The present disclosure relates to air filtration media and, more particularly, to air filtration media manufactured to a Minimum Efficiency Reporting Value (MERV) 8 rating and above with an initial pressure drop of less than or equal to 0.20 inches water gravity (WG). The MERV 8 rating and greater can be achieved with fiberglass media without the addition of an undesirable oil coating.
Today, fiberglass air filtration manufacturing methods and formulations can involve the use of oil added after the fiberglass media exits the curing oven to provide for increased entrainment of air contaminants such as dust and particulates. Present solutions handle the problem of capturing increased amounts of dust using the oil method.
The oil additive is undesirable since the oil makes the process more expensive in additive costs, handling costs, and environmental costs and is cosmetically undesirable. Binders are applied to the fibers as they are wound on the drum. Binder mixtures often are comprised of 65% urea formaldehyde and 35% water. In other methods, 1 butyl tackifiers may be mixed into a water emulsion and then mixed with a urea formaldehyde emulsion binder. Urea formaldehyde emulsion is typically used as a binder of glass fibers in the fiberglass filtration industry.
Other patents have mentioned the use of a dry tackifier binder such as polybutene added to a composition to create a tackifier for spraying fiberglass filtration media. For example, see Miller U.S. Pat. No. 6,136,058, entitled “Uniformly Tacky Filter Media,” and Miller U.S. Pat. No. 5,846,603, entitled “Uniformly Tacky Filter Media.” However, the addition of polybutene, while useful, does not reach the MERV 8 rating and higher. In fact, the addition of polybutene barely achieves a MERV 7 rating by itself and then not routinely. Modigliani U.S. Pat. No. 2,546,230, entitled “Glass Product and Method of Making the Same,” and Modigliani U.S. Pat. No. 2,729,582, entitled “Method for Making Unwoven Fabrics,” both mention the use of additives to the fiberglass media. However, in Modigliani U.S. Pat. No. 2,546,230, the binder cited is being utilized for fiber board insulation and is water mixed with urea formaldehyde resin with the addition of an acrylic resin. In Modigliani U.S. Pat. No. 2,729,582, the resin is a vinyltrichlorosilane in a 3.5% solution of xylol, which is not suitable for fiberglass filtration media, but rather more suitable for composites. This disclosure presents a composition that achieves and sustains a MERV 8 rating and higher.
MERV, Minimum Efficiency Reporting Value, commonly known as MERV rating, is a measurement scale designed in 1987 by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) to rate the effectiveness of filters. The scale “represents a quantum leap in the precision and accuracy of air-cleaner” and allows for improved health, reduced cost and energy efficiency in heating, ventilation and air conditioning (HVAC) design as well as increased efficiency. For example, a HEPA filter is often impractical in central HVAC systems due to the large initial pressure drop the dense filter material causes. Experiments indicate that less obstructive, medium-efficiency filters of MERV 7 to 13 are almost as effective as true HEPA filters at removing allergens, with much lower associated system and operating costs. In like fashion, the addition of a polymer compounded with a dry adherent and a resin binder provides for a filter media without a high initial pressure drop.
The scale is designed to represent the worst-case performance of a filter when dealing with particles in the range of 0.3 to 10 micrometers. The MERV rating is from 1 to 16. Higher MERV ratings correspond to a greater percentage of particles captured on each pass, with a MERV 16 filter capturing more than 95% of particles over the full range.
Shown in
Prior techniques exist however for the addition of resins such as acrylate polymers to polyester pleat filtration media and binder (with no urea formaldehyde). However, acrylate polymers have never been combined with urea formaldehyde and polybutene and then applied to fiberglass filtration media.
It would be advantageous to provide a system and method of air filtration formation and media that increase dust holding capacity.
It would also be advantageous to provide a method of formation of MERV 8 or higher air filtration media with fiberglass that does not require the use of oil.
It would further be advantageous to provide a method of controlling the cross-sectional density of the fiber to maximize the dust holding capacity of the filter media while controlling the initial pressure drop.
It would also be advantageous to provide for a finished filter media that feels and looks different from fiberglass.
It would also be advantageous to provide for a fiber that is relatively soft, springy and dry to the touch, with fibers that look more like plastic than fiberglass.
