The invention relates to a preparation for restenosis prevention and its application to an angiography catheter.
Stenoses of blood vessels are a major cause of morbidity and mortality. Local stenoses or occlusions of larger vessels up to ca. 2 mm in diameter can be dilated back to their original lumen in many instances using inflatable balloon catheters. High pressures are applied when doing this, which may result in lacerations of the thickened vascular walls that are squeezed and displaced into the surrounding tissue. In some of these operations, tubular perforated metal supports (stents) are implanted to keep the vessels open. The vascular walls treated in this way frequently respond by increased growth in thickness that is similar to developing a scar within a few weeks and months. As a result and due to advancing arteriosclerosis, these vessels may relatively soon become stenosed again (restenosis). Restenosis is a severe medical problem that causes high costs.
A proven clinical method to prevent restenosis is irradiation of the affected vascular wall sections with a high dosage of X-rays (extracorporeal sources or intraluminal radioisotopes) immediately after the surgery.
Major disadvantages of irradiation are the required precautions when handling preventive radiation dosages. Many other methods for preventing premature restenosis have been tested in labs and clinical practice but as yet without any major breakthrough [Bult H. Restenosis: A challenge for pharmacology. Tips 21 pp. 274-279, 2000]. Good results were only achieved using drug-releasing stents. For this method to be effective, stents have to be implanted so that restenosis cannot be prevented when the vessel is just dilated and no stent is implanted.
Inhibition of mitosis, reactive vascular wall thickening and restenosis has been described for a great number of drugs: Important principles of action are inhibition of platelet aggregation, enzyme inhibition, inhibition of mitosis, cytostatics, and corticoids. Favorable results were achieved in vitro and partly in animal experiments but have not been confirmed in clinical tests. A frequent explanation offered is that active agent concentrations in the affected sections of the vascular wall are insufficient. This is particularly true for oral and intravenous administration where side effects prevent higher doses. As an alternative, administration using specific catheters was attempted wherein these catheters either press the drug solution through the pores of a tight-sitting balloon directly into the vascular wall or block supply and discharge in a vessel section and expose the vessel wall to the drug solution for some time [Herdeg, C., M. Oberhoff, D. I. Siegel-Axel, A. Baumbach, A. Blattner, A. Kuttner, S. Schroder, K. R. Karsch: Paclitaxel: Ein Chemotherapeutikum zur Restenoseprophylaxe? Experimentelle Untersuchungen in vitro and in vivo. Z Kardiol 89 pp. 390-397, 2000]. Drug exposure of previously dilated vessel sections that was effective over a longer period of time was achieved by the slow release of active agents from coated stents. However, the problem of achieving sufficient active agent concentrations over a sufficient exposure time in the vessel sections requiring treatment remains the same with all these methods. Hydrophilic active agents are quickly washed out of tissues [Baumbach, A., C. Herdeg, M. Kluge, M. Oberhoff, M. Lerch, K. K. Haase, C. Wolter, S. Schroder, K. R. Karsch: Local drug delivery: Impact of pressure, substance characteristics, and stenting on drug transfer into the arterial wall. Cathet Cardiovasc Intervent 47 pp. 102-106, 1999]. Repeated administration is impossible because of the invasive access using catheters. Lipophilic active agents do not dissolve well enough in vessel-compatible aqueous media or are kept in solution as micelles or liposomes; these micelles or liposomes are only slowly absorbed by the tissue. Administration using special catheters that interrupt the blood flow for some time or press the active agent solution under high pressure into the vascular wall first of all causes additional tissue damage and intensifies reactive hyperplasia.
Coated, drug-releasing stents are difficult to produce in constant quality, they contain only very low active agent quantities due to their light weight and delicate design and are not suitable for proximal and distal treatment of the vascular sections at risk of restenosis a few millimeters around the stent. If a stent was implanted at an earlier time, and there is stenosis in its lumen, this can be removed by inflating a balloon catheter. This implantation of a second stent into the lumen of the first stent to prevent vessel wall hyperplasia as a consequence of dilatation is undesirable so that there is no effective method of restenosis prevention for this case. The same applies when there is no indication for implanting a stent after angioplasty or when hyperplastic vessel processes are taking place without clear stenosis of the lumen so that neither vessel dilatation nor stent implantation are required. Some of these vessel wall changes may cause sudden, mostly thrombotic occlusions. In this case, too, a method independent of stent implantation for inhibiting pathological vessel wall changes is desirable.
Active agents that were tested with some success in laboratory settings are heparin and hirudin derivatives, prostacyclins, corticoids, rapamycin, colchicine, and paclitaxel.
In most cases, the active agents were applied to stents; whenever solutions were used, these were aqueous solutions or, for the poorly water-soluble paclitaxel (4,10-β-diacetoxy-13-α-((2R,3S)-3-ben-zamido-2-hydroxy-3-phenylpropionyloxy)-2α-benzoyloxy-5-β, 20-epoxy-1, 7-β-dihydroxy-11-taxene-9-one), aqueous solutions with an ethanol or cremophor additive. Micelles are formed when using cremophor [poly(oxyethylene)-35-castor oil] that can largely be avoided when using ethanol.
Suspensions or emulsions with relatively large-sized particles in aqueous cytostatic solutions with or without an added contrast agent have been described for direct injection into tumor-feeding blood vessels. These preparations are used to close tumor vessels and for simultaneous cytostatic treatment. Closing the vessels is directly opposed to the purpose of this invention.
It is the problem of this invention to provide agents for the local treatment of potentially hyperproliferative tissue that can be handled easily and do not harm the patient.
Based on the state of the art, this problem is solved according to the invention by a preparation containing at least one antihyperplastic agent with a distribution ratio between butanol and water of ≧0.5, and by inserting said preparation in an agent for enhancing the imaging of arteries and veins or by applying it to a catheter.
The concept of the invention is based on the observation that active agents from adequately concentrated solutions, gels or other matrices are absorbed fast and in sufficient quantities by a vessel wall unless they are enclosed in outwardly hydrophilic micelles by solubility promoters. When the active agents are lipophilic (butanol to aqueous buffer solution (pH 7) distribution ratio ≧0.5, preferably ≧1 and ≧5 particularly preferred, or octanol to aqueous buffer solution (pH 7) distribution ratio ≧1, preferably ≧10, and ≧50 particularly preferred), and/or reversibly (>10%, preferably >50%, >80% particularly preferred) and/or irreversibly bind to cell components (such as paclitaxel, probucol (4,4′-(isopropylidene-bisthio)bis(2,6-di-tert-butylphenol)), porphyrin derivatives), the retention time in the blood vessel when administered during vessel dilatation and optional stent implantation is sufficient for the treatment effect. Prevention or reduction of initial reactive hyperplasia as a consequence of vascular injury prevents the vessel wall from growing too thick over many months. Surprisingly, the preparations according to the invention did not require longer exposure of the tissue to be treated or indirect infiltration and additional injury of the vessel wall.
Contrast agents were selectively injected into the affected vessels several times during angioplasty and stent implantation to determine positioning, degree and form of the stenosis, to specify the exact position of the dilatation catheter, evaluate dilatation success, and, optionally, to implant a stent of appropriate thickness and length. By adding the active agents or their preparations that are suited for the purpose to the contrast agents used for diagnostic purposes, the active agent is transferred into the vascular wall with each injection of contrast agent, without additional effort or damage to the vessels. The entire vessel section imaged for diagnostic purposes is treated including the area in front of the stenosis and the area away from its center. This has the major benefit that critical zones upstream and downstream from the dilated stenosis and optional stent implantation are not excluded from treatment.
If the injection of contrast media is not required or undesirable, solutions of lipophilic active agents in other aqueous carriers can be used without adding micelle-forming substances. One requirement is that these solutions contain a higher active agent concentration than the saturation concentration in the aqueous medium. This can be achieved by adding organic solvents that form few or no micelles such as ethanol or DMSO and/or by dissolving the active agents under conditions that are not beneficial for storage and administration (e.g. heating, mixing with concentrated active agent solutions in organic solvents) to form sufficiently stable oversaturated solutions.
In some cases, solubility of the lipophilic active agents in the contrast agent solutions or the stability of oversaturated solutions are surprisingly improved. Another surprising effect due to the contrast agents is enhanced adhesion and absorption of active agents by vessel walls and good local tolerance of some substances of extreme systemic toxicity in sensitive vessel sections.
When active agent and contrast medium are incompatible or when the active agent does not dissolve properly in the contrast medium, the active agent solution can also be directly infused or injected through the diagnostic catheter into the respective vessel. It is preferred to use similar volumes as they are common for vessel imaging using contrast media through catheters [Elke M: Kontrastmittel in der radiologischen Diagnostik, pp. 113-119, 3rd edition, Georg Thieme Verlag Stuttgart New York, 1992].
Contrast agents are solutions, suspensions or emulsions well tolerated by vessels that can be used to enhance the representation of blood vessels or the bloodstream in radiograms, sonograms, optical imaging or magnet resonance imaging.
These contrast agents include Visipaque 320 (iodixanol), Ultravist 370 (iopromide), Omnipaque 350 (iohexol) or Solutrast 370 (iopamidol) or Magnevist (gadolinium-DPTA) or Gadovist 1M (Gd-DO3A-butrol).
