Preparation of perfluorinated vinyl ethers having a sulfonyl fluoride end-group

Information

  • Patent Grant
  • 6624328
  • Patent Number
    6,624,328
  • Date Filed
    Tuesday, December 17, 2002
    22 years ago
  • Date Issued
    Tuesday, September 23, 2003
    21 years ago
Abstract
A method is provided for making a perfluorinated vinyl ether having a sulfonyl fluoride end-group according to the formula FSO2—(CF2)n—O—CF═CF2, where n is 2-5, comprising the steps of: a) fluorination of: to produce FSO2—(CF2)(n−1)—COF; b) reaction of FSO2—(CF2)(n−1)—COF with hexafluoropropylene oxide (HFPO) to produce FSO2—(CF2)(n)—O—CF(CF3)—COF; c) reaction of FSO2—(CF2)(n)—O—CF(CF3)—COF with a salt of a metal cation M+P, where p is the valence of M, to produce (FSO2—(CF2)(n)—O—CF(CF3)—COO−)pM+P; and d) thermal cracking of FSO2—(CF2)(n)—O—CF(CF3)—COO−)pM+P to produce FSO2—(CF2)(n)—O—CF═CF2.
Description




FIELD OF THE INVENTION




This invention relates to a four-step method for preparation of perfluorinated vinyl ethers having sulfonyl fluoride end-groups according to the formula FSO


2


—(CF


2


)


n


—O—CF═CF


2


, where n is 2-5, which are an important class of monomers in the synthesis of ion exchange resins.




BACKGROUND OF THE INVENTION




U.S. Pat. No. 4,749,526 discloses preparations for fluoroaliphatic ether-containing carbonyl fluoride compounds by reacting a fluorinated carbonyl compound with hexafluoropropylene oxide in the presence of at least one catalyst selected from potassium iodide, potassium bromide, cesium iodide, cesium bromide, rubidium iodide and rubidium bromide.




U.S. Pat. No. 5,902,908 discloses a method for preparing a fluorinated vinyl ether by reacting a fluorinated carboxylic acid halogenide with a metal compound below the decomposition temperature for the corresponding metal salt in the absence of solvent and then raising the temperature of the produced corresponding metal salt above the decomposition temperature.




U.S. Pat. No. 6,255,536, incorporated herein by reference, discloses a process for the preparation of a perfluorinated vinyl ether of the formula CF


2


═CF—O—R


f


wherein R


f


is a linear, branched or cyclic perfluorinated aliphatic group that may contain oxygen atoms hereby forming additional ether linkages.




SUMMARY OF THE INVENTION




Briefly, the present invention provides a method of making a perfluorinated vinyl ether having a sulfonyl fluoride end-group according to the formula FSO


2


—(CF


2


)


n


—O—CF═CF


2


, where n is 2-5, comprising the steps of: a) fluorination of:











to produce FSO


2


—(CF


2


)


(n−1)


—COF; b) reaction of FSO


2


—(CF


2


)


(n−1)


—COF with hexafluoropropylene oxide (HFPO) to produce FSO


2


—(CF


2


)


(n)


—O—CF(CF


3


)—COF; c) reaction of FSO


2


—(CF


2


)


(n)


—O—CF(CF


3


)—COF with a salt of a metal cation M+P, where p is the valence of M, to produce (FSO


2


—(CF


2


)


(n)


—O—CF(CF


3


)—COO





)


p


M+P; and d) thermal cracking of FSO


2


—(CF


2


)


(n)


—O—CF(CF


3


)—COO





)


p


M+P to produce FSO


2


—(CF


2


)


(n)


—O—CF═CF


2


.




It is an advantage of the present invention to provide a convenient and efficient method for preparation of perfluorinated vinyl ethers having sulfonyl fluoride end-groups according to the formula FSO


2


—(CF


2


)


n


—O—CF═CF


2


, which uniquely adapted to the case where n is 2-5, and especially the case where n is 4, these species being important monomers in the synthesis of ion exchange resins. It is a further advantage of the present invention to provide a method for preparation of perfluorinated vinyl ethers having sulfonyl fluoride end-groups according to the formula FSO


2


—(CF


2


)


n


—O—CF═CF


2


, where n is 2-5, which does not require the use of tetrafluoroethylene (TFE), with it's associated hazards and difficulty.




DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS




Briefly, the present invention provides a method of making a perfluorinated vinyl ether having a sulfonyl fluoride end-group according to the formula FSO


2


—(CF


2


)


n


—O—CF═CF


2


, where n is 2-5, comprising the steps of: a) fluorination of:











to produce FSO


2


—(CF


2


)


(n−1)


—COF; b) reaction of FSO


2


—(CF


2


)


(n−1)


—COF with hexafluoropropylene oxide (HFPO) to produce FSO


2


—(CF


2


)


(n)


—O—CF(CF


3


)—COF; c) reaction of FSO


2


—(CF


2


)


(n)


—O—CF(CF


3


)—COF with a salt of a metal cation M+P, where p is the valence of M, to produce (FSO


2


—(CF


2


)


(n)


—O—CF(CF


3


)—COO





)


p


M+P; and d) thermal cracking of FSO


2


—(CF


2


)


(n)


—O—CF(CF


3


)—COO





)


p


M+P to produce FSO


2


—(CF


2


)


(n)


—O—CF═CF


2


. The value of n is 2-5, typically 3-4, and most typically 4. The value of p is typically 1 or 2, and most typically 1. The salt of a metal cation M+P is most typically Na


2


CO


3


.




