The present invention relates generally to the field of security systems. More particularly, the present invention relates to a system and method for the remote monitoring of a premises from a location other than the premises.
Conventional security systems typically protect a building using make/break contacts strategically placed at doors, windows, and other potential entry points and motion sensors in strategic areas inside the building. Other devices include glass breakage detectors, panic or medical alert buttons, temperature and flood sensors, smoke detectors, and P.I.R. (passive infra red) sensors, a type of motion sensor that senses heat differences caused by animate objects such as humans or animals. Also used are vibration sensors which, when placed upon a window for example, detect when the window is broken, and radio frequency (rf), radar, and microwave sensors, as well as laser sensing. When the system is on and a sensor is tripped, a signal is sent through a wire, or using radio frequencies (on wireless systems), to a main controller which sounds a siren and dials out via telephone, an IP connection, or cellular service to the monitoring station whenever an alarm condition occurs.
One technological approach to determining whether or not an alarm condition exists is through the use of separate audio monitors operating in concert with separate alarm sensors. U.S. Pat. Nos. 4,591,834 and 4,918,717 are directed to such systems. For example, U.S. Pat. No. 4,591,834 refers to the use of miniature, low-frequency dynamic microphones. Alarm activities noted at the microphones are verified via a separate network of discriminator sensors which comprise geophones. Signal processing techniques are utilized to distinguish alarm activity. Intrusion and discriminator sensors are arranged in known patterns comprised of multiple sensors of each type. U.S. Pat. No. 4,918,717 refers to a system wherein a number of microphones are distributed about a secured premises in relation to other intrusion sensors. Upon detection of an intrusion alarm, the microphones can be manually enabled one at a time from the central station to allow an operator to listen to audio activity in proximity to the sensor alarm.
Another approach is the use of video images to monitor a location. In many prior art devices, however, the video images may not be received by the monitoring party until several moments have passed after the recorded event has actually taken place, likely causing any response to be late and less effective.
Another disadvantage with existing security systems is that after a person has left the premises, he or she may not be certain that he or she remembered to activate or arm the security system. In prior art systems, it has been necessary to return to the premises to arm the security system or ask someone else to check on the premises and report back to the person. Returning to the premises is time-consuming and inconvenient, and may not be possible if the person is traveling or is otherwise unable to return to the premises.
In addition, the owner of a premises may desire to monitor the premises or communicate with an occupant of the premises, whether or not an alarm has been triggered. One approach for remote monitoring or remote communication involves the use of web cams. A disadvantage to using web cams is that they fail to address privacy concerns by failing to inform or notify the occupant of the premises that remote surveillance is occurring. Instead, the attraction of web cams to consumers is the ability to spy on a location without individuals knowing the web cam is transmitting images of the premises.
Furthermore, the owner of the premises may desire to modify aspects of the security system while he or she is away from the premises. In many prior art systems, the owner is unable to modify certain aspects of the security system. Instead, the security system must be reconfigured by a representative of the security system manufacturer or a complex process using the keypad with limited user interface. It is therefore desirable for a user at a remote location to be capable of arming and disarming the security system, changing aspects of the security system, and generally having access to control the monitoring of the premises from the remote location.
Prior art systems generally do not provide for two-way audio communication. Two-way audio capabilities enable owners of the premises and monitoring personnel to communicate with individuals present at the premises, providing an extra means for determining the status of the premises (such as determining if an alarm event is actually occurring) and, in the case of a remote user communicating with the premises, the opportunity to maintain a sense of control of the premises (such as communicating with a child at the premises).
Prior art systems generally do not provide for hands-free communication by occupants of the premises with a remote user. In cases in which the occurrence of an alarm event has resulted in an occupant being injured or otherwise unable to operate the security system, the only option was to wait for someone to check on the premises and notify the proper authorities. Furthermore, prior art systems generally do not transmit images or sound during non-alarm periods. It is therefore desirable to provide a security system capable of transmitting images and sound during non-alarm time periods, and to further provide a way for individuals at a monitored location to communicate with users accessing the security system from a remote location, and without the need for acknowledging the remote user in order to communicate.
There is a desire to balance security, privacy, and convenience concerns, particularly with residential security systems. Many prior art security systems sacrifice security and lack convenience for the sake of privacy. It is therefore desirable to provide a security system that provides security of the premises, is configurable to address privacy concerns of the occupants, and is convenient for the users of the security system to access the system remotely.
From the foregoing, it can be appreciated that a need has arisen for a security system and method that overcomes the limitations of the prior art. It is desirable that such a security system provide the convenience of remote monitoring of a premises by a remote user, while simultaneously addressing privacy concerns by providing a notification signal to alert occupants of the premises that remote monitoring is occurring. It is further desirable that such a system use available infrastructure and protocols and overcome the limitations of conventional methods.
Accordingly, the present invention provides a method for remote monitoring of a premises, comprising the steps of operatively coupling a geographically remote client to a security system server which is capable of authenticating a user of the remote client, operatively coupling the remote client to a security gateway which is capable of managing the monitoring of the premises, activating a signal at the premises for notifying an occupant at the premises that remote monitoring is occurring, and transferring information between the security gateway and the remote client. The transfer of information between the security gateway and the remote client is controlled by the user of the remote client. The security gateway may be operably coupled to at least one camera and to at least one audio station.
The notification signal may comprise an audible signal or a visible signal or both. An audible notification signal may comprise a sound uniquely associated with the remote user, and can comprise speech, which may identify the remote user. A visible notification signal may comprise a depiction of the remote user, or a graphical image, or an alphanumeric message, which may identify the remote user, and which may be transmitted to a keypad at the premises. The visible notification signal may be transmitted to a display device, such as a television. The visible notification signal may further comprise an activation signal for a light source at the premises, such as a light emitting diode (LED). The LED may be located on a camera or on a keypad, for example.
In accordance with one embodiment, the inventive method may further comprise steps for verifying the identification of the remote user, transmitting an access token from the security system server to the remote client, providing the security gateway with information about the remote user and the access token and disabling communication between the security system server and the remote client. The access token may be adapted to allow the remote client to access the security gateway based on the user's permission profile, which is created by a General Administrator of the security gateway. The access token may expire at a designated time and date, or after a designated length of time has elapsed, or after a designated number of accesses has occurred, or upon access being removed by a General Administrator. The access token may allow access to specific features of the security gateway in accordance with the user's permission profile.
In another embodiment, the inventive method may further provide a controller capable of performing one or more building automation control functions, which may include without limitation controlling air conditioning systems at the premises, doors at the premises, lighting devices at the premises, irrigation systems at the premises, or electrical appliances at the premises.
In yet another embodiment, the inventive method may provide for streaming data in substantially real-time from the security gateway to the remote client. In still another embodiment, the inventive method may provide for substantially real-time audio communication or video communication, or both, between the remote client and the security gateway.
The inventive method may also provide for continuously caching audio and video data. Furthermore, the method of the present invention may provide for recording audio and video data during a particular time period. The particular time period may comprise intervals according to a pre-determined schedule, or may be determined upon demand of an administrator of said security gateway. The particular time period may begin prior to triggering of an alarm, or prior to triggering of a sensor.
The present invention further provides a system for remote monitoring of a premises by a geographically remote user, comprising a security system server capable of authenticating the user, a security gateway capable of managing the monitoring of the premises, one or more cameras, and one or more audio stations, wherein the security gateway provides an audiovisual signal at the premises for notifying an occupant at the premises that remote monitoring is occurring. The inventive system may further comprise a controller capable of performing building automation control functions. The system may also provide for streaming data in substantially real-time from said security gateway to said remote client. The system may further provide for substantially real-time synchronized audio and video communication between said remote client and said security gateway.
The present invention can be also used in many different vertical segments within the security industry. In this present invention, the audio and video digitization and processing including compression is centralized at the security gateway. As processors become less expensive and more efficient, these functions can be done at the individual camera or at the audio station. The security gateway may then act as a central communications and controller for the cameras, audio stations and various other sensors.
The present invention provides the advantage of using the security system as a platform for two-way audio and video communication. By making communication between a remote user and the premises very convenient, the present invention allows the owner of the premises to be proactive in monitoring the premises by allowing remote viewing as well as communicating with individuals at the premises.
The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.
It is to be noted, however, that the appended drawings illustrate only exemplary embodiments of the invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments. In addition, although the Figures may depict embodiments wherein each of the components represent different devices or locations, they can be combined into a single device or location. In addition, a single component may be comprised of a combination of components.
The present invention addresses several shortcomings of the prior art by providing a security system and framework that is configured to deliver real-time information, including audiovisual information about alarm conditions and/or personal conditions to remote users. As a further advantage, the framework may be easily adapted for use in other applications that incorporate real-time information and video delivery.
The term “security system” is used in this document to mean a system for monitoring a premises, e.g., for the purpose of discouraging and responding to burglaries, fires, and other emergency situations. Such a security system is well-suited for residential homes, but may also find use with schools, nursing homes, hospitals, businesses or any other location in which real-time information may be useful in obtaining adequate response upon the occurrence of alarm conditions. By integrating broadband features, including audiovisual capabilities, web access and wireless capabilities, and video and voice over IP protocols, embodiments of the present invention provide audiovisual alarm verification, 24-hour monitoring capabilities, and a secure web site with remote access features and security-focused content.
The term “lifestyle monitoring” is used in this document to mean audiovisual monitoring and communicating on demand during non-alarm situations. The term “audiovisual” is used in this document to mean audio or video or both. An example of a non-alarm situation is when a parent checks on latch-key children or a caregiver checks on an elderly person. Embodiments of the present invention may be used to give peace of mind to the owner of the premises while he or she is away from the premises. Embodiments of the present invention may also be used to proactively respond to situations before they become emergencies.
The term “remote user” is used in this document to mean any individual located at any location other than the premises or the central monitoring station. A remote user may include the owner of the premises, when the owner is not physically located at the premises. A remote user may also include a guest user, such as an individual whom the owner has given permission to access certain aspects of the security system. Because monitoring personnel at a central monitoring station do not have access to the security system except during alarm events, they are not considered remote users as they are described in this document.
For purposes of the present invention, the term “premises” refers to real property, including one or more structures thereupon and their surroundings. For the purposes of the present invention, a premises preferably comprises a residential housing, but it will be appreciated by one skilled in the art that a premises may also comprise commercial facilities, educational facilities, and the like.
Further, the term “a” is generally used in the present disclosure to mean one or more. Still further, the terms “coupled” and “operatively coupled” mean connected in such a way that data may be transmitted or received. It is understood that “coupled” and “operatively coupled” do not require a direct connection, a wired connection, or even a permanent connection. It is sufficient for purposes of the present invention that the connection(s) be established for transmitting and receiving information.
In the present disclosure, the term “high-speed” or “high-bandwidth” generally means capable of providing sufficient bandwidth for data to be transmitted in real-time, i.e., with substantially no latency. In one embodiment, high-speed connections are those capable of transmitting at speeds of at least 128 Kbps. High-speed connections include but are not limited to cable modem connections, xDSL connections, and high-speed wireless connection.
The term “non-alarm event” is used in this document to describe an event that occurs at the premises which does not constitute an alarm event. A non-alarm event is designated by the triggering of a sensor. For example, a motion sensor located near the front door may detect the presence of a person approaching the front door. This person may be, for example, a delivery person dropping off a package for the resident and would not constitute an alarm event. This non-alarm event, however, may be used by the owner of the premises to analyze the security system effectiveness (such as determining the capability of the front door camera to capture images in case of an alarm event), for lifestyle purposes (such as how often people approach the front door), or to provide monitoring personnel with a general time frame associated with an alarm event.
The term “remote client” is used in this document to mean any processor-based device capable of connecting to a network. For example, a remote client may comprise a personal computer, a PDA, or a mobile phone.
Referring now to the drawings,
In general, network 120 may be a public network or private network, a single network or a combination of several networks. In most embodiments, network 120 may be, but is not required to be, an EP-based network. In some embodiments it may be desirable for all or a portion of network 120 to include publicly available networks, such as the Internet, to avoid the need for installing, purchasing, or leasing additional infrastructure. However, in some systems, e.g., those that use high-bandwidth transmissions, it may be desirable to include dedicated high-bandwidth connections including, without limitation, leased lines, frame relay networks, and ATM networks, within network 120. Further, in some systems it may be desirable to use a network 120 with quality of service guarantees given the real-time nature of the information that is transmitted.
Generally, security gateway 115 is a processor-based device operable to monitor premises 110 by capturing and recording audiovisual information relating to the premises during pre-alarm, and post-alarm periods, as well as during non-alarm events. Security gateway 115 also detects and relays alarm conditions at premises 110 and captures information relating to such alarm conditions. Upon triggering of an alarm, security gateway 115 sends cached, stored, and live information from pre-event, pre-alarm, and post-alarm segments to security system server 131 for verification and response.
Security gateway 115 may, but is not required to be, located at premises 110. Some or all components of security gateway 115 may be located remotely, but remain operatively coupled to security sensors 105, audio stations 107, and video cameras 112 which are located at premises 110. In accordance with a preferred embodiment of the present invention, premises 110 comprises a building such as a residential home. Advantageously, the present invention provides for sensors 105, audio stations 107 and video cameras 112 to be located indoors as well as outdoors. For example, sensors 105, audio stations 107 and video cameras 112 may be located in certain rooms or zones within the building on premises 110, as well as outside the doors of the building.
Monitoring client 133 generally comprises a software program that may be used to display some or all of the information provided by security gateway 115. Monitoring client 133 may be a stand-alone program or integrated into one or more existing software programs. One or more operators may then use this information to evaluate whether the alarm condition corresponds to an actual alarm condition and then take additional action, if desired, such as alerting the appropriate authorities.
Security system 100 generally includes one or more sensors 105 coupled to security gateway 115 for the purpose of detecting certain events. One skilled in the art will appreciate that security system 100 is not limited to any specific type or model of sensor 105. A variety of sensors 105 may be used, depending on the desired type and level of protection. Examples include, without limitation, magnetic contact switches, audio sensors, infrared sensors, motion detectors, fire alarms, panic buttons, and carbon monoxide sensors. Sensors 105 may be wired directly into an alarm control panel built into security gateway 115, or they may be wirelessly connected. The type of sensors 105 to be used depends on the specific application for which security system 100 is designed. In some embodiments, multiple sensors 105 may be used. In such embodiments, security gateway 115 may consider data from all, some, or one of sensors 105 in the detection of alarm conditions. Additionally, security system 100 can store multiple video events triggered by sensors 105, or at scheduled times.
Security system 100 also includes one or more cameras 112 and audio stations 107 operable to capture video data and audio data, respectively, from premises 110. Cameras 112 may be, but are not required to be, 360-degree cameras or panoramic cameras. Audio stations 107 may include microphones and speakers and are capable of providing two-way communication as well as emitting a signal for alerting occupants of the premises that communication is occurring.
In addition, security gateway 115 may be configured to create an association between one or more sensors 105 and an associated camera 112 or audio station 107. Whether or not separate sensors 105 are present, security gateway 115 may capture video or audio or both from cameras 112 and audio stations 107 to assist in the determination of whether an alarm condition exists and 204 thereby whether to generate and send an alarm signal to the security system server 131. Cameras 112 and audio stations 107 continuously transmit audiovisual data to security gateway 115 for caching (i.e., temporarily storing), recording (i.e., storing for a long term), or streaming to a remote user 152 or security system server 131. In some embodiments, sensors 105, such as motion detectors, infra-red sensors and audio sensors, may be replaced by an intelligent alarm module that is able to detect motion or intrusion by analyzing the video data or audio data or both generated from cameras 112 and audio stations 107.
In some embodiments, the segment of audiovisual data may be compressed using one or more of any number compression techniques known by one of skill in the art. For example, this may involve the use of video compression algorithms such as Motion Pictures Expert Group (MPEG). Further, the resolution or color depth of the video may be reduced to lessen the amount of bandwidth required for transmission. In one embodiment, alarm video can be transmitted at least 3 frames per second. In addition, the alarm video may have an end resolution (i.e., after interpolation and/or image enhancement, etc.) of 320 pixels by 240 pixels or higher, and optionally may be transmitted in color. It is noted that the present invention is not limited to any particular audio, video, or communications standards. The present invention may incorporate any such standards, including, without limitation: H.323, Adaptive Differential Pulse-Code Modulation (ADPCM), H.263, MPEG, User Datagram Protocol (UDP), and Transmission Control Protocol/Internet Protocol (TCP/IP).
A disadvantage with intrusion systems in the prior art, including video surveillance systems, is that they provide very little or no information leading up to the alarm event. Prior art systems are typically configured to record audiovisual information only after an alarm is triggered. The only information that a monitoring agent typically receives is specific to that information about how an alarm event was defined which usually includes the time, type and location of sensor that was triggered. This limited information does not adequately help the monitoring agent verify the event. Even in video surveillance systems, the monitoring agent typically only views live camera(s) associated with that alarm sensor, which may not be adequate. A typical prior art intrusion system protects the perimeter of a residence or facility, and alarm events are only declared when the perimeter sensors, such as window or door contact switches, or internal sensors, such as motion sensors, are triggered.
The present invention, however, provides for continuous caching of audiovisual data while the security system 100 is armed. Furthermore, if the security system 100 is armed and one of the sensors 105 is triggered, the segment of cached audiovisual data immediately prior to, during, and immediately following the triggering of the sensor 105 is stored in memory, preferably located in the security gateway 115 for privacy reasons, or in another storage device that is operatively coupled to the security gateway 115 via a network. For example, when a particular sensor 105 is triggered, cached audiovisual data from the camera 112 and audio station 107 associated with that sensor 105, beginning several seconds prior to the triggering of the sensor 105 and ending several seconds after the triggering of the sensor 105, may be stored in the memory. In addition, audiovisual data may be also be stored in memory at scheduled times. The General Administrator may view the stored data and may archive it if desired. If the system alarm is triggered, then the monitoring client 133 may access the stored data. The length and number of stored segments can be adjusted depending upon the capacity of the memory.
Furthermore, information from cameras 112 that are placed outside the facility of premises 110 is used in the verification of alarms. For example, in one implementation, a front door camera records “events” for a fixed duration of time, such as ten seconds. The events are defined by a motion sensor being triggered. In one implementation, the security gateway stores approximately twenty of these non-alarm events. However, this event is not an alarm event but a non-alarm event. If the alarm system is triggered, the monitoring agent can in substantially real time access the various non-alarm audiovisual events. The non-alarm information is used by the monitoring agent to provide contextual information surrounding an actual alarm event.
An advantage of continuously caching audiovisual data and storing the cached data before and after a particular sensor 105 is triggered, even though an alarm has not been triggered, is allowing the ability to capture important information leading up to an intrusion or other alarm event. The stored data can provide context to audiovisual data surrounding the triggering of an alarm and can thus be used to verify whether an alarm is an actual emergency situation or a false alarm. For example, a potential intruder may walk around the premises 110 prior to breaking in, in order to look for a point of entry. The cached data surrounding the triggering of the sensors 105 provide the monitoring client 133, and ultimately law enforcement, with more information about the intruder than may be available if the camera 112 only began recording after the alarm was triggered. A monitoring agent reviewing this information, within minutes of the alarm triggering, will be able to review the stored non-alarm audiovisual events and make a verification decision. For example, if the non-alarm information includes several events illustrating strange behavior by someone that does not look like the owner or occupant or authorized guest of premises 110, this is likely to be an actual alarm event. Non-alarm information is recorded even when the intruder is leaving the premises 110. For example, a front door camera may record the intruder leaving the premises 110 and getting into his getaway car, further providing evidence for verification and possibly prosecution. In all recorded events, both non-alarm and alarm, the security gateway 115 records a segment of audiovisual information prior to a sensor 105 being triggered. In one implementation, the length of this pre-event recording is five seconds. It will be appreciated by those of skill in the art that the length of recording may be customized in accordance with the requirements and specifications of the particular security gateway 115 and the preferences of the owner of the premises 110. This function is enabled by the continuous caching of pre-event information in the security gateway 115.
A further advantage to continuously caching audiovisual data and storing the cached data before and after a particular sensor 105 is triggered is the added convenience and peace of mind of the owner of the premises. For example, the owner of the premises 110 may view the stored data remotely in order to verify whether a false alarm has occurred, or to check to see if the owner's child has come home from school safely.
The present invention provides for access to security gateway 115 and security system server 131 by remote user 152 using a remote client 155 which is located at a remote location 150. Remote user 152 may be the General Administrator, i.e., a person (typically the owner of premises 110) having full access to security gateway 115, including without limitation having the following capabilities: accessing all zones; arming and disarming security system 100; reviewing logs of alarm events and non-alarm events; accessing account information such as the billing address, phone number, and contact persons; renaming a sensor; performing maintenance on the system such as checking battery levels; creating guest accounts for other remote users 152, including defining access permissions for the guest user and creating a username and password for the guest user; and adjusting controls on the security system 100, such as the gain control for the microphones, the volume controls for the speakers, and the time limit for caching information. Alternatively, remote user 152 may be a guest user, i.e., a user whose permissions and access are controlled by the General Administrator. The features of the security system that a guest user may access are defined and modified according to the General Administrator's preferences. Additional information regarding general system administrative functions and user permissions can be found in U.S. Pat. Nos. 5,689,708; 5,694,595; and 5,696,898, the contents of which are incorporated by reference herein.
Remote client 155 is operatively coupled to security gateway 115 and security system server 131. Remote user 152 is authenticated by security system server 131. In a preferred embodiment, remote users 152 are identified by a user name and password. It will be appreciated by those skilled in the art, however, that the present invention contemplates the use of many authentication techniques, including without limitation, physical possession of a key, user name and password, smartcards, and biometrics. For example, the system could recognize the remote user's 152 facial features, signature, voice or fingerprint and disarm the system without a Personal Identification Number (PIN) code. Additional information regarding the use of biometrics may be found in U.S. Pat. No. 5,526,428, the contents of which are incorporated herein by reference.
Remote client 155 may connect to security system server 131 and security gateway 115 (after authentication) via network 120. In one particular embodiment, remote client 155 includes a web-browser-based video client for accessing audio and video data. Typically, the web-based video client is a web browser or a plug-in for a web browser. After authentication, security system server 131 may be configured to create a data connection between remote client 155 and security gateway 115 such that communications between remote client 155 and security gateway 115 bypass security system server 131. Advantageously, this avoids network bottlenecks at the security system server 131, particularly when transmitting large amounts of data such as during the transmission of streaming audiovisual data.
In one embodiment, once authenticated, remote user 152 may perform lifestyle monitoring from remote location 150 through security gateway 115. The remote monitoring feature allows remote user 152 at remote location 150 to view all or only selected portions of the video images from video cameras 112, and to hear all or only selected portions of audio data from audio stations 107. Depending on the access permissions assigned to remote user 152, remote user 152 may further have the capability to accomplish the following: arm and disarm the system 100; configure the security system 100 to monitor different zones; review and change account information; and participate in lifestyle communications with occupants at premises 110. In addition, remote user 152 may be able to configure the quality of the audiovisual data for remote monitoring. Depending on the bandwidth of the connection, the information transmitted to remote client 155 may be of a lower quality than that transmitted to security system server 131 for verification of alarm signals. For example, in one embodiment, the video transmitted to remote client 155 may have a lower frame rate, lower resolution, and/or lower color depth.
Security gateway 115 may be configured to limit the transmission of all data (heartbeat, control, video, and audio) to a configurable ceiling relating to the remote client 155 access. Advantageously, this may provide the necessary amount of bandwidth to deliver the requested services, but prevents one user from creating a network bottleneck by requesting too much data at once. In one embodiment, a 128 kbps transmission ceiling is imposed. Access by web based client 155 to security gateway 115 may be preempted whenever an alarm condition occurs so that monitoring personnel have full control over cameras 112 and audio stations 107 to respond to the alarm condition.
The present invention also provides for lifestyle monitoring by a guest user. Access permission for each remote user 152 is defined by the General Administrator. Access may be limited to certain time intervals (such as only at certain times during the day), a certain interval of time (such as beginning Friday and ending Sunday), or for a certain number of times (such as three times a day or three times with no expiration date). Access may also be limited to certain cameras 112 or audio stations 107, etc.
