1, PAEP_1, PRG4_1


PEDF_1
ADA12_1, AFAM_2, ANGT_1, APOH_1, ATS13_2, DPEP2_1, FBLN3_1,



IBP3_1, IBP3_2, IBP6_1, IGF2_1, KNG1_2, NpregC, PRG4_1, PRG4_2,



PSG2_1, THRB_1, TIMP1_1


PEDF_2
ADA12_1, AFAM_2, ANGT_1, PAEP_1, PRG4_1


PEspec
AFAM_1, AFAM_2, PRG4_1, PSG2_1, TENX_2


PGRP2_1
AFAM_2, PRG4_1, PSG2_1, TENX_2


PRDX2_1
AFAM_2, PAEP_1, PRG4_1, TENX_2


PRG2_1
ADA12_1, AFAM_1, AFAM_2, CLUS_1, PAEP_1, PRG4_1, PRG4_2, PSG2_1,



TENX_2


PRG4_1
A2GL_1, AACT_1, AFAM_1, AFAM_2, ALS_1, AMBP_1, ANGT_1, ANT3_1,



AOC1_1, AOC1_2, APOC3_1, APOH_1, ATL4_1, ATS13_1, ATS13_2, BGH3_1,



Bleedi, BMI, C1QA_2, C1QB_1, C1QB_2, C1QB_3, C1QC_1, CADH5_1,



CADH5_2, CAH1_1, CATD_1, CATD_2, CBPN_1, CD14_1, CD14_2, cDM,



Cervix, CGB1_1, CGB1_2, CHL1_1, cHTN, CLUS_1, CLUS_2, CNTN1_1,



CNTN1_2, CO5_1, CO6_1, CO8A_1, CO8B_1, CRAC1_1, CRAC1_2, CRAC1_3,



CRIS3_1, CRIS3_2, CSH_1, CSH_2, DEF1_1, DEF1_2, DM, DPEP2_1,



DPEP2_2, ECM1_1, ECM1_2, EGLN_1, EGLN_2, ENPP2_1, ENPP2_2,



F13B_1, FA11_1, FA11_2, FA5_1, FA5_2, FA9_1, FA9_2, FBLN3_1, FETUA_1,



FETUA_2, FGFR1_1, FGFR1_2, GABD., GDM, GELS_1, GELS_2, GPX3_1,



GPX3_2, HEMO_1, HLACI_1, IBP1_1, IBP2_1, IBP3_1, IBP4_1, IBP4_2,



IBP4_3, IBP6_1, IBP6_2, IGF1_1, IL1R1_1, INHBC_1, InvGra, InvPar, IPMLOS,



IPSP_1, IPSP_2, ISM2_1, ISM2_2, ITIH3_1, ITIH4_1, ITIH4_2, ITIH4_3, KIT_1,



KIT_2, KNG1_1, KNG1_2, LBP_1, LBP_2, LEP_2, LIRB5_1, LYAM1_1, MAGE,



MDHT., MDWT., MFAP5_1, MUC18_1, MUC18_2, NdelCo, NOTUM_1,



NOTUM_2, NpregC, PAEP_1, PAEP_2, PAPP1_1, PAPP2_1, PCD12_1,



PCD12_2, PEDF_1, PEDF_2, PEspec, PGRP2_1, PRDX2_1, PRG2_1, PRG4_2,



PriorP, PRL_1, PRL_2, PROS_1, PROS_2, PSG1_1, PSG11_1, PSG2_1,



PSG3_1, PSG9_1, PSG9_2, PTGDS_1, PTGDS_2, RET4_1, SEPP1_1,



SEPP1_2, SHBG_1, SHBG_3, SOM2_1, SOM2_2, SPRL1_1, SVEP1_1,



TENX_1, TENX_2, TETN_1, TETN_2, THBG_1, THRB_1, TIE1_1, TIMP1_1,



User, VGFR1_1, VTNC_1, VTNC_2


PRG4_2
A2GL_1, AFAM_2, ALS_1, ANGT_1, AOC1_1, AOC1_2, APOH_1, ATL4_1,



BGH3_1, Bleedi, C1QA_2, C1QB_3, C1QC_1, CBPN_1, CD14_2, cDM, CHL1_1,



cHTN, CLUS_1, CO6_1, CSH_1, DEF1_1, ECM1_1, ENPP2_1, ENPP2_2,



FA11_2, FA5_2, FA9_1, FA9_2, FBLN3_1, FGFR1_1, GELS_2, GPX3_1,



HLACI_1, IBP4_3, IBP6_1, IBP6_2, InvGra, IPSP_1, IPSP_2, ISM2_2, KIT_1,



LBP_2, LEP_2, LIRB5_1, MUC18_1, NdelCo, NpregC, PAEP_1, PAEP_2,