Active agents can be all substances suitable for inhibiting cell growth, cell multiplication and hyperplastic proliferation provided they meet the criteria defined above regarding lipophilia and/or binding to tissue components. Inasmuch as some active agents are not sufficiently lipophilic or capable of binding, their pharmacologically active derivatives or precursors of pharmacologically active substances may be used that release the actual active agent when in the tissue only. Preferred are cytostatics from the taxoid group such as paclitaxel and docetaxel ((2R,3S)—N-(tert-butoxycarbonyl)-2-hydroxy-3-phenyl-β-alan-ine-(4-acetoxy-2-α-benzoyloxy-5-β, 20-epoxy-1, 7-β, 10-β-trihydroxy-9-oxo-11-taxene-13-α-yl-ester)), or epothilones as examples of lipophilic substances. These are so lipophilic and insoluble in water that even more hydrophilic derivatives as described by Nicollaou K C, Riemer C, Kerr M A, Rideout D, Wrasidlo W. Design, Synthesis and biological activity of protaxols. Nature, 1993; 364: pp. 464-466 or in U.S. Pat. No. 457,674, Novel Taxoids, are preferred as long as their molecular weight does not exceed ca. 10 kD.
Other useful active agents are selected from the groups of corticoids, mitosis inhibitors such as colchicine, antibiotics such as azithromycin or roxithromycin (Gupta et al. 1998) or antioxidants such as probucol, as well as heparin and hirudin derivatives or prostacyclins. Furthermore, immunosuppressants such as rapamycin are among the active agents that can be used.
Examples of lipophilic derivatives of otherwise hydrophilic cytostatics can be found in Brunner H, Schellerer K-M, Treittinger B. Synthesis and in vitro testing of hematoporphyrin type ligands in platinum(II) complexes as potent cytostatic and phototoxic antitumor agents. Inorganica Chimica Acta, 1997; 264: pp. 67-79 in the form of conjugates of platinum complexes with porphyrins.
The preparations according to the invention that contain a cytostatic as an active ingredient are also suitable for treating tumor diseases. It is advantageous in this case that the treatment is local, which minimizes the strain the patient is put under.
Besides lipophilic substances, other active agents or substrate-bound active agents with a specific affinity to vessel walls, particularly to vessel walls showing pathological change, are suitable. Substances have a specific affinity to vessel walls when they are not washed away by the bloodstream within a few minutes. It is known that small concentrations of magnetites are deposited after intravenous administration in vessel walls that show arteriosclerotic change (Schmitz S A et al. Superparamagnetic iron oxide—enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol, 2000; 35: 460-471). However it is surprising that these magnetites reach concentrations sufficient for treatment after a short-time flow through the vessels that are dilated using a balloon. To make these magnetites usable for treatment, they must be coated with drugs as described, for example, by Lubbe A S, Bergemann C, Huhnt W. Fricke T, Riess H, Brock J W, Huhn D. Preclinical experiences with magnetic drug targeting: Tolerance and efficacy. Cancer Research, 1996, 56: 4694-4701).
The active agents are dissolved as much as possible in the undiluted contrast agents. They can also be prepared as a separate solution that is diluted with contrast agents prior to use. The mixing ratio of active agent solution and contrast agent solution should not be greater than 2:1, preferably <1:1, <0.2:1 being particularly preferred. The active agent should be dissolved in a well-tolerable aqueous medium or a medium that can be mixed with water. Also admissible are organic solvents that are well tolerated (at least after being diluted with the contrast agent solution or another aqueous medium) such as ethanol, DMSO, DMF, etc. The prepared injection solution will mostly contain as great a portion of water as possible (>90 volume percent, preferred >95 volume percent, >99 volume percent particularly preferred).
The concentration range of each active agent is dependent on their solubility in physiologically tolerable solvents without having to resort to micelle-forming agents such as cremophor and on the efficacy and tolerability of the active agents. The upper limit of the concentration is always determined by the volume to be administered (e.g. 100 to 200 ml for repeated injection into the coronary arteries) and the maximum systemically tolerable dose (e.g. ca. 100 mg per sqm body surface for paclitaxel). Preferred and sufficiently effective due to local administration and action are dosages of 1/10th or less of the maximum systemically tolerable dose.
Other effective substances such as coagulation inhibitors, platelet aggregation inhibitors, enzyme inhibitors, complex-forming agents for calcium ions, etc. may be added to the preparations. These do not have to meet the criteria for lipophilia, binding to tissue components or molecular weight as the effect can also be acute and intravascular; what has been said in the paragraph regarding concentration and dosage above applies here because the focus is on the local effect in the vessel section through which the preparation flows.
Another way of administering antiproliferative agents is provided by a catheter used for vessel dilatation that has an inflatable balloon which itself causes the vascular dilatation. The balloon can be coated with the active agent. When the vessel is dilated, the balloon is pressed against the vessel wall. This provides an opportunity for the active agent to transfer into the vessel wall. If the balloon is used to dilate a stent, even the active agent between the balloon and the stent can be released because the metal struts of the stent are displaced relative to the balloon surface. These variations of active agent administration do not constitute an additional step for the physician as compared to the original process of vessel dilatation or stent implantation.
The following methods can be used if the active agents are to be applied to the part of the catheter that is used for vessel dilatation: Dissolution of the active agent(s) in a solvent that does not corrode the catheter, immersion of the respective catheter part in the solution, removal of the catheter from the solution, and drying. Optionally, intravasally acceptable matrix or gel-forming adjuvants can be added to the active agent solution in the vessel, e.g. lipids or polymers used in pharmacology. Coating can be performed in several steps, while agent-containing and agent-free layers may alternate. The solvents for the respective layers should be selected in such a way that the subsequent coating does not strip off the previous one.
The examples below shall explain the invention:
80 mg of 7-(2″,3″-dihydroxypropyl oxycarbonyl)-paclitaxel are dissolved in 5 ml of dimethyl sulfoxide and diluted with 5 ml of a 5% glucose solution. The solution or a part thereof is slowly infused into the previously dilated arteries.
99 parts of a portion of the solution described in 1a are added to the Visipaque 320, a commercial X-ray contrast medium, and immediately mixed well. The solution can be used as is common for angiography prior to or after vessel dilatation.
200 mg of 7-(2″,3″-dihydroxypropyl oxycarbonyl)-paclitaxel are dissolved in 10 ml of absolute ethanol (=solution A); 0.35 ml of this solution can be added to 100 ml of contrast agent.
100 ml of Ultravist 370 (Schering AG, Berlin; active ingredient iopromide equivalent to 370 mg of iodine/ml) containing 0.35 volume percent of ethanol and 7 mg of 7-(2″,3″-dihydroxypropyl oxycarbonyl)-paclitaxel. The solution is produced by dissolving the 7-(2″,3″-dihydroxypropyl oxycarbonyl)-paclitaxel in ethanol and adding it under constant stirring to the contrast agent.
The preparation according to Example 2b with an addition of 10 I.U. of low-molecular weight heparin.
3.5 ml of the solution A described in Example 2a are mixed with 46.5 ml of ethanol and added under fast shaking to 1000 ml of warm (−50.degree. C.) 5% glucose solution or isotonic electrolyte solution. This solution is infused via a catheter into the vessels to be treated just like a contrast medium; however, the infusion rate can be reduced as compared to that of contrast agents.
100 ml of Ultravist 370 (see Example 2b) mixed with 0.4 volume percent of ethanol and 14.4 mg of 7-(2″,3″-dihydroxypropyl oxycarbonyl)-paclitaxel. The preparation is produced as described in Example 2b.
100 ml of Solutrast 370 (Byk-Gulden, Konstanz; active ingredient iopamidol equivalent to 370 mg of iodine/ml) containing 1.0 volume percent of ethanol and 8.2 mg of paclitaxel/ml. The preparation is produced by first dissolving the paclitaxel in absolute ethanol while heating it slightly, then adding the contrast agent quickly and under strong stirring.
Preparation according to Example 4a plus adding 5 I.U. of heparin and 5 mmol/l of citrate buffer (pH 7.0).
20 mg of (±)-trans-1,2-diaminocyclohexane{7,12-bis[1-(1,4,7,10,1-3,16-hexaoxaheptadecyl)-ethyl]-3,8,13,17-tetramethylporphyrin-2,18-dipropionato}platinum(II) are dissolved in 10 ml of dimethyl sulfoxide (=solution B).
1 ml of solution B is added under fast stirring to 100 ml of Ultravist 370 (see Example 2b). The solution is suitable for infusion into arteries or injection into living or dead tissues or body cavities. It allows excellent control of its initial distribution and causes a long-lasting cytostatic effect.
1 ml of solution B is added to 10 ml of 50 mmolar gadolinium DTPA (=gadopentetate) solution. A 50 mmolar gadolinium-DTPA solution is prepared from Magnevist, a commercial preparation (Schering AG, Berlin), by diluting the product ten times. The solution can be infiltrated, for example, in vital tumors or in tumors after they were destroyed by ethanol, heat or cold treatment. The distribution of the solution is well visible in magnetic resonance tomograms. The solution itself supports the total destruction of the tumor in the immediately infiltrated area and its vicinity.
