The present application relates to a preparation method of a porous oxide and belongs to the field of material synthesis.
Porous oxides have important applications in basic research and industrial production. A porous oxide is an oxide system composed of oxygen and other elements. Porous oxides can have important applications in catalysis, petroleum cracking, gas separation, drug carriers, and other fields. Since porous oxides are amorphous materials, the synthesis control of porous oxides is complicated. At present, there is a lack of effective means for synthesis control. The synthesis control mainly includes the control of pore size and mesopore and micropore distribution of a porous oxide. Traditionally, a porous oxide is synthesized mainly by a sol-gel method using a soft template, that is, a raw material is mixed with a surfactant, a resulting mixture is allowed to form a micelle in a solution system, and then the raw material is hydrolyzed and roasted to obtain the porous oxide. However, in this method, it is difficult to control the size of the micelle during synthesis and control the pore size and specific surface area (SSA) of the porous oxide during roasting, hydrolysis rates of some parts of the raw material do not match with each other, and the use of the surfactant leads to a high cost.
According to an aspect of the present application, a preparation method of a porous oxide is provided. The porous oxide prepared by the preparation method has characteristics such as uniform and adjustable pore sizes and controllable distribution of mesopores, micropores, and macropores.
The porous oxide of the present application is obtained by roasting a polyester polyol polymer, where the polyester polyol refers to a new polyester polyol polymer obtained by subjecting an oxygen-containing acid ester and a polyol to a transesterification reaction. The traditional polyester polyol is obtained by subjecting an organic acid and a polyol to a dehydration esterification reaction.
According a first aspect of the present application, a preparation method of a porous oxide is provided, including preparing the porous oxide with a polyester polyol as a raw material.
Optionally, the preparation method includes: in an atmosphere including a gas A, roasting a raw material including the polyester polyol to obtain the porous oxide, where the gas A is at least one selected from the group consisting of air, nitrogen, an inert gas, and oxygen.
Optionally, the atmosphere during the roasting is one or a mixture of two or more selected from the group consisting of air, oxygen, and nitrogen.
Optionally, the roasting is conducted at 350° C. to 900° C. for 1.5 h to 25 h.
Optionally, during the roasting, an upper limit of the temperature is independently selected from the group consisting of 900° C., 850° C., 800° C., 750° C., 700° C., 630° C., 600° C., 550° C., 500° C., 480° C., 475° C., 445° C., 420° C., 400° C., and 375° C.; and a lower limit of the temperature is independently selected from the group consisting of 350° C., 850° C., 800° C., 750° C., 700° C., 630° C., 600° C., 550° C., 500° C., 480° C., 475° C., 445° C., 420° C., 400° C., and 375° C.
Optionally, during the roasting, an upper limit of the roasting time is independently selected from the group consisting of 25 h, 20 h, 18 h, 15 h, 12 h, 9 h, 8 h, 7 h, 6 h, 4 h, 3 h, and 2 h; and a lower limit of the roasting time is independently selected from the group consisting of 1.5 h, 20 h, 18 h, 15 h, 12 h, 9 h, 8 h, 7 h, 6 h, 4 h, 3 h, and 2 h.
Optionally, the preparation method includes: subjecting a raw material including an oxygen-containing acid ester and a polyol to a transesterification reaction to obtain the polyester polyol.
Optionally, the oxygen-containing acid ester is at least one selected from the group consisting of a compound with a chemical formula shown in formula I and a compound with a chemical formula shown in formula II:
M(OR1)n1 formula I
O═P(OR2)n2 formula II
where M is a metallic element or a non-metallic element excluding P; R1 and R2 each are independently at least one selected from the group consisting of C1-C8 alkyl groups; and n1 is 2 to 8 and n2 is 2 to 8.
Optionally, n1 is 2, 3, 4, 5, 6, 7, or 8.
Optionally, n2 is 3.
Optionally, M is at least one selected from the group consisting of B, Si, Ge, Al, Ti, Fe, Sn, V, Ga, Zr, Cr, Sb, and W.
Optionally, M is selected from the group consisting of B, Si, Ge, Al, Ti, Fe, Sn, V, Ga, Zr, Cr, Sb, and W.
Optionally, R1 and R2 in formula I each are independently at least one selected from the group consisting of C1-C4 alkyl groups.