When a guest user performs lifestyle monitoring, the guest user will have limited access to security system 100. Thus, guest users may not have full access to all cameras 112 and all audio stations 107 at all times. For example, remote user 152 may be able to access video from a camera 112 in a kitchen twenty-four hours a day, but may never be able to monitor audio or video from a bedroom. As another example, remote user 152 may be given permission to view video from several cameras 112 on a particular day, but only on that particular day. Remote user 152 may also be given permission to only access certain audio stations 107.
Although remote users 152 may be given unlimited access to a part or all of the security system 100, such access does not necessarily give the remote users 152 the capability or authorization to change the security settings. Therefore, remote user 152 can access at least a portion of security system 100 without accidentally or intentionally disarming parts or all of the system. Furthermore, remote user's 152 access privileges to security system 100 may be withdrawn or rescinded at any time by the General Administrator.
An advantage to allowing remote user 152 to access certain cameras 112 and audio stations 107 is that a lifestyle communication between the remote user 152 and one or more occupants of premises 110 can take place without requiring the occupants to do anything to acknowledge remote user 152 and start a communication session. Unlike prior art video telephony systems, the system in accordance with the present invention is particularly advantageous in situations in which an occupant at premises 110 is unable to physically respond, for example, a person with certain disabilities. Such a system is further advantageous in other settings in which a person at premises 110 is unwilling to participate in lifestyle communication, such as an unruly child. Thus, the present invention provides for lifestyle communication without requiring an occupant of the premises 110 to walk to a keypad or other device to acknowledge remote user 152 and start a communication session.
In one embodiment of the present invention, security gateway 115 may comprise a controller capable of performing one or more building automation control functions. Such functions may include without limitation controlling air conditioning systems, doors, lighting devices, irrigation systems, and electrical appliances at the premises. Building and home automation is described in more detail in U.S. Pat. Nos. 5,510,975; 5,572,438; 5,621,662; and 5,706,191, the contents of which are incorporated herein by reference.
Reference is now made to
Data center 132 stores customer information including billing information and security system settings, and is generally configured to automate certain aspects of security system 100. Data center 132 receives audio and video from security gateway 115 and sends it in real-time to monitoring client 133. Data center 132 authenticates remote user 152 of remote client 155, recognizes multiple alarm notifications, and monitors the various components of security gateway 115. Technology-intensive equipment including the security system server 131 may be kept in the data center 132 where physical access may be strictly controlled. Advantageously, in this configuration, non-technical personnel may be kept away from the sophisticated and expensive equipment in the data center 132, and the non-security-related personnel would not have direct access to view sensitive alarm notifications and videos. Any alarm notification and audiovisual information sent by security gateway 115 is transmitted to the security system server 131 at the data center 132. The security system server 131 logs the alarm notification and retrieves information about the customer, which may include, without limitation, any prior alarm notifications or events. The security system server 131 also transmits the alarm notification and audiovisual information, along with any additional information, to one or more monitoring clients 133, where such information and video may be displayed for a monitoring operator to determine if an alarm condition exists.
In the illustrative embodiment, communications among security gateway 115, data center 132, and monitoring client 133 may occur through public and/or private networks. In particular, security gateway 115 is coupled to data center 132, which is coupled to monitoring clients 133 through network 134. Although network 134 is logically depicted as a single network, it will be appreciated by one skilled in the art that network 134 may comprise a plurality of data networks that may or may not be homogeneous. In one embodiment, at least some of the monitoring clients 133 may be coupled to the security system server 131 through the Internet. In other embodiments, monitoring clients 133 may be coupled to the security system server 131 through dedicated connections such as a frame relay connection or ATM connection. Advantageously, maintaining dedicated lines between security gateway 115 and security system server 131 and between security system server 131 and monitoring client 133 provides a secure connection from security gateway 115 to monitoring client 133 that may have dedicated bandwidth and/or low latency. Network 134 includes all such networks and connections. In another embodiment, not shown, data center 132 may be coupled to monitoring clients 133 through network 120.
Reference is now made to
Alarm control panel 310 interfaces with one or more sensors 105, which may be wired or wireless. In some embodiments, it may include an interface to the Public Switched Telephone Network (PSTN) or a cellular network. However, as shown, the interface to the PSTN may be contained in the communications interface 340 instead of the alarm control panel 310. The alarm control panel 310 is preferably capable of operation in isolation as per UL requirements for residential fire applications and residential burglary operations. Alarm control panel 310 is further capable of continuing to operate in the traditional manner regardless of the state of the video subsystem.
Alarm control panel 310 may be configured to communicate with the other components of the security system to monitor their operational state. Information that the alarm control panel 310 may receive includes, but is not limited to, whether security gateway 115 can communicate with the security system server through the communications interface 340, information about AC power failure, trouble by zone, fire trouble, telephone line trouble, low battery, bell output trouble, loss of internal clock, tamper by zone, fail to communicate, module fault, camera trouble, and intercom trouble. The detected operational failure of any component in security gateway 115 may be indicated by a communications loss between components and a concurrent alarm condition reported by alarm control panel 310 and displayed for the user on user interface 350 or announced through audio module 330. In addition, any detected operation failures may be communicated to the security system server 131 through communications interface 340. Alarm control panel 310 may also be configured to record alarm conditions and associated data in memory. The security system server 131 may also be configured to record alarm conditions and associated data in addition to or in lieu of alarm control panel 310 doing so. In some embodiments, alarm control panel 310 supports dialup access by authorized users to remotely configure the system. However, the preferred mode of configuration is through an Internet web site. In other embodiments, other components of security gateway 115 may be configured to perform this function. For example, in one embodiment, video module 320 records alarm conditions and the associated data.
Video module 320 may perform many functions including but not limited to analyzing data from one or more of the sensors 105 or cameras 112 to determine whether an alarm condition exists; accessing data stored in memory; generating alarm video to transmit to security system server 131 in response to detection of an alarm condition; and communicating with security system server 131 and remote client 155 through communications interface 340. In addition, video module 320 may buffer video from cameras 112 in memory. Then based on predefined criteria, older video that is not considered essential to any alarm signals may be discarded. Video module 320 may also be configured to record video, or potions thereof, on a predetermined basis, which may correspond, for example, to the requirements of the customer. Non-alarm video may be stored for later retrieval by the customer. In one embodiment, the customer or remote user at remote location 150 may be able to adjust the predetermined basis including, without limitation, adjusting the recording times, duration, and total length of the recordings. In some embodiments, non-alarm video may also be sent to the security system server 131 for storage. Video module 320 is also capable of streaming live audio and video from the residence during alarm conditions, pre-alarm events, post-alarm events, and non-alarm events, as well as for lifestyle monitoring. If a camera 112 is analog, video module 320 may digitize the video before transmitting it. When security system 100 is armed, audio and video data are constantly being stored in the video module's memory for potential use as pre-event media. In one particular embodiment, video module 320 contains sufficient memory to store sixty seconds of pre-alarm video and audio from each camera 112 and microphone 334 at audio station 107 in RAM and up to several hours of audio/video content (per camera 112 and audio station 107) on disk. When an alarm condition occurs, this cached data may be stored more permanently. The General Administrator of a security system 100 may delete recorded information, archive non-alarm information, and adjust the cache length. A guest user may only make such changes if the General Administrator has assigned such permissions and access to the guest user.
Audio module 330 controls audio stations 107, which typically include an audio transmitter, such as one or more speakers 338, and an audio receiver, such as one or more microphones 334. In a typical configuration, several microphones 334 and speakers 338 would be located throughout premises 110. The audio signals detected by microphone(s) 334 are recorded through audio module 330. Audio module 330 may record the audio or it may transmit the audio to video module 320 for storage. Audio module 330 may be capable of selecting an individual audio input 334 or any combination of audio inputs 334. Further, audio module 330 may play back audio signals through speaker(s) 338. Audio module 330 may provide gain control for microphones 334 and volume control for speakers 338 in audio station 332.
Communications interface 340 may serve as the gateway between security gateway 115 and one or more communications networks such as a Hybrid Fiber Coaxial Network (HFC) plant, PSTN 145, WAN, LAN, and wireless networks. Communications interface 340 may comprise software and hardware including, but not limited to a network interface card. In some embodiments, communications interface 340 may be physically separate from the other components of security gateway 115. Regardless of its form, communications interface 340 assists in the communication of data to and from security gateway 115 and security system server 131.
In addition, security gateway 115 may include a web-enabled user interface 350. User interface 350 may further include a display device, such as a computer screen, television or keypad, for displaying information to the user. Such information may include, without limitation, the current system status, whether an alarm condition has been detected, and whether any components have failed. In addition, other non-system-related information such as the time, date, weather forecasts, and news bulletins may be displayed. In the illustrative embodiment, user interface 350 is operatively coupled to a keypad 357. A user could thereby activate or deactivate the security system by entering a predetermined code on keypad 357. It will be understood with the benefit of this disclosure by those of skill in the art that other types of user interfaces 350 may be used with this invention. For example, security gateway 115 may be activated or deactivated with a remote portable transmitter 355. Wireless remote 355 communicates with user interface 350 via wireless receiver 352. Additional receivers may be used with the present invention to pick up weak signals. Security gateway 115 is further capable of responding to wireless remotes 355 for changing alarm states of the security system. Each wireless remote 355 may comprise, for example, a key fob, which may be identified to security gateway 115 as a unique user.
In some embodiments of the present invention, two-way audio communications may be initiated between a remote user 152 and the premises 110 through audio module 330. The monitoring station personnel cannot initiate lifestyle functions. To address privacy concerns, monitoring personnel have access to the security system components only during alarm events. Advantageously, the two-way audio communication allows the remote user 152 to interact with a person at the premises without the need for the person at the premises to acknowledge communications channels.
In order to address privacy concerns, in accordance with a preferred embodiment of the present invention, an audio or visual indicator may be included to notify occupants at the premises that they are under remote surveillance. While streaming live media for lifestyle monitoring or any other remote connection is made with the security system 100, security gateway 115 activates a notification signal such as an audible or visible “splash tone” on a frequent basis. For purposes of the present invention, the term “splash tone” is used broadly to mean an audio cue or visual cue, or both, to indicate to one or more persons at the premises that remote surveillance and monitoring of the premises 110 is occurring.
The notification signal may include a unique tone, bell, or other manufactured sound. The notification signal may be a unique tone which repeats periodically. The notification signal may also include audible signals such as speech and other messages that announce the identity of the remote user 152. The notification signal may further comprise a unique message when remote monitoring begins, such as “[Grannie] has established a connection.” The notification signal may further comprise a signal to indicate when remote surveillance has ended, such as “[Grannie] has disconnected.”
The notification signal may also include a visual cue, such as an LED located a keypad or on the appropriate camera(s) 112. The notification signal may also include visual data for indicating the identity of the remote user 152. For example, a graphical image, a depiction of the user, or an alphanumeric message may be used to identify the remote user 152. Therefore, the notification signal may be unique depending on the identity of the remote user 152.
In one embodiment, the security system may include one or more “smart cameras” that have much of the functionality of the Video Module 320 built in. Specifically, these smart cameras may be operable to perform video capture, compression and storage and to communicate with the security gateway using a home area network, e.g., a wireless standard such as the home networking standard 802.11b, or power-line. In essence, the smart camera would function as a network appliance that is able to receive instructions from the security gateway to control the session, FPS (frames per second), quality, bandwidth, support other supervised communication from the gateway, and to transmit video and other information to the security gateway. Preferably, transmission between the camera and security gateway 115 should be secure and reliable, even taking into account the relatively noisy household environment. Optionally, the smart camera is operable to detect motion in the recorded image and send an event signal to the security gateway. The camera may integrate other sensor functionality such as audio discrimination and analysis and motion detection.
Reference is now made to
For example, the components may be implemented as software running on one or more computing devices. Alternatively, the components may be implemented in several devices that may be directly connected via communications interfaces (e.g., serial, parallel, IEEE 1394, IR, RF or USB).
Central monitoring station (CMS) 136 is a facility operatively coupled to data center 132 and security gateway 115. Any alarm notification and audiovisual information sent by the security gateway 115 is transmitted to central monitoring station to determine if an alarm condition exists. If an alarm condition exists, CMS 136 personnel can contact the appropriate authorities, etc. In this configuration, a concentration of trained personnel handle systems located throughout the country. In most embodiments, the communication channel between the data center 132 and central monitoring station 136 is secure, and accordingly, an unencrypted protocol may be used. In one particular embodiment, an unencrypted ASCII protocol over a TCP/IP connection may be used. In configurations where the connection between the security system server 131 and monitoring client(s) 133 is not secure, it may be desirable to use an encrypted protocol.
Monitoring client 133 resides in central monitoring station 136 and is operable to display video and images transmitted from security gateway 115 in real-time, as well as provide two-way communication between monitoring client 133 and security gateway 115. In the present disclosure, the term “real-time” is intended to generally mean that no substantive time period elapses between the captured audiovisual data and the receipt of audiovisual data corresponding to the event by monitoring client 133.
As shown, security system server 131 may comprise alarm receiver 410, media handler 415, automation system server 420, web interface 432, application server 434, database server 436, and massaging interface 438.
Alarm receiver 410 receives the alarm notification and associated information from security gateway 115. The alarm event is then logged and recorded by automation system server 420. Alarm events can also be reported by security gateway 115 to alarm receiver 440 via a communications network such as PSTN 145. Alarm receiver 440 posts the alarm condition to automation system server 420. Monitoring client 133 retrieves audio and video data from media handler 415. In one particular embodiment, the monitoring client 133 retrieves the audio and video data from media handler 415 using Microsoft® ActiveX. In other embodiments, other media handling/communications protocols may be used, including, without limitation, custom protocols. The communications protocol is used to transmit audio and video content from media handler 415, submit control messages (for selecting cameras, microphones, and speakers during live feeds), and support Voice Over IP (VOIP), streaming audio, and video services between the residence and monitoring client 133 during an alarm condition.
Automation system server 420 is generally configured to store customer data, for example contact information, billing information, passwords, as well as alarm history. Alternatively, some or all of this information may be stored in monitoring client 133 or at another remote site. Since this data is usually low bandwidth, dedicated bandwidth may not be necessary. However, it may be desirable for security purposes for it to remain in data center 132. Automation system server 420 may also serve as a workflow system for operators responding to alarm conditions, as well as a log of all monitoring activity. In an exemplary embodiment, automation system server 420 is a database application based on, for example Microsoft SQL Server 7, running under Windows NT. CMS personnel may interface with automation system server 420 over the network via a client application, which may be built into monitoring client 133.
Media handler 415 is generally operable to provide several functions. For example, media handler 415 receives and stores video and audio data associated with alarm conditions from security gateway 115 and relays alarm condition data, for example audio and video, to monitoring client 133. Media handler 415 may also be responsible for keeping track of the network addresses for all the security gateways 115 that are attached. For example, media handler 415 relays alarm conditions reported via TCP/IP from security gateway 115 to automation system server 420. Media handler 415 may also provide access to audio and video associated with alarm conditions to authorized personnel for a predetermined time period after an alarm condition is detected. Additionally, media handler 415 may relay control and configuration data destined for security gateways 115. This data may originate either from an operator (located at central monitoring station 136) through monitoring client 133 or from remote user 152 at remote location 150.
The communications protocol between monitoring client 133 and media handler 415 may be proprietary and/or may use standard protocols. The communications protocol between security gateway 115 and media handler 415 may provide secondary pathways for transmitting alarm notifications, relays configuration information to security gateway 115 (including control messages for arming and disarming partitions, bypassing zones, and selecting cameras 112 and audio stations 107 for live feeds), uploading pre-event and relevant non-alarm audio and video to media handler 415 during an alarm condition, transmitting live video and audio during an alarm condition, supporting voice over IP (VOIP) services between the residence and monitoring client 133 during an alarm condition, and performing software updates.
Web interface 432 provides authorized remote users 152 with the ability to view and edit account information, arm and disarm security system 100, and view and hear live and recorded media from premises 110, all through a network-based interface. In many embodiments, this network-based interface is an Internet web site, or a portion of a web site. After the remote user 152 is authenticated, application server 434 provides and/or facilitates the features available to remote client 155 through web interface 432. The particular features that are made available are a design decision that may vary based upon several factors, which may include, without limitation, the permissions of the remote user 152 and the type of premises that is monitored.
Massaging interface 438 may also provide for transmission of a message to remote client 155 by page, phone, e-mail, interactive voice response, short message service, or other massaging tool. Such a message will serve to notify multiple contacts on the alarm contact list when an alarm event has taken place or is taking place.
In one embodiment, a three-tier architecture may be used to provide such an interface. The first tier may consist of web servers running Internet Information Server (IIS) on Windows NT™, which is responsible for static web content such as images. Requests for dynamic content may be forwarded to application server 434. Application server 434 generally provides or facilitates all of the functionality that is accessible to remote clients 155. The third tier is a database tier that may be provided by automation system server 420. Data storage may be, for example, a billing database. Authorized users may receive information from the database regarding their account by accessing database server 436. Application server 434 may access automation system server 420 to obtain account information and issue commands ultimately destined for security gateway 115.
After remote client 152 is authenticated, application server 434 may be configured to allow remote client 152 to view audiovisual content from security gateway 115, communicate with automation system server 420 to access customer data, and access features of the security system 100. In one embodiment, such features may include, without limitation, arming or disarming security system 100; adjusting sensitivities of sensors 105 (if present); adjusting alarm condition detection sensitivity; remote monitoring; adjusting camera 112 settings and audio station 107 settings; adjusting settings for lights, HVAC (heating, ventilation, and air conditioning) systems, irrigation systems and other environmental controls; and reviewing alarms and recordings. In particular, application server 434 may allow remote user 152 to access media directly from security gateway 115. In one embodiment, a live feed from the premises is available with the ability to select among cameras 112 and microphones 334. In some embodiments, only video from certain specified cameras is accessible for remote clients. In some embodiments, application server 434 may be configured to allow remote user 152 to initiate a two-way audio connection with the security gateway 115 so that the remote user 152 can communicate through the audio stations 332 via speaker(s) 338 and microphone(s) 334 attached to security gateway 115. Communication between application server 434 and automation system server 420 may take the form of calls to stored procedures defined in the master database maintained by automation system server 420.
Access to web interface 432 requires successful authentication using any technique discussed above, such as entering a username and password. Preferably, all account-specific web content, including the login request, employs the secure HTTP protocol. In one embodiment, each customer may be assigned a General Administrator (GA) account. GA accounts have full access to their respective associated security gateway 115. The GA account can also create a number of guest user (“remote user” 152) accounts that have limited access (as discussed above) to their respective associated security gateway 115. Typically, all account information is stored through automation system server 420, including usernames and passwords. Web interface 432 retrieves account data from automation system server 420 for display via the Web, by means of one or more stored procedures. The GA can modify a subset of this account data and update the corresponding entries in automation system server 420.
Referring now to
In step 500, the remote user connects to a security system server. In an exemplary embodiment, the remote user may connect to the security system server using a web browser such as Netscape Navigator or Microsoft™ Internet Explorer. In other embodiments, the remote user may connect to the security system server via an interactive television platform having a friendly and easy-to-navigate user interface.
In step 510, the remote user provides the security system server with information for authentication. The type of information used for authentication may take many forms. For example, in one embodiment, a media handler associated with the security system server may require some sort of a username and password combination. Further, it is to be understood by the disclosure of one of skill in the art that any other procedure suitable for authenticating the identity of the remote user may be used, such as by validating the remote user's biometric data.
The security system server verifies the authentication information in step 520. If the information is not authenticated, then the remote user is denied access to the features of the security gateway, and process flow ends in step 590. Precautions against unauthorized access may be implemented, including, but not limited to, logging incidents of access attempts, with emphasis on denied access.
In step 530, the security system server determines if the remote user has the necessary permissions to access the security gateway. Necessary permissions may include access to a particular camera or a particular audio station located at the premises, access during a particular time period, access to audio and or video information, and access to change passwords, settings and/or activate and deactivate the security system. If the remote user does not have the necessary permissions, the remote user is denied access to the security system, and process flow ends in step 590.
If the remote user has the necessary permissions, in step 540, the security system server provides the remote client and the security gateway with an access token. The access token will typically comprise the identity of the remote user, the identity of security gateway to be accessed, the access permissions to be granted for the access token, and the desired lifespan of the token, as well as a digital signature of the security system server. It is noted that in accordance with the present invention, the remote user is only allowed access to those features corresponding to the permissions associated with the remote user's permissions profile. For instance, the remote user may only have permission to access a camera in a baby's nursery, and may lack access to the other cameras in the premises. Alternatively, if the remote user is the General Administrator of the security gateway, then he or she has full access to the security gateway features.
The remote client then connects directly to the security gateway and provides the security gateway with the access token in step 550. It is noted that the term “connects directly” means that communications between the remote client and security gateway do not pass through security system server. The security gateway inspects the access token received from the remote client and compares it to the access token received by the security gateway in step 560. If the access tokens do not match, then the remote user at the remote client is denied access to the security gateway, and process flow ends in step 590.
If the access tokens match in step 565, then the remote user may access features of the security gateway in step 570 in accordance with the user's permissions profile. During access by the remote user of the security system cameras or audio stations at the premises, the security gateway activates a notification signal comprising an audiovisual cue at the premises in step 575, indicating to occupants of the premises that remote monitoring is occurring. For example, an LED on a camera at the premises may be activated while the remote user is accessing that camera. In another example, an audible tone may be activated while the remote user is accessing an audio station at the premises. The remote user will continue to be able to access designated security gateway features until the remote user logs out according to step 580 or the access token expires according to step 585.
In some embodiments, the security system server may assign a lifespan to the access token. In such cases, after a pre-specified time or event, the access token expires and the remote user may not access the security gateway after the expiration of the access token. In order to access to the features of the security gateway after expiration of the access token, the remote user must reconnect to the security system server and provide valid authentication information.
Accordingly, the remote user may then connect directly to security gateway to perform remote monitoring through security gateway, check the system status, initiate a two-way audio conference, and/or any other features made available by security gateway and falling within the remote user's permissions. In some embodiments, only remote monitoring and two-way audio conferencing is made available through security gateway. In these embodiments, all non-media features are provided through security system server.
The remote monitoring feature allows remote user to view all or portions of the video signal from video cameras and to hear all or portions audio information from audio stations. Depending on the bandwidth of the connection, the video may be of a lower quality than that transmitted to central monitoring station for verification of alarm signals in order to save bandwidth. For example, in one embodiment, the video transmitted to remote user may have a lower frame rate, lower resolution, and/or lower color depth. Depending on the remote user's permissions and the remote client's capabilities, the remote user may be able to configure the quality of the video for remote monitoring.
In addition, depending on the remote user's level of permissions, the remote user may access remote features of the security gateway directly to reconfigure the security system. Once authenticated, the remote user may reconfigure some or all of the features of the security gateway. These features may include, without limitation, arming or disarming the security system; adjusting sensitivities of sensors (if present); adjusting alarm condition detection sensitivity; remote monitoring; adjusting camera and audio station settings; and reviewing alarms and recordings. Camera settings may include without limitation pan, tilt, focus, brightness, contrast and zoom.
The present invention also overcomes similar problems with personal emergency response systems (PERS) and telemedicine, including telehealth. The monitoring clients in these applications can now use the video and alarm to better diagnose the problem. In many ways, alarms from health sensors, emergency panic buttons and the like are similar to alarm sensors in terms of generating false and unwanted alarms. This system also enables health care givers and concerned family members to use the remote client feature for increased peace of mind.
The foregoing examples are included to demonstrate embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.
While various embodiments in accordance with the principles disclosed herein have been shown and described above, modifications thereof may be made by one skilled in the art without departing from the spirit and the teachings of the disclosure. The embodiments described herein are representative only and are not intended to be limiting. Many variations, combinations, and modifications are possible and are within the scope of the disclosure. Accordingly, the scope of protection is not limited by the description set out above, but is defined by the claims which follow, that scope including all equivalents of the subject matter of the claims. Furthermore, any advantages and features described above may relate to specific embodiments, but shall not limit the application of such issued claims to processes and structures accomplishing any or all of the above advantages or having any or all of the above features.