2 coronary arteries each in a total of 8 pigs were dilated under anesthesia, and stents (fine, heavily perforated metal tubes) were implanted. The arteries respond by wall thickening, which results in narrowing the original lumen of the arteries. 4 pigs were administered a regular X-ray contrast agent (Ultravist 370) for imaging the arteries and checking the stent implantation, 4 pigs were administered the preparation according to Example 2b. The vessels of both test groups practically had the same widths (inside diameters 3.4±0.2 mm and 3.5±0.2 mm) immediately after treatment. 4 weeks after treatment, the inside arterial diameter in animals that only received the regular contrast agent had stenosed by 1.9±0.8 mm, whereas the arterial diameter in the animals that were treated with the solution according to Example 2b was only reduced by 0.9±0.6 mm. This difference is statistically significant (p=0.01). The undiluted solution according to Example 2b was tolerated without side effects despite the addition of a high concentration of a relatively toxic cytostatic after injection in the coronary arteries and simultaneous ECG and blood pressure measurements.
The distal area carrying the balloon of a balloon catheter designed for vessel dilatation is immersed under sterile conditions in the ethanolic solutions from Example 2a (=solution A), kept in the solution for ca. 5 minutes, then removed and dried for 2 hours at room temperature. The balloon catheter can then be used in the common way for dilating vessels.
Alternatively, a stent is placed on the balloon after drying.
The procedure is like in Example 7a, but 100 mg of pharmaceutical castor oil are now added to solution A.
7.6 mg of paclitaxel are dissolved in 0.5 mg of ethanol and added at room temperature to 50 ml Ultravist-370 (contains 768 mg of iopromide/ml, specific weight ca. 1.4 g/ml). A clear solution without any turbidity is obtained after mixing that remains stable for several days. No particles can be identified in the solution under a microscope.
4.2 mg of paclitaxel are dissolved in 0.5 ml of ethanol and added at room temperature to 50 ml of a 0.9% NaCl solution. The preparation becomes turbid immediately after mixing; most particles are found on the surface of the solution after 2 hours. Large aggregations of fine particles are found using a microscope.
Evaluation: The solubility of paclitaxel in the contrast agent is highly surprising. The contrast agent solution contains 0.7 ml of water/ml of solution mixture, i.e. Less solvent is available to paclitaxel in the contrast agent solution than in the NaCl solution. In spite of that, paclitaxel dissolves better in the contrast agent solution than in the NaCl solution.
75 mg of paclitaxel are dissolved in 5 ml of ethanol. The paclitaxel solution is added to 50 ml of an aqueous preparation of a colloidal magnetite coated with degraded dextrane (concentration refers to Fe2+/3+ 0.5 molar, e.g. SH U 555C, test preparation by Schering AG, Berlin) and quickly intermixed. The magnetite particles adsorb paclitaxel and carry it after intravenous or intra-arterial injection, inter alia, into arterial walls showing arteriosclerotic change and brain tumors. Dosage depends on the use of the magnetite and is ca. 50 μmol referred to Fe/kg of body weight.
Number | Date | Country | Kind |
---|---|---|---|
101 15 740 | Mar 2001 | DE | national |
This application is a divisional of U.S. application Ser. No. 11/763,125 filed on Jun. 14, 2007, which is incorporated by reference herein, which is a divisional of U.S. application Ser. No. 10/472,844 filed on Sep. 26, 2003 (Now U.S. Pat. No. 7,750,041), which is the national phase of PCT/DE01/04782 filed on Dec. 20, 2001.
Number | Name | Date | Kind |
---|---|---|---|
4101984 | MacGregor | Jul 1978 | A |
4217894 | Franetzki | Aug 1980 | A |
4247352 | Stupp et al. | Jan 1981 | A |
4305926 | Everse et al. | Dec 1981 | A |
4343788 | Mustacich et al. | Aug 1982 | A |
4364921 | Speck et al. | Dec 1982 | A |
4476590 | Scales et al. | Oct 1984 | A |
4479795 | Mustacich et al. | Oct 1984 | A |
4502159 | Woodroof et al. | Mar 1985 | A |
4532315 | Letoffe et al. | Jul 1985 | A |
4573476 | Ruiz et al. | Mar 1986 | A |
4677143 | Laurin et al. | Jun 1987 | A |
4769013 | Lorenz et al. | Sep 1988 | A |
4776337 | Palmaz | Oct 1988 | A |
4793825 | Benjamin et al. | Dec 1988 | A |
4872867 | Joh | Oct 1989 | A |
4879135 | Greco et al. | Nov 1989 | A |
4886062 | Wiktor et al. | Dec 1989 | A |
4909799 | Thulesius et al. | Mar 1990 | A |
4917686 | Bayston et al. | Apr 1990 | A |
4925668 | Khan et al. | May 1990 | A |
4950256 | Luther et al. | Aug 1990 | A |
4950258 | Kawai et al. | Aug 1990 | A |
4994047 | Walker et al. | Feb 1991 | A |
4997643 | Partain et al. | Mar 1991 | A |
5004461 | Wilson et al. | Apr 1991 | A |
5019096 | Fox, Jr. et al. | May 1991 | A |
5019393 | Ito et al. | May 1991 | A |
5019601 | Allen | May 1991 | A |
5051257 | Pietronigro | Sep 1991 | A |
5053048 | Pinchuk | Oct 1991 | A |
5059166 | Fischell et al. | Oct 1991 | A |
5067491 | Taylor et al. | Nov 1991 | A |
5098977 | Frautschi et al. | Mar 1992 | A |
5102402 | Dror et al. | Apr 1992 | A |
5108424 | Hoffman et al. | Apr 1992 | A |
5112457 | Marchant | May 1992 | A |
5135516 | Sahatjian et al. | Aug 1992 | A |
5157049 | Haugwitz et al. | Oct 1992 | A |
5163952 | Froix | Nov 1992 | A |
5165952 | Solomon et al. | Nov 1992 | A |
5171217 | March | Dec 1992 | A |
5176626 | Soehendra | Jan 1993 | A |
5182317 | Winters et al. | Jan 1993 | A |
5197977 | Hoffman et al. | Mar 1993 | A |
5217493 | Raad et al. | Jun 1993 | A |
5222971 | Willard et al. | Jun 1993 | A |
5229172 | Cahalan et al. | Jul 1993 | A |
5232685 | Speck et al. | Aug 1993 | A |
5234456 | Silvestrini et al. | Aug 1993 | A |
5244654 | Narayanan | Sep 1993 | A |
5282823 | Schwartz et al. | Feb 1994 | A |
5288711 | Mitchell et al. | Feb 1994 | A |
5298255 | Sawamoto et al. | Mar 1994 | A |
5304121 | Sahatjian | Apr 1994 | A |
5306286 | Stack et al. | Apr 1994 | A |
5314688 | Kauffman et al. | May 1994 | A |
5320634 | Vigil et al. | Jun 1994 | A |
5342348 | Kaplan | Aug 1994 | A |
5344411 | Domb et al. | Sep 1994 | A |
5344444 | Glastra | Sep 1994 | A |
5345933 | Peterson et al. | Sep 1994 | A |
5348873 | Matsunda et al. | Sep 1994 | A |
5356433 | Rowland et al. | Oct 1994 | A |
5370614 | Amundson et al. | Dec 1994 | A |
5380299 | Fearnot et al. | Jan 1995 | A |
5383927 | De Golcoechea et al. | Jan 1995 | A |
5383928 | Scott et al. | Jan 1995 | A |
5419760 | Narciso, Jr. | May 1995 | A |
5443458 | Eury | Aug 1995 | A |
5447724 | Helmus et al. | Sep 1995 | A |
5449382 | Dayton | Sep 1995 | A |
5454886 | Burrell et al. | Oct 1995 | A |
5455040 | Marchant | Oct 1995 | A |
5456663 | Lemelson | Oct 1995 | A |
5457113 | Cillinan et al. | Oct 1995 | A |
5464450 | Buscemi et al. | Nov 1995 | A |
5464650 | Berg et al. | Nov 1995 | A |
5500013 | Buscemi et al. | Mar 1996 | A |
5504102 | Agharkar et al. | Apr 1996 | A |
5510330 | Martin et al. | Apr 1996 | A |
5531716 | Luzio et al. | Jul 1996 | A |
5534288 | Gruskin et al. | Jul 1996 | A |
5554181 | Das | Sep 1996 | A |
5554182 | Dinh et al. | Sep 1996 | A |
