The present patent application claims the priority benefit of Chinese Patent Application No. CN202011046911.X filed on 29 Sep. 2020, which is incorporated herein by reference in its entirety.
The present invention belongs to the field of antibody drug preparation processes, and particularly relates to a method for preparing an antibody-drug conjugate using a disubstituted maleimide linker.
An antibody-drug conjugate (ADC) is a class of novel therapeutics for tumor treatment which is generally composed of an antibody or antibody-like ligand, a small molecule drug, and a linker coupling the two together. It combines the anti-tumor activity of the small molecule drug with the high selectivity and stability and the good pharmacokinetic characteristics of the antibody or antibody-like ligand, and currently is an attentive hotspot in the field of tumor treatment.
The conjugation techniques and the preparation processes are very critical for developing ADCs. In order to ensure the clinical safety and effectiveness of such medicaments, it is not only necessary to achieve a stable linkage between the drug and the antibody, but also to minimize the heterogeneity of the ADC products obtained. At present, the third generation conjugation technology to generate ADCs is generally applied and mainly includes three types, namely the site-specific conjugation technology via unnatural amino acids, the site-specific conjugation technology by enzyme catalysis and the site-specific conjugation technology through chemical modification. The first two technologies usually require special modifications on the antibodies, so that the site-specific conjugation technology through chemical modification is a more generally used technology for the preparation of antibody-drug conjugates for common antibody molecules. The technology mainly utilizes a linker of a specific structure and a coupling process adapted to the linker to realize the site-specific conjugation. For example, patent application CN201380025774.3 discloses a preparation scheme for ADCs using a bridging linker; and patent application CN201310025021.4 discloses a preparation scheme for ADCs using a tridentate linker.
MABWELL (SHANGHAI) BIOSCIENCE CO., LTD. and its subsidiary JIANGSU MABWELL HEALTH PHARMACEUTICAL R&D CO., LTD. developed a new technology of linkers, based which they provided a novel disubstituted maleimide linker and an ADC prepared using the same (see WO2018/095422A1). The obtained ADCs, based on the disulfide bond bridging of disubstituted maleimide, have better stability, are less prone to sulfhydryl-ether exchange in vivo, and have good in vivo and in vitro drug activities. However, it has been found that the ADCs prepared following the process disclosed in WO2018/095422A1 tend to have poor product homogeneity, which presumably is caused by relatively severe shedding of small molecule drugs. From the perspective of drug safety, the shedding of small molecule drugs may lead to non-targeted toxicity, and bring a major safety problem to drug development.
Therefore, there is a need in the art to develop a site-specific conjugation process for preparing medicaments, which is compatible with disubstituted maleimide linkers and also is simple, efficient, stable, and has practical significance.
It has been experimentally proved that ADCs products prepared following the process and conditions disclosed in WO2018/095422A1 still cannot meet the safety, effectiveness and stability and other quality requirements for clinical medications, and cannot be commercialized produced either. In order to solve the problem, the object of the present disclosure is to provide a novel preparation method for a disubstituted bridged antibody-drug conjugate.
The present disclosure provides the following technical solutions.
In one aspect, the present disclosure provides a preparation method for a disubstituted bridged antibody-drug conjugate, comprising: subjecting an antibody conjugation product obtained by conjugating an antibody to a compound represented by formula I to hydrolysis:
Preferably, R1 and R2 are independently selected from the group consisting of H and C1-C3 alkyl; or R1 and R2 form a 6-membered heterocyclic ring with one or more heteroatoms selected from the group consisting of O and N, preferably morpholine.
More preferably, Ar is phenyl, 4-methylformamido-substituted phenyl
or 4-formylmorpholine-substituted phenyl
Preferably, X and Y are independently hydrogen, fluoro, trifluoromethyl or methoxy; more preferably, X and Y are independently hydrogen, or X and Y are independently at the meta position on the phenyl ring relative to the maleimide.
Preferably, n is any integer between 1 and 10, preferably between 3 and 5.
Preferably, L-CTD is VC-PAB-MMAE or VC-seco-DUBA.
Preferably, the hydrolysis is performed before or after purification of the antibody conjugation product.