Additionally, the section headings used herein are provided for consistency with the suggestions under 37 C.F.R. 1.77 or to otherwise provide organizational cues. These headings shall not limit or characterize the invention(s) set out in any claims that may issue from this disclosure. Specifically and by way of example, although the headings refer to a “Field of the Invention,” the claims should not be limited by the language chosen under this heading to describe the so-called field. Further, a description of a technology in the “Background” is not to be construed as an admission that certain technology is prior art to any invention(s) in this disclosure. Neither is the “Summary” to be considered as a limiting characterization of the invention(s) set forth in issued claims. Furthermore, any reference in this disclosure to “invention” in the singular should not be used to argue that there is only a single point of novelty in this disclosure. Multiple inventions may be set forth according to the limitations of the multiple claims issuing from this disclosure, and such claims accordingly define the invention(s), and their equivalents, that are protected thereby. The term “comprising” as used herein is to be construed broadly to mean including but not limited to, and in accordance with its typical usage in the patent context, is indicative of inclusion rather than limitation (such that other elements may also be present). In all instances, the scope of the claims shall be considered on their own merits in light of this disclosure, but should not be constrained by the headings set forth herein.
This application is a Continuation of patent application Ser. No. 14/583,482, filed Dec. 26, 2014, which is a continuation of patent application Ser. No. 13/401,474 filed Feb. 21, 2012, now U.S. Pat. No. 8,953,749, which is a continuation co-pending U.S. patent application Ser. No. 11/929,179 filed Oct. 30, 2007 and entitled “Lifestyle Multimedia Security System,” which in turn is a Continuation of U.S. patent application Ser. No. 10/607,008 (U.S. Pat. No. 7,409,045) filed Jun. 26, 2003 entitled “Lifestyle Multimedia Security System”, which, in turn, is a Divisional of U.S. patent application Ser. No. 10/061,959 (U.S. Pat. No. 6,658,091) filed Feb. 1, 2002 as a non-provisional application entitled “Lifestyle Multimedia Security System”, all of which are assigned to the Assignee of the present application and hereby incorporated by reference as if reproduced in their entirety. Accordingly, priority is claimed back to the above-listed patents and applications.
Number | Name | Date | Kind |
---|---|---|---|
686838 | Appel | Nov 1901 | A |
1738540 | Replogle et al. | Dec 1929 | A |
3803576 | Dobrzanski et al. | Apr 1974 | A |
3852541 | Altenberger | Dec 1974 | A |
4006460 | Hewitt et al. | Feb 1977 | A |
4141006 | Braxton | Feb 1979 | A |
4257038 | Rounds et al. | Mar 1981 | A |
4286331 | Anderson et al. | Aug 1981 | A |
4304970 | Fahey et al. | Dec 1981 | A |
4363031 | Reinowitz | Dec 1982 | A |
4520503 | Kirst et al. | May 1985 | A |
4559526 | Tani et al. | Dec 1985 | A |
4559527 | Kirby | Dec 1985 | A |
4567557 | Burns | Jan 1986 | A |
4574305 | Campbell et al. | Mar 1986 | A |
4581606 | Mallory | Apr 1986 | A |
4591834 | Kyle | May 1986 | A |
D284084 | Ferrara, Jr. | Jun 1986 | S |
4641127 | Hogan et al. | Feb 1987 | A |
4652859 | Van Wienen | Mar 1987 | A |
4670739 | Kelly, Jr. | Jun 1987 | A |
4683460 | Nakatsugawa | Jul 1987 | A |
4694282 | Tamura et al. | Sep 1987 | A |
4716973 | Cobern | Jan 1988 | A |
4730184 | Bach | Mar 1988 | A |
4754261 | Marino | Jun 1988 | A |
4779007 | Schlanger et al. | Oct 1988 | A |
4801924 | Burgmann et al. | Jan 1989 | A |
4812820 | Chatwin | Mar 1989 | A |
4818970 | Natale et al. | Apr 1989 | A |
4833339 | Luchaco et al. | May 1989 | A |
4833449 | Gaffigan | May 1989 | A |
4855713 | Brunius | Aug 1989 | A |
4860185 | Brewer et al. | Aug 1989 | A |
4887064 | Drori et al. | Dec 1989 | A |
4897630 | Nykerk | Jan 1990 | A |
4918623 | Lockitt et al. | Apr 1990 | A |
4918717 | Bissonnette et al. | Apr 1990 | A |
4951029 | Severson | Aug 1990 | A |
4959713 | Morotomi et al. | Sep 1990 | A |
4962473 | Crain | Oct 1990 | A |
4980666 | Hwang | Dec 1990 | A |
4993059 | Smith et al. | Feb 1991 | A |
4994787 | Kratt et al. | Feb 1991 | A |
4996646 | Farrington | Feb 1991 | A |
5023901 | Sloan et al. | Jun 1991 | A |
5083106 | Kostusiak et al. | Jan 1992 | A |
5086385 | Launey et al. | Feb 1992 | A |
5091780 | Pomerleau | Feb 1992 | A |
5109278 | Erickson et al. | Apr 1992 | A |
5132968 | Cephus | Jul 1992 | A |
5134644 | Garton et al. | Jul 1992 | A |
5159315 | Schultz et al. | Oct 1992 | A |
5160879 | Tortola et al. | Nov 1992 | A |
5164703 | Rickman | Nov 1992 | A |
5164979 | Choi | Nov 1992 | A |
D337569 | Kando | Jul 1993 | S |
5227776 | Starefoss | Jul 1993 | A |
5237305 | Ishikuro et al. | Aug 1993 | A |
5245694 | Zwern | Sep 1993 | A |
5280527 | Gullman et al. | Jan 1994 | A |
5283816 | Gomez Diaz | Feb 1994 | A |
5299971 | Hart | Apr 1994 | A |
5319394 | Dukek | Jun 1994 | A |
5319698 | Glidewell et al. | Jun 1994 | A |
5334974 | Simms et al. | Aug 1994 | A |
5400011 | Sutton | Mar 1995 | A |
5400246 | Wilson et al. | Mar 1995 | A |
5406260 | Cummings et al. | Apr 1995 | A |
5410343 | Coddington et al. | Apr 1995 | A |
5412708 | Katz | May 1995 | A |
5414409 | Voosen et al. | May 1995 | A |
5414833 | Hershey et al. | May 1995 | A |
5428293 | Sinclair et al. | Jun 1995 | A |
5438607 | Przygoda et al. | Aug 1995 | A |
5446445 | Bloomfield et al. | Aug 1995 | A |
5448290 | VanZeeland | Sep 1995 | A |
5452344 | Larson | Sep 1995 | A |
5465081 | Todd | Nov 1995 | A |
5471194 | Guscott | Nov 1995 | A |
5483224 | Rankin et al. | Jan 1996 | A |
5486812 | Todd | Jan 1996 | A |
5499014 | Greenwaldt | Mar 1996 | A |
5499196 | Pacheco | Mar 1996 | A |
5510975 | Ziegler, Jr. | Apr 1996 | A |
5519878 | Dolin, Jr. | May 1996 | A |
RE35268 | Frolov et al. | Jun 1996 | E |
5525966 | Parish | Jun 1996 | A |
5526428 | Arnold | Jun 1996 | A |
5534845 | Issa et al. | Jul 1996 | A |
5541585 | Duhame | Jul 1996 | A |
5543778 | Stouffer | Aug 1996 | A |
5546072 | Creuseremee et al. | Aug 1996 | A |
5546074 | Bernal et al. | Aug 1996 | A |
5546447 | Skarbo et al. | Aug 1996 | A |
5548646 | Aziz et al. | Aug 1996 | A |
5550984 | Gelb | Aug 1996 | A |
5557254 | Johnson et al. | Sep 1996 | A |
5570079 | Dockery | Oct 1996 | A |
5572438 | Ehlers et al. | Nov 1996 | A |
5578989 | Pedtke | Nov 1996 | A |
5579197 | Mengelt et al. | Nov 1996 | A |
5579221 | Mun | Nov 1996 | A |
D377034 | Matsushita | Dec 1996 | S |
5587705 | Morris | Dec 1996 | A |
5598086 | Somerville | Jan 1997 | A |
5602918 | Chen et al. | Feb 1997 | A |
5604493 | Behlke | Feb 1997 | A |
5606615 | Lapointe et al. | Feb 1997 | A |
5621662 | Humphries et al. | Apr 1997 | A |
5623601 | Vu | Apr 1997 | A |
5625338 | Pildner et al. | Apr 1997 | A |
5625410 | Washino et al. | Apr 1997 | A |
5629687 | Sutton et al. | May 1997 | A |
5630216 | McEwan | May 1997 | A |
5631630 | McSweeney | May 1997 | A |
5638046 | Malinowski | Jun 1997 | A |
5650773 | Chiarello | Jul 1997 | A |
5651070 | Blunt | Jul 1997 | A |
5652567 | Traxler | Jul 1997 | A |
5675321 | McBride | Oct 1997 | A |
5680131 | Utz | Oct 1997 | A |
5682133 | Johnson et al. | Oct 1997 | A |
5686885 | Bergman | Nov 1997 | A |
5686896 | Bergman | Nov 1997 | A |
5689235 | Sugimoto et al. | Nov 1997 | A |
5689708 | Regnier et al. | Nov 1997 | A |
5691697 | Carvalho et al. | Nov 1997 | A |
5694335 | Hollenberg | Dec 1997 | A |
5694595 | Jacobs et al. | Dec 1997 | A |
5696486 | Poliquin et al. | Dec 1997 | A |
5696898 | Baker et al. | Dec 1997 | A |
D389501 | Mascarenas et al. | Jan 1998 | S |
5706191 | Bassett et al. | Jan 1998 | A |
5712679 | Coles | Jan 1998 | A |
5714933 | Le Van Suu | Feb 1998 | A |
5715394 | Jabs | Feb 1998 | A |
5717378 | Malvaso et al. | Feb 1998 | A |
5717379 | Peters | Feb 1998 | A |
5717578 | Afzal | Feb 1998 | A |
5719551 | Flick | Feb 1998 | A |
5726912 | Krall, Jr. et al. | Mar 1998 | A |
5731756 | Roddy | Mar 1998 | A |
5736927 | Stebbins et al. | Apr 1998 | A |
5737391 | Dame et al. | Apr 1998 | A |
5748084 | Isikoff | May 1998 | A |
5748089 | Sizemore | May 1998 | A |
5757616 | May et al. | May 1998 | A |
5761206 | Kackman | Jun 1998 | A |
5774051 | Kostusiak | Jun 1998 | A |
5777551 | Hess | Jul 1998 | A |
5777837 | Eckel et al. | Jul 1998 | A |
5784461 | Shaffer et al. | Jul 1998 | A |
5784463 | Chen et al. | Jul 1998 | A |
5793028 | Wagener et al. | Aug 1998 | A |
5793763 | Mayes et al. | Aug 1998 | A |
5794128 | Brockel et al. | Aug 1998 | A |
5796401 | Winer | Aug 1998 | A |
5798701 | Bernal et al. | Aug 1998 | A |
5801618 | Jenkins | Sep 1998 | A |
5805056 | Mueller et al. | Sep 1998 | A |
5805064 | Yorkey | Sep 1998 | A |
5809013 | Kackman | Sep 1998 | A |
5812054 | Cohen | Sep 1998 | A |
5819124 | Somner et al. | Oct 1998 | A |
5821937 | Tonelli | Oct 1998 | A |
5844599 | Hildin | Dec 1998 | A |
5845070 | Ikudome | Dec 1998 | A |
5854588 | Dockery | Dec 1998 | A |
5859966 | Hayman et al. | Jan 1999 | A |
5861804 | Fansa et al. | Jan 1999 | A |
5867484 | Shaunfield | Feb 1999 | A |
5874952 | Morgan | Feb 1999 | A |
5877696 | Powell | Mar 1999 | A |
5880775 | Ross | Mar 1999 | A |
5881226 | Veneklase | Mar 1999 | A |
5886894 | Rakoff | Mar 1999 | A |
5892442 | Ozery | Apr 1999 | A |
5898831 | Hall et al. | Apr 1999 | A |
5905438 | Weiss et al. | May 1999 | A |
5907279 | Bruins et al. | May 1999 | A |
5909183 | Borgstahl et al. | Jun 1999 | A |
5914655 | Clifton et al. | Jun 1999 | A |
5924069 | Kowalkowski et al. | Jul 1999 | A |
5926209 | Glatt | Jul 1999 | A |
5933098 | Haxton | Aug 1999 | A |
5940387 | Humpleman | Aug 1999 | A |
5943394 | Ader et al. | Aug 1999 | A |
5952815 | Rouillard et al. | Sep 1999 | A |
5955946 | Beheshti et al. | Sep 1999 | A |
5958053 | Denker | Sep 1999 | A |
5959528 | Right et al. | Sep 1999 | A |
5959529 | Kail, IV | Sep 1999 | A |
5963916 | Kaplan | Oct 1999 | A |
5967975 | Ridgeway | Oct 1999 | A |
D416910 | Vasquez | Nov 1999 | S |
5982418 | Ely | Nov 1999 | A |
5991795 | Howard et al. | Nov 1999 | A |
6002430 | McCall et al. | Dec 1999 | A |
6009320 | Dudley | Dec 1999 | A |
6011921 | Takahashi et al. | Jan 2000 | A |
6032036 | Maystre et al. | Feb 2000 | A |
6037991 | Thro et al. | Mar 2000 | A |
6038289 | Sands | Mar 2000 | A |
6040770 | Britton | Mar 2000 | A |
6049272 | Lee et al. | Apr 2000 | A |
6049273 | Hess | Apr 2000 | A |
6049598 | Peters et al. | Apr 2000 | A |
6052052 | Delmonaco | Apr 2000 | A |
6060994 | Chen | May 2000 | A |
6067346 | Akhteruzzaman | May 2000 | A |
6067440 | Diefes | May 2000 | A |
6069655 | Seeley et al. | May 2000 | A |
6078253 | Fowler | Jun 2000 | A |
6078257 | Ferraro | Jun 2000 | A |
6078649 | Small et al. | Jun 2000 | A |
6085030 | Whitehead et al. | Jul 2000 | A |
6091771 | Seeley et al. | Jul 2000 | A |
6094134 | Cohen | Jul 2000 | A |
6097429 | Seeley et al. | Aug 2000 | A |
6104785 | Chen | Aug 2000 | A |
6107918 | Klein et al. | Aug 2000 | A |
6107930 | Behlke et al. | Aug 2000 | A |
6108034 | Kim | Aug 2000 | A |
6112237 | Donaldson et al. | Aug 2000 | A |
6117182 | Alpert et al. | Sep 2000 | A |
6124882 | Voois et al. | Sep 2000 | A |
6128653 | Del et al. | Oct 2000 | A |
6134303 | Chen | Oct 2000 | A |
6134591 | Nickles | Oct 2000 | A |
6138249 | Nolet | Oct 2000 | A |
6139177 | Venkatraman et al. | Oct 2000 | A |
6140987 | Stein et al. | Oct 2000 | A |
6144993 | Fukunaga et al. | Nov 2000 | A |
6154133 | Ross et al. | Nov 2000 | A |
6157943 | Meyer | Dec 2000 | A |
6161182 | Nadooshan | Dec 2000 | A |
6167186 | Kawasaki | Dec 2000 | A |
6181341 | Shinagawa | Jan 2001 | B1 |
6192418 | Hale et al. | Feb 2001 | B1 |
6198475 | Kunimatsu et al. | Mar 2001 | B1 |
6198479 | Humpleman et al. | Mar 2001 | B1 |
6208247 | Agre et al. | Mar 2001 | B1 |
6209011 | Vong et al. | Mar 2001 | B1 |
6211783 | Wang | Apr 2001 | B1 |
6215404 | Morales | Apr 2001 | B1 |
6218938 | Lin | Apr 2001 | B1 |
6219677 | Howard | Apr 2001 | B1 |
6226031 | Barraclough et al. | May 2001 | B1 |
6229429 | Horon | May 2001 | B1 |
6239892 | Davidson | May 2001 | B1 |
6243683 | Peters | Jun 2001 | B1 |
6246320 | Monroe | Jun 2001 | B1 |
6271752 | Vaios | Aug 2001 | B1 |
6275227 | DeStefano | Aug 2001 | B1 |
6281790 | Kimmel et al. | Aug 2001 | B1 |
6282569 | Wallis et al. | Aug 2001 | B1 |
6286038 | Reichmeyer et al. | Sep 2001 | B1 |
6288716 | Humpleman et al. | Sep 2001 | B1 |
6289382 | Bowman-Amuah | Sep 2001 | B1 |
6292766 | Mattos et al. | Sep 2001 | B1 |
6292827 | Raz | Sep 2001 | B1 |
6295346 | Markowitz et al. | Sep 2001 | B1 |
6314425 | Serbinis et al. | Nov 2001 | B1 |
6320506 | Ferraro | Nov 2001 | B1 |
6323897 | Kogane | Nov 2001 | B1 |
D451529 | Vasquez | Dec 2001 | S |
6331122 | Wu | Dec 2001 | B1 |
6332193 | Glass et al. | Dec 2001 | B1 |
6347393 | Alpert et al. | Feb 2002 | B1 |
6351213 | Hirsch et al. | Feb 2002 | B1 |
6351595 | Kim | Feb 2002 | B1 |
6351829 | Dupont et al. | Feb 2002 | B1 |
6353853 | Gravlin | Mar 2002 | B1 |
6353891 | Borella et al. | Mar 2002 | B1 |
6359560 | Budge et al. | Mar 2002 | B1 |
6363417 | Howard et al. | Mar 2002 | B1 |
6363422 | Hunter et al. | Mar 2002 | B1 |
6369695 | Horon | Apr 2002 | B1 |
6369705 | Kennedy | Apr 2002 | B1 |
6370436 | Howard et al. | Apr 2002 | B1 |
6374079 | Hsu | Apr 2002 | B1 |
6377861 | York | Apr 2002 | B1 |
6378109 | Young et al. | Apr 2002 | B1 |
6385772 | Courtney | May 2002 | B1 |
6392538 | Shere | May 2002 | B1 |
6400265 | Saylor et al. | Jun 2002 | B1 |
6405348 | Fallah-Tehrani et al. | Jun 2002 | B1 |
6411802 | Cardina et al. | Jun 2002 | B1 |
D460472 | Wang | Jul 2002 | S |
6418037 | Zhang | Jul 2002 | B1 |
6421080 | Lambert | Jul 2002 | B1 |
6430629 | Smyers | Aug 2002 | B1 |
6433683 | Robinson | Aug 2002 | B1 |
6434700 | Alonso et al. | Aug 2002 | B1 |
6437692 | Petite et al. | Aug 2002 | B1 |
6441723 | Mansfield et al. | Aug 2002 | B1 |
6442241 | Tsumpes | Aug 2002 | B1 |
6446192 | Narasimhan et al. | Sep 2002 | B1 |
6452490 | Garland et al. | Sep 2002 | B1 |
6452923 | Gerszberg et al. | Sep 2002 | B1 |
6453687 | Sharood et al. | Sep 2002 | B2 |
D464328 | Vasquez et al. | Oct 2002 | S |
D464948 | Vasquez et al. | Oct 2002 | S |
6462507 | Fisher, Jr. | Oct 2002 | B2 |
6462663 | Wilson et al. | Oct 2002 | B1 |
6467084 | Howard et al. | Oct 2002 | B1 |
6476858 | Ramirez et al. | Nov 2002 | B1 |
6480901 | Weber et al. | Nov 2002 | B1 |
6493020 | Stevenson et al. | Dec 2002 | B1 |
6496927 | McGrane et al. | Dec 2002 | B1 |
6499131 | Savithri et al. | Dec 2002 | B1 |
6504479 | Lemons et al. | Jan 2003 | B1 |
6526581 | Edson | Feb 2003 | B1 |
6529230 | Chong | Mar 2003 | B1 |
6529723 | Bentley | Mar 2003 | B1 |
6542075 | Barker et al. | Apr 2003 | B2 |
6542992 | Peirce et al. | Apr 2003 | B1 |
6552647 | Thiessen et al. | Apr 2003 | B1 |
6553336 | Johnson et al. | Apr 2003 | B1 |
6559769 | Anthony et al. | May 2003 | B2 |
6563800 | Salo et al. | May 2003 | B1 |
6563910 | Menard et al. | May 2003 | B2 |
6567122 | Anderson et al. | May 2003 | B1 |
6567502 | Zellner et al. | May 2003 | B2 |
6574234 | Myer et al. | Jun 2003 | B1 |
6580950 | Johnson et al. | Jun 2003 | B1 |
6587046 | Joao | Jul 2003 | B2 |
6587455 | Ray et al. | Jul 2003 | B1 |
6587736 | Howard et al. | Jul 2003 | B2 |
6587739 | Abrams et al. | Jul 2003 | B1 |
6591094 | Bentley | Jul 2003 | B1 |
6597703 | Li et al. | Jul 2003 | B1 |
6601086 | Howard et al. | Jul 2003 | B1 |
6603488 | Humpleman et al. | Aug 2003 | B2 |
6609127 | Lee et al. | Aug 2003 | B1 |
6611206 | Eshelman et al. | Aug 2003 | B2 |
6615088 | Myer et al. | Sep 2003 | B1 |
6621827 | Rezvani et al. | Sep 2003 | B1 |
6624750 | Marman et al. | Sep 2003 | B1 |
6631416 | Bendinelli et al. | Oct 2003 | B2 |
6636893 | Fong | Oct 2003 | B1 |
6643652 | Helgeson et al. | Nov 2003 | B2 |
6643669 | Novak et al. | Nov 2003 | B1 |
6643795 | Sicola et al. | Nov 2003 | B1 |
6648682 | Wu | Nov 2003 | B1 |
6658091 | Naidoo | Dec 2003 | B1 |
6661340 | Saylor et al. | Dec 2003 | B1 |
6662340 | Rawat et al. | Dec 2003 | B2 |
6667688 | Menard et al. | Dec 2003 | B1 |
6675365 | Elzinga | Jan 2004 | B2 |
6680730 | Shields et al. | Jan 2004 | B1 |
6686838 | Rezvani et al. | Feb 2004 | B1 |
6690411 | Naidoo et al. | Feb 2004 | B2 |
6693530 | Dowens et al. | Feb 2004 | B1 |
6693545 | Brown et al. | Feb 2004 | B2 |
6697103 | Fernandez et al. | Feb 2004 | B1 |
6704786 | Gupta et al. | Mar 2004 | B1 |
6720990 | Walker et al. | Apr 2004 | B1 |
6721689 | Markle et al. | Apr 2004 | B2 |
6721740 | Skinner et al. | Apr 2004 | B1 |
6721747 | Lipkin | Apr 2004 | B2 |
6727811 | Fendis | Apr 2004 | B1 |
6728233 | Park et al. | Apr 2004 | B1 |
6728688 | Hirsch et al. | Apr 2004 | B1 |
6738824 | Blair | May 2004 | B1 |
6741171 | Palka et al. | May 2004 | B2 |
6754717 | Day et al. | Jun 2004 | B1 |
6756896 | Ford | Jun 2004 | B2 |
6756998 | Bilger | Jun 2004 | B1 |
6759956 | Menard et al. | Jul 2004 | B2 |
6762686 | Tabe | Jul 2004 | B1 |
6771181 | Hughen, Jr. | Aug 2004 | B1 |
6778085 | Faulkner et al. | Aug 2004 | B2 |
6779019 | Mousseau et al. | Aug 2004 | B1 |
6781509 | Oppedahl et al. | Aug 2004 | B1 |
6785542 | Blight et al. | Aug 2004 | B1 |
6789147 | Kessler et al. | Sep 2004 | B1 |
6795322 | Aihara et al. | Sep 2004 | B2 |
6795863 | Doty, Jr. | Sep 2004 | B1 |
6798344 | Faulkner et al. | Sep 2004 | B2 |
6804638 | Fiedler | Oct 2004 | B2 |
6810409 | Fry et al. | Oct 2004 | B1 |
6826173 | Kung et al. | Nov 2004 | B1 |
6826233 | Oosawa | Nov 2004 | B1 |
6829478 | Layton et al. | Dec 2004 | B1 |
6834208 | Gonzales et al. | Dec 2004 | B2 |
6850252 | Hoffberg | Feb 2005 | B1 |
6856236 | Christensen et al. | Feb 2005 | B2 |
6857026 | Cain | Feb 2005 | B1 |
6865690 | Kocin | Mar 2005 | B2 |
6871193 | Campbell et al. | Mar 2005 | B1 |
6873256 | Lemelson et al. | Mar 2005 | B2 |
6885362 | Suomela | Apr 2005 | B2 |
D504889 | Andre et al. | May 2005 | S |
6891838 | Petite | May 2005 | B1 |
6912429 | Bilger | Jun 2005 | B1 |
6914533 | Petite | Jul 2005 | B2 |
6918112 | Bourke-Dunphy et al. | Jul 2005 | B2 |
6920502 | Araujo et al. | Jul 2005 | B2 |