5567495 | Modak et al. | Oct 1996 | A |
5569463 | Helmus et al. | Oct 1996 | A |
5571086 | Kaplan et al. | Nov 1996 | A |
5578075 | Dayton | Nov 1996 | A |
5605696 | Eury et al. | Feb 1997 | A |
5607463 | Schwartz et al. | Mar 1997 | A |
5607475 | Cahalan et al. | Mar 1997 | A |
5609629 | Fearnot et al. | Mar 1997 | A |
5624411 | Tuch | Apr 1997 | A |
5626562 | Castro | May 1997 | A |
5629008 | Lee | May 1997 | A |
5629881 | Leeb et al. | May 1997 | A |
5643580 | Subramaniam | Jul 1997 | A |
5649977 | Campbell et al. | Jul 1997 | A |
5674192 | Sahatjian | Oct 1997 | A |
5679400 | Tuch | Oct 1997 | A |
5681846 | Trissel | Oct 1997 | A |
5693014 | Abele et al. | Dec 1997 | A |
5697967 | Dinh et al. | Dec 1997 | A |
5716981 | Hunter et al. | Feb 1998 | A |
5733327 | Igaki et al. | Mar 1998 | A |
5741478 | Osborne et al. | Apr 1998 | A |
5762638 | Shikani et al. | Jun 1998 | A |
5766158 | Opolski | Jun 1998 | A |
5770198 | Coller et al. | Jun 1998 | A |
5772640 | Modak et al. | Jun 1998 | A |
5789018 | Engelson et al. | Aug 1998 | A |
5792158 | Lary | Aug 1998 | A |
5814301 | Klopp et al. | Sep 1998 | A |
5820607 | Tcholakian et al. | Oct 1998 | A |
5824049 | Ragheb et al. | Oct 1998 | A |
5827289 | Reiley | Oct 1998 | A |
5837008 | Berg et al. | Nov 1998 | A |
5863745 | Fitzgerald et al. | Jan 1999 | A |
5873904 | Ragheb et al. | Feb 1999 | A |
5886026 | Hunter et al. | Mar 1999 | A |
5893840 | Hull et al. | Apr 1999 | A |
5893867 | Bagaisan et al. | Apr 1999 | A |
5902283 | Darouiche et al. | May 1999 | A |
5916596 | Desai et al. | Jun 1999 | A |
5921952 | Desmond et al. | Jul 1999 | A |
5922754 | Burchett et al. | Jul 1999 | A |
5954706 | Sahatjian | Sep 1999 | A |
5977163 | Li et al. | Nov 1999 | A |
5980972 | Ding | Nov 1999 | A |
5981568 | Kunz et al. | Nov 1999 | A |
5997162 | English et al. | Dec 1999 | A |
6010480 | Abele et al. | Jan 2000 | A |
6013092 | Dehdashtian et al. | Jan 2000 | A |
6017948 | Rubinfeld et al. | Jan 2000 | A |
6039721 | Johnson et al. | Mar 2000 | A |
6071285 | Lashinski et al. | Jun 2000 | A |
6096070 | Ragheb et al. | Aug 2000 | A |
6123923 | Unger et al. | Sep 2000 | A |
6146358 | Rowe | Nov 2000 | A |
6171232 | Papandreau et al. | Jan 2001 | B1 |
6177061 | Klaveness et al. | Jan 2001 | B1 |
6203487 | Consigny et al. | Mar 2001 | B1 |
6203551 | Wu | Mar 2001 | B1 |
6207133 | Reszka et al. | Mar 2001 | B1 |
6214333 | Zoldhelyi et al. | Apr 2001 | B1 |
6221467 | Nazarova et al. | Apr 2001 | B1 |
6231615 | Preissman et al. | May 2001 | B1 |
6240616 | Yan | Jun 2001 | B1 |
6248100 | de Toledo et al. | Jun 2001 | B1 |
6258108 | Lary | Jul 2001 | B1 |
6264624 | Desmond et al. | Jul 2001 | B1 |
6264642 | Kuen et al. | Jul 2001 | B1 |
6273908 | Ndondo-Lay | Aug 2001 | B1 |
6273913 | Wright et al. | Aug 2001 | B1 |
6287285 | Michal et al. | Sep 2001 | B1 |
6299604 | Ragheb et al. | Oct 2001 | B1 |
6306151 | Lary et al. | Oct 2001 | B1 |
6306166 | Barry et al. | Oct 2001 | B1 |
6335029 | Kamath et al. | Jan 2002 | B1 |
6355058 | Pacetti et al. | Mar 2002 | B1 |
6364856 | Ding et al. | Apr 2002 | B1 |
6369039 | Palasis et al. | Apr 2002 | B1 |
6375931 | Østensen et al. | Apr 2002 | B2 |
6400448 | Sugawara et al. | Jun 2002 | B1 |
6406754 | Chappa et al. | Jun 2002 | B2 |
6419692 | Yang et al. | Jul 2002 | B1 |
6479033 | Reszka et al. | Nov 2002 | B1 |
6491619 | Trauthen et al. | Dec 2002 | B1 |
6491938 | Kunz et al. | Dec 2002 | B2 |
6495579 | Hunter | Dec 2002 | B1 |
6500341 | Wang et al. | Dec 2002 | B2 |
6503954 | Bhat et al. | Jan 2003 | B1 |
6515016 | Hunter et al. | Feb 2003 | B2 |
6544223 | Kokish et al. | Apr 2003 | B1 |
6544544 | Hunter et al. | Apr 2003 | B2 |
6575888 | Zamora et al. | Jun 2003 | B2 |
6585765 | Hossainy et al. | Jul 2003 | B1 |
6599275 | Fischer | Jul 2003 | B1 |
6599448 | Ehrhard et al. | Jul 2003 | B1 |
6599928 | Kunz et al. | Jul 2003 | B2 |
6616591 | Teoh et al. | Sep 2003 | B1 |
6616650 | Rowe | Sep 2003 | B1 |
6635082 | Hossainy et al. | Oct 2003 | B1 |
6638913 | Speck et al. | Oct 2003 | B1 |
6682545 | Kester | Jan 2004 | B1 |
6695811 | Samson et al. | Feb 2004 | B2 |
6706892 | Ezrin et al. | Mar 2004 | B1 |
6730064 | Ragheb et al. | May 2004 | B2 |
6774278 | Ragheb et al. | Aug 2004 | B1 |
6867190 | Carney et al. | Mar 2005 | B2 |
6918927 | Bates et al. | Jul 2005 | B2 |
7060051 | Palasis et al. | Jun 2006 | B2 |
7179251 | Palasis | Feb 2007 | B2 |
7419683 | Szebeni et al. | Sep 2008 | B2 |
7445792 | Toner et al. | Nov 2008 | B2 |
7491234 | Palasis et al. | Feb 2009 | B2 |
7611532 | Bates et al. | Nov 2009 | B2 |
7731685 | Bates et al. | Jun 2010 | B2 |
7750041 | Speck et al. | Jul 2010 | B2 |
7811622 | Bates et al. | Oct 2010 | B2 |
8389043 | Speck et al. | Mar 2013 | B2 |
20010014717 | Hossainy et al. | Aug 2001 | A1 |
20010016611 | Kashiwabara et al. | Aug 2001 | A1 |
20010034363 | Li et al. | Oct 2001 | A1 |
20010037140 | Gaudoin et al. | Nov 2001 | A1 |
20010044651 | Steinke et al. | Nov 2001 | A1 |
20020013549 | Zhong et al. | Jan 2002 | A1 |
20020032414 | Ragheb et al. | Mar 2002 | A1 |
20020037358 | Barry et al. | Mar 2002 | A1 |
20020098278 | Bates et al. | Jul 2002 | A1 |
20020123505 | Mollison et al. | Sep 2002 | A1 |
20020193828 | Griffin et al. | Dec 2002 | A1 |
20030007944 | O'Halloran et al. | Jan 2003 | A1 |
20030028243 | Bates et al. | Feb 2003 | A1 |
20030028244 | Bates et al. | Feb 2003 | A1 |
20030036794 | Ragheb et al. | Feb 2003 | A1 |
20030059454 | Barry et al. | Mar 2003 | A1 |
20030100600 | Kinsella et al. | May 2003 | A1 |
20030195548 | Kester | Oct 2003 | A1 |
20040068241 | Fischer | Apr 2004 | A1 |
20040073284 | Bates et al. | Apr 2004 | A1 |
20040115228 | Costa et al. | Jun 2004 | A1 |
20040224003 | Schultz | Nov 2004 | A1 |
20040243225 | Ragheb et al. | Dec 2004 | A1 |
20050042295 | Hunter et al. | Feb 2005 | A1 |
20050063926 | Bathina et al. | Mar 2005 | A1 |
20050101522 | Speck et al. | May 2005 | A1 |
20050123605 | Hunter et al. | Jun 2005 | A1 |
20050222677 | Bates et al. | Oct 2005 | A1 |
20050250672 | Speck | Nov 2005 | A9 |
20050278021 | Bates et al. | Dec 2005 | A1 |
20060020243 | Speck et al. | Jan 2006 | A1 |
20060020331 | Bates et al. | Jan 2006 | A1 |
20070128118 | Yu et al. | Jun 2007 | A1 |
20070212394 | Reyes et al. | Sep 2007 | A1 |
20080010234 | Nakagawa et al. | Jan 2008 | A1 |
20080025510 | Yung et al. | Jan 2008 | A1 |
20080102033 | Speck et al. | May 2008 | A1 |
20080102034 | Speck et al. | May 2008 | A1 |
20080118544 | Wang | May 2008 | A1 |
20080175887 | Wang | Jul 2008 | A1 |
20080255508 | Wang | Oct 2008 | A1 |
20080255509 | Wang | Oct 2008 | A1 |
20080255510 | Wang | Oct 2008 | A1 |
20100145266 | Orlowski | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
2132936 | Mar 1995 | CA |
2 207 025 | Jun 1996 | CA |
2 218 103 | Oct 1996 | CA |
2345729 | Apr 2000 | CA |
2345697 | May 2000 | CA |
1224622 | Aug 1999 | CN |
4225553 | May 1994 | DE |
4446694 | Dec 1994 | DE |
4 334 272 | Apr 1995 | DE |
4341478 | Jun 1995 | DE |
44 35 652 | Apr 1996 | DE |
195 14 104 | Nov 1996 | DE |
69119753 | Jan 1997 | DE |
69403966 | Feb 1998 | DE |
19724796 | Dec 1998 | DE |
10115740 | Oct 2002 | DE |