Optionally, the oxygen-containing acid ester includes at least one selected from the group consisting of trimethyl borate, triethyl borate, tripropyl borate, tributyl borate, tri-n-hexyl borate, triisooctyl borate, trioctyl borate, tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (TEOS), tetrapropyl orthosilicate (TPOS), tetrabutyl orthosilicate (TBOS), ethyl orthogermanate, triethyl phosphate (TEP), tripropyl phosphate (TPP), tributyl phosphate (TBP), tri-n-pentyl phosphate, trihexyl phosphate (THP), aluminum triethoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum tert-butoxide, tetraethyl titanate, tetraisopropyl titanate (TIPT), tetrabutyl titanate, tetrahexyl titanate, tetraisooctyl titanate, tetrabutyl ferrite, tetrabutyl stannate, butyl orthovanadate, gallium ethoxide, tetra-n-propyl zirconate, tetrabutyl zirconate, tert-butyl chromate, ethyl antimonite, butyl antimonite, tungsten ethoxide, and tungsten isopropoxide.
Optionally, a molar ratio of the oxygen-containing acid ester to the polyol meets the following condition:
Optionally, an upper limit of the molar ratio of the oxygen-containing acid ester to the polyol is selected from the group consisting of 0.85 n3/x, 0.9 n3/x, 0.95 n3/x, 1 n3/x, 1.05 n3/x, 1.1 n3/x, 1.15 n3/x, and 1.2 n3/x; and a lower limit of the molar ratio of the oxygen-containing acid ester to the polyol is selected from the group consisting of 0.8 n3/x, 0.85 n3/x, 0.9 n3/x, 0.95 n3/x, 1 n3/x, 1.05 n3/x, 1.1 n3/x, and 1.15 n3/x, where x represents a mole number of alkoxy in each mole of the oxygen-containing acid ester; and n3 represents a mole number of hydroxyl in each mole of the polyol.
Optionally, there are no less than two hydroxyl groups in the polyol.
Optionally, the polyol includes at least one selected from the group consisting of ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol (TEG), tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, polyethylene glycol (PEG) 200, PEG 400, PEG 600, PEG 800, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol (1,4-CHDM), 1,4-benzenedimethanol, glycerol, trimethylolpropane, pentaerythritol, xylitol, and sorbitol.
Optionally, the polyol has a general formula of R2—(OH)x, where x≥2.
Optionally, the molar ratio of the oxygen-containing acid ester to the polyol is (0.8-1.2) n/x,
Optionally, the transesterification reaction is conducted in the presence of a transesterification catalyst.
Optionally, the transesterification catalyst is added at an amount of 0.1 wt % to 5 wt % of an amount of the oxygen-containing acid ester.
Optionally, an upper limit of the mass percentage of the amount of the transesterification catalyst in the amount of the oxygen-containing acid ester is selected from the group consisting of 0.2 wt %, 0.5 wt %, 0.8 wt %, 1.0 wt %, 1.5 wt %, 2.0 wt %, 2.5 wt %, 3.0 wt %, 3.5 wt %, 4.0 wt %, 4.5 wt %, and 5.0 wt %; and a lower limit of the mass percentage is selected from the group consisting of 0.1 wt %, 0.2 wt %, 0.5 wt %, 0.8 wt %, 1.0 wt %, 1.5 wt %, 2.0 wt %, 2.5 wt %, 3.0 wt %, 3.5 wt %, 4.0 wt %, and 4.5 wt %.
Optionally, the transesterification catalyst is at least one selected from the group consisting of an acidic catalyst and a basic catalyst.
Optionally, the acidic catalyst includes at least one selected from the group consisting of alcohol-soluble acids, solid acids, alkoxyaluminum, phenoxyaluminum, tetrabutyl stannate, alkoxytitanium, alkoxyzirconium, ethyl antimonite, and butyl antimonite; and
Optionally, the alcohol-soluble acids are acids that are soluble in alcohols.
Optionally, the alcohol-soluble bases are bases that are soluble in alcohols.
Optionally, the alcohol-soluble acids include sulfuric acid, sulfonic acid, or the like.
Optionally, the alcohol-soluble bases include NaOH, KOH, NaOCH3, organic bases, or the like.
Optionally, the transesterification catalyst is a basic catalyst including alcohol-soluble bases (such as NaOH, KOH, NaOCH3, and organic bases) and a variety of solid base catalysts; or an acidic catalyst including alcohol-soluble acids (such as sulfuric acid and sulfonic acid), a variety of solid acid catalysts, alkoxyaluminum, phenoxyaluminum, tetrabutyl stannate, alkoxytitanium, alkoxyzirconium, ethyl antimonite, and butyl antimonite. The transesterification catalyst is used at an amount of 0.1 wt % to 5 wt % of an amount of the oxygen-containing acid ester.
Optionally, the inert atmosphere is at least one selected from the group consisting of nitrogen and an inert gas.
Optionally, the inert atmosphere is nitrogen.
