This invention relates generally to a dual-spring assembly for varying the combined resultant spring rate of the assembly as the dual springs are compressed, and more specifically to a shock absorber unit having the dual-spring assembly with a system for adjusting an amount of preload in one or both of the springs.
Conventional shock absorbers of the type used in vehicles, such as automobiles, typically include a shock damper and a compression spring. At least two parameters considered when designing shock absorbers include the weight of the vehicle and the probable range of driving speeds. Typically, the damping coefficient of the shock damper and the spring constant of a compression spring are often fixed and thus not adjustable once the shock absorber has been fully assembled. However, one or more of the following may affect the efficiency and operation of the shock absorber: the vehicle weight, the range of driving speeds, the terrain (e.g., uneven or rough terrain), steering requirements and the environment. While it is appreciated that a stiffer spring (i.e., larger spring constant or spring rate) permits restoration of the spring to its original state quicker and easier after a deflection, it is also appreciated that a softer spring (i.e., smaller or lower spring constant or spring rate) absorbs energy more easily. Over the years, much effort has been devoted to researching spring constants in an attempt to achieve higher stability and comfort when a vehicle is driven over uneven roads, at high speeds, or is subjected to harsh steering maneuvers. As a consequence, many conventional shock absorbers have a single compression spring with a spring constant selected to handle “average” road or terrain conditions, which are those conditions assumed to be encountered during use of a particular vehicle or type of vehicle.
Some conventional suspension or coil spring systems are described in U.S. Pat. Nos. 5,263,695 and 7,350,774 and in U.S. Patent Publication Nos. 2002/0038929 and 2008/0099968. By way of example, the conventional spring system described in U.S. Pat. No. 5,263,695 attempts to achieve a good level of comfort and a good level of behavior using two springs mounted in series around a shock absorber. The conventional spring system described in U.S. Pat. No. 7,350,774 includes a mechanical spring combination having a large travel, with an initial low spring rate during an initial range of compression and developing a high spring force through a second, but shorter range of compression. However, typical dual-spring shock absorber arrangements are used as simply a progressive combination to avoid movement through the entire stroke of the springs in a large impact scenario.
The present invention relates to dual-spring assembly that may be employed in cooperation with a damper unit to form a shock absorber. The spring rate of at least one of the springs is adjustable with a preload mechanism, which in turn is movable relative to the damper unit. Further, the dual-spring assembly includes at least two compression springs arranged in series and each having selected spring rates. The first spring primarily absorbs the energy of applied loads that are below a first amplitude of applied load. Once the applied loads exceed the first amplitude of applied load and once an amount of preload in the spring with the second spring rate is overcome, the dual-spring assembly operates with a lower “effective” spring rate to absorb the energy of applied loads that exceed the first amplitude of applied load (e.g., high impact loads, such as hitting a curb with a front wheel).
In accordance with an aspect of the invention, a dual-spring assembly for a shock absorber includes a first compression spring having a first spring rate; and a second compression spring having a second spring rate that may be lower, higher, or the same as the first spring rate, the second compression spring having an amount of preload, the first and second compression springs arranged in series and operable to have an effective spring rate for absorbing energy from an applied load after the applied load is large enough to overcome the amount of preload in the second compression spring. The combined effective spring rate of the springs, once the preload is overcome (i.e., both springs engaged) is lower than the spring rate of the first spring. This lower effective spring rate allows the vehicle to better deal with high amplitude impact occurrences that would otherwise be very disruptive to a completely progressive suspension with a high spring rate.
In accordance with another aspect of the invention, a shock absorber includes a piston-cylinder assembly having at least one piston movable within a cylinder at least partially filled with a fluid; and a dual-spring assembly having first and second compression springs arranged in series, the first compression spring having a first mean coil diameter relative to a first coil axis and a first spring rate, and the second compression spring having a second mean coil diameter relative to a second coil axis aligned substantially parallel with the first coil axis, the second compression spring includes a second spring rate, the second compression spring further includes an amount of preload such that it compresses only after the first spring reaches a certain load, wherein the first and second compression springs operate with a lower effective spring rate than that of the first spring alone for absorbing energy from an applied load after the applied load exceeds a load sufficient to overcome the amount of preload in the second compression spring.