10244847.7 | Nov 2002 | DE |
69925936 | Jul 2005 | DE |
20 122 736 | Jul 2007 | DE |
0 357 003 | Mar 1990 | EP |
0 470 246 | Feb 1992 | EP |
0706376 | Jul 1993 | EP |
0 578 998 | Jan 1994 | EP |
0 604 022 | Jun 1994 | EP |
0 623 354 | Nov 1994 | EP |
0 673 114 | Sep 1995 | EP |
0 681 475 | Nov 1995 | EP |
0 717 041 | Jun 1996 | EP |
0 747 069 | Dec 1996 | EP |
0706376 | Jun 1997 | EP |
0 797 988 | Oct 1997 | EP |
0 975 340 | Feb 2000 | EP |
1 407 786 | Apr 2000 | EP |
0 551 182 | Jul 2000 | EP |
1 037 605 | Sep 2000 | EP |
0829238 | Sep 2000 | EP |
1 090 637 | Apr 2001 | EP |
1118325 | Jul 2001 | EP |
1140273 | Oct 2001 | EP |
1 159 974 | Dec 2001 | EP |
1 250 166 | Oct 2002 | EP |
1 372 737 | Jan 2004 | EP |
1 447 098 | Aug 2004 | EP |
1 512 398 | Mar 2005 | EP |
1 521 603 | Apr 2005 | EP |
1 536 850 | Jun 2005 | EP |
1 666 070 | Jun 2006 | EP |
1 669 091 | Jun 2006 | EP |
1 669 092 | Jun 2006 | EP |
1666071 | Jun 2006 | EP |
1 695 697 | Aug 2006 | EP |
1 695 698 | Aug 2006 | EP |
1 735 042 | Dec 2006 | EP |
1 781 209 | May 2007 | EP |
2 092 941 | Aug 2009 | EP |
2 092 942 | Aug 2009 | EP |
2 098 230 | Sep 2009 | EP |
06 063145 | Mar 1994 | JP |
7500585 | Jan 1995 | JP |
07 328124 | Dec 1995 | JP |
10509691 | Sep 1998 | JP |
11012160 | Jan 1999 | JP |
2000 507930 | Jun 2000 | JP |
WO-90 13293 | Nov 1990 | WO |
WO-90 13332 | Nov 1990 | WO |
WO-91 12779 | Sep 1991 | WO |
WO 9211890 | Jul 1992 | WO |
WO-92 11896 | Jul 1992 | WO |
WO-92 12717 | Aug 1992 | WO |
WO 9215282 | Sep 1992 | WO |
WO-92 20718 | Nov 1992 | WO |
WO-93 06792 | Apr 1993 | WO |
WO 9307875 | Apr 1993 | WO |
WO-93 09762 | May 1993 | WO |
WO-93 09765 | May 1993 | WO |
WO-93 11120 | Jun 1993 | WO |
WO-93 11668 | Jun 1993 | WO |
WO 9503795 | Jul 1993 | WO |
WO 9407484 | Apr 1994 | WO |
WO-94 07529 | Apr 1994 | WO |
WO-94 16706 | Aug 1994 | WO |
WO 9423787 | Oct 1994 | WO |
WO-94 25020 | Nov 1994 | WO |
WO-94 26291 | Nov 1994 | WO |
WO-95 03036 | Feb 1995 | WO |
WO 9503083 | Feb 1995 | WO |
WO-95 03083 | Feb 1995 | WO |
WO 9638183 | May 1995 | WO |
WO 9515782 | Jun 1995 | WO |
WO 9617629 | Jun 1996 | WO |
WO 9620718 | Jul 1996 | WO |
WO 9625176 | Aug 1996 | WO |
WO 9625176 | Aug 1996 | WO |
WO-96 25282 | Aug 1996 | WO |
WO 9639949 | Dec 1996 | WO |
WO 9639970 | Dec 1996 | WO |
WO 9824427 | Dec 1996 | WO |
WO-97 01327 | Jan 1997 | WO |
WO 9726862 | Jan 1997 | WO |
WO 9843618 | Mar 1997 | WO |
WO 9717098 | May 1997 | WO |
WO-97 31674 | Sep 1997 | WO |
WO 9733552 | Sep 1997 | WO |
WO-97 41916 | Nov 1997 | WO |
WO 9811933 | Mar 1998 | WO |
WO 9814174 | Apr 1998 | WO |
WO 9815282 | Apr 1998 | WO |
WO 9825176 | Jun 1998 | WO |
WO 9962510 | Jun 1998 | WO |
WO 9830249 | Jul 1998 | WO |
WO-98 31415 | Jul 1998 | WO |
WO 0010552 | Aug 1998 | WO |
WO 9836784 | Aug 1998 | WO |
WO-98 43618 | Oct 1998 | WO |
WO 9843618 | Oct 1998 | WO |
WO 9847540 | Oct 1998 | WO |
WO-99 08729 | Feb 1999 | WO |
WO 9908729 | Feb 1999 | WO |
WO-99 09729 | Feb 1999 | WO |
WO 9912577 | Mar 1999 | WO |
WO 9913916 | Mar 1999 | WO |
WO 9919004 | Apr 1999 | WO |
WO-99 08729 | May 1999 | WO |
WO 9908729 | May 1999 | WO |
WO-99 25336 | May 1999 | WO |
WO-99 30684 | Jun 1999 | WO |
WO 9955396 | Nov 1999 | WO |
WO-99 59556 | Nov 1999 | WO |
WO-00 00023 | Jan 2000 | WO |
WO-00 00238 | Jan 2000 | WO |
WO 0006152 | Feb 2000 | WO |
WO 0021584 | Apr 2000 | WO |
WO 0021584 | Apr 2000 | WO |
WO 0032238 | Jun 2000 | WO |
WO 0032267 | Jun 2000 | WO |
WO 0044414 | Aug 2000 | WO |
WO 0045744 | Aug 2000 | WO |
WO-00 47197 | Aug 2000 | WO |
WO 0050105 | Aug 2000 | WO |
WO-01 24866 | Apr 2001 | WO |
WO 0149268 | Jul 2001 | WO |
WO 0149338 | Jul 2001 | WO |
WO 200149338 | Jul 2001 | WO |
WO-01-54748 | Aug 2001 | WO |
WO-01 076525 | Oct 2001 | WO |
WO 0183016 | Nov 2001 | WO |
WO 02076509 | Dec 2001 | WO |
WO 02066092 | Aug 2002 | WO |
WO 02076509 | Oct 2002 | WO |
03022264 | Mar 2003 | WO |
WO 03022264 | Mar 2003 | WO |
WO 03026718 | Apr 2003 | WO |
WO-03 41686 | May 2003 | WO |
WO 03048166 | Jun 2003 | WO |
WO-2004 006976 | Jan 2004 | WO |
WO-2004 022124 | Mar 2004 | WO |
WO 2004022124 | Mar 2004 | WO |
WO 2004028582 | Apr 2004 | WO |
WO 2004028610 | Apr 2004 | WO |
WO-2005 089855 | Sep 2005 | WO |
WO-2005 112570 | Dec 2005 | WO |
WO-2006 023104 | Mar 2006 | WO |
WO 2007106441 | Sep 2007 | WO |
WO-2008 063576 | May 2008 | WO |
WO 2007106441 | Aug 2008 | WO |
WO-2009 051614 | Apr 2009 | WO |
WO-2009 051615 | Apr 2009 | WO |
WO-2009 051616 | Apr 2009 | WO |
WO-2009 051618 | Apr 2009 | WO |
Entry |
---|
Li et al., J. Nucl. Med., 38 (7), 1042-47 (1997). |
Perflorocarbon Compounds as X-Ray Contrast Media in the Lungs Bulletin Soc, Int. Chic. 1975, 34 (2) 137-41. |
Paclitaxel: Ein Chemotherapeuticum Zur Restenoseprohylaze? Experimentelle Untersuchengen In Vitro Und in Cico, Zeitschrift Fur Kardiologie, Band 89, Heft 5 (2000), pp. 390-397. |
Engelmann et al, 2007 International Journal of Pharmaceutics 329, 12-18. |
Final Rejection dated May 1, 2008 in related U.S. Appl. No. 10/528,577, filed Mar. 21, 2005. |
Non-Final Rejection dated Oct. 5, 2007 in related U.S. Appl. No. 10/528,577, filed Mar. 21, 2005. |
Non-Final Rejection dated Jul. 2, 2007 in related U.S. Appl. No. 10/472,844, filed Sep. 26, 2003. |
Final Rejection dated Nov. 1, 2007 in related U.S. Appl. No. 10/472,844, filed Sep. 26, 2003. |
Non-Final Rejection dated May 29, 2008 in related U.S. Appl. No. 10/472,844, filed Sep. 26, 2003. |
Final Rejection dated Mar. 4, 2009 in related U.S. Appl. No. 10/472,844, filed Sep. 26, 2003. |
Non-Final Rejection dated Jan. 15, 2009 in related U.S. Appl. No. 10/618,977, filed Jul. 14, 2003. |
Kolodgie et al., Circulation Research, 2000; 87: 264-267. |
Nishio, K., et al., “Enhanced Interaction Between Tubulin and Microtubule-Associated Protein 2 Via Inhibition of Map Kinase and CDC2 Kinase by Paclitaxel,” Int. J. Cancer: 63, p. 688-693 (1995). |
Ding, A., et al., “Association of Mitogen-Activated Protein Kinase with Microtubules in Mouse Macrophases,” J. Exp. Med. vol. 183, Apr. 1996, p. 1899-1904. |
Lieu, C.-H., et al., “Role of Mitogen-Activated Protein Kinase in Kinase in Taxol-Induced Apoptosis in Human Leukemic U937 Cells1,” Cell Growth & Differentiation, vol. 9, p. 767-776, Sep. 1998. |
“Ceramide-Coated Balloon Catheters Limit Neointimal Hyperplasia After Stretch Injury in Carotid Arteries,” Circulation Research, 2000; 87: 282-288. |
“Stent”, www.thefreedictionary.com/Stent, 2000. |
“The Definition of Coated Stent”, www.medterms.com, 2003. |
“Balloon Catheter”, en.wikipedia.org/wiki/balloon.catheter, 2008. |
Werk et al.: “Inhibition of Restenosis in Femoropopliteal Arteries: Paclitaxel-Coated Versus Uncoated Balloon: Femoral Paclitaxel Randomized Pilot Trial”, Circulation: Journal of the American Heart Association, 2008, vol. 118, p. 1358-1365. |
Tepe et al.: “Local Delivery of Paclitaxel to Inhibit Restenosis During Angioplasty of the Leg”, The New England Journal of Medicine, 2008, vol. 358, No. 7, pp. 689-699. |
Henry et al.: “‘POBA Plus’: Will the Balloon Regain Its Luster?”, Circulation: Journal of the American Heart Association, 2008, vol. 118, pp. 1309-1311. |