PEDF_1, PRG2_1, PRG4_1, PriorP, PRL_2, PSG11_1, SEPP1_2, SOM2_1,



SVEP1_1, TENX_1, TENX_2, TETN_1, TETN_2, THRB_1, VTNC_1, VTNC_2


PriorP
ADA12_1, AFAM_2, ANGT_1, BMI, CRAC1_1, ECM1_1, IBP6_1, KNG1_1,



PAEP_1, PRG4_1, PRG4_2, TENX_2


PRL_1
PRG4_1, TENX_2


PRL_2
PRG4_1, PRG4_2, TENX_2


PROS_1
ADA12_1, AFAM_2, PAEP_1, PRG4_1, TENX_2


PROS_2
AFAM_2, PRG4_1, TENX_2


PSG1_1
AFAM_1, AFAM_2, APOC3_1, DM, GDM, PRG4_1, PSG9_2, TENX_1


PSG11_1
AFAM_1, AFAM_2, Cervix, CO5_2, ECM1_1, HABP2_1, IBP3_2, IGF2_1,



LBP_2, NdelCo, NpregC, PRG4_1, PRG4_2, PSG2_1, PSG9_1, SEPP1_1


PSG2_1
A2GL_1, ADA12_1, AFAM_2, ANT3_1, ATS13_2, B2MG_1, B2MG_2, BGH3_1,



BMI, CADH5_2, CAMP_1, CAMP_2, CATD_1, CATD_2, CBPN_1, CBPN_2,



CD14_2, Cervix, CGB1_1, CHL1_1, cHTN, CO6_1, CRIS3_1, CSH_1, CSH_2,



DEF1_1, DM, DPEP2_1, DPEP2_2, ECM1_1, EGLN_1, EGLN_2, FA11_1,



FA11_2, FA5_2, FETUA_1, FETUA_2, FGFR1_2, GDM, GELS_2, GPX3_1,



HEMO_1, IBP2_1, IBP6_1, IBP6_2, INHBC_1, IPMLOS, IPSP_2, ISM2_2,



MDWT., MUC18_1, MUC18_2, NdelCo, NOTUM_1, NpregC, PAEP_1, PAEP_2,



PAPP2_1, PEDF_1, PEspec, PGRP2_1, PRG2_1, PRG4_1, PSG11_1, PSG9_1,



PSG9_2, RET4_1, SOM2_1, SOM2_2, SVEP1_1, TENX_1, THRB_1, TIMP1_1,



User, VTNC_1


PSG3_1
AFAM_1, AFAM_2, BMI, PAEP_1, PRG4_1, TENX_2


PSG9_1
ADA12_1, AFAM_2, ANGT_1, BMI, CO8B_1, CRIS3_1, GELS_1, GPX3_1,



IBP3_1, IBP6_1, KNG1_1, PAEP_1, PRG4_1, PSG11_1, PSG2_1, PSG9_2,



SOM2_2, TENX_2


PSG9_2
BMI, CRIS3_1, GELS_1, IBP4_2, MDWT., PAEP_1, PAEP_2, PRG4_1, PSG1_1,



PSG2_1, PSG9_1, SOM2_2, TENX_2


PTGDS_1
PRG4_1


PTGDS_2
AFAM_1, AFAM_2, CLUS_1, IBP6_2, PAEP_1, PRG4_1, TENX_2


RET4_1
AFAM_2, C1QA_2, C1QB_2, IGF2_1, MUC18_2, PAEP_1, PAEP_2, PRG4_1,



PSG2_1, TENX_2


SEPP1_1
ANGT_1, PAEP_2, PRG4_1, PSG11_1, TENX_2


SEPP1_2
ATL4_1, Cervix, IBP2_1, IBP6_2, MDHT., MDWT., MUC18_2, PAEP_1,



PRG4_1, PRG4_2, SHBG_3, THRB_1


SHBG_1
PRG4_1, TENX_2


SHBG_3
PRG4_1, SEPP1_2, TENX_2


SOM2_1
AFAM_1, AFAM_2, PAEP_1, PRG4_1, PRG4_2, PSG2_1


SOM2_2
AFAM_1, AFAM_2, PRG4_1, PSG2_1, PSG9_1, PSG9_2


SPRL1_1
PRG4_1


SVEP1_1
PRG4_1, PRG4_2, PSG2_1


TENX_1
AFAM_1, AFAM_2, ANGT_1, IBP3_2, IBP6_1, IGF2_1, MFAP5_1, PAEP_1,



PRG4_1, PRG4_2, PSG1_1, PSG2_1, TENX_2


TENX_2
A2GL_1, AACT_1, AFAM_1, AFAM_2, ALS_1, AMBP_1, ANGT_1, ANT3_1,



AOC1_1, AOC1_2, APOH_1, ATL4_1, ATS13_1, ATS13_2, BGH3_1, Bleedi,