Optionally, the transesterification reaction is conducted under stirring.
Optionally, an upper limit of the temperature for the transesterification reaction is selected from the group consisting of 85° C., 90° C., 100° C., 110° C., 120° C., 130° C., 140° C., 150° C., 160° C., 170° C., 175° C., and 180° C.; and a lower limit of the temperature for the transesterification reaction is selected from the group consisting of 80° C., 85° C., 90° C., 100° C., 110° C., 120° C., 130° C., 140° C., 150° C., 160° C., 170° C., and 175° C.
Optionally, an upper limit of the reaction time for the transesterification reaction is selected from the group consisting of 3 h, 4 h, 5 h, 6 h, 7 h, 8 h, 9 h, and 10 h; and a lower limit of the reaction time for the transesterification reaction is selected from the group consisting of 2 h, 3 h, 4 h, 5 h, 6 h, 7 h, 8 h, and 9 h.
Optionally, a conversion rate of the transesterification reaction is 60% to 80%.
Optionally, after the transesterification reaction is completed, vacuum distillation is conducted.
Optionally, the vacuum distillation is conducted for 0.5 h to 5 h at a temperature of 170° C. to 230° C. and a vacuum degree of 0.01 KPa to 5 KPa.
Optionally, during the vacuum distillation, an upper limit of the vacuum degree is selected from the group consisting of 0.02 KPa, 0.05 KPa, 0.1 KPa, 0.5 KPa, 1 KPa, 2 KPa, 3 KPa, 4 KPa, 4.5 KPa, and 5 KPa; and a lower limit of the vacuum degree is selected from the group consisting of 0.01 KPa, 0.02 KPa, 0.05 KPa, 0.1 KPa, 0.5 KPa, 1 KPa, 2 KPa, 3 KPa, 4 KPa, and 4.5 KPa.
Optionally, during the vacuum distillation, an upper limit of the temperature is selected from the group consisting of 175° C., 180° C., 190° C., 200° C., 210° C., 220° C., 225° C., and 230° C.; and a lower limit of the temperature is selected from the group consisting of 170° C., 175° C., 180° C., 190° C., 200° C., 210° C., 220° C., and 225° C.
Optionally, during the vacuum distillation, an upper limit of the time is selected from the group consisting of 0.8 h, 1 h, 2 h, 3 h, 4 h, 4.5 h, and 5 h; and a lower limit of the time is selected from the group consisting of 0.5 h, 0.8 h, 1 h, 2 h, 3 h, 4 h, and 4.5 h.
Optionally, a conversion rate of the transesterification reaction is greater than 90%.
Optionally, the method includes:
As a specific embodiment, the method includes:
According to a second aspect of the present application, a porous oxide is provided, where the porous oxide is at least one selected from the group consisting of porous oxides prepared by the preparation method described above.
Optionally, the porous oxide has a pore size of 0.4 nm to 80 nm and an SSA of 150 m2/g to 1,500 m2/g.
Optionally, the porous oxide includes a micropore with a pore size of 0.4 nm to 2.0 nm.
Optionally, the porous oxide includes a mesopore with a pore size of 2.0 nm to 50 nm.
Optionally, the porous oxide includes a macropore with a pore size of 50 nm to 80 nm.
Optionally, the pore sizes and the mesopore and micropore distribution of the porous oxide are determined by physical adsorption methods, where the pore size of the micropore is analyzed by NLDFT and H-K methods, the pore size of the mesopore is analyzed by BJH and NLDFT methods, and the mesopore and micropore distribution is analyzed by a t-PLOT method.
In particular, the porous oxide prepared by the preparation method of the present application may include at least one selected from the group consisting of a micropore, a mesopore, and a macropore.
Optionally, the porous oxide prepared by the preparation method of the present application includes a micropore with a uniform pore size.
Optionally, the porous oxide prepared by the preparation method of the present application includes a mesopore with a uniform pore size.
Optionally, the porous oxide prepared by the preparation method of the present application includes a macropore with a uniform pore size.
Optionally, the porous oxide prepared by the preparation method of the present application includes a micropore with a uniform pore size and a mesopore with a uniform pore size.
In particular, a molecular size of the polyol in the present application can be controlled to obtain porous oxides with different pore sizes.
In particular, the controllable distribution of mesopores, micropores, and macropores in the present application means that the chain lengths of the polyol molecules in the present application can be controlled to obtain a porous oxide with different pore sizes.
Optionally, the porous oxide in the present application includes any one selected from the group consisting of a metallic oxide, a non-metallic oxide, and a metallic and non-metallic hybrid oxide.
In the present application, “C1-C8” refers to a number of carbon atoms in a group.