Schwartz et al.: “Preclinical Restenosis Models and Drug-Eluting Stents”, Journal of the American College of Cardiology, 2004, vol. 44, No. 7, pp. 1373-1385, Elsevier Inc. |
Badapulle et al.: “A Hierarchical Bayesian Meta-Analysis of Randomised Clinical Trials of Drug-Eluting Stents”, Lancet, 2004, vol. 364, pp. 583-591. |
Scheller et al.: “Treatment of Coronary In-Stent Restenosis With a Paclitaxel-Coated Balloon Catheter”, The New England Journal of Medicine, 2006, vol. 355, No. 20, pp. 2113-2124. |
Licha et al.: “Hydrophilic Cyanine Dyes As Contrast Agents for Near-Infrared Tumor Imaging: Synthesis, Photophysical Properties and Spectroscopic In Vivo Characterization”, Phtochemistry and Photobiology, 2000, vol. 72, No. 3, pp. 392-398. |
Phillips et al.: “A-Level Biology”, Oxford University Press, 1989, pp. 7-8. |
Pierre Signore et al., “Complete Inhibition of Intimal Hyperplasia by Perivascular Delivery of Paclitaxel in Balloon-injured Rat Carotid Arteries,” Laboratory Investigations, vol. 12, No. 1, Jan. 2001, pp. 79-88. |
File History of U.S. Appl. No. 60/395,434, filed Jul. 12, 2002. |
File History of U.S. Appl. No. 60/244,446, filed Oct. 31, 2000. |
Ran Kornowski et al., “Slow-Release Taxol Coated GRIT™ Stents Reduce Neointima Formation in a Porcine Coronary In-Stent Restenosis Model,” 70th Scientific Sessions of the American Heart Association, Nov. 9-12, 1997. |
Alan W. Heldman et al., “Paclitaxel Stent Coating Inhibits Neointinal Hyperplasia at 4 Weeks in a Porcine Model of Coronary Restenosis,” Circulation, May 8, 2001, pp. 2289-2295. |
Department of Health and Human Services Notice of Intramural Research Project, Oct. 1, 1993-Sep. 30, 1994; “Molecular Strategies to Treat Restenosis,” 4 pp. |
Department of Health and Human Services Notice of Intramural Research Project, Oct. 1, 1994-Sep. 30, 1995, “Local Delivery of Therapeutic Agents for the Prevention of Restenosis,” 6 pp. |
Teruo Inoue et al., “Comparison of Activation Process of Platelets and Neutrophils After Coronary Stent Implantation Versus Balloon Angioplasty for Stable Angina Pectoris,” The American Journal of Cardiology, vol. 86, Nov. 15, 2000, pp. 1057-1062. |
Eric K. Rowinsky et al., “Paclitaxel (Taxol)”, Alastair JJ. Wood, ed. “Drug Therapy,” The New England Journal of Medicine, vol. 332, No. 15, Apr. 13, 1995, pp. 1004-1014. |
Dorothea I. Axel et al., “Paclitaxel Inhibits Arterial Smooth Muscle Cell Proliferation and Migration in Vitro and in Vivo Using Local Drug Delivery,” Circulation, 1997, vol. 96, pp. 636-645. |
International Search Report for EP 06 00 1041, Search Date: Apr. 11, 2006. |
International Search Report for EP 06 00 1042, Search Date: Apr. 10, 2006. |
International Search Report for EP 06 00 1040, Search Date: Apr. 11, 2006. |
International Search Report for PCT/DE01/04782, Search Date: Dec. 27, 2002. |
International Search Report for PCT/EP03/10480, Search Date: Feb. 20, 2004. |
International Search Report for PCT/DE03/02871, Search Date: Feb. 17, 2004. |
Speck, Ulrich et al., “Inhibition of Restenosis in Stented Porcine Coronary Arteries,” Investigative Radiology, vol. 39 No. 3, Mar. 2004, pp. 182-186. |
Scheller, Bruno et al., “Addition of Paclitaxel to Contrast Prevents Restenosis After Coronary StentImplantation,” Journal of the American College of Cardiology, vol. 42 No. 8, 2003, pp. 1415-1420. |
Scheller, Bruno et al., “Paclitaxel Balloon Coating, a Novel Method for Prevention and Therapy of Restenosis,” Circulation, Aug. 17, 2004, pp. 810-814. |
Singla, Anil K. et al., “Paclitaxel and its Formulations,” International Journal of Pharmaceutics, vol. 235, 2002, pp. 179-192. |
Nuijen, Bastiaan et al., “Progress in the Development of Alternative Pharmaceutical Formulations of Taxanes,” Investigational New Drugs, vol. 19, 2001, pp. 143-153. |
Wood, Shelly, “Drug-eluting Stents: Where They Are Now,” HeartWire, Jan. 22, 2003, 7 pgs., http://www.theheart.org/documents/page.cfm?from=590001500&doc—id=33903. |
Singla, AK et al. “Paclitaxel and its formulations,” Int.J.Pharmceutics 235 (2002): 179-182. |
Nuijen B et al., “Progress in the development of alternative . . . ,” Investigational New Drugs, 19(2001): 143-153. |
Speck et al., “Inhibition of restenosis in stented porcine coronary . . . ” Invest.Radiol. 2004, 39, 182-186. |
“Drugeluting stents: Where are they now,” Heartwire, p. 2, communication of www.theheart.org, Jan. 22, 2003. |
Scheller et al., “Addition of paclitaxel to contrast media prevents restenosis after coronary stent implantation,” J.Am.Coll.Radiol. 2003, 42:1415-1420. |
Scheller et al., “Paclitaxel balloon cutting—a novel method for prevention and therapy of restenosis,” Circulation, 2004, 110:810-814. |
“Ceramide-coated balloon catheters limit neointimal hyperplasia after stretch injury in carotid arteries,” Circulation Research 2000, 87,282. |
Martin Oberhoff et al., “Local delivery of Paclitaxel using the double-ballon perfusion catheter before stenting in the porcine coronary artery,” 2001,Catheterization and Cardiovascular Interventions, pp. 562-568, vol. 53. |
Christopher J. Creel et al., “Arterial Paclitaxel distribution and deposition,” Circulation Research, Apr. 28, 2000, pp. 879-884. |
Dr. Karsch, “Lokale Applikation von Paclitaxel mit dem Schneider-Doppelballon,” nach experimenteller Stentimplantation an den Koronaraterien des Schweines, Gieβen 2001. |
Toru Kataoka et al., “7-Hexanoyltaxol-Eluting Stent for prevention of Neointimal Growth,” Circulation, Oct. 1, 2002, pp. 1788-1793. |
Roger Charles et al., “Ceramide-coated ballon catheters limit neointimal hyperplasia after stretch injury in carotid arteries,” Circulation Research, Aug. 18, 2000, pp. 282-288. |
Frank D. Kolodgie et al., Local delivery of ceramide for restenosis: Is there a future for lipid therapy? Circulation Research, Aug. 18, 2000, pp. 264-267. |
Alan W. Heldman et al., “Paclitaxel stent coating inhibits neointimal hyperplasia at 4 week in a porcine model of coronary restenosis,” Circulation, May 8, 2001, pp. 2289 2295. |
Johnathan D. Adams et al., “Taxol: a history of pharmaceutical development and current pharmaceutical concerns,” Journal of the National Cancer Institute Monographs, 1993, pp. 141-147, No. 15. |
Jackson et al., “Current usage of contrast agents, anticoagulant and antiplatelet drugs in angiography and angioplasty in the UK,” Clinical Radiology, 1995, pp. 699-704, vol. 50, No. 10. |
“Water soluble paclitaxel prodrugs,” Espacenet, Publication Date: Jun. 27, 2000; English Abstract of JP-2000 507930. |
Buaayu KK, “Balloon catheter for intravascular dosing,” Patent Abstracts of Japan, Publication Date: Mar. 8, 1994; English Abstract of JP-06 063145. |
Magna International Toronto, “Process for producing a plastic cladding component and cladding component produced especially by said process,” Espacenet, Publication Date: Aug. 22, 1996; English Abstract of WO-96 25282. |
Terumo Corp., “Medicine dosing catheter,” Patent Abstracts of Japan, Publication Date: Dec. 19, 1995; English Abstract of JP-07 328124. |
Thomson Innovation, Patent Record View, Publication Date: Jan. 19, 1995; English abstract of JP-7 500585. |
Thomson Innovation, Patent Record View, Publication Date: Sep. 22, 1998; English abstract of JP-10 509691. |