Step a) involves fluorination of a sultone, which is a 4-7 member ring according to the formula:











where n is 2-5, to produce FSO


2


—(CF


2


)


(n−1)


—COF. Fluorination may be accomplished by any suitable means, but is most typically accomplished by electrochemical fluorination as described in U.S. Pat. No. 2,732,398, incorporated herein by reference.




Step b) involves reaction of FSO


2


—(CF


2


)


(n−1)


—COF with hexafluoropropylene oxide (HFPO) to produce FSO


2


—(CF


2


)


(n)


—O—CF(CF


3


)—COF. Step b) may be accomplished by any suitable means, but is typically accomplished by addition of HFPO to a solution of FSO


2


—(CF


2


)


(n−1)


—COF in a suitable polar solvent such diglyme. Typically, a catalyst is present. The catalyst is typically a fluoride catalyst, most typically KF. The reaction may be performed in the absence of any catalyst other than a fluoride catalyst. Typically, HFPO is added in a molar amount that does not exceed the molar amount of FSO


2


—(CF


2


)


(n−1)


—COF present. More typically, the molar amount of FSO


2


—(CF


2


)


(n−1)


—COF present remains in excess of the molar amount of HFPO present by at least 10%, more typically 20%, and more typically 30%. Step b) may be accomplished by methods disclosed in copending U.S. patent application Ser. No. 10/322,254, filed on even date herewith, incorporated herein by reference.




Step c) involves reaction of FSO


2


—(CF


2


)


(n)


—O—CF(CF


3


)—COF with a salt of a metal cation M+P, where p is the valence of M, to produce (FSO


2


—(CF


2


)


(n)


—O—CF(CF


3


)—COO





)


p


M+P. The valence p may be any valence but is typically 1 or 2 and most typically 1. M may be any suitable metal, but is typically selected from Na, K, Rb and Cs and is most typically Na. The anion of the salt is any suitable anion, but typically one that is not so basic as to remove the fluorine from the sulfonyl fluoride function. The salt of a metal cation M+P is most typically Na


2


CO


3


. Step c) is typically carried out in a polar solvent, such as glyme, diglyme, and the like. Step c) is typically carried out at elevated temperature, typically between 40 and 100° C.




Step d) involves thermal cracking of (FSO


2


—(CF


2


)


(n)


—O—CF(CF


3


)—COO





)


p


M+P to produce FSO


2


—(CF


2


)


(n)


—O—CF═CF


2


, after removal of solvent. Any heat source sufficient to raise the temperature of produce (FSO


2


—(CF


2


)


(n)


—O—CF(CF


3


)—COO





)


p


M+P to its decomposition temperature may be used. Decomposition temperatures vary with reactants, but will typically fall between 160° C. and 210° C. Typically, any remaining solvent is removed prior to thermal cracking, typically by application of vacuum or reduced pressure. The product may then be collected, isolated and purified by any suitable means.




It will be appreciated that isolation and purification of reaction products may be desirable following one or more of the steps of the present method.




This invention is useful in the synthesis of perfluorinated vinyl ethers having sulfonyl fluoride end-groups, which are an important class of monomers in the synthesis of ion exchange resins.




Objects and advantages of this invention are further illustrated by the following examples, but the particular materials and amounts thereof recited in these examples, as well as other conditions and details, should not be construed to unduly limit this invention.











EXAMPLE




Unless otherwise noted, all reagents were obtained or are available from Aldrich Chemical Co., Milwaukee, Wis., or may be synthesized by known methods.











1,4-Butane sultone (6900 g, 50.7 m) was electrochemically fluorinated in HF as described in U.S. Pat. No. 2,732,398 to give 4-(fluorosulfonyl)hexafluorobutyryl fluoride, FSO


2


(CF


2


)


3


COF (4000 g, 14.3 m for a 28% yield).






FSO


2


—CF


2


CF


2


CF


2


—COF+CF


3


CFOCF


2


+KF→FSO


2


—CF


2


CF


2


CF


2


CF


2


—O—CF(CF


3


)—COF  B.






2162 g (7.7 m) of 4-(fluorosulfonyl) hexafluorobutyryl fluoride, FSO


2


(CF


2


)


3


COF, was reacted with an equimolar amount of hexafluoropropylene oxide (HFPO) (1281 g, 7.7 m) in 2L diglyme with 114 g potassium fluoride to give perfluoro-4-(fluorosulfonyl)butoxypropionyl fluoride (2250 g, 5.1 m for a 65% yield) and 675 g of a higher boiling byproduct that had an additional hexafluoropropylene oxide unit.