Thus there remains considerable need for binder compositions that provide for less mess and are cosmetically more pleasing to customers while providing for increased dust holding capability at a MERV 8 or better. Additionally, the fiber should be capable of progressive density with a soft springy texture.
In accordance with the present disclosure, there is provided a system and method of forming air filtration media that does not involve the use of an oil additive to fiberglass, yet creates a MERV filter rating of 8 or better. The manufacturing method of forming the air filtration media is mentioned in a co-pending U.S. patent application Ser. No. 14/181,426, filed on Feb. 14, 2014, which is incorporated by reference herein.
To achieve MERV 8 or better without undesirable oil additives, a polymer, wherein the polymer is one of a group of polymers consisting of acrylates and methyl acrylic acids, is added to a dry adhering agent consisting essentially of a group of polybutene during the fiberglass air filtration media formation. Both the polymer and the dry adhering agent mix in varying percentages with a resin binder (urea formaldehyde) and are applied to the fiberglass as it is spun onto a drum. In varying the application rates of the combined binder resin mixed with a polymer selected from a group of polymers formed from acrylic acid or methyl-acrylic acid and a dry adhering agent, e.g. polybutene in a specific formulation, so that the end result can be controlled with greater precision.
Various objects, features, aspects, and advantages of the present disclosure will become more apparent from the following description of the disclosure, along with the accompanying drawings.
The detailed description makes reference to the accompanying figures wherein:
Other objects, features, and characteristics will become more apparent upon consideration of the following detailed description with reference to the accompanying figures.
The chemical structure shown in
These ingredients are considered similar in that they are uniformly produced in chemical reactions that leave very little residual monomer. Although residual acrylic acid may be as high as 1500 ppm, typical levels are 10 to 1000 ppm. Concentrations may be as high as 25% if used as a binder, film former, or fixative; or as low as 0.5% if used as a viscosity-increasing agent, suspending agent, or emulsion stabilizer.
Analysis of polymer 10 (shown in
The structure presented provides a desirable basis for binding and adhesive properties with the carbon and oxygen bonds being of the most significance with the sulfur presenting minimally in the base formulation. The sodium presents as a salt of the acrylic or meth-acrylic acid.
The dry adhering agent is a polymer of the group consisting essentially of 1-butene and 2-butene and isobutene. The structure of the 1-butene and the 2-butene is seen in the repeat units, where, in the case of 1-butene, the structure is:
-[—CH2-CH(CH2CH3)-]n-
and in the case of 2-butene, the repeat unit structure is:
-[—CH(CH3)-CH(CH3)-]n-
The C4 polymer typically includes various forms of butene, for example isobutene, 1-butene, 2-butene, and others, and can contain a small amount of propene and minor amounts of polymerization byproducts. For simplicity, the polymer is referred to herein as polybutene polymer. Typically, isobutene constitutes from about 80% to about 95% of the total polybutene polymer. The polybutene polymer has at least one double bond per molecule.
The thickness of the skinning of the fiberglass on the air outflow surface and the air inflow surface are controlled such that the skinning process on the air outflow can be densified while still maintaining an initial pressure drop of less than 0.20 WG for the finished fiberglass air filtration media. Furthermore, the skinning on the air inflow surface can be maintained as thin as varying needs require preventing stray fibers from projecting randomly from the surface. The fiber media between the two skins progressively increases in density such that the fiber on the air inflow is less dense than the fiber on the air outflow of the fiberglass filtration media. Progressive density is achieved by varying the speed of the traverses of the furnace over the drum. This density control is achieved in a substantially linear fashion.
After oven curing of the fiber, the finished media feels and looks different from normal fiberglass. It is relatively soft, springy and dry to the touch. The fibers look more like plastic than fiberglass, due in part to the polymeric spray mixture bound to the fiberglass media. The progressive density of the skin of the fiberglass filtration media along with the polymer, resin binder and the dry adhering agent mixture provide for increased dust holding capability by allowing for proper airflow and help to hold the initial pressure drop to 0.20 WG.
The addition of a polymer 10 combined with a dry adhering agent and resin binder increases the ability of the fibers to attract and hold dust such that a MERV 8 rating and above can be achieved with a sustainably low initial pressure drop of 0.20 WG. This is achieved with a fiberglass based media without the addition of an undesirable oil coating. The low initial pressure drop is due in part to the substantially linear progressive density of the fiberglass media coupled with the high dust holding capability. This prevents face loading of the skin surface by large particles.