In the present application, the “alkyl group” is a group obtained by removing any hydrogen atom on an alkane molecule.
In the present application, the “initial decomposition temperature” refers to a temperature at which a significant weight loss peak of the polyester polyol occurs during thermogravimetric analysis (TGA).
Possible beneficial effects of the present application:
The present application will be described in detail below with reference to examples, but the present application is not limited to these examples.
Unless otherwise specified, the raw materials in the examples of the present application are all purchased from commercial sources.
Analysis methods in the examples of the present application are as follows:
TGA is conducted using a TGA analyzer with a model of TAQ-600 produced by TA Instruments, where a flow rate of nitrogen is 100 mL/min, and a temperature is raised at a heating rate of 10° C./min to 700° C.
In an embodiment of the present application, the physical adsorption and pore distribution of a product are analyzed by the ASAP2020 automatic physical instrument of Micromeritics.
In an embodiment of the present application, a TEM image of a product is acquired by Thermo Fisher Themis™ ETEM.
In an embodiment of the present application, a conversion rate of the transesterification reaction is calculated in the following way:
According to a mole number n of alcohol distilled during the reaction, a number of groups participating in the transesterification reaction is determined to be n, and a total mole number of the ester in the reaction raw material is m, such that the conversion rate of the transesterification reaction is: n/xm, where x depends on a number of alkoxy groups in the esters that are attached to a central atom.
According to an embodiment of the present application, a preparation method of the porous oxide, a polyester polyol polymer, and a preparation method of the polyester polyol polymer are provided, and the preparation method of the porous oxide polymer includes the following steps:
a) An oxygen-containing acid ester, a polyol, and a transesterification catalyst are thoroughly mixed in a three-necked flask, the three-necked flask is connected to a distillation device, nitrogen is introduced for protection, and a resulting mixture is subjected to a transesterification reaction for 2 h to 10 h at 80° C. to 180° C. under stirring, where a conversion rate of the transesterification reaction is 60% to 80%.
b) The device obtained after the reaction in step a) is connected to a water pump or oil pump, and a resulting reaction system is subjected to vacuum distillation for 0.5 h to 5 h at a vacuum degree of 0.01 KPa to 5 KPa and a temperature of 170° C. to 230° C. to make the transesterification reaction more complete, where a conversion rate of the transesterification reaction is greater than 90%.
Optionally, the oxygen-containing acid ester in step a) has a general formula of M(OR)n, where M is selected from the group consisting of B, Si, Ge, Al, Ti, Fe, Sn, V, Ga, Zr, Cr, Sb, and W and R is an alkyl group with 1 to 8 carbon atoms; and the oxygen-containing acid ester includes any one or a mixture of two or more selected from the group consisting of trimethyl borate, triethyl borate, tripropyl borate, tributyl borate, tri-n-hexyl borate, triisooctyl borate, trioctyl borate, TMOS, TEOS, TPOS, TBOS, ethyl orthogermanate, TEP, TPP, TBP, tri-n-pentyl phosphate, THP, aluminum triethoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum tert-butoxide, tetraethyl titanate, TIPT, tetrabutyl titanate, tetrahexyl titanate, tetraisooctyl titanate, tetrabutyl ferrite, tetrabutyl stannate, butyl orthovanadate, gallium ethoxide, tetra-n-propyl zirconate, tetrabutyl zirconate, tert-butyl chromate, ethyl antimonite, butyl antimonite, tungsten ethoxide, and tungsten isopropoxide.
Optionally, the polyol in step a) has a general formula of R—(OH)x, where x≥2; and the polyol includes any one or a mixture of two or more selected from the group consisting of EG, DEG, TEG, tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, PEG 200, PEG 400, PEG 600, PEG 800, 1,4-cyclohexanediol, 1,4-CHDM, 1,4-benzenedimethanol, glycerol, trimethylolpropane, pentaerythritol, xylitol, and sorbitol.
Optionally, a molar ratio of the oxygen-containing acid ester to the polyol in step a) is:
M(OR)n/R—(OH)x=(0.8−1.2)x/n.
Optionally, the transesterification catalyst used in step a) is a basic catalyst including alcohol-soluble bases (such as NaOH, KOH, NaOCH3, and organic bases) and a variety of solid base catalysts; or an acidic catalyst including alcohol-soluble acids (such as sulfuric acid and sulfonic acid), a variety of solid acid catalysts, alkoxyaluminum, phenoxyaluminum, tetrabutyl stannate, alkoxytitanium, alkoxyzirconium, ethyl antimonite, and butyl antimonite. The transesterification catalyst is used at an amount of 0.1 wt % to 5 wt % of an amount of the oxygen-containing acid ester.