BMI, C163A_1, C1QC_1, CADH5_1, CATD_1, CBPN_2, CD14_1, CD14_2, cDM,



Cervix, CGB1_2, CHL1_1, cHTN, CLUS_1, CNTN1_2, CO5_1, CO6_1, CO8A_1,



CRAC1_2, CRAC1_3, CSH_2, DEF1_1, DEF1_2, EGLN_1, ENPP2_1,



ENPP2_2, FA11_1, FA5_1, FA5_2, FA9_1, FBLN1_1, FETUA_1, FGFR1_1,



GABD., GDM, GPX3_1, IBP1_1, IBP3_1, IBP3_2, IBP4_1, IBP6_1, IBP6_2,



IGF1_1, IGF2_1, InvGra, InvPar, IPMLOS, IPSP_1, ISM2_2, ITIH4_2, ITIH4_3,



KIT_1, KIT_2, KNG1_2, LEP_2, LIRB5_1, LYAM1_1, MAGE, MDHT., MFAP5_1,



MUC18_1, MUC18_2, NdelCo, NOTUM_1, NOTUM_2, PAEP_1, PAEP_2,



PCD12_1, PEspec, PGRP2_1, PRDX2_1, PRG2_1, PRG4_1, PRG4_2, PriorP,



PRL_1, PRL_2, PROS_1, PROS_2, PSG3_1, PSG9_1, PSG9_2, PTGDS_2,



RET4_1, SEPP1_1, SHBG_1, SHBG_3, TENX_1, TETN_1, TETN_2, THBG_1,



THRB_1, TIE1_1, VGFR1_1, VTNC_1


TETN_1
BMI, CLUS_1, PAEP_1, PRG4_1, PRG4_2, TENX_2


TETN_2
CLUS_1, GELS_2, PAEP_1, PRG4_1, PRG4_2, TENX_2


THBG_1
IBP6_2, PRG4_1, TENX_2, THRB_1


THRB_1
AFAM_1, ATS13_2, BMI, C1QB_3, CD14_2, Cervix, CLUS_2, CRAC1_2,



DEF1_2, DPEP2_2, ECM1_1, FA9_1, IBP3_2, IBP6_2, IGF2_1, LBP_1, LBP_2,



MDWT., NpregC, PAEP_1, PAEP_2, PCD12_1, PEDF_1, PRG4_1, PRG4_2,



PSG2_1, SEPP1_2, TENX_2, THBG_1, User


TIE1_1
KNG1_1, PRG4_1, TENX_2


TIMP1_1
ADA12_1, BMI, NpregC, PEDF_1, PRG4_1, PSG2_1


User
CRAC1_2, IBP3_1, IBP6_1, PAEP_1, PRG4_1, PSG2_1, THRB_1


VGFR1_1
PAEP_1, PRG4_1, TENX_2


VTDB_1
PAEP_1


VTNC_1
AFAM_2, CLUS_1, IGF2_1, KNG1_1, PAEP_1, PRG4_1, PRG4_2, PSG2_1,



TENX_2


VTNC_2
ADA12_1, AFAM_2, CLUS_1, PAEP_1, PRG4_1, PRG4_2
















TABLE 28







Analytes and corresponding abbreviations









Analyte
Abbrev
Protein name





A2GL_DLLLPQPDLR
A2GL_1
Leucine-rich alpha-2-glycoprotein





AACT_EIGELYLPK
AACT_1
Alpha-1-antichymotrypsin





ADA12_FGEGGSTDSGPIR
ADA12_1
Disintegrin and metalloproteinase domain-




containing protein 12





AFAM_DADPDTFFAK
AFAM_1
Afamin





AFAM_HFQNLGK
AFAM_2
Afamin





ALS_IRPHTFTGLSGLR
ALS_1
Insulin-like growth factor-binding protein complex




acid labile subunit





AMBP_EILLQDFR
AMBP_1
Protein AMBP





ANGT_DPTFIPAPIQAK
ANGT_1
Angiotensinogen





ANT3_TSDQIHEFFAK
ANT3_1
Antithrombin-III





AOC1_AVHSFLWSK
AOC1_1
Amiloride-sensitive amine oxidase [copper-containing]





AOC1_DNGPNYVQR
AOC1_2
Amiloride-sensitive amine oxidase [copper-containing]