Preferably, the hydrolysis comprises: heating the antibody conjugation product in a hydrolysis buffer at pH 7.4-9.0 at 25-45° C. for 1-24 hours. The hydrolysis buffer may comprise one or more selected from the group consisting of sodium dihydrogen phosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, citric acid, glycine, tromethamine, arginine hydrochloride, hydrochloric acid, phosphoric acid, sodium hydroxide, and potassium hydroxide. Preferably, the hydrolysis buffer is a sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, a potassium dihydrogen phosphate-dipotassium hydrogen phosphate buffer, or a tromethamine buffer.
Preferably, the concentration of the antibody conjugation product in the hydrolysis buffer is 2-30 mg/mL, preferably 5-20 mg/mL.
More preferably, the hydrolysis comprises: heating the antibody conjugation product in the hydrolysis buffer at 25-35° C. for 1-6 hours, preferably 1-3 hours. Preferably, the hydrolysis buffer is at pH 7.5-8.5, preferably pH 7.8. For example, the hydrolysis buffer is a sodium dihydrogen phosphate-disodium hydrogen phosphate buffer at pH 7.5-8.5.
According to one particular embodiment of the present invention, the hydrolysis buffer is: 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.8; 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer+3% arginine, pH 7.8; 50 mM potassium dihydrogen phosphate-dipotassium hydrogen phosphate buffer, pH 7.8; or 50 mM tromethamine-hydrochloric acid buffer, pH 7.8.
Preferably, the antibody is an IgG antibody, preferably IgG1 antibody.
According to one particular embodiment of the present invention, the antibody conjugation product is prepared according to the method disclosed in WO2018/095422A1.
Specifically, the preparation method provided by the present disclosure comprises the following steps:
The preparation method further comprises the following step after step b or after step c:
In the method according to the present invention, the displacement in steps a, b and d is performed through gel chromatography, centrifugal filtration, or ultrafiltration separation.
In step a in the preparation method according to the present invention:
In step b in the preparation method according to the present invention:
In step c in the preparation method according to the present invention:
In step d in the preparation method according to the present invention:
According to one particular embodiment of the present invention, the hydrolysis buffer is: 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.8; 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer+3% arginine, pH 7.8; 50 mM potassium dihydrogen phosphate-dipotassium hydrogen phosphate buffer, pH 7.8; or 50 mM tromethamine-hydrochloric acid buffer, pH 7.8.
In another aspect, the present disclosure provides a disubstituted bridged antibody-drug conjugate obtained using the method of the present invention.
WO2018/0954221A1 describes the following preparation process for ADCs:
Thereby a mixed ADC product of two structures was prepared. It has been experimentally shown that the mixed product has poor stability in vitro and in vivo and has serious infusion-related response during administration. This may be due to the shedding of small molecule drug from the antibody, which may have varying degrees of negative impact on the efficacy and safety of the product.
To solve this problem, a hydrolysis step is introduced in the method according to the present invention, after the step of antibody conjugation to obtain the ADC, and may be performed before or after column chromatography purification of the ADC. For example, the product of each of the steps b and c can be incubated in a hydrolysis buffer at pH 8.0±0.5 (e.g., 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer), so that one molecule of maleimide undergoes an addition reaction with one molecule of water to produce ring-opened carboxylic acid compound, thereby obtaining a uniform ring-opened ADC product.
Experiments proved that after hydrolysis treatment, the structure of the ADC product was more uniform, and the shedding of the small-molecule drugs was obviously reduced during incubation of the uniform ADC product in plasma at 37° C.
In addition, reaction parameters utilized in the steps of antibody reduction, conjugation and chromatography purification operations were further screened, with which a higher purity of the final ADC product was achieved (purity greater than 95% as shown by NR-CE-SDS). Meanwhile, experiments proved that the process of the method can be smoothly scaled-up, and conjugated samples obtained by a scaled-up process have substantially the same physicochemical properties as conjugated samples obtained by a laboratory scale.
Embodiments of the present invention are described in detail below with reference to the attached figures, in which:
1A to 1C show the characterization results of the products obtained with Pertuzumab, via HIC-HPLC, NR-CE-SDS and SEC-HPLC respectively.