Optionally, the reaction in step a) is conducted for 2 h to 10 h at 80° C. to 180° C. under nitrogen protection.
Optionally, a conversion rate of the transesterification reaction in step a) is 60% to 80%.
Optionally, the step b) is conducted under vacuum distillation at a vacuum degree of 0.01 KPa to 5 KPa.
Optionally, the reaction in step b) is conducted at 170° C. to 230° C. for 0.5 h to 5 h.
Optionally, a conversion rate of the transesterification reaction in step b) is greater than 90%.
c) A product obtained after the reaction in step b) is roasted at 350° C. to 900° C. for 1.5 h to 20 h in an atmosphere that is one or a mixture of two or more selected from the group consisting of air, oxygen, and nitrogen.
10 g of 1,3-propanediol, 6.84 g of TEOS, and 5 g of TMOS were added to a three-necked flask, a distillation device was connected, and 0.12 g of concentrated sulfuric acid (mass fraction: 98%) was added dropwise as a catalyst under stirring; a temperature was raised to 100° C. under nitrogen protection to allow a reaction for 6 h, where a large amount of methanol and ethanol were distilled out and a conversion rate of the transesterification reaction was 75%; then a vacuum device was connected, and vacuum distillation was conducted to allow a reaction for 1 h at a vacuum degree of 1 KPa and a temperature of 170° C.; the reaction was stopped, a resulting reaction system was naturally cooled to room temperature, and a sample was taken out, where a conversion rate of the transesterification reaction was 93%; and the sample was roasted at 550° C. for 8 h in an air atmosphere to obtain a silicon porous oxide.
5 g of EG and 8.7 g of aluminum triethoxide were added to a three-necked flask, where the aluminum triethoxide served as both an oxygen-containing acid ester and a transesterification catalyst; a distillation device was connected, and a temperature was raised to 175° C. under nitrogen protection to allow a reaction for 5 h, where a large amount of ethanol was distilled out and a conversion rate of the transesterification reaction was 73%; then a vacuum device was connected, and vacuum distillation was conducted to allow a reaction for 1 h at a vacuum degree of 0.1 KPa and a temperature of 210° C.; the reaction was stopped, a resulting reaction system was naturally cooled to room temperature, and a sample was taken out, where a conversion rate of the transesterification reaction was 92%; and the sample was roasted at 750° C. for 4 h in an oxygen atmosphere to obtain an aluminum porous oxide.
10 g of 1,4-benzenedimethanol, 5.07 g of tripropyl borate, and 4 g of tetrapropyl titanate were added to a three-necked flask, where the tetrabutyl titanate served as both an oxygen-containing acid ester and a transesterification catalyst; a distillation device was connected, and a temperature was raised to 180° C. under stirring and nitrogen protection to allow a reaction for 6 h, where a large amount of propanol was distilled out and a conversion rate of the transesterification reaction was 75%; then a vacuum device was connected, and vacuum distillation was conducted to allow a reaction for 1 h at a vacuum degree of 1 KPa and a temperature of 230° C.; the reaction was stopped, a resulting reaction system was naturally cooled to room temperature, and a sample was taken out, where a conversion rate of the transesterification reaction was 93%; and the sample was roasted at 450° C. for 25 h in a mixed atmosphere of nitrogen and air to obtain a boron-titanium porous oxide.
Specific materials and reaction conditions involved were shown in Table 1 below, and other operations in a synthesis process were the same as in Example 1.
The polyester polyols prepared in Examples 1 to 13 each were subjected to TGA, with Examples 1 and 2 as typical representatives.
Test results of the polyester polyols in other examples are similar to those described above, and initial decomposition temperatures of the polyester polyols are higher than 300° C.
The porous oxides prepared in Examples 1 to 13 each were subjected to physical adsorption characterization, with Examples 1 and 2 as typical representatives. BET curves of Examples 1 and 2 are shown in
The porous oxides prepared in Examples 1 to 13 each were subjected to TEM characterization, with Examples 1 and 2 as typical representatives. TEM images of Examples 1 and 2 are shown in
The above examples are merely few examples of the present application, and do not limit the present application in any form. Although the present application is disclosed as above with preferred examples, the present application is not limited thereto. Some changes or modifications made by any technical personnel familiar with the profession using the technical content disclosed above without departing from the scope of the technical solutions of the present application are equivalent to equivalent implementation cases and fall within the scope of the technical solutions.
This application is the national phase entry of International Application No. PCT/CN2020/115808, filed on Sep. 17, 2020, the entire contents of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2020/115808 | 9/17/2020 | WO |