APOC3_GWVTDGFSSLK
APOC3_1
Apolipoprotein C-III





APOH_ATVVYQGER
APOH_1
Beta-2-glycoprotein 1





ATL4_ILWIPAGALR
ATL4_1
ADAMTS-like protein 4





ATS13_SLVELTPIAAVHGR
ATS13_1
A disintegrin and metalloproteinase with




thrombospondin motifs 13





ATS13_YGSQLAPETFYR
ATS13_2
A disintegrin and metalloproteinase with




thrombospondin motifs 13





B2MG_VEHSDLSFSK
B2MG_1
Beta-2-microglobulin





B2MG_VNHVTLSQPK
B2MG_2
Beta-2-microglobulin





BGH3_LTLLAPLNSVFK
BGH3_1
Transforming growth factor-beta-induced protein ig-h3





C163A_INPASLDK
C163A_1
Scavenger receptor cysteine-rich type 1 protein M130





C1QA_DQPRPAFSAIR
C1QA_1
Complement C1q subcomponent subunit A





C1QA_SLGFCDTTNK
C1QA_2
Complement C1q subcomponent subunit A





C1QB_IAFSATR
C1Q6_1
Complement C1q subcomponent subunit B





C1QB_LEQGENVFLQATDK
C1Q6_2
Complement C1q subcomponent subunit B





C1QB_VPGLYYFTYHASSR
C1Q6_3
Complement C1q subcomponent subunit B





C1QC_FNAVLTNPQGDYDTSTGK
C1QC_1
Complement C1q subcomponent subunit C





C1QC_TNQVNSGGVLLR
C1QC_2
Complement C1q subcomponent subunit C





CADH5_YEIVVEAR
CADH5_1
Cadherin-5





CADH5_YTFVVPEDTR
CADH5_2
Cadherin-5





CAH1_GGPFSDSYR
CAH1_1
Carbonic anhydrase 1





CAMP_AIDGINQR
CAMP_1
Cathelicidin antimicrobial peptide





CAMP_SSDANLYR
CAMP_2
Cathelicidin antimicrobial peptide





CATD_VGFAEAAR
CATD_1
Cathepsin D





CATD_VSTLPAITLK
CATD_2
Cathepsin D





CBPN_EALIQFLEQVHQGIK
CBPN_1
Carboxypeptidase N catalytic chain





CBPN_NNANGVDLNR
CBPN_2
Carboxypeptidase N catalytic chain





CD14_LTVGAAQVPAQLLVGALR
CD14_1
Monocyte differentiation antigen CD14





CD14_SWLAELQQWLKPGLK
CD14_2
Monocyte differentiation antigen CD14





CFAB_YGLVTYATYPK
CFAB_1
Complement factor B





CGB1_GVNPVVSYAVALSCQCALCR
CGB1_1
Choriogonadotropin subunit beta variant 1





CGB1_VLQGVLPALPQVVCNYR
CGB1_2
Choriogonadotropin subunit beta variant 1





CHL1_VIAVNEVGR
CHL1_1
Neural cell adhesion molecule L1-like protein





CLUS_ASSIIDELFQDR
CLUS_1
Clusterin





CLUS_LFDSDPITVTVPVEVSR
CLUS_2
Clusterin





CNTN1_FIPLIPIPER
CNTN1_1
Contactin-1





CNTN1_TTKPYPADIVVQFK
CNTN1_2
Contactin-1





CO5_TLLPVSKPEIR
CO5_1
Complement C5





CO5_VFQFLEK
CO5_2
Complement C5





CO6_ALNHLPLEYNSALYSR
CO6_1
Complement component C6