6920615 | Campbell et al. | Jul 2005 | B1 |
6928148 | Simon et al. | Aug 2005 | B2 |
6930599 | Naidoo et al. | Aug 2005 | B2 |
6930730 | Maxson et al. | Aug 2005 | B2 |
6931445 | Davis | Aug 2005 | B2 |
6941258 | Van et al. | Sep 2005 | B2 |
6943681 | Rezvani et al. | Sep 2005 | B2 |
6956477 | Chun | Oct 2005 | B2 |
6957186 | Guheen et al. | Oct 2005 | B1 |
6957275 | Sekiguchi | Oct 2005 | B1 |
6959341 | Leung | Oct 2005 | B1 |
6959393 | Hollis et al. | Oct 2005 | B2 |
6963908 | Lynch et al. | Nov 2005 | B1 |
6963981 | Bailey et al. | Nov 2005 | B1 |
6965294 | Elliott et al. | Nov 2005 | B1 |
6965313 | Saylor et al. | Nov 2005 | B1 |
6970183 | Monroe | Nov 2005 | B1 |
6971076 | Chen | Nov 2005 | B2 |
6972676 | Kimmel et al. | Dec 2005 | B1 |
6975220 | Foodman et al. | Dec 2005 | B1 |
6977485 | Wei | Dec 2005 | B1 |
6983432 | Hayes | Jan 2006 | B2 |
6990591 | Pearson | Jan 2006 | B1 |
6993658 | Engberg et al. | Jan 2006 | B1 |
6999992 | Deen et al. | Feb 2006 | B1 |
7015806 | Naidoo et al. | Mar 2006 | B2 |
7016970 | Harumoto et al. | Mar 2006 | B2 |
7019639 | Stilp | Mar 2006 | B2 |
7020697 | Goodman et al. | Mar 2006 | B1 |
7020701 | Gelvin et al. | Mar 2006 | B1 |
7023913 | Monroe | Apr 2006 | B1 |
7023914 | Furukawa et al. | Apr 2006 | B2 |
7023975 | Mansfield et al. | Apr 2006 | B2 |
7024676 | Klopfenstein | Apr 2006 | B1 |
7028328 | Kogane et al. | Apr 2006 | B2 |
7030752 | Tyroler | Apr 2006 | B2 |
7032002 | Rezvani et al. | Apr 2006 | B1 |
7034681 | Yamamoto et al. | Apr 2006 | B2 |
7035907 | Decasper et al. | Apr 2006 | B1 |
7039391 | Rezvani et al. | May 2006 | B2 |
7043537 | Pratt | May 2006 | B1 |
7047088 | Nakamura et al. | May 2006 | B2 |
7047092 | Wimsatt | May 2006 | B2 |
7050388 | Kim et al. | May 2006 | B2 |
7053764 | Stilp | May 2006 | B2 |
7053765 | Clark | May 2006 | B1 |
7068164 | Duncan et al. | Jun 2006 | B1 |
7072934 | Helgeson et al. | Jul 2006 | B2 |
7073140 | Li et al. | Jul 2006 | B1 |
7075429 | Marshall | Jul 2006 | B2 |
7079020 | Stilp | Jul 2006 | B2 |
7080046 | Rezvani et al. | Jul 2006 | B1 |
7081813 | Winick et al. | Jul 2006 | B2 |
7082460 | Hansen et al. | Jul 2006 | B2 |
7085814 | Gandhi et al. | Aug 2006 | B1 |
7085937 | Rezvani et al. | Aug 2006 | B1 |
7086018 | Ito | Aug 2006 | B2 |
7099944 | Anschutz et al. | Aug 2006 | B1 |
7099994 | Thayer et al. | Aug 2006 | B2 |
7103152 | Naidoo et al. | Sep 2006 | B2 |
7106176 | La et al. | Sep 2006 | B2 |
7107322 | Freeny, Jr. | Sep 2006 | B1 |
7110774 | Davis et al. | Sep 2006 | B1 |
7113090 | Saylor et al. | Sep 2006 | B1 |
7113099 | Tyroler et al. | Sep 2006 | B2 |
7114554 | Bergman et al. | Oct 2006 | B2 |
7119609 | Naidoo et al. | Oct 2006 | B2 |
7119674 | Sefton | Oct 2006 | B2 |
7120139 | Kung et al. | Oct 2006 | B1 |
7120232 | Naidoo et al. | Oct 2006 | B2 |
7120233 | Naidoo et al. | Oct 2006 | B2 |
7126473 | Powell | Oct 2006 | B1 |
7130383 | Naidoo et al. | Oct 2006 | B2 |
7130585 | Ollis et al. | Oct 2006 | B1 |
7134138 | Scherr | Nov 2006 | B2 |
7136711 | Duncan et al. | Nov 2006 | B1 |
7142503 | Grant et al. | Nov 2006 | B1 |
7148810 | Bhat | Dec 2006 | B2 |
7149798 | Rezvani et al. | Dec 2006 | B2 |
7149814 | Neufeld et al. | Dec 2006 | B2 |
7158026 | Feldkamp et al. | Jan 2007 | B2 |
7158776 | Estes et al. | Jan 2007 | B1 |
7158920 | Ishikawa | Jan 2007 | B2 |
7164907 | Cochran et al. | Jan 2007 | B2 |
7166987 | Lee et al. | Jan 2007 | B2 |
7171466 | Van Der Meulen | Jan 2007 | B2 |
7171686 | Jansen et al. | Jan 2007 | B1 |
7174018 | Patil et al. | Feb 2007 | B1 |
7174564 | Weatherspoon et al. | Feb 2007 | B1 |
7180889 | Kung et al. | Feb 2007 | B1 |
7181207 | Chow et al. | Feb 2007 | B1 |
7181716 | Dahroug | Feb 2007 | B1 |
7183907 | Simon et al. | Feb 2007 | B2 |
7184848 | Krzyzanowski | Feb 2007 | B2 |
7187279 | Chung | Mar 2007 | B2 |
7187986 | Johnson et al. | Mar 2007 | B2 |
7194003 | Danner et al. | Mar 2007 | B2 |
7194446 | Bromley et al. | Mar 2007 | B1 |
7203486 | Patel | Apr 2007 | B2 |
7209945 | Hicks et al. | Apr 2007 | B2 |
7212570 | Akiyama et al. | May 2007 | B2 |
7213061 | Hite | May 2007 | B1 |
7218217 | Adonailo et al. | May 2007 | B2 |
7222359 | Freund et al. | May 2007 | B2 |
7237267 | Rayes et al. | Jun 2007 | B2 |
7240327 | Singh et al. | Jul 2007 | B2 |
7246044 | Imamura et al. | Jul 2007 | B2 |
7248150 | Mackjust et al. | Jul 2007 | B2 |
7248161 | Spoltore et al. | Jul 2007 | B2 |
7249177 | Miller | Jul 2007 | B1 |
7249317 | Nakagawa et al. | Jul 2007 | B1 |
7250854 | Rezvani et al. | Jul 2007 | B2 |
7250859 | Martin et al. | Jul 2007 | B2 |
7254779 | Rezvani et al. | Aug 2007 | B1 |
7262690 | Heaton et al. | Aug 2007 | B2 |
7277010 | Joao | Oct 2007 | B2 |
7292142 | Simon et al. | Nov 2007 | B2 |
7298253 | Petricoin et al. | Nov 2007 | B2 |
7305461 | Ullman | Dec 2007 | B2 |
7310115 | Tanimoto | Dec 2007 | B2 |
7313102 | Stephenson et al. | Dec 2007 | B2 |
D558460 | Yu et al. | Jan 2008 | S |
D558756 | Andre et al. | Jan 2008 | S |
7337217 | Wang | Feb 2008 | B2 |
7337473 | Chang et al. | Feb 2008 | B2 |
7340314 | Duncan et al. | Mar 2008 | B1 |
7343619 | Ofek et al. | Mar 2008 | B2 |
7346338 | Calhoun et al. | Mar 2008 | B1 |
7349682 | Bennett et al. | Mar 2008 | B1 |
7349761 | Cruse | Mar 2008 | B1 |
7349967 | Wang | Mar 2008 | B2 |
7356372 | Duncan et al. | Apr 2008 | B1 |
7359843 | Keller et al. | Apr 2008 | B1 |
7362221 | Katz | Apr 2008 | B2 |
7367045 | Ofek et al. | Apr 2008 | B2 |
7370115 | Bae et al. | May 2008 | B2 |
7383339 | Meenan et al. | Jun 2008 | B1 |
7383522 | Murgai et al. | Jun 2008 | B2 |
7391298 | Campbell et al. | Jun 2008 | B1 |
7403838 | Deen et al. | Jul 2008 | B2 |
7409045 | Naidoo et al. | Aug 2008 | B2 |
7409451 | Meenan et al. | Aug 2008 | B1 |
7412447 | Hilbert et al. | Aug 2008 | B2 |
7425101 | Cheng | Sep 2008 | B2 |
7428585 | Owens et al. | Sep 2008 | B1 |
7430614 | Shen et al. | Sep 2008 | B2 |
7437753 | Nahum | Oct 2008 | B2 |
7440434 | Chaskar et al. | Oct 2008 | B2 |
7440767 | Ballay et al. | Oct 2008 | B2 |
7447775 | Zhu et al. | Nov 2008 | B1 |
7454731 | Oh et al. | Nov 2008 | B2 |
7457869 | Kernan | Nov 2008 | B2 |
7466223 | Sefton | Dec 2008 | B2 |
7469139 | Van De Groenendaal | Dec 2008 | B2 |
7469294 | Luo et al. | Dec 2008 | B1 |
7469381 | Ording | Dec 2008 | B2 |
7469391 | Carrere et al. | Dec 2008 | B2 |
D584738 | Kim et al. | Jan 2009 | S |
D585399 | Hwang | Jan 2009 | S |
7477629 | Tsirtsis et al. | Jan 2009 | B2 |
7479949 | Jobs et al. | Jan 2009 | B2 |
7480713 | Ullman | Jan 2009 | B2 |
7480724 | Zimler et al. | Jan 2009 | B2 |
7483958 | Elabbady et al. | Jan 2009 | B1 |
7493651 | Vanska et al. | Feb 2009 | B2 |
7498695 | Gaudreau et al. | Mar 2009 | B2 |
7502672 | Kolls | Mar 2009 | B1 |
7506052 | Qian et al. | Mar 2009 | B2 |
7509687 | Ofek et al. | Mar 2009 | B2 |
7511614 | Stilp et al. | Mar 2009 | B2 |
7512965 | Amdur et al. | Mar 2009 | B1 |
7526539 | Hsu | Apr 2009 | B1 |
7526762 | Astala et al. | Apr 2009 | B1 |
7528723 | Fast et al. | May 2009 | B2 |
7542721 | Bonner et al. | Jun 2009 | B1 |
7549134 | Li et al. | Jun 2009 | B1 |
7551071 | Bennett et al. | Jun 2009 | B2 |
7554934 | Abraham et al. | Jun 2009 | B2 |
7558379 | Winick | Jul 2009 | B2 |
7558903 | Kinstler | Jul 2009 | B2 |
7562323 | Bai et al. | Jul 2009 | B1 |
7564855 | Georgiou | Jul 2009 | B1 |
7568018 | Hove et al. | Jul 2009 | B1 |
7571459 | Ganesh et al. | Aug 2009 | B2 |
7577420 | Srinivasan et al. | Aug 2009 | B2 |
7583191 | Zinser | Sep 2009 | B2 |
7587464 | Moorer et al. | Sep 2009 | B2 |
7590953 | Chang | Sep 2009 | B2 |
7596622 | Owen et al. | Sep 2009 | B2 |
D602014 | Andre et al. | Oct 2009 | S |
D602015 | Andre et al. | Oct 2009 | S |
D602017 | Andre et al. | Oct 2009 | S |
D602486 | Andre et al. | Oct 2009 | S |
D602487 | Maskatia | Oct 2009 | S |
7606767 | Couper et al. | Oct 2009 | B1 |
7610555 | Klein et al. | Oct 2009 | B2 |
7619512 | Trundle et al. | Nov 2009 | B2 |
7620427 | Shanahan | Nov 2009 | B2 |
7627665 | Barker et al. | Dec 2009 | B2 |
7633385 | Cohn et al. | Dec 2009 | B2 |
7634519 | Creamer et al. | Dec 2009 | B2 |
7639157 | Whitley et al. | Dec 2009 | B1 |
7651530 | Winick | Jan 2010 | B2 |
7653911 | Doshi et al. | Jan 2010 | B2 |
7671729 | Hershkovitz et al. | Mar 2010 | B2 |
7679503 | Mason et al. | Mar 2010 | B2 |
7681201 | Dale et al. | Mar 2010 | B2 |
7697028 | Johnson | Apr 2010 | B1 |
7701970 | Krits et al. | Apr 2010 | B2 |
D615083 | Andre et al. | May 2010 | S |
7711796 | Gutt et al. | May 2010 | B2 |
7720654 | Hollis | May 2010 | B2 |
7734020 | Elliot et al. | Jun 2010 | B2 |
7734286 | Almeda et al. | Jun 2010 | B2 |
7734906 | Orlando et al. | Jun 2010 | B2 |
7739596 | Clarke-Martin et al. | Jun 2010 | B2 |
7747975 | Dinter et al. | Jun 2010 | B2 |
7751409 | Carolan | Jul 2010 | B1 |
7755472 | Grossman | Jul 2010 | B2 |
7755506 | Clegg et al. | Jul 2010 | B1 |
7761275 | Chopra et al. | Jul 2010 | B2 |
7787863 | Van De Groenendaal | Aug 2010 | B2 |
7804760 | Schmukler et al. | Sep 2010 | B2 |
D624896 | Park et al. | Oct 2010 | S |
D626437 | Lee et al. | Nov 2010 | S |
7825793 | Spillman et al. | Nov 2010 | B1 |
7827252 | Hopmann et al. | Nov 2010 | B2 |
7847675 | Thyen et al. | Dec 2010 | B1 |
7855635 | Cohn et al. | Dec 2010 | B2 |
7859404 | Chul et al. | Dec 2010 | B2 |
7882466 | Ishikawa | Feb 2011 | B2 |
7882537 | Okajo et al. | Feb 2011 | B2 |
7884855 | Ortiz | Feb 2011 | B2 |
7890612 | Todd et al. | Feb 2011 | B2 |
7890915 | Celik et al. | Feb 2011 | B2 |
7899732 | Van et al. | Mar 2011 | B2 |
7904074 | Karaoguz et al. | Mar 2011 | B2 |
7904187 | Hoffberg et al. | Mar 2011 | B2 |
7911341 | Raji et al. | Mar 2011 | B2 |
D636769 | Wood et al. | Apr 2011 | S |
7921686 | Bagepalli et al. | Apr 2011 | B2 |
D637596 | Akana et al. | May 2011 | S |
7949960 | Roessler et al. | May 2011 | B2 |
D639805 | Song et al. | Jun 2011 | S |
D640663 | Arnholt et al. | Jun 2011 | S |
7956736 | Cohn et al. | Jun 2011 | B2 |
7970863 | Fontaine | Jun 2011 | B1 |
D641018 | Lee et al. | Jul 2011 | S |
7974235 | Ghozati et al. | Jul 2011 | B2 |
D642563 | Akana et al. | Aug 2011 | S |
8001219 | Moorer et al. | Aug 2011 | B2 |
D645015 | Lee et al. | Sep 2011 | S |
D645435 | Kim et al. | Sep 2011 | S |
D645833 | Seflic et al. | Sep 2011 | S |
8022833 | Cho | Sep 2011 | B2 |
8028041 | Olliphant et al. | Sep 2011 | B2 |
8032881 | Holmberg et al. | Oct 2011 | B2 |
8042049 | Killian et al. | Oct 2011 | B2 |
8046411 | Hayashi et al. | Oct 2011 | B2 |
8069194 | Manber et al. | Nov 2011 | B1 |
D650381 | Park et al. | Dec 2011 | S |
8073931 | Dawes et al. | Dec 2011 | B2 |
8086702 | Baum et al. | Dec 2011 | B2 |
8086703 | Baum et al. | Dec 2011 | B2 |
D654460 | Kim et al. | Feb 2012 | S |
D654497 | Lee | Feb 2012 | S |
8122131 | Baum et al. | Feb 2012 | B2 |
8125184 | Raji et al. | Feb 2012 | B2 |
D656137 | Chung et al. | Mar 2012 | S |
8140658 | Gelvin et al. | Mar 2012 | B1 |
8144836 | Naidoo et al. | Mar 2012 | B2 |
8149849 | Osborn et al. | Apr 2012 | B2 |
8159519 | Kurtz et al. | Apr 2012 | B2 |
8159945 | Muro et al. | Apr 2012 | B2 |
8160425 | Kisliakov | Apr 2012 | B2 |
8196064 | Krzyzanowski et al. | Jun 2012 | B2 |
8200827 | Hunyady et al. | Jun 2012 | B1 |
8205181 | Singla et al. | Jun 2012 | B1 |
8209400 | Baum et al. | Jun 2012 | B2 |
D663298 | Song et al. | Jul 2012 | S |
D664540 | Kim et al. | Jul 2012 | S |
8214494 | Slavin | Jul 2012 | B1 |
8214496 | Gutt et al. | Jul 2012 | B2 |
8229812 | Raleigh | Jul 2012 | B2 |
D664954 | Kim et al. | Aug 2012 | S |
D666198 | Van et al. | Aug 2012 | S |
8239477 | Sharma et al. | Aug 2012 | B2 |
D667395 | Lee | Sep 2012 | S |
D667396 | Koh | Sep 2012 | S |
D667397 | Koh | Sep 2012 | S |
D667398 | Koh | Sep 2012 | S |
D667399 | Koh | Sep 2012 | S |
8269376 | Elberbaum | Sep 2012 | B1 |
8269623 | Addy | Sep 2012 | B2 |
8271629 | Winters et al. | Sep 2012 | B1 |
8271881 | Moorer et al. | Sep 2012 | B2 |
8272053 | Markham et al. | Sep 2012 | B2 |
8275830 | Raleigh | Sep 2012 | B2 |
D668650 | Han | Oct 2012 | S |
D668651 | Kim et al. | Oct 2012 | S |
D668652 | Kim et al. | Oct 2012 | S |
D669469 | Kang | Oct 2012 | S |
D670692 | Akana et al. | Nov 2012 | S |
D671514 | Kim et al. | Nov 2012 | S |
8311526 | Forstall et al. | Nov 2012 | B2 |
D671938 | Hsu et al. | Dec 2012 | S |
D672344 | Li | Dec 2012 | S |
D672345 | Li | Dec 2012 | S |
D672739 | Sin | Dec 2012 | S |
D672768 | Huang et al. | Dec 2012 | S |
8335842 | Raji et al. | Dec 2012 | B2 |
8335854 | Eldering | Dec 2012 | B2 |
8336010 | Chang et al. | Dec 2012 | B1 |
D673561 | Hyun et al. | Jan 2013 | S |
D673948 | Andre et al. | Jan 2013 | S |
D673950 | Li et al. | Jan 2013 | S |
D674369 | Jaewoong | Jan 2013 | S |
D675203 | Yang | Jan 2013 | S |
8350694 | Trundle et al. | Jan 2013 | B1 |
D675588 | Park | Feb 2013 | S |
D675612 | Andre et al. | Feb 2013 | S |
D676443 | Canizares et al. | Feb 2013 | S |
D676819 | Choi | Feb 2013 | S |
8373313 | Garcia et al. | Feb 2013 | B2 |
D677255 | McManigal et al. | Mar 2013 | S |
D677640 | Kim et al. | Mar 2013 | S |
D677659 | Akana et al. | Mar 2013 | S |
D677660 | Groene et al. | Mar 2013 | S |
D678271 | Chiu | Mar 2013 | S |
D678272 | Groene et al. | Mar 2013 | S |
D678877 | Groene et al. | Mar 2013 | S |
8400767 | Yeom et al. | Mar 2013 | B2 |
D679706 | Tang et al. | Apr 2013 | S |
D680151 | Katori | Apr 2013 | S |
D680524 | Feng et al. | Apr 2013 | S |
D681032 | Akana et al. | Apr 2013 | S |
8413204 | White et al. | Apr 2013 | B2 |
D681583 | Park | May 2013 | S |
D681591 | Sung | May 2013 | S |
D681632 | Akana et al. | May 2013 | S |
D682239 | Yeh et al. | May 2013 | S |
8451986 | Cohn et al. | May 2013 | B2 |
D684553 | Kim et al. | Jun 2013 | S |
D684968 | Smith et al. | Jun 2013 | S |
8456293 | Trundle et al. | Jun 2013 | B1 |
8473619 | Baum et al. | Jun 2013 | B2 |
D685778 | Fahrendorff et al. | Jul 2013 | S |
D685783 | Bryan et al. | Jul 2013 | S |
8478450 | Lu et al. | Jul 2013 | B2 |
8478844 | Baum et al. | Jul 2013 | B2 |
8478871 | Gutt et al. | Jul 2013 | B2 |
8483853 | Lambourne | Jul 2013 | B1 |
8493202 | Trundle et al. | Jul 2013 | B1 |
8499038 | Vucurevich | Jul 2013 | B1 |
8520068 | Naidoo et al. | Aug 2013 | B2 |
8520072 | Slavin et al. | Aug 2013 | B1 |
8525664 | Hadizad et al. | Sep 2013 | B2 |
8543665 | Ansari et al. | Sep 2013 | B2 |
D692042 | Dawes et al. | Oct 2013 | S |
8554478 | Hartman | Oct 2013 | B2 |
8560041 | Flaherty et al. | Oct 2013 | B2 |
8570993 | Austin et al. | Oct 2013 | B2 |
8584199 | Chen et al. | Nov 2013 | B1 |
D695735 | Kitchen et al. | Dec 2013 | S |
8599018 | Kellen et al. | Dec 2013 | B2 |
8612591 | Dawes et al. | Dec 2013 | B2 |
8634533 | Strasters | Jan 2014 | B2 |
8635350 | Gutt et al. | Jan 2014 | B2 |
8635499 | Cohn et al. | Jan 2014 | B2 |
8638211 | Cohn et al. | Jan 2014 | B2 |
8649386 | Ansari et al. | Feb 2014 | B2 |
8666560 | Lu et al. | Mar 2014 | B2 |
8675071 | Slavin et al. | Mar 2014 | B1 |
8700769 | Alexander et al. | Apr 2014 | B2 |
8713132 | Baum et al. | Apr 2014 | B2 |
8723671 | Foisy et al. | May 2014 | B2 |
8730834 | Marusca et al. | May 2014 | B2 |
8738765 | Wyatt et al. | May 2014 | B2 |
8812654 | Gelvin et al. | Aug 2014 | B2 |
8819178 | Baum et al. | Aug 2014 | B2 |
8825871 | Baum et al. | Sep 2014 | B2 |
8836467 | Cohn et al. | Sep 2014 | B1 |
8885552 | Bedingfield et al. | Nov 2014 | B2 |
8902740 | Hicks, III | Dec 2014 | B2 |
8914526 | Lindquist et al. | Dec 2014 | B1 |
8935236 | Morita et al. | Jan 2015 | B2 |
8937658 | Hicks et al. | Jan 2015 | B2 |
8953479 | Hall et al. | Feb 2015 | B2 |
8953749 | Naidoo et al. | Feb 2015 | B2 |
8963713 | Dawes et al. | Feb 2015 | B2 |
8976763 | Shrestha et al. | Mar 2015 | B2 |
8988217 | Piccolo, III | Mar 2015 | B2 |
8988221 | Raji et al. | Mar 2015 | B2 |
8996665 | Baum et al. | Mar 2015 | B2 |
9047753 | Dawes et al. | Jun 2015 | B2 |
9059863 | Baum et al. | Jun 2015 | B2 |
9094407 | Matthieu et al. | Jul 2015 | B1 |
9100446 | Cohn et al. | Aug 2015 | B2 |
9141276 | Dawes et al. | Sep 2015 | B2 |
9144143 | Raji et al. | Sep 2015 | B2 |
9147337 | Cohn et al. | Sep 2015 | B2 |
9160784 | Jeong et al. | Oct 2015 | B2 |
9170707 | Laska et al. | Oct 2015 | B1 |
9172532 | Fuller et al. | Oct 2015 | B1 |
9172553 | Dawes et al. | Oct 2015 | B2 |
9172605 | Hardy et al. | Oct 2015 | B2 |
9189934 | Jentoft et al. | Nov 2015 | B2 |
9191228 | Fulker et al. | Nov 2015 | B2 |
9202362 | Hyland et al. | Dec 2015 | B2 |
9246921 | Vlaminck et al. | Jan 2016 | B1 |
9286772 | Shapiro et al. | Mar 2016 | B2 |
9287727 | Egan | Mar 2016 | B1 |
9300921 | Naidoo et al. | Mar 2016 | B2 |
9306809 | Dawes et al. | Apr 2016 | B2 |
9310864 | Klein et al. | Apr 2016 | B1 |
9412248 | Cohn et al. | Aug 2016 | B1 |
9426720 | Cohn et al. | Aug 2016 | B2 |
9450776 | Baum et al. | Sep 2016 | B2 |
9462041 | Hagins et al. | Oct 2016 | B1 |
9510065 | Cohn et al. | Nov 2016 | B2 |
9529344 | Hagins et al. | Dec 2016 | B1 |
9531593 | Baum et al. | Dec 2016 | B2 |
9600945 | Naidoo | Mar 2017 | B2 |
9609003 | Chmielewski et al. | Mar 2017 | B1 |
9613524 | Lamb et al. | Apr 2017 | B1 |
9621408 | Gutt et al. | Apr 2017 | B2 |
9729342 | Cohn et al. | Aug 2017 | B2 |
9779595 | Thibault | Oct 2017 | B2 |
9843458 | Cronin | Dec 2017 | B2 |
9876651 | Cho et al. | Jan 2018 | B2 |
9882985 | Esam et al. | Jan 2018 | B1 |
9978238 | Fadell et al. | May 2018 | B2 |
9979625 | McLaughlin et al. | May 2018 | B2 |
10002507 | Wilson et al. | Jun 2018 | B2 |
10025473 | Sarao et al. | Jul 2018 | B2 |
10051078 | Burd et al. | Aug 2018 | B2 |
10062245 | Fulker et al. | Aug 2018 | B2 |
10062273 | Raji et al. | Aug 2018 | B2 |
10078958 | Cohn et al. | Sep 2018 | B2 |
10079839 | Bryan et al. | Sep 2018 | B1 |
10120354 | Rolston et al. | Nov 2018 | B1 |
10127801 | Raji et al. | Nov 2018 | B2 |
10140840 | Cohn et al. | Nov 2018 | B2 |
10142392 | Raji et al. | Nov 2018 | B2 |
10156831 | Raji et al. | Dec 2018 | B2 |
10156959 | Fulker et al. | Dec 2018 | B2 |
10237237 | Dawes et al. | Mar 2019 | B2 |
10237757 | Raleigh et al. | Mar 2019 | B2 |
10264138 | Raleigh et al. | Apr 2019 | B2 |
10313303 | Baum et al. | Jun 2019 | B2 |
10339791 | Baum et al. | Jul 2019 | B2 |
20010016501 | King | Aug 2001 | A1 |
20010022836 | Bremer et al. | Sep 2001 | A1 |