2A to 2B show the characterization results of the samples of groups A and B via HIC-HPLC, respectively;
2C to 2D show the characterization results of the samples of groups A and B via SEC-HPLC, respectively;
2E to 2F show the characterization results of the samples of groups A and B via NR-CE-SDS, respectively.
The method according to the present invention provides an ADC product of a more stable quality and more homogeneity as follows:
The “equivalent” mentioned in the present disclosure refers to a molar equivalent with respect to the antibody.
The “compound represented by formula I” mentioned in the present disclosure is used interchangeably herein with “small molecule” or “small molecule compound”, and its structure is exemplified as follows:
“PB” used in the present disclosure refers specifically to a sodium phosphate buffer containing sodium dihydrogen phosphate-disodium hydrogen phosphate as the major ingredients. Sodium dihydrogen phosphate-disodium hydrogen phosphate buffers at different pH values are typically formulated using sodium dihydrogen phosphate and disodium hydrogen phosphate solutions at the same concentration.
General detection methods are as follows:
Formula for DAR calculation:
DAR=Σ(weighted peak area)/100, i.e., DAR=(D0 peak area ratio×0+D1 peak area ratio×1+D2 peak area ratio×2+D3 peak area ratio×3+D4 peak area ratio×4+D5 peak area ratio×5+D6 peak area ratio×6+D7 peak area ratio×7+D8 peak area ratio×8)/100.
Note: DAR values of the molecules of A, B, and C series were determined by the analysis method provided in (a1).
DAR values were calculated as described in (a1).
Note: DAR values of the molecules of L series were determined by the analysis method provided in (a2).
DAR values were calculated as described in (a1).
Note: DAR values of the molecules of D series were determined by the analysis method provided in (a3).
D3%, D4%, and D5% mentioned herein represent percentages the ADCs having DAR values of 3, 4, and 5 accounted for respectively.
The analysis conditions were as follows:
Liquid chromatography-mass spectrometry (LC-MS) is an orthogonal technique for analyzing DAR of and drug distribution in ADCs.
The chromatographic conditions for LC-MS were as follows:
The invention is illustrated below with reference to specific examples. It will be understood by those skilled in the art that these examples are merely illustrative of the invention and do not limit the scope of the invention in any way.
Experimental procedures in the following examples are all conventional ones, unless otherwise specified. Raw materials and reagents used in the following examples are all commercially available products, unless otherwise specified.
a. Screening of the Reducing Agents
Pertuzumab was displaced into 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.4 and diluted to 12.2 mg/ml. An aqueous solution of Dithiothreitol (DTT) or Tricarboxyethylphosphine (TCEP) having a concentration of 1.0 mg/ml in an amount of 8.5 molar equivalents of the antibody was added thereto, and the mixture obtained was reacted at 35° C. for 1.5 hours. Then, C-3 previously dissolved in dimethylacetamide (DMA) was added into the mixture which was then stirred at 25° C. for 1 hour in the 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer for conjugation. When the conjugation completed, the solution obtained was replaced with 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.4, which was then sampled for detection by HIC-HPLC. The results are shown in Table 1-1.
The results showed that there was no significant difference between the final results obtained using the reducing agents TCEP and DTT.
b. Screening of the Amounts of Reducing Agents
Pertuzumab was displaced into 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.4 and diluted to 12 mg/ml. Aqueous solutions of TECP and DTT in amounts of different equivalents of the antibody were added thereto, and the mixture obtained was reacted at 35° C. for 1.5 hours. The reaction systems were sampled for detection by D-SEC, and the amounts of the antibody remained unreduced therein were analyzed. The results are shown in Table 1-2.