In accordance with yet another aspect of the invention, a method of absorbing applied loads with a dual-spring assembly includes the steps of (1) arranging first and second compression springs in series about the body of a shock absorber; (2) absorbing energy from a first applied load primarily with the first compression spring when the first applied load is below a predetermined amplitude of applied load; and (3) absorbing energy from a second applied load primarily with the first and second compression springs operating in series when the second applied load is above the predetermined amplitude of applied load and after the second applied load overcomes an amount of preload in the second compression spring. The combined spring rate of the first and second springs being lower than that of the first spring.
In accordance with still another aspect of the invention, a shock absorber includes a dual-spring assembly including a first and second adjustable support member, and a collar positioned between the first and second adjustable support members. The shock absorber also includes a movable bracket positioned between the collar and the second adjustable support member. The movable bracket has a first side and a second side opposite the first side. The movable bracket is movable between the second adjustable support member and the collar, the collar prevents the movable bracket from moving beyond the collar toward the first adjustable support member. The shock absorber also includes a first spring having a first spring rate, a first end contacting the first adjustable support member, and a second end contacting the first side of the movable bracket, and a second spring having a second spring rate lower than the first spring rate, a first end contacting the second side of the movable bracket, and a second end contacting the second adjustable support member. The first and second springs are arranged in series. When the movable bracket contacts the collar, the second spring has a predetermined preload. When an applied load is less than a predetermined threshold level the first spring is configured to absorb the load and the preload of the second spring is not overcome. When the applied load reaches the predetermined threshold the first and second springs are configured to absorb the load in combination. The first adjustable support member is movable toward the first spring to increase a preload on the first spring and away from the first spring to decrease the preload on the first spring to control vehicle sag. The second adjustable support member is movable toward the second spring to increase the preload on the second spring to increase the predetermined threshold and away from the second spring to decrease the predetermined threshold.
In other embodiments, the present invention is directed to a dual-spring assembly for a shock absorber comprising a center assembly having a first end and a second end and a first compression spring positioned about the center assembly and extending from the first end of the center assembly. The first compression spring has a first spring rate. The shock absorber also includes a second compression spring positioned about the center assembly and extending from the second end of the center assembly. The second compression spring has a second spring rate and a preloaded deflection. The first and second compression springs can be arranged in series and operable to have an effective spring rate lower than the first spring rate for absorbing energy from an applied load after the applied load is large enough to overcome the preloaded deflection in the second compression spring.
In still further embodiments, the present invention is directed to a method of adjusting a dual-spring shock absorber having a first spring and a second spring arranged in series. The first spring is configured to engage when a load on the shock absorber is below a first threshold. The first and second springs are configured to engage in combination when the load on the shock absorber is above the first threshold and below a second threshold. The method includes moving a first adjustable support relative to the first spring to adjust vehicle sag, and moving a second adjustable support relative to the second spring to adjust the first threshold. Moving the first adjustable support relative to the first spring is independent of the first threshold.
Preferred and alternative embodiments of the present invention are described in detail below with reference to the following drawings:
As will be described in further detail below, at least one embodiment of the invention includes a dual-spring assembly that may cooperate with a damper unit of a shock absorber. In addition, the shock absorber may include a preload system for preloading at least one of the springs. The dual springs are arranged in series. In one embodiment, the spring with the higher spring rate operates as the primary spring to absorb the energy from applied loads that are less than a desired amplitude of applied load. For loads greater than the desired amplitude of applied load and after the preload in the second spring has been overcome, the springs operate together with a lower effective spring rate to absorb high amplitude impact loads, for example. In another embodiment, the spring with the lower individual spring rate operates as the primary spring, with the higher rate spring being preloaded. However, even in this embodiment, the combined effective spring rate, once the preload is overcome and both springs are engaged, is lower than that of the primary spring. The primary spring in either case may also have a preload. However, the preload of the primary spring is less than that of the secondary spring such that the secondary spring is compressed only after compression of the primary spring to such an extent as to overcome the preload on the secondary spring. The preload system may include an interfacing bracket positioned between the springs. In the preferred embodiment, the interfacing portion is linearly movable to adjust the preload in at least one of the springs. For example, the interfacing portion may be coupled to a threaded collar and moved on a shock absorber body to increase or decrease the preload in one or both springs. Moreover, the preload system may include stops to limit the total compression of the preloaded spring.