20010025349 | Sharood et al. | Sep 2001 | A1 |
20010029585 | Simon et al. | Oct 2001 | A1 |
20010030597 | Inoue et al. | Oct 2001 | A1 |
20010034209 | Tong et al. | Oct 2001 | A1 |
20010034754 | Elwahab et al. | Oct 2001 | A1 |
20010034759 | Chiles et al. | Oct 2001 | A1 |
20010036192 | Chiles et al. | Nov 2001 | A1 |
20010042137 | Ota et al. | Nov 2001 | A1 |
20010046366 | Susskind | Nov 2001 | A1 |
20010047474 | Takagi et al. | Nov 2001 | A1 |
20010053207 | Jeon et al. | Dec 2001 | A1 |
20010054115 | Ferguson et al. | Dec 2001 | A1 |
20020000913 | Hamamoto et al. | Jan 2002 | A1 |
20020003575 | Marchese | Jan 2002 | A1 |
20020004828 | Davis et al. | Jan 2002 | A1 |
20020005894 | Foodman et al. | Jan 2002 | A1 |
20020016639 | Smith et al. | Feb 2002 | A1 |
20020018057 | Sano | Feb 2002 | A1 |
20020019751 | Rothschild et al. | Feb 2002 | A1 |
20020026476 | Miyazaki et al. | Feb 2002 | A1 |
20020026531 | Keane et al. | Feb 2002 | A1 |
20020027504 | Davis et al. | Mar 2002 | A1 |
20020028696 | Hirayama et al. | Mar 2002 | A1 |
20020029276 | Bendinelli et al. | Mar 2002 | A1 |
20020031120 | Rakib | Mar 2002 | A1 |
20020032853 | Preston et al. | Mar 2002 | A1 |
20020037004 | Bossemeyer et al. | Mar 2002 | A1 |
20020038380 | Brawn et al. | Mar 2002 | A1 |
20020046280 | Fujita | Apr 2002 | A1 |
20020052719 | Alexander et al. | May 2002 | A1 |
20020052913 | Yamada et al. | May 2002 | A1 |
20020055977 | Nishi | May 2002 | A1 |
20020059078 | Valdes et al. | May 2002 | A1 |
20020059148 | Rosenhaft et al. | May 2002 | A1 |
20020059637 | Rakib | May 2002 | A1 |
20020068984 | Alexander et al. | Jun 2002 | A1 |
20020072868 | Bartone et al. | Jun 2002 | A1 |
20020077077 | Rezvani et al. | Jun 2002 | A1 |
20020083342 | Webb et al. | Jun 2002 | A1 |
20020085488 | Kobayashi | Jul 2002 | A1 |
20020091815 | Anderson et al. | Jul 2002 | A1 |
20020095490 | Barker et al. | Jul 2002 | A1 |
20020099809 | Lee | Jul 2002 | A1 |
20020099829 | Richards et al. | Jul 2002 | A1 |
20020099854 | Jorgensen | Jul 2002 | A1 |
20020103898 | Moyer et al. | Aug 2002 | A1 |
20020103927 | Parent | Aug 2002 | A1 |
20020107910 | Zhao | Aug 2002 | A1 |
20020109580 | Shreve et al. | Aug 2002 | A1 |
20020111698 | Graziano et al. | Aug 2002 | A1 |
20020112051 | Ullman | Aug 2002 | A1 |
20020112182 | Chang et al. | Aug 2002 | A1 |
20020114439 | Dunlap | Aug 2002 | A1 |
20020116117 | Martens et al. | Aug 2002 | A1 |
20020118107 | Yamamoto et al. | Aug 2002 | A1 |
20020118796 | Menard et al. | Aug 2002 | A1 |
20020120696 | Mousseau et al. | Aug 2002 | A1 |
20020120790 | Schwalb | Aug 2002 | A1 |
20020126009 | Oyagi et al. | Sep 2002 | A1 |
20020128728 | Murakami et al. | Sep 2002 | A1 |
20020131404 | Mehta et al. | Sep 2002 | A1 |
20020133539 | Monday | Sep 2002 | A1 |
20020133578 | Wu | Sep 2002 | A1 |
20020143805 | Hayes et al. | Oct 2002 | A1 |
20020143923 | Alexander | Oct 2002 | A1 |
20020147982 | Naidoo et al. | Oct 2002 | A1 |
20020152298 | Kikta et al. | Oct 2002 | A1 |
20020156564 | Preston et al. | Oct 2002 | A1 |
20020156899 | Sekiguchi | Oct 2002 | A1 |
20020163534 | Choi et al. | Nov 2002 | A1 |
20020163997 | Bergman et al. | Nov 2002 | A1 |
20020164997 | Parry | Nov 2002 | A1 |
20020165006 | Haller et al. | Nov 2002 | A1 |
20020166125 | Fulmer | Nov 2002 | A1 |
20020174367 | Kimmel et al. | Nov 2002 | A1 |
20020174434 | Lee et al. | Nov 2002 | A1 |
20020177428 | Menard et al. | Nov 2002 | A1 |
20020177482 | Cheong et al. | Nov 2002 | A1 |
20020178211 | Singhal et al. | Nov 2002 | A1 |
20020180579 | Nagaoka et al. | Dec 2002 | A1 |
20020184301 | Parent | Dec 2002 | A1 |
20020184527 | Chun et al. | Dec 2002 | A1 |
20020191636 | Hallenbeck | Dec 2002 | A1 |
20030005030 | Sutton et al. | Jan 2003 | A1 |
20030009552 | Benfield et al. | Jan 2003 | A1 |
20030009553 | Benfield et al. | Jan 2003 | A1 |
20030010243 | Roller | Jan 2003 | A1 |
20030023839 | Burkhardt et al. | Jan 2003 | A1 |
20030025599 | Monroe | Feb 2003 | A1 |
20030028294 | Yanagi | Feb 2003 | A1 |
20030028398 | Yamashita et al. | Feb 2003 | A1 |
20030030548 | Kovacs et al. | Feb 2003 | A1 |
20030031165 | O'Brien | Feb 2003 | A1 |
20030038730 | Imafuku et al. | Feb 2003 | A1 |
20030038849 | Craven et al. | Feb 2003 | A1 |
20030039242 | Moore | Feb 2003 | A1 |
20030041137 | Horie et al. | Feb 2003 | A1 |
20030041167 | French et al. | Feb 2003 | A1 |
20030061621 | Petty et al. | Feb 2003 | A1 |
20030050731 | Rosenblum | Mar 2003 | A1 |
20030051009 | Shah et al. | Mar 2003 | A1 |
20030051026 | Carter et al. | Mar 2003 | A1 |
20030052905 | Gordon et al. | Mar 2003 | A1 |
20030052923 | Porter | Mar 2003 | A1 |
20030056012 | Modeste et al. | Mar 2003 | A1 |
20030056014 | Verberkt et al. | Mar 2003 | A1 |
20030061344 | Monroe | Mar 2003 | A1 |
20030061615 | Van Der Meulen | Mar 2003 | A1 |
20030062997 | Naidoo et al. | Apr 2003 | A1 |
20030065407 | Johnson et al. | Apr 2003 | A1 |
20030065757 | Mentze et al. | Apr 2003 | A1 |
20030065791 | Garg | Apr 2003 | A1 |
20030067923 | Ju et al. | Apr 2003 | A1 |
20030071724 | D Amico | Apr 2003 | A1 |
20030073406 | Benjamin et al. | Apr 2003 | A1 |
20030081768 | Caminschi | May 2003 | A1 |
20030090473 | Joshi | May 2003 | A1 |
20030096590 | Satoh | May 2003 | A1 |
20030101243 | Donahue et al. | May 2003 | A1 |
20030101459 | Edson | May 2003 | A1 |
20030103088 | Dresti et al. | Jun 2003 | A1 |
20030110302 | Hodges et al. | Jun 2003 | A1 |
20030112866 | Yu | Jun 2003 | A1 |
20030113100 | Hecht et al. | Jun 2003 | A1 |
20030115345 | Chien et al. | Jun 2003 | A1 |
20030123634 | Chee | Jul 2003 | A1 |
20030128114 | Quigley | Jul 2003 | A1 |
20030128115 | Giacopelli et al. | Jul 2003 | A1 |
20030132018 | Okita et al. | Jul 2003 | A1 |
20030137426 | Anthony et al. | Jul 2003 | A1 |
20030147534 | Ablay et al. | Aug 2003 | A1 |
20030149671 | Yamamoto et al. | Aug 2003 | A1 |
20030153325 | Veerepalli et al. | Aug 2003 | A1 |
20030155757 | Larsen et al. | Aug 2003 | A1 |
20030158609 | Chiu | Aug 2003 | A1 |
20030158635 | Pillar et al. | Aug 2003 | A1 |
20030159135 | Hiller et al. | Aug 2003 | A1 |
20030174154 | Yukie et al. | Sep 2003 | A1 |
20030174648 | Wang et al. | Sep 2003 | A1 |
20030174717 | Zabarski et al. | Sep 2003 | A1 |
20030177236 | Goto et al. | Sep 2003 | A1 |
20030182396 | Reich et al. | Sep 2003 | A1 |
20030182640 | Alani et al. | Sep 2003 | A1 |
20030184436 | Seales et al. | Oct 2003 | A1 |
20030187920 | Redkar | Oct 2003 | A1 |
20030187938 | Mousseau et al. | Oct 2003 | A1 |
20030189509 | Hayes et al. | Oct 2003 | A1 |
20030197847 | Shinoda | Oct 2003 | A1 |
20030200285 | Hansen et al. | Oct 2003 | A1 |
20030200325 | Krishnaswamy et al. | Oct 2003 | A1 |
20030201889 | Zulkowski | Oct 2003 | A1 |
20030208610 | Rochetti et al. | Nov 2003 | A1 |
20030210126 | Kanazawa | Nov 2003 | A1 |
20030217110 | Weiss | Nov 2003 | A1 |
20030217136 | Cho et al. | Nov 2003 | A1 |
20030225883 | Greaves et al. | Dec 2003 | A1 |
20030230934 | Cordelli et al. | Dec 2003 | A1 |
20030233155 | Slemmer et al. | Dec 2003 | A1 |
20030233332 | Keeler et al. | Dec 2003 | A1 |
20030234725 | Lemelson et al. | Dec 2003 | A1 |
20030236841 | Epshteyn | Dec 2003 | A1 |
20040003051 | Krzyzanowski et al. | Jan 2004 | A1 |
20040003241 | Sengodan et al. | Jan 2004 | A1 |
20040008724 | Devine et al. | Jan 2004 | A1 |
20040015572 | Kang | Jan 2004 | A1 |
20040024851 | Naidoo et al. | Feb 2004 | A1 |
20040034697 | Fairhurst et al. | Feb 2004 | A1 |
20040034798 | Yamada et al. | Feb 2004 | A1 |
20040036615 | Candela | Feb 2004 | A1 |
20040037295 | Tanaka et al. | Feb 2004 | A1 |
20040041910 | Naidoo et al. | Mar 2004 | A1 |
20040054789 | Breh et al. | Mar 2004 | A1 |
20040056665 | Iwanaga et al. | Mar 2004 | A1 |
20040068657 | Alexander et al. | Apr 2004 | A1 |
20040086088 | Naidoo et al. | May 2004 | A1 |
20040086090 | Naidoo et al. | May 2004 | A1 |
20040086093 | Schranz | May 2004 | A1 |
20040093492 | Daude et al. | May 2004 | A1 |
20040095943 | Korotin | May 2004 | A1 |
20040103308 | Paller | May 2004 | A1 |
20040107027 | Boudrieau | Jun 2004 | A1 |
20040107299 | Lee et al. | Jun 2004 | A1 |
20040113770 | Falk et al. | Jun 2004 | A1 |
20040113778 | Script et al. | Jun 2004 | A1 |
20040113937 | Sawdey | Jun 2004 | A1 |
20040117068 | Lee | Jun 2004 | A1 |
20040117330 | Ehlers et al. | Jun 2004 | A1 |
20040117462 | Bodin et al. | Jun 2004 | A1 |
20040117465 | Bodin et al. | Jun 2004 | A1 |
20040123149 | Tyroler | Jun 2004 | A1 |
20040125146 | Gerlach et al. | Jul 2004 | A1 |
20040125782 | Chang | Jul 2004 | A1 |
20040133689 | Vasisht | Jul 2004 | A1 |
20040137915 | Diener et al. | Jul 2004 | A1 |
20040139227 | Takeda | Jul 2004 | A1 |
20040143749 | Tajalli et al. | Jul 2004 | A1 |
20040153171 | Brandt et al. | Aug 2004 | A1 |
20040155757 | Litwin et al. | Aug 2004 | A1 |
20040160309 | Stilp | Aug 2004 | A1 |
20040162902 | Davis | Aug 2004 | A1 |
20040163073 | Krzyzanowski et al. | Aug 2004 | A1 |
20040163118 | Mottur | Aug 2004 | A1 |
20040169288 | Hsieh et al. | Sep 2004 | A1 |
20040170120 | Reunamaki et al. | Sep 2004 | A1 |
20040170155 | Omar et al. | Sep 2004 | A1 |
20040172396 | Vanska et al. | Sep 2004 | A1 |
20040177163 | Casey et al. | Sep 2004 | A1 |
20040181693 | Milliot et al. | Sep 2004 | A1 |
20040183756 | Freitas et al. | Sep 2004 | A1 |
20040189460 | Heaton et al. | Sep 2004 | A1 |
20040189471 | Ciarcia et al. | Sep 2004 | A1 |
20040189871 | Kurosawa et al. | Sep 2004 | A1 |
20040196844 | Hagino | Oct 2004 | A1 |
20040198386 | Dupray | Oct 2004 | A1 |
20040199645 | Rouhi | Oct 2004 | A1 |
20040201472 | McGunn | Oct 2004 | A1 |
20040202351 | Park et al. | Oct 2004 | A1 |
20040212494 | Stilp | Oct 2004 | A1 |
20040212497 | Stilp | Oct 2004 | A1 |
20040212500 | Stilp | Oct 2004 | A1 |
20040212503 | Stilp | Oct 2004 | A1 |
20040213150 | Krause et al. | Oct 2004 | A1 |
20040215694 | Podolsky | Oct 2004 | A1 |
20040215700 | Shenfield et al. | Oct 2004 | A1 |
20040215750 | Stilp | Oct 2004 | A1 |
20040215955 | Tamai et al. | Oct 2004 | A1 |
20040223605 | Donnelly | Nov 2004 | A1 |
20040225516 | Bruskotter et al. | Nov 2004 | A1 |
20040225719 | Kislev et al. | Nov 2004 | A1 |
20040229569 | Franz | Nov 2004 | A1 |
20040243714 | Wynn et al. | Dec 2004 | A1 |
20040243835 | Terzis et al. | Dec 2004 | A1 |
20040243996 | Sheehy et al. | Dec 2004 | A1 |
20040246339 | Ooshima et al. | Dec 2004 | A1 |
20040249613 | Sprogis et al. | Dec 2004 | A1 |
20040249922 | Hackman et al. | Dec 2004 | A1 |
20040257433 | Lia et al. | Dec 2004 | A1 |
20040260407 | Wimsatt | Dec 2004 | A1 |
20040260427 | Wimsatt | Dec 2004 | A1 |
20040260527 | Stanculescu | Dec 2004 | A1 |
20040263314 | Dorai et al. | Dec 2004 | A1 |
20040266493 | Bahl et al. | Dec 2004 | A1 |
20040267385 | Lingemann | Dec 2004 | A1 |
20040267937 | Klemets | Dec 2004 | A1 |
20050002417 | Kelly et al. | Jan 2005 | A1 |
20050010866 | Humpleman et al. | Jan 2005 | A1 |
20050015805 | Iwamura | Jan 2005 | A1 |
20050021309 | Alexander et al. | Jan 2005 | A1 |
20050022210 | Zintel et al. | Jan 2005 | A1 |
20050023858 | Bingle et al. | Feb 2005 | A1 |
20050024203 | Wolfe | Feb 2005 | A1 |
20050030928 | Virtanen et al. | Feb 2005 | A1 |
20050033513 | Gasbarro | Feb 2005 | A1 |
20050038325 | Moll | Feb 2005 | A1 |
20050038326 | Mathur | Feb 2005 | A1 |
20050044061 | Klemow | Feb 2005 | A1 |
20050049746 | Rosenblum | Mar 2005 | A1 |
20050052831 | Chen | Mar 2005 | A1 |
20050055575 | Evans et al. | Mar 2005 | A1 |
20050055716 | Louie et al. | Mar 2005 | A1 |
20050057361 | Giraldo et al. | Mar 2005 | A1 |
20050060163 | Barsness et al. | Mar 2005 | A1 |
20050060411 | Coulombe et al. | Mar 2005 | A1 |
20050066045 | Johnson et al. | Mar 2005 | A1 |
20050066912 | Korbitz et al. | Mar 2005 | A1 |
20050069098 | Kalervo et al. | Mar 2005 | A1 |
20050071483 | Motoyama | Mar 2005 | A1 |
20050075764 | Horst et al. | Apr 2005 | A1 |
20050079855 | Jethi et al. | Apr 2005 | A1 |
20050081161 | Macinnes et al. | Apr 2005 | A1 |
20050086126 | Patterson | Apr 2005 | A1 |
20050086211 | Mayer | Apr 2005 | A1 |
20050086366 | Luebke et al. | Apr 2005 | A1 |
20050088983 | Wesslen et al. | Apr 2005 | A1 |
20050089023 | Barkley et al. | Apr 2005 | A1 |
20050090915 | Geiwitz | Apr 2005 | A1 |
20050091435 | Han et al. | Apr 2005 | A1 |
20050091696 | Wolfe et al. | Apr 2005 | A1 |
20050096753 | Arling et al. | May 2005 | A1 |
20050097478 | Killian et al. | May 2005 | A1 |
20050101314 | Levi | May 2005 | A1 |
20050102152 | Hodges | May 2005 | A1 |
20050105530 | Kono | May 2005 | A1 |
20050108091 | Sotak et al. | May 2005 | A1 |
20050108369 | Sather et al. | May 2005 | A1 |
20050114900 | Ladd et al. | May 2005 | A1 |
20050119913 | Hornreich et al. | Jun 2005 | A1 |
20050120082 | Hesselink et al. | Jun 2005 | A1 |
20050125083 | Kiko | Jun 2005 | A1 |
20050128068 | Winick et al. | Jun 2005 | A1 |
20050128083 | Puzio et al. | Jun 2005 | A1 |
20050128093 | Genova et al. | Jun 2005 | A1 |
20050144312 | Kadyk et al. | Jun 2005 | A1 |
20050148356 | Ferguson et al. | Jul 2005 | A1 |
20050149639 | Vrielink et al. | Jul 2005 | A1 |
20050149746 | Lu et al. | Jul 2005 | A1 |
20050154494 | Ahmed | Jul 2005 | A1 |
20050154774 | Giaffreda et al. | Jul 2005 | A1 |
20050155757 | Paton | Jul 2005 | A1 |
20050156568 | Yueh | Jul 2005 | A1 |
20050156737 | Al-Khateeb | Jul 2005 | A1 |
20050159823 | Hayes et al. | Jul 2005 | A1 |
20050159911 | Funk et al. | Jul 2005 | A1 |
20050169288 | Kamiwada et al. | Aug 2005 | A1 |
20050174229 | Feldkamp et al. | Aug 2005 | A1 |
20050179531 | Tabe | Aug 2005 | A1 |
20050182681 | Bruskotter et al. | Aug 2005 | A1 |
20050184865 | Han | Aug 2005 | A1 |
20050188315 | Campbell et al. | Aug 2005 | A1 |
20050197847 | Smith | Sep 2005 | A1 |
20050200474 | Behnke | Sep 2005 | A1 |
20050204076 | Cumpson et al. | Sep 2005 | A1 |
20050207429 | Akita et al. | Sep 2005 | A1 |
20050210532 | Winick | Sep 2005 | A1 |
20050216302 | Raji et al. | Sep 2005 | A1 |
20050216580 | Raji et al. | Sep 2005 | A1 |
20050220123 | Wybenga et al. | Oct 2005 | A1 |
20050222820 | Chung | Oct 2005 | A1 |
20050222933 | Wesby | Oct 2005 | A1 |
20050229016 | Addy | Oct 2005 | A1 |
20050231349 | Bhat | Oct 2005 | A1 |
20050234568 | Chung et al. | Oct 2005 | A1 |
20050237182 | Wang | Oct 2005 | A1 |
20050249199 | Albert et al. | Nov 2005 | A1 |
20050253706 | Spoltore et al. | Nov 2005 | A1 |
20050256608 | King et al. | Nov 2005 | A1 |
20050257013 | Ma | Nov 2005 | A1 |
20050257260 | Lenoir et al. | Nov 2005 | A1 |
20050259673 | Lu et al. | Nov 2005 | A1 |
20050260973 | Van De Groenendaal | Nov 2005 | A1 |
20050262241 | Gubbi et al. | Nov 2005 | A1 |
20050267605 | Lee et al. | Dec 2005 | A1 |
20050270151 | Winick | Dec 2005 | A1 |
20050273831 | Slomovich et al. | Dec 2005 | A1 |
20050276389 | Hinkson et al. | Dec 2005 | A1 |
20050280964 | Richmond et al. | Dec 2005 | A1 |
20050283823 | Okajo et al. | Dec 2005 | A1 |
20050285934 | Carter | Dec 2005 | A1 |
20050285941 | Haigh et al. | Dec 2005 | A1 |
20060009863 | Lingemann | Jan 2006 | A1 |
20060010078 | Rezvani et al. | Jan 2006 | A1 |
20060018328 | Mody et al. | Jan 2006 | A1 |
20060018479 | Chen | Jan 2006 | A1 |
20060022816 | Yukawa | Feb 2006 | A1 |
20060023847 | Tyroler et al. | Feb 2006 | A1 |
20060025132 | Karaoguz et al. | Feb 2006 | A1 |
20060031852 | Chu et al. | Feb 2006 | A1 |
20060041655 | Holloway et al. | Feb 2006 | A1 |
20060045074 | Lee | Mar 2006 | A1 |
20060050692 | Petrescu et al. | Mar 2006 | A1 |
20060050862 | Shen et al. | Mar 2006 | A1 |
20060051122 | Kawazu et al. | Mar 2006 | A1 |
20060052884 | Staples et al. | Mar 2006 | A1 |
20060053447 | Krzyzanowski et al. | Mar 2006 | A1 |
20060053491 | Khuti et al. | Mar 2006 | A1 |
20060063534 | Kokkonen et al. | Mar 2006 | A1 |
20060064305 | Alonso | Mar 2006 | A1 |
20060064478 | Sirkin | Mar 2006 | A1 |
20060067344 | Sakurai | Mar 2006 | A1 |
20060067356 | Kim et al. | Mar 2006 | A1 |
20060067484 | Elliot et al. | Mar 2006 | A1 |
20060075235 | Renkis | Apr 2006 | A1 |
20060077254 | Shu et al. | Apr 2006 | A1 |
20060078344 | Kawazu et al. | Apr 2006 | A1 |
20060080465 | Conzola et al. | Apr 2006 | A1 |
20060088092 | Chen et al. | Apr 2006 | A1 |
20060092011 | Simon et al. | May 2006 | A1 |
20060093365 | Dybsetter et al. | May 2006 | A1 |
20060101062 | Godman et al. | May 2006 | A1 |
20060103510 | Chen et al. | May 2006 | A1 |
20060103520 | Clark | May 2006 | A1 |
20060104312 | Friar | May 2006 | A1 |
20060105713 | Zheng et al. | May 2006 | A1 |
20060106933 | Huang et al. | May 2006 | A1 |
20060109113 | Reyes et al. | May 2006 | A1 |
20060109860 | Matsunaga et al. | May 2006 | A1 |
20060111095 | Weigand | May 2006 | A1 |
20060121924 | Rengaraju et al. | Jun 2006 | A1 |
20060123212 | Yagawa | Jun 2006 | A1 |
20060129837 | Im et al. | Jun 2006 | A1 |
20060132302 | Stilp | Jun 2006 | A1 |
20060136558 | Sheehan et al. | Jun 2006 | A1 |
20060142880 | Deen et al. | Jun 2006 | A1 |
20060142968 | Han et al. | Jun 2006 | A1 |
20060143268 | Chatani | Jun 2006 | A1 |
20060145842 | Stilp | Jul 2006 | A1 |
20060154642 | Scannell, Jr. | Jul 2006 | A1 |
20060155851 | Ma et al. | Jul 2006 | A1 |
20060159032 | Ukrainetz et al. | Jul 2006 | A1 |
20060161270 | Luskin et al. | Jul 2006 | A1 |
20060161662 | Ng et al. | Jul 2006 | A1 |
20060161960 | Benoit | Jul 2006 | A1 |
20060167784 | Hoffberg | Jul 2006 | A1 |
20060167919 | Hsieh | Jul 2006 | A1 |
20060168178 | Hwang et al. | Jul 2006 | A1 |
20060176146 | Krishan et al. | Aug 2006 | A1 |
20060176167 | Dohrmann | Aug 2006 | A1 |
20060181406 | Petite et al. | Aug 2006 | A1 |
20060182100 | Li et al. | Aug 2006 | A1 |
20060183460 | Srinivasan et al. | Aug 2006 | A1 |
20060187900 | Akbar | Aug 2006 | A1 |
20060190458 | Mishina et al. | Aug 2006 | A1 |
20060190529 | Morozumi et al. | Aug 2006 | A1 |
20060197660 | Luebke et al. | Sep 2006 | A1 |
20060200845 | Foster et al. | Sep 2006 | A1 |
20060206220 | Amundson | Sep 2006 | A1 |
20060208872 | Yu et al. | Sep 2006 | A1 |
20060208880 | Funk et al. | Sep 2006 | A1 |
20060209857 | Hicks, III | Sep 2006 | A1 |
20060215650 | Wollmershauser et al. | Sep 2006 | A1 |
20060218593 | Afshary et al. | Sep 2006 | A1 |
20060220830 | Bennett et al. | Oct 2006 | A1 |