The results showed that the antibody was fully reduced when TCEP in an amount of ≥6.5 equivalents of the antibody or DTT in an amount of ≥5.5 equivalents of the antibody was used, and a preferred equivalent range for the reducing agents was 6.5-10.
a. Screening of the Equivalents of Small Molecules
Pertuzumab was displaced into 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.4, and diluted to 12 mg/ml. An aqueous solution of TECP at a concentration of 10 mg/ml was added thereto, and the mixture obtained was incubated at 35° C. for 2 hours. Afterwards, the reduced pertuzumab was displaced into 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate+100 mM NaCl+2 mM EDTA buffer, pH 7.4, and diluted to 8 mg/ml. Small molecule compound C-3 in the range of 4.5-6 equivalents was dissolved in organic solvent DMA and then added into the reaction system, in which the volume of DMA was made to account for 10% of the whole reaction volume. The reaction system obtained was heated and stirred for 60 min. When the reaction completed, the antibody-drug conjugates were displaced into 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.4, using an ultrafiltration centrifugal tube, to remove the excessive compound C-3 for the conjugation reaction and reduce the content of DMA solvent in the solution. The components of the antibody-drug conjugates were analyzed by hydrophobic chromatography HIC-HPLC, and the results are shown in Table 2-1.
The results showed that when the small molecule was reacted in an amount of 5.5±0.5 equivalent of the antibody, the reaction system was relatively clear, and the proportions of the main peak (D4) shown in the HIC-HPLC spectra were relatively higher.
b. Screening of the Reaction pH:
Pertuzumab was displaced into 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.4, and diluted to 12 mg/ml. An aqueous solution of TECP at a concentration of 10 mg/ml was added thereto, and the mixture obtained was incubated at 35° C. for 2 hours. Afterwards, the reduced pertuzumab was displaced into 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate+100 mM NaCl+2 mM EDTA buffer, at a pH value in the range of 6.8-7.8, and diluted to 5 mg/ml. Small molecule compound C-3 in an amount of 5.0 equivalents was dissolved in organic solvent DMA and then added into the reaction system in which the volume of DMA was made to account for 10% of the whole reaction volume. The reaction system obtained was heated and stirred for 60 min. When the reaction completed, the antibody-drug conjugates were displaced into 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.4. The components of the antibody-drug conjugates were analyzed by hydrophobic chromatography HIC-HPLC, and NR-CE-SDS and the results are shown in Table 2-2.
The results showed that when a pH value in the range of 6.5-7.6 was used in the reaction, the reaction system was relatively clear, the proportions of the main peak (D4) shown in the HIC-HPLC spectra were relatively higher, and the purity determined by NR-CE-SDS was good.
c. Screening of the Reaction Co-Solvents and Percentages they Account for
Pertuzumab was reduced as described in section b in this Example. When the reduction completed, the antibody was displaced, diluted to about 5.0 mg/ml, and samples of the diluted antibody solution obtained were grouped. As shown in Table 2-3, compound C-3 was dissolved to 20 mg/mL in one of organic solvents N,N-Dimethylacetamide (DMA), Dimethylsulfoxide (DMSO), and Acetonitrile (ACN) in different groups. Then, volumes of the compound C-3 solutions needed to be added into the reaction systems of C-3 and the antibody were calculated according to the amount of C-3 which was 5 molar equivalents of the antibody, and the respective solvents were supplemented to the reaction systems of the two to achieve the volume percentages (based on the final reaction systems) as shown in Table 2-3. The reaction systems were stirred at 25° C. for 1 hour. Then the antibody-drug conjugates were displaced into 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.4, and sampled respectively. The components of the antibody-drug conjugates were analyzed by hydrophobic chromatography HIC-HPLC and NR-CE-SDS and the results are shown in Table 2-3.
The results showed that DMA, DMSO and ACN all could be used as co-solvents for this step of the process, but DMA and DMSO were preferred. The conjugation reaction systems were clear and the respective reaction results were good when the volume of co-solvent DMA accounted for more than 4% and no more than 30% of the reaction system volume, or the volumes of co-solvents DMSO and ACN accounted for more than 6% and no more than 30% of the reaction system volume.
d. Screening of the Antibody Concentrations:
Pertuzumab was reduced as described in section a in this Example. When the reduction completed, the antibody was displaced into 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate+100 mM NaCl+2 mM EDTA buffer, pH 7.4, and diluted to a concentration in the range of 2.5-13 mg/ml. A solution of Compound C-3 at 20 mg/ml was formulated in DMA, and was added into the reaction system in an amount of 5 equivalents of the antibody, and then the reaction system was stirred at 25° C. for 1 hour. When the conjugation completed, the solution system was replaced with 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.4, the components of the antibody-drug conjugates were analyzed by hydrophobic chromatography HIC-HPLC and NR-CE-SDS, and the results are shown in Table 2-4.