The dual-spring system may be employed in a variety of applications ranging from a bicycle shock absorber to a vehicle suspension system to a suspension system for an interplanetary landing craft. The dual-spring system in combination with the preload system and optionally in combination with an auxiliary energy absorption member may advantageously provide numerous ways to customize and tune a shock absorber. By way of example, the dual-spring system in combination with the auxiliary energy absorption member permits the shock absorber to actively operate over at least three different spring rate regions. In addition, the preload system permits adjustment of the preload in one or both springs of the dual-spring system. Advantageously, preloading one or both springs may help stabilize the springs when installed and may alter an initial point at which the spring begins to further compress. For example, a spring preloaded by 100 pounds will not begin to compress under any applied load until such applied load is over 100 pounds. Optionally, preloading one or both of the springs may also provide improved tuning with respect to the dynamic response frequency of the system.
The cylinder 108 defines a cylindrical axis 118 that coincides with a longitudinal axis of the piston rod 112. Accordingly, movement of the piston 110 occurs along a linear direction substantially parallel to the cylindrical axis 118. In one embodiment, the cylinder 108 is at least partially filled with a hydraulic fluid (not shown), such as, but not limited to oil. In another embodiment, the cylinder 108 may take the form of a gas charged cylinder filled at least partially with air or nitrogen to minimize aeration of the hydraulic fluid.
The dual-spring assembly 104 includes dual springs 120, 122 arranged in series, and more specifically the dual springs 120, 122 take the form of an upper spring 120 and a lower spring 122 according to an embodiment of the present invention. The springs 120, 122 may take the form of helical compression springs, which may include closed and ground end portions. The upper spring 120 includes a first mean coil diameter 124 that is larger than a cylinder diameter 126. Similarly, the lower spring 122 includes a second mean coil diameter 128, which is also larger than the cylinder diameter 126. The first and second mean coil diameters 124, 128 may be, but are not required to be, substantially equal. The dual springs 120, 122 may be formed from round-wire (i.e., circular) having a desired wire diameter. In addition, the round-wire may take the form of steel wire and be heat treated, peened or otherwise processed to increase the strength and operational life of the springs 120, 122. An installed length 130 of the dual-spring assembly 104 may achieved by preloading one or both springs 120, 122, as will be discussed in greater detail below. For purposes of brevity, other structural aspects and features of compression springs, such as helical compression springs, will not be described in detail.
The energy absorption device 129 can be mounted to the adjustable upper support member 210. In other embodiments the adjustable upper support member 210 can be a disk with a central bore that contacts the spring 120. The energy absorption device 129 can therefore be mounted to the upper support member 114 with the energy absorption member passing through the central bore of the adjustable upper support member 210.
By moving the adjustable upper support member 210 toward the upper support member 114, the upper spring 120 is lengthened and the preload is lessened. Conversely, movement in the opposite direction lengthens the spring 120 and the preload. The adjustable upper support member 210 can adjust the preload and length of the upper spring 120 independently of the preload, length, and position of the lower spring 122.
The adjustable shock absorber 200 can also include an adjustable lower support member 230 and an adjustable lower mount 240. In some embodiments, the adjustable lower support member 230 and adjustable lower mount 240 are identical to the adjustable upper support member 210 and the adjustable upper mount 220. The adjustable lower mount 240 can be a portion of the column 108, or it can be a structurally separate member. In other embodiments, the adjustable upper and lower support members are different. For example, in the illustrated embodiment the upper spring 120 has a larger elastic coefficient due to the larger coils. The adjustable upper support member 210 and adjustable upper mount 220 can therefore be larger than the adjustable lower support member 230 and adjustable lower mount 240 to accommodate the difference in size of the springs. Moving the adjustable lower support member 230 toward or away from the lower spring 122 can adjust the preload and length of the lower spring 122 independently of the upper spring 120.
The adjustable upper and lower support members 210, 230 can alternatively be mounted between the slidable bracket 158 and the upper spring 120, and between the slidable bracket and the lower spring 122. The adjustable support members 210, 230 can be adjusted by moving toward or away from the slidable bracket 158.