As indicated in the enclosed drawing and discussion, the polymer 10 is an isotactic polymeric acrylate, which is sticky and typically used in formulations to aid in viscosity and ability to emulsify. In accordance with the present disclosure, there is provided a system and method of forming air fiberglass filtration media that does not involve the addition of oil during the fiberglass manufacture process. A spray composition is formed by combining an acrylate polymer 10 (consisting essentially of the group of polymers such as -prop-2-enoate), a dry adhering agent (a polybutene consisting essentially of a group of 1-butene, 2-butene, and isobutene), and a resin binder. The spray composition is applied during the fiberglass air filtration media formation, as the fiberglass is wound onto the rotating drum. The addition of a polymer 10 and varying percentages of the dry adhering agent with the resin binder mixture increases the dust holding capacity of the resulting fiberglass filtration media.
The progressive density of the fiberglass media progresses from a lower density of fiberglass media at the air inflow surface to higher density of the fiberglass media at the air outflow surface. In the preferred embodiment, the fibers are 21-25 microns with a median size of 23 microns. However, the principles disclosed herein may be used with fibers of other sizes. The progressive density of the fiberglass media, along with the application of the spray composition, acts to impede large particulate movement within the fiberglass media bulk. This increased impedance occurs between the two faces of the skin surfaces from the air inflow skin surface to the air outflow skin surface. These large particulates move less freely through the progressively denser fiberglass bulk and are trapped by the lower density in the region of the air inflow surface of the fiberglass media. This allows finer particles to be trapped in the higher density region of the air outflow surface and outflow side skin.
The spray composition (acrylates, polybutene, and urea formaldehyde) is applied without clogging and is applied to the fiberglass as it is spun onto a drum. The spray composition may comprise 55-79% urea formaldehyde, 20-40% polymer compound, and 1-5% polybutene. In the preferred embodiment, the spray composition comprises 67% urea formaldehyde resin, 30% polymer compound, and 3% polybutene. The spray composition along with the progressive density of the fiberglass media provides an excellent means to capture and hold large dust particulates while avoiding the face-loading of the media common in other types of filtration media. By varying application rates of the spray composition, a specific formulation can be achieved that provides for greater precision.
The density of the skin surfaces on the air outflow and air inflow can be controlled while still maintaining an initial pressure drop of less than 0.20 WG for the finished filter. The skinning on the air inflow surface can be maintained as thin as various needs require, preventing stray fibers from projecting randomly from the surface and facilitating glue adhesion in the customers' filter framing processes. The fiber is then oven cured. After oven curing, the finished media feels and looks different from fiberglass. It is relatively soft, springy and dry to the touch. The fibers look more like plastic than fiberglass.
As disclosed herein, a fiberglass filtration media with the ability to attract and hold dust and achieve a MERV 8 rating and above, without the addition of an undesirable oil coating, is made possible by producing a fiberglass filtration media with progressively increasing density from air inflow to air outflow comprising thin filaments (for example, 21 to 25 microns) and adding polymer combined with a dry adhering agent and a resin binder (urea formaldehyde).
Since other modifications and changes varied to fit particular operating requirements and environments will be apparent to those skilled in the art, the invention is not considered limited to the examples chosen for purposes of disclosure, and covers all changes and modifications which do not constitute departures from the true spirit and scope of the disclosure herein.
This application claims the benefit of U.S. Patent Application No. 62/179,572, filed on May 11, 2015.