As shown in Table 2-4, good conjugation results were obtained at antibody concentrations of 3.5-10 mg/ml. Therefore, the antibody concentration for the antibody-drug conjugates reaction can be selected to be 3.5-10 mg/ml.
e. Screening of the Reaction Temperatures:
Pertuzumab was reduced as described in section a in this Example. When the reduction completed, the antibody was displaced into 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate+100 mM NaCl+2 mM EDTA buffer, pH 7.4, and diluted to a concentration of about 5 mg/ml. The reaction system was pre-warmed to 25±10° C., followed by the addition of a solution of compound C-1 in DMA. Then the reaction system was stirred at respective temperature shown below for 1 hour. When the reaction completed, the solution system was replaced with 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.4, the components of the antibody-drug conjugates were analyzed by hydrophobic chromatography HIC-HPLC and NR-CE-SDS, and the results are shown in Table 2-5.
The results showed that the reaction results were all good at a temperature in the range of 25±10° C. Thus, 25±10° C. is a selectable temperature range.
a. Screening of Reaction Temperatures, pH and Time:
Pertuzumab was reduced and conjugated as described in section a in Example 2. When the conjugation completed, the antibody-drug conjugates were displaced into 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, at a pH value in the range of 7.4-9.0. The reaction solutions were stirred at a temperature in the range of 25-45° C. for 3 h, and observed for color change. The results are shown in Table 3-1.
The results showed that the antibody-drug conjugates could be hydrolyzed smoothly at a temperature of 35±10° C. and pH 8.0±0.5 with a hydrolysis time ≥2 hours.
b. Screening of Small Molecules:
Pertuzumab was reduced and conjugated as described in section a in Example 2. Conjugated samples obtained using different small molecule compounds were subjected to hydrolysis at 35° C. for a time period in the range of 3-18 hours, in 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.8. The hydrolysis systems were sampled at different time points, and detected by Native MS. The percentages of hydrolyzed ADCs in the samples were detected, and the results are shown in Table 3-2.
The results showed that when the small molecule compounds C-1 and C-3 were used, the conjugated samples were hydrolyzed all most completely within 3 hours or 6 hours; and the conjugated samples obtained using A-2, A-4, B-6 and B-7 could be hydrolyzed smoothly in the buffer at 35° C., but with a relatively low percentage of hydrolysis.
c. Screening of Hydrolysis Systems:
Pertuzumab was reduced and conjugated as described in section a in Example 2. Conjugated samples obtained using different small molecule compounds were displaced to different hydrolysis solution systems (A: 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.8; B: 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer+3% arginine, pH 7.8; C: 50 mM potassium dihydrogen phosphate-dipotassium hydrogen phosphate buffer, pH 7.8; and D: 50 mM tromethamine-hydrochloric acid buffer, pH 7.8) for hydrolysis. Then the hydrolysis systems were sampled at different time points, and detected by Native MS. The percentages of hydrolyzed ADCs in the samples were detected, and the results are shown in Table 3-3.
The results showed that when the small molecule compounds C-3, C-1 and A-3 were used, the conjugated samples were hydrolyzed rapidly in all above buffers, with a faster hydrolysis speed in the buffer containing Arginine. While the conjugated samples obtained using compounds A-4 and B-7 required more time for being hydrolyzed at the same pH values.
d. Screening of ADC Concentrations
Pertuzumab was reduced and conjugated as described in section a in Example 2. Conjugated samples obtained were displaced to a hydrolysis system of 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.8, to achieve different concentrations. The hydrolysis systems were sampled at different time points, and detected by Native MS. The percentages of hydrolyzed ADCs in the samples were detected, and the results are shown in Table 3-4.
The results showed that when the concentration of ADCs was less than 5 mg/mL or more than 20 mg/mL, the hydrolysis percentages were still less than those when the concentration of ADCs was in the range of 5-20 mg/mL, even the hydrolysis reaction time was prolonged.