Herberts & Co GMBh, “Liquid mixtures of photo-initiators, process for their production and their use,” Espacenet, Publication Date: Nov. 26, 1992; English Abstract of WO-92 20718. |
Strecker Ernst Peter Dr Med Pr., “Implantable percutaneous endoprosthesis,” Espacenet, Publication Date: Jan. 19, 1994; English Abstract of EP-0 578 998. |
Judgment of Sep. 16, 2011 (Paper No. 52) from Interference No. 105,787. |
Redeclaration of Interference (Paper No. 48) issued Sep. 13, 2011. |
Applicants' Amendment of Sep. 12, 2011 (Paper No. 47), filed in U.S. Appl. No. 11/763,125, and cited in the Judgment of Sep. 16, 2011 in Interference No. 105,787. |
Atkins, Peter, “Chapter 7: Simple Mixtures,” Physical Chemistry, 6th ed., 1997, pp. 176-186. |
Barath et al., “Low Dose of Antitumor Agents Prevents Smooth Muscle Cell Proliferation After Endothelial Injury,” JACC, 1989, vol. 13, No. 4, pp. 252A. |
Bartoli et al., “In vitro and In vivo Antitumoral Activity of Free, and Encapsulated Taxol,” J. Microencapulation, 1990, vol. 7, No. 2, pp. 191-197. |
Baron et al., “In vitro Evaluation of c7E3-Fab (ReoPro™) Eluting Polymer-Coated Coronary Stents,” Cardiovascular Research, Jun. 2000, vol. 46, pp. 585-594. |
BC Lippold, “Retardarzneiformen” in E. Nurnberg, Hagers Handbuch der pharmazeutischen Praxis, vol. 2, Springer-Verlag Berlin Heidelburg New York, 5th edition, 1991, pp. 832-840. |
Brunner, H. et al., “Synthesis and in vitro testing of hematoporphyrin type ligands in platinum (II) complexes as potent cytostatic and phototoxic antitumor agents,” Inorganica Chimica Acta, 1997, vol. 264, pp. 67-79. |
Bult, H., “Restenosis: a challenge for pharmacology,” TIPS, Jul. 2000, vol. 21, pp. 274-279. |
Consigny, P. Macke et al., “Local Delivery of an antiproliferative drug with use of hydrogel-coated angioplasty balloons,” J. Vasc. Interv. Radiol., 1994, vol. 5, pp. 553-560. |
Coomber, B. L. et al., “In vitro endothelial wound repair: Interaction of cell migration and proliferation,” Arteriosclerosis, Mar. 1990, vol. 10, No. 2, pp. 215-222. |
Cox et al., “Effect of Local Delivery of Heparin and Methotrexate on Neointimal Proliferation in Stendted Porcine Coronary Arteries,” Coronary Artery Disease, 1992, vol. 3, pp. 237-248. |
Cremers et al., “V1742—Paclitaxel-beschictete PTCA-Katheter: Gibt es Unterschiede? Einfluss von PACCOCATH and DIOR Ballonkathetern auf die Neointimaporliferation an Schweinekoronarien,” Clin. Res. Cardiol., 1997. |
Cremers, B et al., “Comparison of two different paclitaxel-coated balloon catheters in the porcine coronary restenosis model,” Clin. Res. Cardiol., 2009, vol. 98, pp. 325-330. |
Dichek, D. A. et al., “Seeding of Intravascular stents with genetically engineered endothelial cells,” Circulation, 1989, vol. 80, No. 5, pp. 1347-1353. |
Dordunoo, S. K. et al., “Release of taxol from poly(ε-caprolactone) pastes: effect of water-soluble additives,” Jounral of Controlled Release, 1997, vol. 44, pp. 87-94. |
Drachmann et al., “Neoinitimal thickening after stent delivery of paclitaxel: Charge in composition and arrest of growth over six month,” J. Am. Coll. Cardiol., 2000, vol. 36, pp. 2325-2332. |
Elke M: Kontrastmittel in der radiologischen Diagnostik, pp. 113-119, 3rd edition, Georg Thieme Verlag Stuttgart New York, 1992. |
English Translation of Elke M: Kontrastmittel in der radiologischen Diagnostik, pp. 113-119, 3rd edition, Georg Thieme Verlag Stuttgart New York, 1992. |
Forth, W. et al. “Allegemeine und spezielle Pharmakologie und Toxikologie,” 7 Auflage. Heidelberg: Spektrum Akademischer Verlag, 1996, Chapter, 1, 2, 3. |
Garcia-Martinez et al., “Effects of Taxol on Endothelial of the Developing Semilunlar Heart Valves in the Chicken Embryo,” Acta Anat, 1988, vol. 133, pp. 282-288. |
Gershlick et al., “Inhibition of Restenosis with a Paclitaxel-Eluting, Polymer-Free Coronary Stent: The European evaluation of pacliTaxel Eluting Stent (ELUTES) Trail,” Circulation, 2004, vol. 109, pp. 487-493. |
Gold, Victor et al., “Amount of Substance Concentration,” Compendium of Chemical Technology: International Union of Pure and Applied Chemistry Recommendations, 1987, p. 19. |
Grossmann, S, “Neuartige Zubereitungen Hemmung der Neointimaproliferation in verengten Arterien,” Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.), Nov. 2006. |
Hamm, C. W. et al., “Guideline: Diagnostic Heart Catheter Examination,” Clin Res Cardiol, 2008, vol. 97, pp. 475-512. |
English Translation of Hamm, C. W. et al., “Guideline: Diagnostic Heart Catheter Examination,” Clin Res Cardiol, 2008, vol. 97, pp. 475-512. |
Hiatt, “Drug-Eluting Stents for the Prevention of Restenosis: In Quest for the Holy Grail,” Catheterization and Cardiovascular Interventions, vol. 55, pp. 409-417, 2002. |
Hou, D. et al., “Intrapericardial paclitaxel delivery inhibits neointimal proliferation and promotes arterial enlargement after porcine coronary overstretch,” Circulation, 2000, vol. 102, pp. 1575-1581. |
Indolfi et al., “Smooth Muscle Cell Proliferation Is Proportional to the Degree of Balloon Injury in a Rat Model of Angioplasty,” Circulation, 1995, vol. 92, pp. 1230-1235. |
Kalbitz et al., “Modulation der Wirkstoffpenetration in die Haut,” Pharmazie, 1996, vol. 51, pp. 619-637. |
Kandarpa et al., “Mural Delivery of Iloporst with Use of Hydrogel-coated Balloon Catheters Suppresses Local Platelet Aggregation,” J. Vasc. Inter. Radiol., Nov./ Dec. 1997, vol. 8, pp. 997-1004. |
Kandarpa et al., “Site-specific Delivery of Iloprost during Experimental Angioplasty Suppresses Smooth Muscle Cell Proliferation,”J. Vasc. Inter. Radiol., May/ Jun. 1998, vol. 9, pp. 487-493. |
Katsuda et al., “The Role of Cytoplasmic Microtubules in Regulation of Smooth Muscle Proliferation,” Clin. Ter. Cardiovasc.,1990, IX(4), pp. 245-248. |
Khan, I. A. et al., “The Intra-vascular stent as a site-specific local drug delivery system,” Drug Development and Industrial Pharmacy, 2005, vol. 31, pp. 59-78. |
Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd Edition, vol. 17, 1982, John Wiley & Sons, pp. 281-310. |
Lamba, Nina M. K. et al., “Structure and Physical Characterization of Polyurethanes,” Polyurethanes in Biomedical Applications ,Ch. 4, pp. 43-52, 1998, CRC Press. |
Langer, R., “New methods of drug delivery,” Science, Sep. 28, 1990, vol. 249, pp. 1527-1533. |
Leo, Albert et al., “Partition Coefficients and Their Uses,” Chemical Reviews, Dec. 1971, vol. 71, No. 6, pp. 525-616. |
Liggins, Richard T. et al., “Paclitaxel loaded poly(L-lactic acid) microspheres: properties of microspheres made with low molecular weight polymers,” International Journal of Pharmaceutics, 2001, vol. 222, pp. 19-33. |
Liggins, R. T. et al., “Solid-State Characterization of Paclitaxel,”J. Pharma. Sci., 1997, vol. 86, pp. 1458-1463. |
Lübbe, A. S. et al., “Preclinical experiences with magnetic drug targeting: Tolerance and Efficacy,” Cancer Research, 1996, vol. 56, pp. 4694-4701. |
Manderson et al., “Balloon Catheter Injury to Rabbit Cartoid Artery. I. Changes in smooth muscle phenotype,” Artheriosklerosis, 1989, vol. 9, pp. 289-298. |