Number | Name | Date | Kind |
---|---|---|---|
2081060 | Modigliani | May 1937 | A |
2357676 | Mack | Sep 1944 | A |
2644780 | Simkins et al. | Jan 1949 | A |
2460899 | Modigliani et al. | Feb 1949 | A |
2505045 | Holcomb | Apr 1950 | A |
2546230 | Modigliani | Mar 1951 | A |
2574221 | Modigliani | Nov 1951 | A |
2609320 | Modigliani | Sep 1952 | A |
2779969 | Bose | Jan 1953 | A |
2729582 | Modigliani | Jan 1956 | A |
2751483 | Keen et al. | Jun 1956 | A |
2913037 | Modigliani | Nov 1959 | A |
2964439 | Modigliani | Dec 1960 | A |
2997096 | Morrison et al. | Aug 1961 | A |
3082615 | Alvarez de Toledo | Mar 1963 | A |
3096161 | Morrison et al. | Jul 1963 | A |
3097710 | Copenhefer | Jul 1963 | A |
3134704 | Modigliani | May 1964 | A |
3526488 | Schweppe et al. | Apr 1967 | A |
3322585 | Weber et al. | May 1967 | A |
3459613 | Copenhefer et al. | Aug 1969 | A |
3476635 | Heh | Nov 1969 | A |
3526557 | Taylor, Jr. | Sep 1970 | A |
3573016 | Rees | Mar 1971 | A |
3826903 | Varasso | Jul 1974 | A |
3837138 | Terry | Sep 1974 | A |
3937860 | Gusman et al. | Feb 1976 | A |
4121918 | Shono et al. | Oct 1978 | A |
4227906 | Reiser | Oct 1980 | A |
4263007 | Battigelli et al. | Apr 1981 | A |
4321074 | Glaser et al. | Mar 1982 | A |
4334468 | Guttinger et al. | Jun 1982 | A |
4363645 | Eisenberg | Dec 1982 | A |
4380462 | Shono et al. | Apr 1983 | A |
4566154 | Streeper et al. | Jan 1986 | A |
4601937 | Latussek | Jul 1986 | A |
4773764 | Colombani et al. | Sep 1988 | A |
4940502 | Marcus | Jul 1990 | A |
5139841 | Makoui et al. | Aug 1992 | A |
5149394 | Held | Sep 1992 | A |
5284546 | Tilby | Feb 1994 | A |
5330595 | Held | Jul 1994 | A |
5340651 | Esu | Aug 1994 | A |
5458051 | Alden et al. | Oct 1995 | A |
5532050 | Brooks | Jul 1996 | A |
5578371 | Taylor et al. | Nov 1996 | A |
5612405 | Bainbridge | Mar 1997 | A |
5618622 | Gillberg-Laforce et al. | Apr 1997 | A |
5672399 | Kahlbaugh et al. | Sep 1997 | A |
5695848 | Wilkins et al. | Dec 1997 | A |
5832696 | Nagy et al. | Nov 1998 | A |
5846603 | Miller | Dec 1998 | A |
6054081 | Bielfeldt | Apr 2000 | A |
6136058 | Miller | Oct 2000 | A |
6200682 | Dubelsten et al. | Mar 2001 | B1 |
6605245 | Dubelsten et al. | Aug 2003 | B1 |
6821614 | Dubelsten et al. | Nov 2004 | B1 |
6863512 | Dubelsten et al. | Mar 2005 | B2 |
8057566 | Sanders et al. | Nov 2011 | B1 |
8080488 | Anderson et al. | Dec 2011 | B2 |
8393180 | Sanders et al. | Mar 2013 | B1 |
9101860 | Green et al. | Aug 2015 | B2 |
20040163540 | Mori et al. | Aug 2004 | A1 |
20050006808 | Thomas | Jan 2005 | A1 |
20050067113 | Colson et al. | Mar 2005 | A1 |
20050138832 | Hada et al. | Jun 2005 | A1 |
20060093815 | Wilkins | May 2006 | A1 |
20070049143 | D'Silva et al. | Mar 2007 | A1 |
20080015301 | Grooms | Jan 2008 | A1 |
20080105612 | Chappas | May 2008 | A1 |
20110086567 | Hawkins et al. | Apr 2011 | A1 |
20110114554 | Li et al. | May 2011 | A1 |
20120255662 | Green | Oct 2012 | A1 |
20120271445 | Li et al. | Oct 2012 | A1 |
20120298582 | Kanani et al. | Nov 2012 | A1 |
20120304603 | Wyss et al. | Dec 2012 | A1 |
20140196423 | Barrows | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
2011106537 | Sep 2011 | WO |
Entry |
---|
ANSI/ASHRAE Addendum b to ANSI/ASHRAE Standard 52.2-2007 (ASHRAE Standard 52.2 Appendix J). |
Number | Date | Country | |
---|---|---|---|
20160332907 A1 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
62179572 | May 2015 | US |