Conductivity adjustment was performed on the hydrolyzed antibody-drug conjugates using high-concentration ammonium sulfate. Conjugated samples were filtered and loaded onto chromatographic columns with different fillers shown below, after their conductivity was adjusted to be close to the conductivity value of the respective start buffer. The loaded samples were eluted using the start buffer, and finally the purified samples were pooled and collected.
a. Screening of the Fillers:
Pertuzumab was reduced and conjugated as described in section a in Example 2. Conjugated samples obtained were displaced to 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.8 and incubated for longer than 3 hours at 35° C. The obtained antibody-drug conjugates were used for filler screening. Column chromatography was performed on the fillers of different ligands and different supports under the same chromatography condition, and the types of the screened fillers and the screening results are shown in Table 4-1.
The results showed that Butyl Sepharose 4FF, Butyl Sepharose HP, and Capto Phenyl Impres could be used to purify the conjugated sample. Thus, the conjugated sample can be purified using Butyl Sepharose 4FF and by a protocol enabling the flowing through of D3, taking into account the yield and sample properties.
b. Screening of Salts Required for Chromatography and their Concentrations:
Pertuzumab was reduced and conjugated as described in section a in Example 2. Conjugated samples obtained were displaced to 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.8 and diluted to 12 mg/mL. When hydrolysis at 35° C. for 3 hours completed, solutions of 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate containing sodium chloride at a concentration in the range of 1.0-2.0 mol/L (as the salt required for chromatography), or solutions of 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate containing ammonium sulfate at a concentration in the range of 0.325-0.45 mol/L (as the salt required for chromatography), were used as the buffers for the stationary phase; and a solution of 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate was used as the eluting solution, and column chromatography using Butyl Sepharose 4FF was performed on the conjugated samples of pertuzumab to a compound subjected to hydrolysis. The results of separation were shown in Table 4-2.
The results showed that both sodium chloride and ammonium sulfate could be used in the column chromatography process, and 0.45 mol/L ammonium sulfate was preferred as the salt in the chromatography buffer for the stationary phase, taking into account the yield and sample heterogeneity.
The process was scaled up to ≥100 mg of the antibody and evaluated for its scalability, and the conjugation conditions in the process were further adjusted.
Pertuzumab in an amount of ≥100 mg was displaced into 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.4 and diluted to a protein concentration of 12 mg/ml. An aqueous solution of TECP at 10 mg/ml (TCEP was in an amount of 6.5 equivalents of the antibody) was added to the buffer, and the obtained reaction system was incubated at 35° C. for 2 hours. Then, the reaction system was replaced with 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate+100 mM NaCl+2 mM EDTA buffer, pH 7.2, and the antibody was diluted to 8 mg/ml. Small molecule compound C-3 in an amount of equivalents shown in the Table below and previously dissolved in DMA was then added into the buffer, followed by the further addition of DMA to make the volume of DMA account for 10% of the whole reaction volume. The reaction system obtained was heated and stirred for 1 hour. When the conjugation completed, the reaction system was replaced with 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.8, in which the concentration of the antibody-drug conjugates were diluted to 12 mg/mL. The solution of the antibody-drug conjugates obtained was heated at 35° C. for 3 hours, and detected by HIC-HPLC. Results were shown in Table 5-1.
The results showed that with a scale ≥100 mg, the method according to the present invention could obtain conjugation results substantially the same as those obtained by a laboratory process, and the conjugation process could be smoothly scaled-up.
Pertuzumab was displaced into 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.4, and diluted to a protein concentration of about 12 mg/ml. An aqueous solution of TECP at 10 mg/ml (TCEP was in an amount of 6.5 equivalents of the antibody) was added to the buffer, and the obtained reaction system was incubated at 35° C. for 2 hours. Then, the reaction system was replaced with 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate+100 mM NaCl+2 mM EDTA buffer, pH 7.2, and the antibody was diluted to 8 mg/ml. Small molecule compound A-1 or C-3 (0.6 eq) dissolved in DMA which was also used as the co-solvent was then added into the buffer, and the reaction system obtained was heated and stirred for 1 hour. Then through centrifugal ultrafiltration the reaction system was replaced with 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.8, in which the concentration of the antibody-drug conjugates were diluted to 12 mg/mL. The solution of the antibody-drug conjugates obtained was incubated at 35° C. for 3 hours. When the hydrolysis completed, with conductivity adjusted using 3 M ammonium sulfate, the solution was purified through chromatography. For performing the chromatography, Butyl Sepharose 4FF filler, 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer (containing 0.45 M ammonium sulfate) (i.e., the start buffer), and 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate as the eluent were used, with the pH values of both the start buffer and the eluent were set to 7.5. The resulting purified solution was concentrated and replaced with 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.4, and then was detected by HIC-HPLC, SEC-HPLC, and
NR-CE-SDS respectively. The results are shown in Table 6-1.