Optionally, the shock absorber 100 may include an energy absorption device 129 attached to the upper support member 114. The energy absorption device 129 may take the form of an elastomeric bumper, sleeve, stiff spring, or collar operable to engage the cylinder 108 before the upper spring 120 achieves a solid height, which may be otherwise referred to as “stacking out”. The solid height is the length of a compression spring when under sufficient load to bring all coils into contact with adjacent coils such that no additional deflection of the compression spring is possible.
In a preferred embodiment, the first spring rate K1 of the upper spring 120 is substantially different than the second spring rate K2 of the lower spring 122. Specifically, the first spring rate K1 of the upper spring 120 is higher than the second spring rate K2 of the lower spring 122 (i.e., the upper spring 120 is stiffer than the lower spring 122). However, the reverse situation and other situations are possible depending on the type of springs used in the spring assembly 104. For example, the spring rate of the lower (secondary) spring 122 may be higher than that of the upper (primary) spring as long as the combined effective spring rate is lower than that of the upper spring. In addition, the energy absorption device 129 (
In operation, the upper spring 120 with the spring rate K1 operates as the primary or active spring when the applied load on the dual-spring assembly 104 is below a first amplitude of applied load 142, for example during normal driving conditions for a specific type of vehicle. In the illustrated embodiment, the applied load 142 is equivalent to the preload induced in the lower spring 122. Concurrently while the upper spring 120 is active, the lower spring 122 may remain inactive or stated otherwise the lower spring 122 will not undergo a change in length while the applied loads remain below the first amplitude of applied load. Accordingly,
By way of example, the dual-spring assembly 104 operates in the region 146 when the shock absorber 100 encounters a significant impact, such as a tire of a formula one race car running up onto a curb. Because the amplitude of the impact load exceeds the first amplitude of applied load 142, the springs 120, 122 operate together to absorb energy from the impact.
In the illustrated embodiment, the springs 120, 122 continue to operate together with the effective spring rate KEFF until the applied load exceeds a second amplitude of applied load 148. At this time and briefly referring to
Moving the adjustable upper support member 210 can therefore affect vehicle sag. The vehicle sag is generally defined as the amount of compression in the suspension as the vehicle's suspension supports only its own weight. For many types of vehicles, adjusting the amount of vehicle sag is desirable. The adjustable upper support 210 allows adjustment of the vehicle sag independently of other parameters and without substantially affecting the lower spring 122.
Moving the adjustable lower support member 230 can affect the transition point at which the lower spring 122 begins to deflect. In reference to
In one embodiment, the slidable bracket 158 is a freely floating bracket that may be initially positioned during installation with a collar 162. During installation of the dual-spring assembly 104, the collar 162 may be moved along the cylinder 108 to adjust the amount of preload in one or both springs 120, 122. In one embodiment, the collar 162 may take the form of a threaded collar that is threadably engaged with an externally threaded cylinder 108. Further, the collar 162 may be located above or below the slidable bracket 158.
Advantageously, the dual-spring assembly 104 with or without the preload system 106 may be retrofitted to existing shock absorbers. In addition and as described above, the dual-spring assembly 104 permits the upper and lower springs 120, 122 to be de-coupled (i.e., both springs active) once the applied load exceeds a certain threshold or level. Once de-coupled, the upper and lower springs 120, 122 operate together to provide a regressive spring rate, KEFF (
In conclusion, the dual-spring assembly 104 allows for only a first spring to be active during normal operating conditions. When the vehicle encounters a large impact force, the first spring deflects by a desired amount and then begins to cooperate with a second spring to allow a shock absorber to absorb energy with a regressive or lower effective spring rate. Once the second spring deflects by a desired amount, preferably before stacking out, the second spring again becomes inactive while the first spring continues to absorb energy from the applied load.
While at least one embodiment of the invention has been illustrated and described, as noted above, many changes can be made without departing from the spirit and scope of the invention. For example, an additional shorter spring with a much lower spring rate may be employed in series with the primary and secondary springs to act as a “ride-in” spring, compressing under load of the vehicle driver and/or passenger. Accordingly, the scope of the invention is not limited by the disclosure of the embodiments described above. Instead, the invention should be determined by reference to the claims that follow.
This application is a continuation-in-part of U.S. patent application Ser. No. 12/788,501 entitled PRELOADED DUAL-SPRING ASSEMBLY, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 12788501 | May 2010 | US |
Child | 13523490 | US |