CO8A_SLLQPNK
CO8A_1
Complement component C8 alpha chain





CO8B_QALEEFQK
CO8B_1
Complement component C8 beta chain





CRAC1_GVALADFNR
CRAC1_1
Cartilage acidic protein 1





CRAC1_GVASLFAGR
CRAC1_2
Cartilage acidic protein 1





CRAC1_LVNIAVDER
CRAC1_3
Cartilage acidic protein 1





CRIS3_AVSPPAR
CRIS3_1
Cysteine-rich secretory protein 3





CRIS3_YEDLYSNCK
CRIS3_2
Cysteine-rich secretory protein 3





CSH_AHQLAIDTYQEFEETYIPK
CSH_1
Chorionic somatomammotropin hormone 1





CSH_ISLLUESWLEPVR
CSH_2
Chorionic somatomammotropin hormone 1





DEF1_IPACIAGER
DEF1_1
Neutrophil defensin 1





DEF1_YGTCIYQGR
DEF1_2
Neutrophil defensin 1





DPEP2_ALEVSQAPVIFSHSAAR
DPEP2_1
Dipeptidase 2





DPEP2_LTLEQIDLIR
DPEP2_2
Dipeptidase 2





ECM1_ELLALIQLER
ECM1_1
Extracellular matrix protein 1





ECM1_LLPAQLPAEK
ECM1_2
Extracellular matrix protein 1





EGLN_GPITSAAELNDPQSILLR
EGLN_1
Endoglin





EGLN_TQILEWAAER
EGLN_2
Endoglin





ENPP2_TEFLSNYLTNVDDITLVPG
ENPP2_1
Ectonucleotide pyrophosphatase/phosphodiesterase family


TLGR

member 2





ENPP2_TYLHTYESEI
ENPP2_2
Ectonucleotide pyrophosphatase/phosphodiesterase family




member 2





F13B_GDTYPAELYITGSILR
F13B_1
Coagulation factor XIII B chain





FA11_DSVTETLPR
FA11_1
Coagulation factor XI





FA11_TAAISGYSFK
FA11_2
Coagulation factor XI





FA5_AEVDDVIQVR
FA5_1
Coagulation factor V





FA5_LSEGASYLDHTFPAEK
FA5_2
Coagulation factor V





FA9_FGSGYVSGWGR
FA9_1
Coagulation factor IX





FA9_SALVLQYLR
FA9_2
Coagulation factor IX





FBLN1_TGYYFDGISR
FBLN1_1
Fibulin-1





FBLN3_IPSNPSHR
FBLN3_1
EGF-containing fibulin-like extracellular matrix protein 1





FETUA_FSVVYAK
FETUA_1
Alpha-2-HS-glycoprotein





FETUA_HTLNQIDEVK
FETUA_2
Alpha-2-HS-glycoprotein





FGFR1_IGPDNLPYVQILK
FGFR1_1
Fibroblast growth factor receptor 1





FGFR1_VYSDPQPHIQWLK
FGFR1_2
Fibroblast growth factor receptor 1





GELS_AQPVQVAEGSEPDGFWEA
GELS_1
Gelsolin


LGGK





GELS_TASDFITK
GELS_2
Gelsolin





GPX3_QEPGENSEILPTLK
GPX3_1
Glutathione peroxidase 3





GPX3_YVRPGGGFVPNFQLFEK
GPX3_2
Glutathione peroxidase 3





HABP2_FLNWIK
HABP2_1
Hyaluronan-binding protein 2





HEMO_NFPSPVDAAFR
HEMO_1
Hemopexin





HLACI_WAAVVVPSGEEQR
HLACI_1
HLA class I histocompatibility antigen, Cw-2 alpha chain