As can be seen from the data in the Table, compounds A-1 and C-3 both were suitable for the conjugation process, and the results were well consistent.
IgG1 antibodies against different targets including HER2 (Pertuzumab) and CD20 (Rituximab) were conjugated to small molecule compounds according to the process as described in Example 6, and then the prepared antibody-drug conjugates were detected. The results showed the process had good applicability to IgG1 antibodies against different targets. The results are shown in Table 7-1 and
It can be seen that the IgG1 antibodies having different antibody sequences against different targets, are all suitable for the ADC preparation method provided by the present disclosure.
According to the process as described in Example 6, 2.5 g of Pertuzumab was reduced and conjugated to the small molecule compound C-1 in 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate+100 mM NaCl+2 mM EDTA buffer, pH 7.2. The antibody-drug conjugates obtained were displaced in a buffer (pH 7.8) using UF/DF, and the final product obtained was sampled and grouped into group A and group B.
The sample in group A was directly purified by Butyl Sepharose 4FF filler, and the resulting purified solution was concentrated and replaced with 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.4, to obtain a solution having a concentration of 10 mg/mL (solution A). The sample in group B was incubated at 35° C. for 3 hours and then like the sample in group A, was purified by Butyl Sepharose 4FF filler and the resulting purified solution was concentrated and replaced with 50 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer, pH 7.4, to obtain a solution having a concentration of 10 mg/mL (solution B).
a. Evaluation of Physicochemical Properties:
The solution A and solution B were sampled and subjected to analysis by mass spectrometry, non-reducing electrophoresis (NR-CE-SDS), hydrophobic chromatography, and SEC-HPLC, respectively. The results showed that although the purities measured by HIC-HPLC and SEC-HPLC of both solution A and solution B increased due to the purification processing, solution B had a higher purity measured by NR-CE-SDS. The results are shown in Table 8-1 and
b. Evaluation of In Vivo Stability in Plasma:
Solution A and solution B were sampled and diluted to 1 mg/ml in physiological saline and then administered to cynomolgus monkeys at a dose of 6 mg/kg. Blood was collected at 30 min, 1 h, 2 h, 4 h, 12 h, 24 h, 48 h, 72 h and 128 h after administration, respectively. Calibrated MMAE (MCE: HY-15162) was used as the standard, to detect free MMAE in the plasma samples. The results showed that while the maximum peak of free MMAE detected for both solution A and solution B appeared at 24 h, the exposed amounts of free MMAE in the plasma samples from the animals administered with solution B were significantly lower than those in the plasma samples from the animals administered with solution A, indicating that the conjugated sample in group B which were subjected to hydrolysis were more stable in vivo. The results are shown in Table 8-2.
c. Detection of Biochemical Indexes In Vivo
2.5-year old or older cynomolgus monkeys were grouped randomly into 2 groups, each including one male and one female cynomolgus monkeys. Solution A and solution B were sampled and diluted to 1 mg/ml in physiological saline and then administered to the cynomolgus monkeys by intravenous dripping at a dose of 6 mg/kg. Seven days after administration, blood biochemical indexes of the monkeys were analyzed. The results showed that much more abnormal indexes were detected from solution A than from solution B, to a more severe extent.
The above description of the embodiments of the present disclosure is not intended to limit the present disclosure, and those skilled in the art may make various changes and modifications to the present disclosure without departing from the spirit of the present disclosure, which should fall within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
202011046911.X | Sep 2020 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2021/121825 | 9/29/2021 | WO |