20060221184 | Vallone et al. | Oct 2006 | A1 |
20060222153 | Tarkoff et al. | Oct 2006 | A1 |
20060229746 | Ollis et al. | Oct 2006 | A1 |
20060230270 | Goffin | Oct 2006 | A1 |
20060233372 | Shaheen et al. | Oct 2006 | A1 |
20060235963 | Wetherly et al. | Oct 2006 | A1 |
20060238372 | Jung et al. | Oct 2006 | A1 |
20060242395 | Fausak | Oct 2006 | A1 |
20060245369 | Schimmelpfeng et al. | Nov 2006 | A1 |
20060246886 | Benco et al. | Nov 2006 | A1 |
20060246919 | Park et al. | Nov 2006 | A1 |
20060250235 | Astrin | Nov 2006 | A1 |
20060258342 | Fok et al. | Nov 2006 | A1 |
20060265489 | Moore | Nov 2006 | A1 |
20060271695 | Lavian | Nov 2006 | A1 |
20060274764 | Mah et al. | Dec 2006 | A1 |
20060281435 | Shearer et al. | Dec 2006 | A1 |
20060282886 | Gaug | Dec 2006 | A1 |
20060288288 | Girgensohn et al. | Dec 2006 | A1 |
20060291507 | Sarosi et al. | Dec 2006 | A1 |
20060294565 | Walter | Dec 2006 | A1 |
20070001818 | Small et al. | Jan 2007 | A1 |
20070002833 | Bajic | Jan 2007 | A1 |
20070005736 | Hansen et al. | Jan 2007 | A1 |
20070005957 | Sahita et al. | Jan 2007 | A1 |
20070006177 | Aiber et al. | Jan 2007 | A1 |
20070008099 | Kimmel et al. | Jan 2007 | A1 |
20070043478 | Ehlers et al. | Feb 2007 | A1 |
20070043954 | Fox | Feb 2007 | A1 |
20070047585 | Gillespie et al. | Mar 2007 | A1 |
20070052675 | Chang | Mar 2007 | A1 |
20070055770 | Karmakar et al. | Mar 2007 | A1 |
20070058627 | Smith et al. | Mar 2007 | A1 |
20070061018 | Callaghan et al. | Mar 2007 | A1 |
20070061020 | Bovee et al. | Mar 2007 | A1 |
20070061266 | Moore et al. | Mar 2007 | A1 |
20070061430 | Kim | Mar 2007 | A1 |
20070061878 | Hagiu et al. | Mar 2007 | A1 |
20070063836 | Hayden et al. | Mar 2007 | A1 |
20070063866 | Webb | Mar 2007 | A1 |
20070064714 | Bi et al. | Mar 2007 | A1 |
20070079151 | Connor et al. | Apr 2007 | A1 |
20070079385 | Williams et al. | Apr 2007 | A1 |
20070083668 | Kelsey et al. | Apr 2007 | A1 |
20070090944 | Du Breuil | Apr 2007 | A1 |
20070094716 | Farino et al. | Apr 2007 | A1 |
20070096981 | Abraham | May 2007 | A1 |
20070101345 | Takagi | May 2007 | A1 |
20070103433 | Katz | May 2007 | A1 |
20070105072 | Koljonen | May 2007 | A1 |
20070106124 | Kuriyama et al. | May 2007 | A1 |
20070116020 | Cheever et al. | May 2007 | A1 |
20070117464 | Freeman | May 2007 | A1 |
20070118609 | Mullan et al. | May 2007 | A1 |
20070127510 | Bossemeyer et al. | Jun 2007 | A1 |
20070130286 | Hopmann et al. | Jun 2007 | A1 |
20070140267 | Yang | Jun 2007 | A1 |
20070142022 | Madonna et al. | Jun 2007 | A1 |
20070142044 | Fitzgerald et al. | Jun 2007 | A1 |
20070143440 | Reckamp et al. | Jun 2007 | A1 |
20070146484 | Horton et al. | Jun 2007 | A1 |
20070147419 | Tsujimoto et al. | Jun 2007 | A1 |
20070150616 | Baek et al. | Jun 2007 | A1 |
20070154010 | Wong | Jul 2007 | A1 |
20070155325 | Bambic et al. | Jul 2007 | A1 |
20070160017 | Meier et al. | Jul 2007 | A1 |
20070161372 | Rogalski et al. | Jul 2007 | A1 |
20070162228 | Mitchell | Jul 2007 | A1 |
20070162680 | Mitchell | Jul 2007 | A1 |
20070164779 | Weston et al. | Jul 2007 | A1 |
20070168860 | Takayama et al. | Jul 2007 | A1 |
20070182543 | Luo | Aug 2007 | A1 |
20070183345 | Fahim et al. | Aug 2007 | A1 |
20070185989 | Corbett et al. | Aug 2007 | A1 |
20070192486 | Wilson et al. | Aug 2007 | A1 |
20070198698 | Boyd et al. | Aug 2007 | A1 |
20070208521 | Petite et al. | Sep 2007 | A1 |
20070214262 | Buchbinder et al. | Sep 2007 | A1 |
20070214264 | Koister | Sep 2007 | A1 |
20070216764 | Kwak | Sep 2007 | A1 |
20070216783 | Ortiz et al. | Sep 2007 | A1 |
20070218895 | Saito et al. | Sep 2007 | A1 |
20070223465 | Wang et al. | Sep 2007 | A1 |
20070223500 | Lee et al. | Sep 2007 | A1 |
20070226182 | Sobotka et al. | Sep 2007 | A1 |
20070230415 | Malik | Oct 2007 | A1 |
20070245223 | Siedzik et al. | Oct 2007 | A1 |
20070255856 | Reckamp et al. | Nov 2007 | A1 |
20070256105 | Tabe | Nov 2007 | A1 |
20070257986 | Ivanov et al. | Nov 2007 | A1 |
20070260713 | Moorer et al. | Nov 2007 | A1 |
20070262857 | Jackson | Nov 2007 | A1 |
20070263782 | Stock et al. | Nov 2007 | A1 |
20070265866 | Fehling et al. | Nov 2007 | A1 |
20070271398 | Manchester et al. | Nov 2007 | A1 |
20070275703 | Lim et al. | Nov 2007 | A1 |
20070282665 | Buehler et al. | Dec 2007 | A1 |
20070283001 | Spiess et al. | Dec 2007 | A1 |
20070286210 | Gutt et al. | Dec 2007 | A1 |
20070286369 | Gutt et al. | Dec 2007 | A1 |
20070287405 | Radtke | Dec 2007 | A1 |
20070288849 | Moorer et al. | Dec 2007 | A1 |
20070288858 | Pereira | Dec 2007 | A1 |
20070290830 | Gurley | Dec 2007 | A1 |
20070296814 | Cooper et al. | Dec 2007 | A1 |
20070298772 | Owens et al. | Dec 2007 | A1 |
20080001734 | Stilp et al. | Jan 2008 | A1 |
20080013957 | Akers et al. | Jan 2008 | A1 |
20080027587 | Nickerson et al. | Jan 2008 | A1 |
20080042826 | Hevia et al. | Feb 2008 | A1 |
20080043107 | Coogan et al. | Feb 2008 | A1 |
20080048861 | Naidoo et al. | Feb 2008 | A1 |
20080048975 | Leibow | Feb 2008 | A1 |
20080052348 | Adler et al. | Feb 2008 | A1 |
20080056261 | Osborn et al. | Mar 2008 | A1 |
20080059533 | Krikorian | Mar 2008 | A1 |
20080059622 | Hite et al. | Mar 2008 | A1 |
20080065681 | Fontijn et al. | Mar 2008 | A1 |
20080065685 | Frank | Mar 2008 | A1 |
20080072244 | Eker et al. | Mar 2008 | A1 |
20080074258 | Bennett et al. | Mar 2008 | A1 |
20080074993 | Vainola | Mar 2008 | A1 |
20080082186 | Hood et al. | Apr 2008 | A1 |
20080084294 | Zhiying et al. | Apr 2008 | A1 |
20080084296 | Kutzik et al. | Apr 2008 | A1 |
20080086564 | Putman et al. | Apr 2008 | A1 |
20080091793 | Diroo et al. | Apr 2008 | A1 |
20080102845 | Zhao | May 2008 | A1 |
20080103608 | Gough et al. | May 2008 | A1 |
20080104215 | Excoffier et al. | May 2008 | A1 |
20080104516 | Lee | May 2008 | A1 |
20080109302 | Salokannel et al. | May 2008 | A1 |
20080109650 | Shim et al. | May 2008 | A1 |
20080112340 | Luebke | May 2008 | A1 |
20080112405 | Cholas et al. | May 2008 | A1 |
20080117029 | Dohrmann et al. | May 2008 | A1 |
20080117201 | Martinez et al. | May 2008 | A1 |
20080120405 | Son et al. | May 2008 | A1 |
20080126535 | Zhu et al. | May 2008 | A1 |
20080128444 | Schininger et al. | Jun 2008 | A1 |
20080129484 | Dahl et al. | Jun 2008 | A1 |
20080129821 | Howarter et al. | Jun 2008 | A1 |
20080130949 | Ivanov et al. | Jun 2008 | A1 |
20080133725 | Shaouy | Jun 2008 | A1 |
20080134343 | Pennington et al. | Jun 2008 | A1 |
20080137572 | Park et al. | Jun 2008 | A1 |
20080140868 | Kalayjian et al. | Jun 2008 | A1 |
20080141303 | Walker et al. | Jun 2008 | A1 |
20080141341 | Vinogradov et al. | Jun 2008 | A1 |
20080144884 | Habibi | Jun 2008 | A1 |
20080147834 | Quinn et al. | Jun 2008 | A1 |
20080155080 | Marlow et al. | Jun 2008 | A1 |
20080155470 | Khedouri et al. | Jun 2008 | A1 |
20080163355 | Chu | Jul 2008 | A1 |
20080168404 | Ording | Jul 2008 | A1 |
20080170511 | Shorty et al. | Jul 2008 | A1 |
20080180240 | Raji et al. | Jul 2008 | A1 |
20080181239 | Wood et al. | Jul 2008 | A1 |
20080183483 | Hart | Jul 2008 | A1 |
20080183842 | Raji et al. | Jul 2008 | A1 |
20080189609 | Larson et al. | Aug 2008 | A1 |
20080201468 | Titus | Aug 2008 | A1 |
20080204190 | Cohn et al. | Aug 2008 | A1 |
20080204219 | Cohn et al. | Aug 2008 | A1 |
20080208399 | Pham | Aug 2008 | A1 |
20080209505 | Ghai et al. | Aug 2008 | A1 |
20080209506 | Ghai et al. | Aug 2008 | A1 |
20080215450 | Gates et al. | Sep 2008 | A1 |
20080219239 | Bell et al. | Sep 2008 | A1 |
20080221715 | Krzyzanowski et al. | Sep 2008 | A1 |
20080235326 | Parsi et al. | Sep 2008 | A1 |
20080235600 | Harper et al. | Sep 2008 | A1 |
20080239075 | Mehrotra et al. | Oct 2008 | A1 |
20080240372 | Frenette | Oct 2008 | A1 |
20080240696 | Kucharyson | Oct 2008 | A1 |
20080253391 | Krits et al. | Oct 2008 | A1 |
20080261540 | Rohani et al. | Oct 2008 | A1 |
20080266080 | Leung et al. | Oct 2008 | A1 |
20080266257 | Chiang | Oct 2008 | A1 |
20080271150 | Boerger et al. | Oct 2008 | A1 |
20080284587 | Saigh et al. | Nov 2008 | A1 |
20080284592 | Collins et al. | Nov 2008 | A1 |
20080294588 | Morris et al. | Nov 2008 | A1 |
20080297599 | Donovan et al. | Dec 2008 | A1 |
20080303903 | Bentley et al. | Dec 2008 | A1 |
20080313316 | Hite et al. | Dec 2008 | A1 |
20080316024 | Chantelou et al. | Dec 2008 | A1 |
20090003820 | Law et al. | Jan 2009 | A1 |
20090007596 | Goldstein et al. | Jan 2009 | A1 |
20090013210 | McIntosh et al. | Jan 2009 | A1 |
20090019141 | Bush et al. | Jan 2009 | A1 |
20090036142 | Yan | Feb 2009 | A1 |
20090041467 | Carleton et al. | Feb 2009 | A1 |
20090042649 | Hsieh et al. | Feb 2009 | A1 |
20090046664 | Aso | Feb 2009 | A1 |
20090049488 | Stransky | Feb 2009 | A1 |
20090055760 | Whatcott et al. | Feb 2009 | A1 |
20090063582 | Anna et al. | Mar 2009 | A1 |
20090066534 | Sivakkolundhu | Mar 2009 | A1 |
20090066788 | Baum et al. | Mar 2009 | A1 |
20090066789 | Baum et al. | Mar 2009 | A1 |
20090067395 | Curtis et al. | Mar 2009 | A1 |
20090067441 | Ansari et al. | Mar 2009 | A1 |
20090070436 | Dawes et al. | Mar 2009 | A1 |
20090070473 | Baum et al. | Mar 2009 | A1 |
20090070477 | Baum et al. | Mar 2009 | A1 |
20090070681 | Dawes et al. | Mar 2009 | A1 |
20090070682 | Dawes et al. | Mar 2009 | A1 |
20090070692 | Dawes et al. | Mar 2009 | A1 |
20090072988 | Haywood | Mar 2009 | A1 |
20090074184 | Baum et al. | Mar 2009 | A1 |
20090076211 | Yang et al. | Mar 2009 | A1 |
20090076879 | Sparks et al. | Mar 2009 | A1 |
20090077167 | Baum et al. | Mar 2009 | A1 |
20090077622 | Baum et al. | Mar 2009 | A1 |
20090077623 | Baum et al. | Mar 2009 | A1 |
20090077624 | Baum et al. | Mar 2009 | A1 |
20090079547 | Oksanen et al. | Mar 2009 | A1 |
20090086660 | Sood et al. | Apr 2009 | A1 |
20090100329 | Espinoza | Apr 2009 | A1 |
20090100492 | Hicks et al. | Apr 2009 | A1 |
20090113344 | Nesse et al. | Apr 2009 | A1 |
20090119397 | Neerdaels | May 2009 | A1 |
20090125708 | Woodring et al. | May 2009 | A1 |
20090128365 | Laskin | May 2009 | A1 |
20090134998 | Baum et al. | May 2009 | A1 |
20090138600 | Baum et al. | May 2009 | A1 |
20090138958 | Baum et al. | May 2009 | A1 |
20090146846 | Grossman | Jun 2009 | A1 |
20090158189 | Itani | Jun 2009 | A1 |
20090158292 | Rattner et al. | Jun 2009 | A1 |
20090161609 | Bergstrom | Jun 2009 | A1 |
20090165114 | Baum et al. | Jun 2009 | A1 |
20090172443 | Rothman et al. | Jul 2009 | A1 |
20090177298 | McFarland et al. | Jul 2009 | A1 |
20090177906 | Paniagua et al. | Jul 2009 | A1 |
20090187297 | Kish et al. | Jul 2009 | A1 |
20090193373 | Abbaspour et al. | Jul 2009 | A1 |
20090202250 | Dizechi et al. | Aug 2009 | A1 |
20090204693 | Andreev et al. | Aug 2009 | A1 |
20090221368 | Yen et al. | Sep 2009 | A1 |
20090224875 | Rabinowitz et al. | Sep 2009 | A1 |
20090228445 | Gangal | Sep 2009 | A1 |
20090240353 | Songkakul et al. | Sep 2009 | A1 |
20090240730 | Wood | Sep 2009 | A1 |
20090240787 | Denny | Sep 2009 | A1 |
20090240814 | Brubacher et al. | Sep 2009 | A1 |
20090240946 | Yeap et al. | Sep 2009 | A1 |
20090256708 | Hsiao et al. | Oct 2009 | A1 |
20090259515 | Belimpasakis et al. | Oct 2009 | A1 |
20090260052 | Bathula et al. | Oct 2009 | A1 |
20090260430 | Zamfes | Oct 2009 | A1 |
20090265042 | Mollenkopf et al. | Oct 2009 | A1 |
20090265193 | Collins et al. | Oct 2009 | A1 |
20090289787 | Dawson et al. | Nov 2009 | A1 |
20090303100 | Zemany | Dec 2009 | A1 |
20090307255 | Park | Dec 2009 | A1 |
20090313693 | Rogers | Dec 2009 | A1 |
20090322510 | Berger et al. | Dec 2009 | A1 |
20090324010 | Hou | Dec 2009 | A1 |
20100000791 | Alberty | Jan 2010 | A1 |
20100001812 | Kausch | Jan 2010 | A1 |
20100004949 | O'Brien | Jan 2010 | A1 |
20100008274 | Kneckt et al. | Jan 2010 | A1 |
20100013917 | Hanna et al. | Jan 2010 | A1 |
20100023865 | Fulker et al. | Jan 2010 | A1 |
20100026487 | Hershkovitz | Feb 2010 | A1 |
20100030578 | Siddique et al. | Feb 2010 | A1 |
20100030810 | Marr | Feb 2010 | A1 |
20100039958 | Ge et al. | Feb 2010 | A1 |
20100041380 | Hewes et al. | Feb 2010 | A1 |
20100052612 | Raji et al. | Mar 2010 | A1 |
20100066530 | Cohn et al. | Mar 2010 | A1 |
20100067371 | Gogic et al. | Mar 2010 | A1 |
20100074112 | Derr et al. | Mar 2010 | A1 |
20100077111 | Holmes et al. | Mar 2010 | A1 |
20100082744 | Raji et al. | Apr 2010 | A1 |
20100095111 | Gutt et al. | Apr 2010 | A1 |
20100095369 | Gutt et al. | Apr 2010 | A1 |
20100100269 | Ekhaguere et al. | Apr 2010 | A1 |
20100102951 | Rutledge | Apr 2010 | A1 |
20100121521 | Kiribayashi | May 2010 | A1 |
20100122091 | Huang et al. | May 2010 | A1 |
20100138758 | Mizumori et al. | Jun 2010 | A1 |
20100138764 | Hatambeiki et al. | Jun 2010 | A1 |
20100145485 | Duchene et al. | Jun 2010 | A1 |
20100150170 | Lee et al. | Jun 2010 | A1 |
20100153853 | Dawes et al. | Jun 2010 | A1 |
20100159898 | Krzyzanowski et al. | Jun 2010 | A1 |
20100159967 | Pounds et al. | Jun 2010 | A1 |
20100164736 | Byers et al. | Jul 2010 | A1 |
20100165897 | Sood | Jul 2010 | A1 |
20100177749 | Essinger et al. | Jul 2010 | A1 |
20100177750 | Essinger et al. | Jul 2010 | A1 |
20100185857 | Neitzel et al. | Jul 2010 | A1 |
20100197219 | Issa et al. | Aug 2010 | A1 |
20100204839 | Behm et al. | Aug 2010 | A1 |
20100210240 | Mahaffey et al. | Aug 2010 | A1 |
20100212012 | Touboul et al. | Aug 2010 | A1 |
20100218104 | Lewis | Aug 2010 | A1 |
20100238286 | Boghossian et al. | Sep 2010 | A1 |
20100241711 | Ansari et al. | Sep 2010 | A1 |
20100245107 | Fulker et al. | Sep 2010 | A1 |
20100248681 | Phills | Sep 2010 | A1 |
20100267390 | Lin et al. | Oct 2010 | A1 |
20100274366 | Fata et al. | Oct 2010 | A1 |
20100277300 | Cohn et al. | Nov 2010 | A1 |
20100277302 | Cohn et al. | Nov 2010 | A1 |
20100277315 | Cohn et al. | Nov 2010 | A1 |
20100280635 | Cohn et al. | Nov 2010 | A1 |
20100280637 | Cohn et al. | Nov 2010 | A1 |
20100281135 | Cohn et al. | Nov 2010 | A1 |
20100281161 | Cohn et al. | Nov 2010 | A1 |
20100281312 | Cohn et al. | Nov 2010 | A1 |
20100298024 | Choi | Nov 2010 | A1 |
20100321151 | Matsuura et al. | Dec 2010 | A1 |
20100325107 | Kenton et al. | Dec 2010 | A1 |
20100332164 | Aisa et al. | Dec 2010 | A1 |
20110000521 | Tachibana | Jan 2011 | A1 |
20110029875 | Milch | Feb 2011 | A1 |
20110030056 | Tokunaga | Feb 2011 | A1 |
20110037593 | Foisy et al. | Feb 2011 | A1 |
20110040415 | Nickerson et al. | Feb 2011 | A1 |
20110040877 | Foisy | Feb 2011 | A1 |
20110051638 | Jeon et al. | Mar 2011 | A1 |
20110068921 | Shafer | Mar 2011 | A1 |
20110080267 | Clare et al. | Apr 2011 | A1 |
20110093799 | Hatambeiki et al. | Apr 2011 | A1 |
20110096678 | Ketonen | Apr 2011 | A1 |
20110102588 | Trundle et al. | May 2011 | A1 |
20110125333 | Gray | May 2011 | A1 |
20110125846 | Ham et al. | May 2011 | A1 |
20110128378 | Raji | Jun 2011 | A1 |
20110156914 | Sheharri et al. | Jun 2011 | A1 |
20110169637 | Siegler et al. | Jul 2011 | A1 |
20110197327 | McElroy et al. | Aug 2011 | A1 |
20110200052 | Mungo et al. | Aug 2011 | A1 |
20110208359 | Duchene et al. | Aug 2011 | A1 |
20110212706 | Uusilehto | Sep 2011 | A1 |
20110218777 | Chen et al. | Sep 2011 | A1 |
20110230160 | Felgate | Sep 2011 | A1 |
20110234392 | Cohn et al. | Sep 2011 | A1 |
20110257953 | Li et al. | Oct 2011 | A1 |
20110283006 | Ramamurthy | Nov 2011 | A1 |
20110286437 | Austin et al. | Nov 2011 | A1 |
20110302497 | Garrett et al. | Dec 2011 | A1 |
20110309929 | Myers | Dec 2011 | A1 |
20120016607 | Cottrell et al. | Jan 2012 | A1 |
20120020060 | Myer et al. | Jan 2012 | A1 |
20120023151 | Bennett et al. | Jan 2012 | A1 |
20120030130 | Smith et al. | Feb 2012 | A1 |
20120062026 | Raji et al. | Mar 2012 | A1 |
20120062370 | Feldstein et al. | Mar 2012 | A1 |
20120066608 | Sundermeyer et al. | Mar 2012 | A1 |
20120066632 | Sundermeyer et al. | Mar 2012 | A1 |
20120081842 | Ewing et al. | Apr 2012 | A1 |
20120143383 | Cooperrider et al. | Jun 2012 | A1 |
20120154126 | Cohn et al. | Jun 2012 | A1 |
20120154138 | Cohn et al. | Jun 2012 | A1 |
20120172027 | Partheesh et al. | Jul 2012 | A1 |
20120182245 | Hutton | Jul 2012 | A1 |
20120209951 | Enns et al. | Aug 2012 | A1 |
20120214502 | Qiang | Aug 2012 | A1 |
20120232788 | Diao | Sep 2012 | A1 |
20120242788 | Chuang et al. | Sep 2012 | A1 |
20120257061 | Edwards et al. | Oct 2012 | A1 |
20120260184 | Dawes et al. | Oct 2012 | A1 |
20120265892 | Ma et al. | Oct 2012 | A1 |
20120278877 | Baum et al. | Nov 2012 | A1 |
20120296486 | Marriam et al. | Nov 2012 | A1 |
20120307646 | Xia et al. | Dec 2012 | A1 |
20120309354 | Du | Dec 2012 | A1 |
20120315848 | Smith et al. | Dec 2012 | A1 |
20120324566 | Baum et al. | Dec 2012 | A1 |
20120327242 | Barley et al. | Dec 2012 | A1 |
20120331109 | Baum et al. | Dec 2012 | A1 |
20130007871 | Meenan et al. | Jan 2013 | A1 |
20130038730 | Peterson et al. | Feb 2013 | A1 |
20130038800 | Yoo | Feb 2013 | A1 |
20130062951 | Raji et al. | Mar 2013 | A1 |
20130073746 | Singh et al. | Mar 2013 | A1 |
20130082835 | Shapiro et al. | Apr 2013 | A1 |
20130085620 | Lu et al. | Apr 2013 | A1 |
20130103207 | Ruff et al. | Apr 2013 | A1 |
20130115972 | Ziskind et al. | May 2013 | A1 |
20130120134 | Hicks, III | May 2013 | A1 |
20130136102 | MacWan et al. | May 2013 | A1 |
20130154822 | Kumar et al. | Jun 2013 | A1 |
20130155229 | Thornton et al. | Jun 2013 | A1 |
20130163491 | Singh et al. | Jun 2013 | A1 |
20130174239 | Kim et al. | Jul 2013 | A1 |
20130183924 | Saigh et al. | Jul 2013 | A1 |
20130184874 | Frader-Thompson et al. | Jul 2013 | A1 |
20130191755 | Balog et al. | Jul 2013 | A1 |
20130218959 | Sa et al. | Aug 2013 | A1 |
20130222133 | Schultz et al. | Aug 2013 | A1 |
20130223279 | Tinnakornsrisuphap et al. | Aug 2013 | A1 |
20130261821 | Lu et al. | Oct 2013 | A1 |
20130266193 | Tiwari et al. | Oct 2013 | A1 |
20130314542 | Jackson | Nov 2013 | A1 |
20130318231 | Raji et al. | Nov 2013 | A1 |
20130318443 | Bachman et al. | Nov 2013 | A1 |
20130331109 | Dhillon et al. | Dec 2013 | A1 |
20130344875 | Chowdhury | Dec 2013 | A1 |
20140032034 | Raptopoulos et al. | Jan 2014 | A1 |
20140035726 | Schoner et al. | Feb 2014 | A1 |
20140053246 | Huang et al. | Feb 2014 | A1 |
20140068486 | Sellers et al. | Mar 2014 | A1 |
20140075464 | McCrea | Mar 2014 | A1 |
20140098247 | Rao et al. | Apr 2014 | A1 |