IBP1_VVESLAK
IBP1_1
Insulin-like growth factor-binding protein 1





IBP2_LIQGAPTIR
IBP2_1
Insulin-like growth factor-binding protein 2





IBP3_FLNVLSPR
IBP3_1
Insulin-like growth factor-binding protein 3





IBP3_YGQPLPGYTTK
IBP3_2
Insulin-like growth factor-binding protein 3





IBP4_Q.CHPALDGQR
IBP4_1
Insulin-like growth factor-binding protein 4





IBP4_QCHPALDGQR
IBP4_2
Insulin-like growth factor-binding protein 4





IBP4_QCHPALDGQR.2
IBP4_3
Insulin-like growth factor-binding protein 4





IBP6_GAQTLYVPNCDHR
IBP6_1
Insulin-like growth factor-binding protein 6





IBP6_HLDSVLQQLQTEVYR
IBP6_2
Insulin-like growth factor-binding protein 6





IGF1_GFYFNKPTGYGSSSR
IGF1_1
Insulin-like growth factor I





IGF2_GIVEECCFR
IGF2_1
Insulin-like growth factor II





IL1R1_LWFVPAK
IL1R1_1
Interleukin-1 receptor type 1





INHBC_LDFHFSSDR
INHBC_1
Inhibin beta C chain





IPSP_AVVEVDESGTR
IPSP_1
Plasma serine protease inhibitor





IPSP_DFTFDLYR
IPSP_2
Plasma serine protease inhibitor





ISM2_FDTTPWILCK
ISM2_1
Isthmin-2





ISM2_TRPCGYGCTATETR
ISM2_2
Isthmin-2





ITIH3_ALDLSLK
ITIH3_1
Inter-alpha-trypsin inhibitor heavy chain H3





ITIH4_ILDDLSPR
ITIH4_1
Inter-alpha-trypsin inhibitor heavy chain H4





ITIH4_NPLVWVHASPEHVVVTR
ITIH4_2
Inter-alpha-trypsin inhibitor heavy chain H4





ITIH4_QLGLPGPPDVPDHAAYHPF
ITIH4_3
Inter-alpha-trypsin inhibitor heavy chain H4





KIT_LCLHCSVDQEGK
KIT_1
Mast/stem cell growth factor receptor Kit





KIT_YVSELHLTR
KIT_2
Mast/stem cell growth factor receptor Kit





KNG1_DIPTNSPELEETLTHTITK
KNG1_1
Kininogen-1





KNG1_QVVAGLNFR
KNG1_2
Kininogen-1





LBP_ITGFLKPGK
LBP_1
Lipopolysaccharide-binding protein





LBP_ITLPDFTGDLR
LBP_2
Lipopolysaccharide-binding protein





LEP_DLLHVLAFSK
LEP_1
Leptin





LEP_VTGLDFIPGLHPILTLSK
LEP_2
Leptin





LIRB5_KPSLLIPQGSVVAR
LIRB5_1
Leukocyte immunoglobulin-like receptor subfamily B member 5