Matthew, R. T. et al., “Synthesis and Evaluation of Some Water-Soluble Prodrugs and Derivatives of Taxol with Antitumor Activity,” J. Med. Chem., 1992, vol. 35, pp. 141-151. |
Mitchel et al., “Inhibition of Platelet Deposition and Lysis of Intrcoronary Thrombus during Balloon Angioplasty using Urokinase-Coated Hydrogel Balloons,” Circulation, Oct. 1994, vol. 90, pp. 1979-1988. |
Mortimer, C. et al., Basiswissen Chemie (excerpt) (1987). |
Muller et al., “Colchicine and Antineoplastic Therapy for the Prevention of Restenosos after Percutaneous Coronary Interventions,” JACC, 1990, vol. 17, No. 6, pp. 126B-131B. |
Nairn, John A., “Polymer Characterization,” Materials Science & Engineering 5473, 2003, Ch. 3, pp. 43-55. |
Nicolaou, K. C. et al., “Design, synthesis and biological activity of protaxols,” Nature, Jul. 29, 1993, vol. 364, pp. 464-466. |
Parker, Sybil P., “Micelle,” McGraw-Hill Encyclopedia of Chemistry—Second Edition, 1992, pp. 638-639. |
Sangster, J. et al., Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry, 1997, vol. 2 of Wiley Series in Solution Chemistry, pp. 1-49. |
Schmitz, S. A. et al., “Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe Hereditable Hyperlipidemic Rabbits,” Investigative Radiology, Aug. 2000, vol. 35, No. 8, pp. 460-471. |
Sharma, U. S. et al., “Pharmaceutical and Physical Properties of Paclitaxel (Taxol) Complexes with Cyclodextrins,” J. Pharma. Sci., 1995, vol. 84, pp. 1223-1230. |
Slepian, from Textbook of Interventional Cardiology, 1990, Section IV, Chapter 32, pp. 647-670. |
Sollott, Steven J. et al., “Taxol Inhibits Neointimal Smooth Muscle Cell accumulation after angioplasty in the rat,” The Journal of clinical Investigation, Apr. 1995, vol. 95, pp. 1869-1876. |
Speck, Ulrich—German Priority Document for file No. 101 15 740.1 filed on Mar. 26, 2001. |
Swindell, C.S. et al., “Biologically Active Taxol Analogues with Deleted A-ring Side Chain Substituents and Variable C-2′ Configurations,” J. Med. Chem, 1991, vol. 34, pp. 1176-1184. |
Tarr, B. D. et al., “A New Parenteral Vehicle for the Administration of Some Poorly Water Soluble Anti-Cancer Drugs,” J. Parent Sci. Technol., 1987, vol. 41, pp. 31-33. |
Tawashi, R. “The dissolution rates of crystalline drugs,” J. Mond. Pharm. 1968, vol. 4, No. 11, pp. 371-379. |
Ulicky, L. et al., “Nernst's Distribution Law,” Comprehensive Dictionary of Physical Chemistry, pp. 266-267, 1992. |
Van Belle, E. et al., “Passivation of metallic stents after arterial gene transfer of phVEGF165 inhibits thrombus formation and intimal thickening,” J. Am. Coll. Cardiol., 1997, vol. 29, pp. 1371-1379. |
Voigt, R., Lehrbuch der pharmazeutishchen Technologie, 5th edition, VEB Verlag Volk and Gesundheit Berlin, 1984, p. 689. |
Voisard et al., “The In-vitro Effect of Antineoplastic Agents on Proliferative Activity and Cytoskeletal Components of Plaque-Derived Smooth-Muscle Cells from Human Coronary Arteries,” Coronary Artery Disease, 1993, vol. 4, pp. 935-942. |
Wichert, B et al., “Low Molecular weight PLA: a suitable polymer for pulmonary administered microparticles?” J. Microencapsulation, 1993, vol. 10, No. 2, pp. 195-207. |
Yushmanov, Victor E. et al., “Dipyridamole Interacts with the Polar Part of Cationic Reversed Micelles in Chloroform: 1H NMR and ESR Evidence,” Journal of Colloid and Interface Science, 1997, vol. 191, pp. 384-390. |
Clinical Cardiology Divergent Effects on Coronary Artery Disease: Abstract from 70th Scientific Session: Circulation, vol. 96, No. 8, Oct. 21, 1997. |
Abstracts From the 70th Scientific Sessions, Circulation, Oct. 21, 1997, 96 Suppl. 1: 1-288. |
English Abstract of CN 1 224 622, Aug. 4, 1999. |
English Abstract of DE 19514104, Stemberger, Axel, DR., “Coating for bio-material insertable into the bloodstream or tissue of the human body,” Nov. 28, 1996. |
English Abstract of DE 69925936, Stemberger, Axel, DR., “High efficiency local drug delivery,” May 11, 2006. |
English Abstract of DE 4435652, Stemberger, Axel DR., “Coating for bio-material to be used e.g. as sutures,” Apr. 11, 1996. |
English Abstract of EP 0 551 182, Morris, R. E. et al., “Method of treating hyperproliferative vascular disease using rapamycin, eventually in combination with mycophenolic acid,” Jul. 14, 1993. |
English Abstract of JP-06-063145, “Balloon Catheter for intravascular dosing,” Buaayu KK, Patent Abstracts of Japan, Publication Date: Mar. 8, 1994. |
English Abstract of JP-06-063145, “Balloon Catheter for Intravascular dosing,” Buaayu KK, Thomson Innovation, Publication Date: Mar. 8, 1994. |
English abstract of JP-07-500585, Thomson Innovation, Patent Record View, Publication Date: Jan. 19, 1995. |
English Abstract of JP-07-328124, “Medicine dosing catheter,” Terumo Corp., Patent Abstracts of Japan, Publication Date: Dec. 19, 1995. |
English abstract of JP-10-509691, Thomson Innovation, Patent Record View, Publication Date: Sep. 22, 1998. |
English Abstract of JP-11-012160, Jan. 19, 1999. |
English Translation of JP 36371777, Thomson Innovation, Publication Date: Mar. 23, 2005. |
Patent Family Listing for JP-2001 508320 (Publication Date: Jun. 26, 2001), Thomson Innovation. |
Patent Family Listing for JP-2002 536058 (Publication Date: Oct. 29, 2002), Thomson Innovation. |
English Abstract of WO 92/20718, Nov. 26, 1992. |
English Abstract of WO 96/25282, Kaufmann, G. et al., “Process for producing a plastic cladding component and cladding component produced especially by said process,” Aug. 22, 1996. |
Office Action issued Apr. 20, 2007 in U.S. Appl. No. 10/618,977, filed Jul. 14, 2003. |
Office Action issued Oct. 13, 2011 in U.S. Appl. No. 11/763,116. |
Office Action issued Aug. 16, 2011 in U.S. Appl. No. 12/835,420. |
Office Action issued Feb. 16, 2012 in U.S. Appl. No. 12/782,989. |
English translation of Decision of Final Rejection, Japanese Application No. JP 2004-235694, issued Mar. 9, 2010. |
Office Action issued Feb. 22, 2010 in U.S. Appl. No. 10/528,577. |
Notice of Allowance issued Aug. 23, 2010 in U.S. Appl. No. 10/528,577. |
Notice of Allowance issued Dec. 9, 2010 in U.S. Appl. No. 10/528,577. |
Notice of Allowance issued Nov. 28, 2011 in U.S. Appl. No. 10/528,577. |
Notice of Allowance issued Jun. 25, 2012 in U.S. Appl. No. 10/528,577. |
Office Action issued May 25, 2012 in US U.S. Appl. No. 12/782,989. |
Office Action issued Mar. 9, 2012 in U.S. Appl. No. 12/835,420. |
Notice of Allowance issued May 24, 2012 in U.S. Appl. No. 12/835,420. |
Office Action issued Apr. 29, 2009 in U.S. Appl. No. 11/763,116. |
Office Action issued Sep. 18, 2009 in U.S. Appl. No. 11/763,116. |
Office Action issued Apr. 8, 2010 in U.S. Appl. No. 11/763,116. |
Office Action issued May 7, 2012 in U.S. Appl. No. 11/763,116. |
Decision of the Opposition Division Regarding EP 1 666 070 dated Mar. 7, 2011; 25 pgs. |
Opposition against EP 1 666 070 B1 dated Oct. 12, 1999; 30 pgs. |
U.S. Appl. No. 08/062,451, filed May 13, 1993, Kunz et al. |
U.S. Appl. No. 08/094,536, filed Jul. 19, 1993, Hunter et al. |
Number | Date | Country | |
---|---|---|---|
20100278744 A1 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11763125 | Jun 2007 | US |
Child | 12835414 | US | |
Parent | 10472844 | US | |
Child | 11763125 | US |