20140112405 | Jafarian et al. | Apr 2014 | A1 |
20140126425 | Burd et al. | May 2014 | A1 |
20140136936 | Patel et al. | May 2014 | A1 |
20140140575 | Wolf | May 2014 | A1 |
20140143695 | Sundermeyer et al. | May 2014 | A1 |
20140143851 | Baum et al. | May 2014 | A1 |
20140143854 | Lopez et al. | May 2014 | A1 |
20140146171 | Brady et al. | May 2014 | A1 |
20140153695 | Yanagisawa et al. | Jun 2014 | A1 |
20140167928 | Burd | Jun 2014 | A1 |
20140172957 | Baum et al. | Jun 2014 | A1 |
20140176797 | Silva et al. | Jun 2014 | A1 |
20140180968 | Song et al. | Jun 2014 | A1 |
20140201291 | Russell | Jul 2014 | A1 |
20140218517 | Kim et al. | Aug 2014 | A1 |
20140233951 | Cook | Aug 2014 | A1 |
20140236325 | Sasaki et al. | Aug 2014 | A1 |
20140266678 | Shapiro et al. | Sep 2014 | A1 |
20140278281 | Vaynriber et al. | Sep 2014 | A1 |
20140282934 | Miasnik et al. | Sep 2014 | A1 |
20140289384 | Kao et al. | Sep 2014 | A1 |
20140293046 | Ni | Oct 2014 | A1 |
20140316616 | Kugelmass | Oct 2014 | A1 |
20140340216 | Puskarich | Nov 2014 | A1 |
20140355588 | Cho et al. | Dec 2014 | A1 |
20140359101 | Dawes et al. | Dec 2014 | A1 |
20140359524 | Sasaki et al. | Dec 2014 | A1 |
20140368331 | Cohn et al. | Dec 2014 | A1 |
20140369584 | Fan et al. | Dec 2014 | A1 |
20140372599 | Gutt | Dec 2014 | A1 |
20140372811 | Cohn et al. | Dec 2014 | A1 |
20150009325 | Kardashov | Jan 2015 | A1 |
20150019714 | Shaashua et al. | Jan 2015 | A1 |
20150054947 | Dawes | Feb 2015 | A1 |
20150074206 | Baldwin | Mar 2015 | A1 |
20150077553 | Dawes | Mar 2015 | A1 |
20150082414 | Dawes | Mar 2015 | A1 |
20150088982 | Johnson et al. | Mar 2015 | A1 |
20150097949 | Ure et al. | Apr 2015 | A1 |
20150097961 | Ure et al. | Apr 2015 | A1 |
20150106721 | Cha et al. | Apr 2015 | A1 |
20150116108 | Fadell et al. | Apr 2015 | A1 |
20150142991 | Zaloom | May 2015 | A1 |
20150161875 | Cohn et al. | Jun 2015 | A1 |
20150205465 | Robison et al. | Jul 2015 | A1 |
20150222517 | McLaughlin et al. | Aug 2015 | A1 |
20150261427 | Sasaki | Sep 2015 | A1 |
20150325106 | Dawes et al. | Nov 2015 | A1 |
20150331662 | Lambourne | Nov 2015 | A1 |
20150334087 | Dawes | Nov 2015 | A1 |
20150348554 | Orr et al. | Dec 2015 | A1 |
20150350031 | Burks et al. | Dec 2015 | A1 |
20150365217 | Scholten et al. | Dec 2015 | A1 |
20150373149 | Lyons | Dec 2015 | A1 |
20160012715 | Raji et al. | Jan 2016 | A1 |
20160019763 | Raji et al. | Jan 2016 | A1 |
20160019778 | Raji et al. | Jan 2016 | A1 |
20160023475 | Bevier et al. | Jan 2016 | A1 |
20160027295 | Raji et al. | Jan 2016 | A1 |
20160036944 | Kitchen | Feb 2016 | A1 |
20160042637 | Cahill | Feb 2016 | A1 |
20160062624 | Sundermeyer et al. | Mar 2016 | A1 |
20160065413 | Sundermeyer et al. | Mar 2016 | A1 |
20160065414 | Sundermeyer et al. | Mar 2016 | A1 |
20160077935 | Zheng et al. | Mar 2016 | A1 |
20160100348 | Cohn et al. | Apr 2016 | A1 |
20160107749 | Mucci | Apr 2016 | A1 |
20160116914 | Mucci | Apr 2016 | A1 |
20160127641 | Gove | May 2016 | A1 |
20160161277 | Park et al. | Jun 2016 | A1 |
20160163185 | Ramasubbu et al. | Jun 2016 | A1 |
20160164923 | Dawes | Jun 2016 | A1 |
20160171853 | Naidoo et al. | Jun 2016 | A1 |
20160180719 | Wouhaybi et al. | Jun 2016 | A1 |
20160183073 | Saito et al. | Jun 2016 | A1 |
20160189509 | Malhotra et al. | Jun 2016 | A1 |
20160189527 | Peterson et al. | Jun 2016 | A1 |
20160189549 | Marcus | Jun 2016 | A1 |
20160191265 | Cohn et al. | Jun 2016 | A1 |
20160191621 | Oh et al. | Jun 2016 | A1 |
20160225240 | Voddhi et al. | Aug 2016 | A1 |
20160226732 | Kim et al. | Aug 2016 | A1 |
20160231916 | Dawes | Aug 2016 | A1 |
20160232780 | Cohn et al. | Aug 2016 | A1 |
20160234075 | Sirpal et al. | Aug 2016 | A1 |
20160260135 | Zomet et al. | Sep 2016 | A1 |
20160261932 | Fadell et al. | Sep 2016 | A1 |
20160266579 | Chen et al. | Sep 2016 | A1 |
20160267751 | Fulker et al. | Sep 2016 | A1 |
20160269191 | Cronin | Sep 2016 | A1 |
20160274759 | Dawes | Sep 2016 | A1 |
20160364089 | Blackman et al. | Dec 2016 | A1 |
20160371961 | Narang et al. | Dec 2016 | A1 |
20160373453 | Ruffner et al. | Dec 2016 | A1 |
20170004714 | Rhee | Jan 2017 | A1 |
20170005818 | Gould | Jan 2017 | A1 |
20170006107 | Dawes et al. | Jan 2017 | A1 |
20170019644 | K et al. | Jan 2017 | A1 |
20170039413 | Nadler | Feb 2017 | A1 |
20170052513 | Raji | Feb 2017 | A1 |
20170054571 | Kitchen et al. | Feb 2017 | A1 |
20170054594 | Decenzo et al. | Feb 2017 | A1 |
20170063967 | Kitchen et al. | Mar 2017 | A1 |
20170063968 | Kitchen et al. | Mar 2017 | A1 |
20170068419 | Sundermeyer et al. | Mar 2017 | A1 |
20170070361 | Sundermeyer et al. | Mar 2017 | A1 |
20170070563 | Sundermeyer et al. | Mar 2017 | A1 |
20170078298 | Vlaminck et al. | Mar 2017 | A1 |
20170103646 | Naidoo et al. | Apr 2017 | A1 |
20170109999 | Cohn et al. | Apr 2017 | A1 |
20170118037 | Kitchen et al. | Apr 2017 | A1 |
20170154507 | Dawes et al. | Jun 2017 | A1 |
20170155545 | Baum et al. | Jun 2017 | A1 |
20170180198 | Baum et al. | Jun 2017 | A1 |
20170180306 | Gutt | Jun 2017 | A1 |
20170185277 | Sundermeyer et al. | Jun 2017 | A1 |
20170185278 | Sundermeyer et al. | Jun 2017 | A1 |
20170192402 | Karp et al. | Jul 2017 | A1 |
20170227965 | Decenzo et al. | Aug 2017 | A1 |
20170244573 | Baum et al. | Aug 2017 | A1 |
20170255452 | Barnes et al. | Sep 2017 | A1 |
20170257257 | Dawes | Sep 2017 | A1 |
20170279629 | Raji | Sep 2017 | A1 |
20170289360 | Baum et al. | Oct 2017 | A1 |
20170301216 | Cohn et al. | Oct 2017 | A1 |
20170302469 | Cohn et al. | Oct 2017 | A1 |
20170310500 | Dawes | Oct 2017 | A1 |
20170331781 | Gutt | Nov 2017 | A1 |
20170337806 | Cohn et al. | Nov 2017 | A1 |
20170353324 | Baum et al. | Dec 2017 | A1 |
20180004377 | Kitchen et al. | Jan 2018 | A1 |
20180019890 | Dawes | Jan 2018 | A1 |
20180054774 | Cohn et al. | Feb 2018 | A1 |
20180063248 | Dawes et al. | Mar 2018 | A1 |
20180083831 | Baum et al. | Mar 2018 | A1 |
20180092046 | Egan et al. | Mar 2018 | A1 |
20180096568 | Cohn et al. | Apr 2018 | A1 |
20180278701 | Diem | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
2005223267 | Dec 2010 | AU |
2010297957 | May 2012 | AU |
2011250886 | Jan 2013 | AU |
2013284428 | Feb 2015 | AU |
2011305163 | Dec 2016 | AU |
2017201365 | Mar 2017 | AU |
2017201585 | Mar 2017 | AU |
1008939 | Oct 1996 | BE |
2203813 | Jun 1996 | CA |
2174482 | Oct 1997 | CA |
2346638 | Apr 2000 | CA |
2389958 | Mar 2003 | CA |
2878117 | Jan 2014 | CA |
2559842 | May 2014 | CA |
2992429 | Dec 2016 | CA |
2976682 | Feb 2018 | CA |
2976802 | Feb 2018 | CA |
102834818 | Dec 2012 | CN |
102985915 | Mar 2013 | CN |
0295146 | Dec 1988 | EP |
0308046 | Mar 1989 | EP |
0591585 | Apr 1994 | EP |
1117214 | Jul 2001 | EP |
1119837 | Aug 2001 | EP |
0978111 | Nov 2001 | EP |
1738540 | Jan 2007 | EP |
1881716 | Jan 2008 | EP |
2112784 | Oct 2009 | EP |
2188794 | May 2010 | EP |
2191351 | Jun 2010 | EP |
2327063 | Jun 2011 | EP |
2483788 | Aug 2012 | EP |
2569712 | Mar 2013 | EP |
2619686 | Jul 2013 | EP |
2868039 | May 2015 | EP |
3031206 | Jun 2016 | EP |
3285238 | Feb 2018 | EP |
3308222 | Apr 2018 | EP |
2584217 | Jan 1987 | FR |
2661023 | Oct 1991 | FR |
2793334 | Nov 2000 | FR |
2222288 | Feb 1990 | GB |
2273593 | Jun 1994 | GB |
2286423 | Aug 1995 | GB |
2291554 | Jan 1996 | GB |
2319373 | May 1998 | GB |
2320644 | Jun 1998 | GB |
2324630 | Oct 1998 | GB |
2325548 | Nov 1998 | GB |
2335523 | Sep 1999 | GB |
2349293 | Oct 2000 | GB |
2370400 | Jun 2002 | GB |
2442628 | Apr 2008 | GB |
2442633 | Apr 2008 | GB |
2442640 | Apr 2008 | GB |
2428821 | Jun 2008 | GB |
452015 | Nov 2015 | IN |
042016 | Jan 2016 | IN |
363033088 | Feb 1988 | JP |
05-167712 | Jul 1993 | JP |
06-339183 | Dec 1994 | JP |
08-227491 | Sep 1996 | JP |
10-004451 | Jan 1998 | JP |
2000-006343 | Jan 2000 | JP |
2000023146 | Jan 2000 | JP |
2000278671 | Oct 2000 | JP |
2001006088 | Jan 2001 | JP |
2001006343 | Jan 2001 | JP |
2001069209 | Mar 2001 | JP |
2002-055895 | Feb 2002 | JP |
2002-185629 | Jun 2002 | JP |
2003-085258 | Mar 2003 | JP |
2003-141659 | May 2003 | JP |
2004-192659 | Jul 2004 | JP |
2007-529826 | Oct 2007 | JP |
10-2006-0021605 | Mar 2006 | KR |
340934 | Sep 1998 | TW |
I239176 | Sep 2005 | TW |
201101243 | Jan 2011 | TW |
201102976 | Jan 2011 | TW |
201102978 | Jan 2011 | TW |
201117141 | May 2011 | TW |
I480839 | Apr 2015 | TW |
I480840 | Apr 2015 | TW |
I509579 | Nov 2015 | TW |
I517106 | Jan 2016 | TW |
8907855 | Aug 1989 | WO |
WO 8911187 | Nov 1989 | WO |
9403881 | Feb 1994 | WO |
WO 9513944 | May 1995 | WO |
9636301 | Nov 1996 | WO |
WO 9713230 | Apr 1997 | WO |
WO 9825243 | Jun 1998 | WO |
9849663 | Nov 1998 | WO |
WO 9852343 | Nov 1998 | WO |
WO 9859256 | Dec 1998 | WO |
9934339 | Jul 1999 | WO |
0021053 | Apr 2000 | WO |
WO 0036812 | Jun 2000 | WO |
0072598 | Nov 2000 | WO |
0111586 | Feb 2001 | WO |
0152478 | Jul 2001 | WO |
WO 0171489 | Sep 2001 | WO |
0199078 | Dec 2001 | WO |
WO 0211444 | Feb 2002 | WO |
0221300 | Mar 2002 | WO |
0297584 | Dec 2002 | WO |
2002100083 | Dec 2002 | WO |
2003026305 | Mar 2003 | WO |
0340839 | May 2003 | WO |
2004004222 | Jan 2004 | WO |
2004098127 | Nov 2004 | WO |
2004107710 | Dec 2004 | WO |
2005091218 | Sep 2005 | WO |
2007038872 | Apr 2007 | WO |
2007124453 | Nov 2007 | WO |
2008056320 | May 2008 | WO |
2009006670 | Jan 2009 | WO |
2009023647 | Feb 2009 | WO |
2009029590 | Mar 2009 | WO |
2009029597 | Mar 2009 | WO |
2009064795 | May 2009 | WO |
2009145747 | Dec 2009 | WO |
2010019624 | Feb 2010 | WO |
2010025468 | Mar 2010 | WO |
2010127009 | Nov 2010 | WO |
2010127194 | Nov 2010 | WO |
2010127200 | Nov 2010 | WO |
2010127203 | Nov 2010 | WO |
2011038409 | Mar 2011 | WO |
2011063354 | May 2011 | WO |
2011143273 | Nov 2011 | WO |
2012040653 | Mar 2012 | WO |
2014004911 | Jan 2014 | WO |
2015021469 | Feb 2015 | WO |
2015134520 | Sep 2015 | WO |
2016201033 | Dec 2016 | WO |
201302668 | Jun 2014 | ZA |
Entry |
---|
Genex OmniEye, http://www.genextech.com/prod01.htm, 1999, 5 pages. |
GrayElectronics, http://www.grayelectronics.com/default.htm., 1999, 2 pages. |
Visitalk.com—communication with vision, http://www.visitalk.com. 1999-2000, 1 page. |
Yanni Zhai et al., Design of Smart Home Remote Monitoring System Based on Embedded System, 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering, vol. 2, pp. 41-44. |
X10—ActiveHome, Home Automation Made Easy [retrieved on Apr. 4, 2003], 3 pages. |
WLS906 Photoelectric Smoke Alarm, Data Sheet, DSC Security Products, Ontario, Canada, Jan. 1998. |
Wireless, Battery-Powered Smoke Detectors, Brochure, SafeNight Technology, Inc. Roanoke, VA, 1995. |
Wilkinson, S: “Logitech Harmony One Universal Remote” Ultimate AV magazine May 2008 (May 2008), XP002597782 Retrieved from the Internet : Original URL: http://www.ultimateavmag.com/remotecontrols/508logi) [retrieved on Aug. 23, 2010] the whole document; Updated URL: https://www.soundandvision.com/content/logitech-harmony-one-universal-remote, Retrieved from Internet on Jan. 11, 2018. |
Visitalk, Communication with Vision, http://www.visitalk.jimbo.com; website accessed Jan. 10, 2018. |
Valtchev, D., and I. Frankov. “Service gateway architecture for a smart home.” Communications Magazine, IEEE 40.4 (2002): 126-132. |
US Patent Application filed on Nov. 30, 2017, entitled “Controller and Interface for Home Security, Monitoring and Automation Having Customizable Audio Alerts for SMA Events”, U.S. Appl. No. 15/828,030. |
US Patent Application filed on Nov. 28, 2017, entitled “Forming a Security Network Including Integrated Security System Components”, U.S. Appl. No. 15/824,503. |
US Patent Application filed on Oct. 27, 2017, entitled “Security System With Networked Touchscreen”, U.S. Appl. No. 15/796,421. |
US Patent Application filed on Oct. 13, 2017, entitled “Notification of Event Subsequent to Communication Failure With Security System”, U.S. Appl. No. 15/783,858. |
US Patent Application filed on Aug. 9, 2016, entitled “Controller and Interface for Home Security, Monitoring and Automation Having Customizable Audio Alerts for SMA Events”, U.S. Appl. No. 15/232,135. |
US Patent Application filed on Aug. 8, 2016, entitled “Security, Monitoring and Automation Controller Access and Use of Legacy Security Control Panel Information”, U.S. Appl. No. 15/231,273. |
US Patent Application filed on Jul. 28, 2016, entitled “Method and System for Automatically Providing Alternate Network Access for Telecommunications”, U.S. Appl. No. 15/222,416. |
US Patent Application filed on Jun. 1, 2012, entitled “Gateway Registry Methods and Systems”, U.S. Appl. No. 13/486,276. |
US Patent Application filed on Mar. 10, 2014, entitled “Communication Protocols Over Internet Protocol (IP) Networks”, U.S. Appl. No. 14/202,579. |
US Patent Application filed on Mar. 10, 2014, entitled “Communication Protocols Over Internet Protocol (IP) Networks”, U.S. Appl. No. 14/202,505. |
US Patent Application filed on Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/203,219. |
US Patent Application filed on Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/203,141. |
US Patent Application filed on Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/203,128. |
US Patent Application filed on Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/203,084. |
US Patent Application filed on Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/203,077. |
US Patent Application filed on Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/202,685. |
US Patent Application filed on Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/202,627. |
US Patent Application filed on Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/202,592. |
US Patent Application filed on Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/202,573. |
US Patent Application filed on Mar. 7, 2014, entitled “Security System Integrated With Social Media Platform”, U.S. Appl. No. 14/201,133. |
US Patent Application filed on Mar. 7, 2014, entitled “Integrated Security and Control System With Geofencing”, U.S. Appl. No. 14/201,189. |
US Patent Application filed on Mar. 7, 2014, entitled “Device Integration Framework”, U.S. Appl. No. 14/201,227. |
US Patent Application filed on Mar. 7, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/200,921. |
US Patent Application filed on Mar. 7, 2014, entitled “Activation of Gateway Device”, U.S. Appl. No. 14/201,162. |
US Patent Application filed on Mar. 2, 2017, entitled “Generating Risk Profile Using Data of Home Monitoring and Security System”, U.S. Appl. No. 15/447,982. |
United States Patent and Trademark Office—Before the Patent Trial and Appeal Board, Alarm.com (U.S. Pat. No. 8,350,694B1) (inventors Stephen Scott Trundle & Alison Jane Slavin) V iControl Networks, Inc. (U.S. Appl. No. 13/311,365) (Inventors. Poul j. Dawes, Jim Fulker, Carolyn Wales, Reza Raji, and Gerald Gutt), Patent Interference 106,001 (HHB) (Technology Center 24000), Mar. 31, 2015. |
Topalis E., et al., “A Generic Network Management Architecture Targeted to Support Home Automation Networks and Home Internet Connectivity, Consumer Electronics, IEEE Transactions,” 2000, vol. 46 (1), pp. 44-51. |
Supplementary Non-Final Office Action dated Oct. 28, 2010 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009. |
Supplementary European Search Report for Application No. EP2191351, dated Jun. 23, 2014, 2 pages. |
Supplementary Partial European Search Report for Application No. EP09807196, dated Nov. 17, 2014, 5 pages. |
Supplementary European Search Report for Application No. EP11827671, dated Mar. 10, 2015, 2 pages. |
Supplementary European Search Report for Application No. EP10819658, dated Mar. 10, 2015, 2 pages. |
Supplemental European Search Report for Application No. EP05725743.8 dated Sep. 14, 2010, 2 pages. |
South African Patent App. No. 2013/02668, corresponds to WO2012/040653. |
Shang, Wei-lai, Study on Application of Embedded Intelligent Area System, Journal of Anyang Institute of Technology, vol. 9, No. 6, pp. 56-57 and 65. |
Security for the Future, Introducing 5804B0—Advanced two-way wireless remote technology, Advertisement, ADEMCO Group, Syosset, NY, circa 1997. |
Requirement for Restriction/Election dated Oct. 24, 2012 for U.S. Appl. No. 12/750,470, filed Mar. 30, 2010. |
Requirement for Restriction/Election dated Jan. 22, 2013 for U.S. Appl. No. 13/104,936, filed May 10, 2011. |
Requirement for Restriction/Election dated Jan. 22, 2013 for U.S. Appl. No. 13/104,932, filed May 10, 2011. |
PCT Application filed on Nov. 17, 2016, entitled “Mobile Premises Automation Platform”, PCT/US2016/062519. |
PCT Application filed on Oct. 13, 2016, entitled “Coordinated Control of Connected Devices in a Premise”, PCT/US2016/056842. |
PCT Application filed on Aug. 17, 2016, entitled “Automation System User Interface”, PCT/US2016/047262. |
PCT Application filed on Aug. 16, 2016, entitled “Automation System User Interface”, PCT/US2016/047172. |
Indian Patent App. No. 10698/DELNP/2012, corresponds to W02011/143273. |
Gutierrez J.A., “On the Use of IEEE 802.15.4 to Enable Wireless Sensor Networks in Building Automation,” Personal, Indoor and Mobile Radio Communications (PIMRC), 15th IEEE International Symposium, 2004, vol. 3, pp. 1865-1869. |
GTI Genex Technologies, Inc. OmniEye.(Trademark). Product Brochure, Sep. 14, 1999 (5 pages). |
GrayElectronics, http://www.grayelectronics.com; webpage accessed on Jan. 10, 2018. |
GrayElectronics, “Digitizing TV cameras on TCP/IP Computer Networks,” http://www.grayelectronics.com/default.htm, printed on Oct. 12, 1999 (2 pages). |
Gong, Li, A Software architecture for open service gateways, Internet Computing, IEEE 5.1, Jan.-Feb. 2001, 64-70. |
Genex Technologies, Genex OmniEye, www.av-iq.com/avcat/images/documents/pdfs/omnieye%20nightwatch_brochure.pdf; webpage accessed Jan. 10, 2018. |
Gateway Registry Methods and Systems, U.S. Appl. No. 13/486,276. |
Form PCT/I5A/237, “PCT Written Opinion ofthe International Searching Authority of the Application No. PCT/US08/83254,” dated Jan. 14, 2009, 7 pages. |
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US11/53136,” dated Jan. 5, 2012. |