LYAM1_SYYWIGIR
LYAM1_1
L-selectin





MFAP5_LYSVHRPVK
MFAP5_1
Microfibrillar-associated protein 5





MUC18_EVTVPVFYPTEK
MUC18_1
Cell surface glycoprotein MUC18





MUC18_GATLALTQVTPQDER
MUC18_2
Cell surface glycoprotein MUC18





NOTUM_GLADSGWELDNK
NOTUM_1
Palmitoleoyl-protein carboxylesterase NOTUM





NOTUM_LYIQNLGR
NOTUM_2
Palmitoleoyl-protein carboxylesterase NOTUM





PAEP_HLWYLLDLK
PAEP_1
Glycodelin





PAEP_VHITSLLPTPEDNLEIVLHR
PAEP_2
Glycodelin





PAPP1_DIPHWLNPTR
PAPP1_1
Pappalysin-1





PAPP2_LLLRPEVLAEIPR
PAPP2_1
Pappalysin-2





PCD12_AHDADLGINGK
PCD12_1
Protocadherin-12





PCD12_YQVSEEVPSGTVIGK
PCD12_2
Protocadherin-12





PEDF_LQSLFDSPDFSK
PEDF_1
Pigment epithelium-derived factor





PEDF_TVQAVLTVPK
PEDF_2
Pigment epithelium-derived factor





PGRP2_AGLLRPDYALLGHR
PGRP2_1
N-acetylmuramoyl-L-alanine amidase





PRDX2_GLFIIDGK
PRDX2_1
Peroxiredoxin-2





PRG2_WNFAYWAAHQPWSR
PRG2_1
Bone marrow proteoglycan





PRG4_GLPNVVTSAISLPNIR
PRG4_1
Proteoglycan 4





PRG4_ITEVWGIPSPIDTVFTR
PRG4_2
Proteoglycan 4





PRL_LSAYYNLLHCLR
PRL_1
Prolactin





PRL_SWNEPLYHLVTEVR
PRL_2
Prolactin





PROS_FSAEFDFR
PROS_1
Vitamin K-dependent protein S





PROS_SQDILLSVENTVIYR
PROS_2
Vitamin K-dependent protein S





PSG1_FQLPGQK
PSG1_1
Pregnancy-specific beta-1-glycoprotein 1





PSG11_LFIPQITPK
PSG11_1
Pregnancy-specific beta-1-glycoprotein 11





PSG2_IHPSYTNYR
PSG2_1
Pregnancy-specific beta-1-glycoprotein 2





PSG3_VSAPSGTGHLPGLNPL
PSG3_1
Pregnancy-specific beta-1-glycoprotein 3





PSG9_DVLLLVHNLPQNLPGYFWYK
PSG9_1
Pregnancy-specific beta-1-glycoprotein 9





PSG9_LFIPQITR
PSG9_2
Pregnancy-specific beta-1-glycoprotein 9





PTGDS_AQGFTEDTIVFLPQTDK
PIGDS_1
Prostaglandin-H2 D-isomerase





PTGDS_GPGEDFR
PTGDS_2
Prostaglandin-H2 D-isomerase





RET4_YWGVASFLQK
RET4_1
Retinol-binding protein 4





SEPP1_LVYHLGLPFSFLTFPYVEEA
SEPP1_1
Selenoprotein P


IK





SEPP1_VSLATVDK
SEPP1_2
Selenoprotein P





SHBG_IALGGLLFPASNLR
SHBG_1
Sex hormone-binding globulin





SHBG_IALGGLLFPASNLR.1
SHBG_2
Sex hormone-binding globulin





SHBG_IALGGLLFPASNLR.2
SHBG_3
Sex hormone-binding globulin





SOM2_CSH_NYGLLYCFR
SOM2_1
Growth hormone variant





SOM2_CSH_SVEGSCGF
SOM2_2
Growth hormone variant





SPRL1_VLTHSELAPLR
SPRL1_1
SPARC-like protein 1





SVEP1_LLSDFPVVPTATR
SVEP1_1
Sushi, von Willebrand factor type A, EGF and




pentraxin domain-containing protein 1





TENX_LNWEAPPGAFDSFLLR
TENX_1
Tenascin-X





TENX_LSQLSVTDVTTSSLR
TENX_2
Tenascin-X





TETN_CFLAFTQTK
TETN_1
Tetranectin





TETN_LDTLAQEVALLK
TETN_2
Tetranectin





THBG_AVLHIGEK
THBG_1
Thyroxine-binding globulin





THRB_ELLESYIDGR
THRB_1
Prothrombin





TIE1_VSWSLPLVPGPLVGDGELLR
TIE1_1
Tyrosine-protein kinase receptor Tie-1





TIMP1_HLACLPR
TIMP1_1
Metalloproteinase inhibitor 1





VGFR1_YLAVPTSK
VGFR1_1
Vascular endothelial growth factor receptor 1





VTDB_ELPEHTVK
VTDB_1
Vitamin D-binding protein





VTNC_GQYCYELDEK
VTNC 1
Vitronectin





VTNC_VDTVDPPYPR
VTNC_2
Vitronectin








Claims
  • 1. A composition comprising a pair of isolated biomarkers selected from the group consisting of ADA12_FGFGGSTDSGPIR and PAEP_HLWYLLDLK, PAEP_HLWYLLDLK and PRG4_GLPNVVTSAISLPNIR, IBP4_Q.CHPALDGQR and PAEP_HLWYLLDLK, FETUA_FSVVYAK and IBP4_Q.CHPALDGQR, ADA12_FGFGGSTDSGPIR and CRIS3_YEDLYSNCK, CO5_TLLPVSKPEIR and ADA12_FGFGGSTDSGPIR, AFAM_HFQNLGK and AACT_EIGELYLPK, ALS_IRPHTFTGLSGLR and PCD12_AHDADLGINGK, VTNC_GQYCYELDEK and PCD12_AHDADLGINGK, CRIS3_YEDLYSNCK and TETN_LDTLAQEVALLK, B2MG_VEHSDLSFSK and FGFR1_IGPDNLPYVQILK, GELS_TASDFITK and FGFR1_IGPDNLPYVQILK, LIRB5_KPSLLIPQGSVVAR and FA9_SALVLQYLR, B2MG_VEHSDLSFSK and CHL1_VIAVNEVGR, and CHL1_VIAVNEVGR and IGF2_GIVEECCFR, wherein said pair of biomarkers exhibits a change in reversal value between pregnant females that deliver before 270 days relative to pregnant females that deliver on or after 280 days.