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US11/35994,” dated Sep. 28, 2011, 11 pages. |
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US11/34858,” dated Oct. 3, 2011, 8 pages. |
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US10/57674,” dated Mar. 2, 2011, 6 pages. |
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US10/50585,” dated Dec. 30, 2010, 7 pages. |
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US09/55559,” dated Nov. 12, 2009, 6 pages. |
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US09/53485,” dated Oct. 22, 2009, 8 pages. |
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US08/74260,” dated Nov. 13, 2008, 6 pages. |
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US08/74246,” dated Nov. 14, 2008, 6 pages. |
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US08/72831,” dated Nov. 4, 2008, 6 pages. |
Form PCT/ISA/237, “PCT Written Opinion ofthe International Searching Authority for the Application No. PCT/US0S/08766,” dated May 23, 2006, 5 pages. |
Form PCT/ISA/220, PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US05/08766, dated May 23, 2006, 1 page. |
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US11/35994,” dated Sep. 28, 2011, 1 page. |
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US10/57674,” dated Mar. 2, 2011, 1 page. |
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US10/50585,” dated Dec. 30, 2010, 1 page. |
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US09/55559,” dated Nov. 12, 2009, 1 page. |
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US09/53485,” dated Oct. 22, 2009, 1 page. |
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US08/83254,” dated Jan. 14, 2009, 1 page. |
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US08/74246” dated Nov. 14, 2008, 1 page. |
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US08/72831,” dated Nov. 4, 2008, 1 page. |
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion fo the International Searching Authority, or the Declaration for the Application No. PCT/US08/74260,” dated Nov. 13, 2008, 1 page. |
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US11/53136,” dated Jan. 5, 2012, 2 pages. |
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US11/35994,” dated Sep. 28, 2011, 2 pages. |
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US11/34858,” dated Oct. 3, 2011, 2 pages. |
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US10/57674,” dated Mar. 2, 2011, 2 pages. |
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US10/50585,” dated Dec. 30, 2010, 2 pages. |
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US09/55559,” dated Nov. 12, 2009, 2 pages. |
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US09/53485,” dated Oct. 22, 2009, 2 pages. |
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US08/83254,” dated Jan. 14, 2009, 2 pages. |
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US08/74260,” dated Nov. 13, 2008, 2 pages. |
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US08/74246,” dated Nov. 14, 2008, 2 pages. |
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US08/72831,” dated Nov. 4, 2008, 2 pages. |
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US05/08766,” dated May 23, 2006, 2 pages. |
Foreign communication from a related counterpart application—International Search Report, App No. PCT/US02/14450, dated Dec. 17, 2002, 6 pgs. |
Foreign communication from a related counterpart application—International Preliminary Examination Report, App No. PCT/US02/14450, dated Mar. 2, 2004, 4 pgs. |
Final Office Action dated Sep. 14, 2011 for U.S. Appl. No. 12/197,931, filed Aug. 25, 2008. |
Final Office Action dated Jul. 12, 2010 for U.S. Appl. No. 12/019,554, filed Jan. 24, 2008. |
Final Office Action dated Feb. 16, 2011 for U.S. Appl. No. 12/019,568, filed Jan. 24, 2008. |
Final Office Action dated Oct. 31, 2012 for U.S. Appl. No. 12/771,624, filed Apr. 30, 2010. |
Final Office Action dated Dec. 31, 2012 for U.S. Appl. No. 12/770,365, filed Apr. 29, 2010. |
Final Office Action dated Jun. 29, 2012 for U.S. Appl. No. 12/539,537, filed Aug. 11, 2009. |
Final Office Action dated Feb. 26, 2013 for U.S. Appl. No. 12/771,471, filed Apr. 30, 2010. |
Final Office Action dated Jul. 23, 2013 for U.S. Appl. No. 13/531,757, filed Jun. 25, 2012. |
Final Office Action dated Mar. 21, 2013 for U.S. Appl. No. 12/691,992, filed Jan. 22, 2010. |
Final Office Action dated Sep. 17, 2012 for U.S. Appl. No. 12/197,958, filed Aug. 25, 2008. |
Final Office Action dated Oct. 17, 2012 for U.S. Appl. No. 12/637,671, filed Dec. 14, 2009. |
Final Office Action dated Jan. 13, 2011 for U.S. Appl. No. 12/189,780, filed Aug. 11, 2008. |
Final Office Action dated Jun. 10, 2011 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005. |
Final Office Action dated Jan. 10, 2011 for U.S. Appl. No. 12/189,785, filed Aug. 11, 2008. |
Final Office Action dated May 9, 2013 for U.S. Appl. No. 12/952,080, filed Nov. 22, 2010. |
Final Office Action dated May 9, 2013 for U.S. Appl. No. 12/189,780, filed Aug. 11, 2008. |
Final Office Action dated Jun. 5, 2012 for U.S. Appl. No. 12/771,071, filed Apr. 30, 2010. |
Final Office Action dated Jun. 1, 2009 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005. |
Final Office Action dated Aug. 1, 2011 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009. |
Faultline, “AT&T Targets video home security as next broadband market”; Nov. 2, 2006; The Register; 2 Pages. |
Examination Report under Section 18(3) re for UK Patent Application No. GB0800040.8, dated Jan. 30, 2008. |
Examination Report under Section 18(3) re for UK Patent Application No. GB0724760.4, dated Jan. 30, 2008. |
Examination Report under Section 18(3) re for UK Patent Application No. GB0724248.0, dated Jan. 30, 2008. |
Examination Report under Section 18(3) re for UK Patent Application No. GB0724248.0, dated Jun. 4, 2008. |
Examination Report under Section 18(3) re for UK Patent Application No. GB0620362.4, dated Aug. 13, 2007. |
EP examination report issued in EP08797646.0, dated May 17, 2017, 11 pages. |
EP application filed on Aug. 16, 2017, entitled, “Automation System User Interface”, 17186497.8. |
EP application filed on Jun. 9, 2016, entitled, “Data Model for Home Automation”, 16808247.7. |
Elwahab et al.; evice, System and . . . Customer Premises Gateways; Sep. 27, 2001; WO 01/71489. |
Diaz, Redondo R P et al., Enhancing Residential Gateways: OSGI Service Composition, IEEE Transactions on Consumer Electronics, IEEE Service Center, New York, NY, US, vol. 53, No. 1, Feb. 1, 2007 (Feb. 1, 2007), pp. 87-95, XP011381790. |
Court action filed for U.S. Pat. No. 7,262,690; U.S. Pat. No. 7,911,341; U.S. Pat. No. 8,073,931; U.S. Pat. No. 8,335,842; U.S. Pat. No. 8,473,619; U.S. Pat. No. 8,478,844 in U.S. District Court, Estern District of Virginia, Case No. 1:13-CV-00834, between iControl Networks, Inc. (Plaintiff) vs Alarm.com Incorporated et al. (Defendant) on Jul. 10, 2013. |
CorAccess Systems, Companion 6 User Guide, Jun. 17, 2002. |
Control Panel Standard—Features for False Alarm Reduction, The Security Industry Association, SIA 2009, pp. 1-48. |
Condry M et al., Open Service Gateway architecture overview, Industrial Electronics Society, 1999, IECON '99 Proceedings, The 25th Annual Conference of the IEEE, San Jose, CA, USA, Nov. 29-Dec. 3, 1999, Piscataway, NJ, USA, IEEE, US, vol. 2, Nov. 29, 1999 (Nov. 29, 1999), pp. 735-742, XP010366642. |
CA application filed on Aug. 16, 2017, entitled “Automation System User Interface”, 2976802. |
Ca application filed on Aug. 15, 2017, entitled “Automation System User Interface”, 2976682. |
AU application filed on Mar. 8, 2017, entitled “Integrated Security Network with Security Alarm Signaling System”, 2017201585. |
AU application filed on Feb. 28, 2017, entitled “Control System User Interface”, 2017201365. |
Alarm.com—Interactive Security Systems, Product Advantages [retrieved on Nov. 4, 2003], 3 pages. |
Alarm.com—Interactive Security Systems, Overview [retrieved on Nov. 4, 2003], 2 pages. |
Alarm.com—Interactive Security Systems, Frequently Asked Questions [retrieved on Nov. 4, 2003], 3 pages. |
Alarm.com—Interactive Security Systems, Elders [retrieved on Nov. 4, 2003], 1 page. |
6270 Touch Screen Keypad Notes, Honeywell, Sep. 2006. |
“Modular programming”, The Authoritative Dictionary of IEEE Standard Terms. 7th ed. 2000. |
“Application” The Authoritative Dictionary of IEEE Standard Terms. 7th ed. 2000. |
PCT Application filed on Jul. 7, 2016, entitled “Automation System User Interface with Three-Dimensional Display”, PCT/US2016/041353. |
PCT Application filed on Jun. 30, 2016, entitled “Integrated Cloud System with Lightweight Gateway for Premises Automation”, PCT/US2016/040451. |
PCT Application filed on Jun. 29, 2016, entitled “Integrated Cloud System for Premises Automation”, PCT/US2016/040046. |
PCT Application filed on Jun. 9, 2016, entitled “Virtual Device Systems and Methods”, PCT/US2016/036674. |
Notice of Allowance dated Oct. 25, 2012 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005. |
Notice of Allowance dated May 14, 2013 for U.S. Appl. No. 12/637,671, filed Dec. 14, 2009. |
Non-Final Office Action dated May 23, 2013 for U.S. Appl. No. 13/104,936, filed May 10, 2011. |
Non-Final Office Action dated May 23, 2013 for U.S. Appl. No. 13/104,932, filed May 10, 2011. |
Non-Final Office Action dated Jan. 5, 2010 for U.S. Appl. No. 12/019,554, filed Jan. 24, 2008. |
Non-Final Office Action dated Feb. 21, 2013 for U.S. Appl. No. 12/771,372, filed Apr. 30, 2010. |
Non-Final Office Action dated Apr. 13, 2010 for U.S. Appl. No. 11/761,745, filed Jun. 12, 2007. |
Non-Final Office Action dated May 30, 2008 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005. |
Non-Final Office Action dated Dec. 30, 2009 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005. |
Non-Final Office Action dated Jun. 27, 2013 for U.S. Appl. No. 12/019,568, filed Jan. 24, 2008. |
Non-Final Office Action dated Nov. 26, 2010 for U.S. Appl. No. 12/197,958, filed Aug. 25, 2008. |
Non-Final Office Action dated Jan. 26, 2012 for U.S. Appl. No. 12/019,568, filed Jan. 24, 2008. |
Non-Final Office Action dated Jul. 22, 2013 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009. |
Non-Final Office Action dated Dec. 22, 2010 for U.S. Appl. No. 12/197,931, filed Aug. 25, 2008. |
Non-Final Office Action dated Jul. 21, 2010 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009. |
Non-Final Office Action dated Jan. 18, 2012 for U.S. Appl. No. 12/771,071, filed Apr. 30, 2010. |
Non-Final Office Action dated Feb. 18, 2011 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009. |
Non-Final Office Action dated Aug. 18, 2011 for U.S. Appl. No. 12/197,958, filed Aug. 25, 2008. |
Non-Final Office Action dated Sep. 17, 2012 for U.S. Appl. No. 12/189,780, filed Aug. 11, 2008. |
Non-Final Office Action dated Sep. 16, 2011 for U.S. Appl. No. 12/539,537, filed Aug. 11, 2009. |
Non-Final Office Action dated Sep. 14, 2010 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005. |
Non-Final Office Action dated Nov. 14, 2012 for U.S. Appl. No. 13/531,757, filed Jun. 25, 2012. |
Non-Final Office Action dated Jul. 13, 2010 for U.S. Appl. No. 12/019,568, filed Jan. 24, 2008. |
Non-Final Office Action dated Sep. 12, 2012 for U.S. Appl. No. 12/952,080, filed Nov. 22, 2010. |
Non-Final Office Action dated Oct. 12, 2012 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009. |
Non-Final Office Action dated Jul. 12, 2012 for U.S. Appl. No. 12/691,992, filed Jan. 22, 2010. |
Non-Final Office Action dated Apr. 12, 2012 for U.S. Appl. No. 12/770,365, filed Apr. 29, 2010. |
Non-Final Office Action dated Oct. 11, 2012 for U.S. Appl. No. 12/019,568, filed Jan. 24, 2008. |
Non-Final Office Action dated Aug. 10, 2012 for U.S. Appl. No. 12/771,471, filed Apr. 30, 2010. |
Non-Final Office Action dated Dec. 9, 2008 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005. |
Non-Final Office Action dated Apr. 9, 2012 for U.S. Appl. No. 12/771,624, filed Apr. 30, 2010. |
Non-Final Office Action dated Feb. 8, 2012 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009. |
Non-Final Office Action dated Feb. 7, 2013 for U.S. Appl. No. 12/970,313, filed Dec. 16, 2010. |
Non-Final Office Action dated Feb. 7, 2012 for U.S. Appl. No. 12/637,671, filed Dec. 14, 2009. |
Non-Final Office Action dated May 5, 2010 for U.S. Appl. No. 12/189,785, filed Aug. 11, 2008. |
Non-Final Office Action dated May 5, 2010 for U.S. Appl. No. 12/189,780, filed Aug. 11, 2008. |
Non-Final Office Action dated Mar. 4, 2013 for U.S. Appl. No. 13/400,477, filed Feb. 20, 2012. |
Non-Final Office Action dated Apr. 4, 2013 for U.S. Appl. No. 12/197,931, filed Aug. 25, 2008. |
Network Working Group, Request for Comments H.Schulzrinne Apr. 1998. |
Lagotek Wireless Home Automation System, May 2006 [retrieved on Aug. 22, 2012]. |
J. David Eisenberg, SVG Essentials: Producing Scalable Vector Graphics with XML. O'Reilly & Associates, Inc., Sebastopol, CA 2002. |
International Search Report for Application No. PCT/US2014/050548, dated Mar. 18, 2015, 4 pages. |
International Search Report for Application No. PCT/US13/48324, dated Jan. 14, 2014, 2 pages. |
Indian Patent App. No. 3687/DELNP/2012, corresponds to WO2011/038409. |
Indian Patent App. No. 3687/DELNP/2012, corresponds to W02011/038409. |
Indian Patent App. No. 10698/DELNP/2012, corresponds to WO2011/143273. |
US Patent Application filed on Aug. 9, 2018, entitled “Method and System for Processing Security Event Data”, U.S. Appl. No. 16/059,833. |
US Patent Application filed on Oct. 10, 2018, entitled “Method and System for Providing Alternate Network Access”, U.S. Appl. No. 16/156,448. |
US Patent Application filed on Oct. 3, 2018, entitled “Activation of a Home Automation Controller”, U.S. Appl. No. 16/150,973. |
US Patent Application filed on Oct. 1, 2018, entitled “User Interface in a Premises Network”, U.S. Appl. No. 16/148,572. |
US Patent Application filed on Oct. 1, 2018, entitled “Integrated Security System with Parallel Processing Architecture”, U.S. Appl. No. 16/148,411. |
US Patent Application filed on Oct. 1, 2018, entitled “Integrated Security System With Parallel Processing Architecture”, U.S. Appl. No. 16/148,387. |
US Patent Application filed on Sep. 11, 2018, entitled “Premises Management Networking”, U.S. Appl. No. 16/128,089. |
US Patent Application filed on Sep. 28, 2018, entitled “Forming a Security Network Including Integrated Security System Components and Network Devices”, U.S. Appl. No. 16/147,044. |
US Patent Application filed on Sep. 28, 2018, entitled “Control System User Interface”, U.S. Appl. No. 16/146,715. |
US Patent Application filed on Sep. 17, 2018, entitled “Integrated Security System With Parallel Processing Architecture”, U.S. Appl. No. 16/133,135. |
US Patent Application filed on Sep. 6, 2018, entitled “Takeover of Security Network”, U.S. Appl. No. 16/123,695. |
US Patent Application filed on Aug. 21, 2018, entitled “Premises System Management Using Status Signal”, U.S. Appl. No. 16/107,568. |
“Windows”. Newton's Telecom Dictionary, 21st ed., Mar. 2005. |
US Patent Application filed on Jul. 20, 2018, entitled “Cross-Client Sensor User Interface in an Integrated Security Network”, U.S. Appl. No. 16/041,291. |
US Patent Application filed on Jul. 12, 2018, entitled “Integrated Security System with Parallel Processing Architecture”, U.S. Appl. No. 16/034,132. |
US Patent Application filed on Jul. 3, 2018, entitled “WIFI-To-Serial Encapsulation in Systems”, U.S. Appl. No. 16/026,703. |
US Patent Application filed on Jun. 27, 2018, entitled “Activation of Gateway Device”, U.S. Appl. No. 16/020,499. |
US Patent Application filed on May 23, 2018, entitled “Networked Touchscreen With Integrated Interfaces”, U.S. Appl. No. 15/987,638. |
US patent application filed on May 2, 2018, entitled “Automation System With Mobile Interface”, U.S. Appl. No. 15/969,514. |
US Patent Application filed on Jan. 28, 2019, entitled “Automation System User Interface With Three-Dimensional Display”, U.S. Appl. No. 16/258,858. |
US Patent Application filed on Jan. 25, 2019, entitled Communication Protocols in Integrated Systems, U.S. Appl. No. 16/257,706. |
US Patent Application filed on Jan. 22, 2019, entitled “Premises System Automation”, U.S. Appl. No. 16/254,480. |
US Patent Application filed on Jan. 22, 2019, entitled “Data Model for Home Automation”, U.S. Appl. No. 16/254,535. |
US Patent Application filed on Dec. 27, 2018, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 16/233,913. |
US Patent Application filed on Dec. 14, 2018, entitled “Communication Protocols Over Internet Protocol (IP) Networks”, U.S. Appl. No. 16/221,299. |
US Patent Application filed on Nov. 29, 2018, entitled “Premise Management Systems and Methods”, U.S. Appl. No. 16/204,442. |
US Patent Application filed on Oct. 18, 2018, entitled “Generating Risk Profile Using Data of Home Monitoring and Security System”, U.S. Appl. No. 16/164,114. |
US Patent Application filed on Jan. 3, 2019, entitled “Methods and Systems for Data Communication”, U.S. Appl. No. 16/239,114. |
Indian Patent App. No. 3687/DELNP/2012, corresponds to WO2011/038409 filed on Sep. 28, 2010. |
US Patent Application filed on Jul. 2, 2019, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 16/460,712. |
US Patent Application filed on Jul. 26, 2019, entitled “Device Integration Framework”, U.S. Appl. No. 16/522,949. |
“Dragging” The Authoritative Dictionary of IEEE Standard Terms. 7th ed. 2000, p. 337. |
US Patent Application filed on Aug. 23, 2019, entitled “Premises System Management Using Status Signal”, U.S. Appl. No. 16/549,837. |
Number | Date | Country | |
---|---|---|---|
20170103646 A1 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10061959 | Feb 2002 | US |
Child | 10607008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14583482 | Dec 2014 | US |
Child | 15391565 | US | |
Parent | 13401474 | Feb 2012 | US |
Child | 14583482 | US | |
Parent | 11929179 | Oct 2007 | US |
Child | 13401474 | US | |
Parent | 10607008 | Jun 2003 | US |
Child | 11929179 | US |