  • 2. A method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers selected from the group consisting of ADA12_FGFGGSTDSGPIR and PAEP_HLWYLLDLK, PAEP_HLWYLLDLK and PRG4_GLPNVVTSAISLPNIR, IBP4_Q.CHPALDGQR and PAEP_HLWYLLDLK, FETUA_FSVVYAK and IBP4_Q.CHPALDGQR, ADA12_FGFGGSTDSGPIR and CRIS3_YEDLYSNCK, CO5_TLLPVSKPEIR and ADA12_FGFGGSTDSGPIR, AFAM_HFQNLGK and AACT_EIGELYLPK, ALS_IRPHTFTGLSGLR and PCD12_AHDADLGINGK, VTNC_GQYCYELDEK and PCD12_AHDADLGINGK, CRIS3_YEDLYSNCK and TETN_LDTLAQEVALLK, B2MG_VEHSDLSFSK and FGFR1_IGPDNLPYVQILK, GELS_TASDFITK and FGFR1_IGPDNLPYVQILK, LIRB5_KPSLLIPQGSVVAR and FA9_SALVLQYLR, B2MG_VEHSDLSFSK and CHL1_VIAVNEVGR, and CHL1_VIAVNEVGR and IGF2_GIVEECCFR, to determine the EDD for said pregnant female.
  • 3. A method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers selected from the group consisting of FETUA_HTLNQIDEVK, PRG4_GLPNVVTSAISLPNIR, KNG1_DIPTNSPELEETLTHTITK, ADA12_FGFGGSTDSGPIR, PCD12_AHDADLGINGK, CD14_LTVGAAQVPAQLLVGALR, CRIS3_YEDLYSNCK, CHL1_VIAVNEVGR, FGFR1_IGPDNLPYVQILK or FA9_FGSGYVSGWGR and one of the biomarkers listed in Tables 1-27, to determine the EDD for said pregnant female.
  • 4. The method of claim 2, wherein the biological sample is obtained at a gestational age at blood draw (GABD) from 18 0/7 weeks through 22 6/7 weeks.
  • 5. The method of claim 2, wherein the biological sample is obtained at a gestational age at blood draw (GABD) from 23 0/7 weeks through 28 6/7 weeks.
  • 6. The method of claim 2, wherein said pregnant female is nulliparous.
  • 7. The method of claim 2, further comprising calculation of Inverse Parity as 1/(Parity−0.5).
  • 8. The method of claim 2, further comprising measuring AACT_EIGELYLPK.
  • 9. The method of claim 2, further comprising determining time to birth (TTB).
  • 10. The method of claim 2, wherein the biological sample is selected from the group consisting of whole blood, plasma, and serum.
  • 11. The method of claim 2, wherein the biological sample is serum.
  • 12. The method of claim 2, wherein said measuring comprises mass spectrometry (MS).
  • 13. The method of claim 2, wherein said measuring comprises an assay that utilizes a capture agent.
  • 14. The method of claim 9, wherein said capture agent is selected from the group consisting of and antibody, antibody fragment, nucleic acid-based protein binding reagent, small molecule or variant thereof.
  • 15. The method of claim 10, wherein said assay is selected from the group consisting of enzyme immunoassay (EIA), enzyme-linked immunosorbent assay (ELISA), and radioimmunoassay (RIA).
  • 16. The method of claim 2, further comprising determining gestational age at birth (GAB).
  • 17. A method of determining the estimated due date (EDD) for a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female a reversal value for a pair of biomarkers selected from the group consisting of the biomarker pairs listed in Tables 1-27 to determine the EDD for said pregnant female.
Parent Case Info

This application claims the benefit of U.S. Provisional Application No. 62/547,676, filed Aug. 18, 2017, the entire contents of which is incorporated by reference.

Provisional Applications (1)
Number Date Country
62547676 Aug 2017 US