FSO


2


—CF


2


CF


2


CF


2


CF


2


—O—CF(CF


3


)—COF+Na


2


CO


3


+heat→FSO


2


—CF


2


CF


2


CF


2


CF


2


—O—CF═CF


2


  C.






1108 g (2.5 m) of perfluoro-4-(fluorosulfonyl)butoxypropionyl fluoride was then reacted with sodium carbonate (603 g, 5.7 m) in glyme at 70° C. to make the sodium salt of the acid. Solvent was then removed under vacuum and the dried salt was heated to 165° C. to break vacuum with the carbon dioxide byproduct and continuing to heat up to 182° C. to isolate perfluoro-4-(fluorosulfonyl)butoxyvinyl ether (703 g, 1.9 m for a 74% yield).




Various modifications and alterations of this invention will become apparent to those skilled in the art without departing from the scope and principles of this invention, and it should be understood that this invention is not to be unduly limited to the illustrative embodiments set forth hereinabove. All publications and patents are herein incorporated by reference to the same extent as if each individual publication or patent was specifically and individually indicated to be incorporated by reference.



Claims
  • 1. A method of making a perfluorinated vinyl ether having a sulfonyl fluoride end-group according to the formula FSO2—(CF2)n—O—CF═CF2, where n is 2-5, comprising the steps of:a) fluorination of:  to produce FSO2—(CF2)(n−1)—COF; b) reaction of FSO2—(CF2)(n−1)—COF with hexafluoropropylene oxide (HFPO) to produce FSO2—(CF2)(n)—O—CF(CF3)—COF; c) reaction of FSO2—(CF2)(n)—O—CF(CF3)—COF with a salt of a metal cation M+P , where p is the valence of M, to produce (FSO2—(CF2)(n)—O—CF(CF3)—COO−)pM+P; and d) thermal cracking of FSO2—(CF2)(n)—O—CF(CF3)—COO−)pM+P to produce FSO2—(CF2)(n)—O—CF═CF2.
  • 2. The method according to claim 1 wherein n=4.
  • 3. The method according to claim 1 wherein step c) is performed in a polar solvent.
  • 4. The method according to claim 1 wherein said salt of a metal cation is Na2CO3.
  • 5. The method according to claim 3 wherein said salt of a metal cation is Na2CO3.
  • 6. The method according to claim 1 wherein said step b) is performed in the presence of a fluoride catalyst.
  • 7. The method according to claim 6 wherein said step b) is performed in the absence of any catalyst other than a fluoride catalyst.
  • 8. The method according to claim 6 wherein said fluoride catalyst is KF.
  • 9. The method according to claim 7 wherein said fluoride catalyst is KF.
  • 10. The method according to claim 1 wherein, throughout said step b), the molar amount of FSO2—(CF2)(n−1)—COF present remains in excess of the molar amount of HFPO present by at least 10%.
  • 11. The method according to claim 6 wherein, throughout said step b), the molar amount of FSO2—(CF2)(n−1)—COF present remains in excess of the molar amount of HFPO present by at least 10%.
  • 12. The method according to claim 1 wherein said step a) comprises electrochemical fluorination.
  • 13. The method according to claim 2 wherein said step a) comprises electrochemical fluorination.
  • 14. The method according to claim 5 wherein said step a) comprises electrochemical fluorination.
  • 15. The method according to claim 6 wherein said step a) comprises electrochemical fluorination.
  • 16. The method according to claim 10 wherein said step a) comprises electrochemical fluorination.
  • 17. The method according to claim 11 wherein said step a) comprises electrochemical fluorination.
US Referenced Citations (37)
Number Name Date Kind
2732398 Brice et al. Jan 1956 A
3114778 Gerhard et al. Dec 1963 A
3250608 Griffith May 1966 A
3250808 Moore, Jr. et al. May 1966 A
3282875 Connolly et al. Nov 1966 A
3291843 Fritz et al. Dec 1966 A
3301893 Putnam et al. Jan 1967 A
3311658 Warnell Mar 1967 A
3450684 Darthy Jun 1969 A
3560568 Resnick Feb 1971 A
4329434 Kimoto et al. May 1982 A
4329435 Kimoto et al. May 1982 A
4330654 Ezzell et al. May 1982 A
4332954 Koshar Jun 1982 A
4337137 Ezzell Jun 1982 A
4340750 Yamabe et al. Jul 1982 A
4358412 Ezzell et al. Nov 1982 A
4358545 Ezzell et al. Nov 1982 A
4417969 Ezzell et al. Nov 1983 A
4425199 Hamada et al. Jan 1984 A
4466881 Hamada et al. Aug 1984 A
4510328 Kimoto et al. Apr 1985 A
4511518 Kimoto et al. Apr 1985 A
4536352 Kimoto et al. Aug 1985 A
4554112 Ezzell et al. Nov 1985 A
4555369 Kimoto et al. Nov 1985 A
4597913 Kimoto et al. Jul 1986 A
4613467 Kimoto et al. Sep 1986 A
4749526 Flynn Jun 1988 A
4834922 Ezzell et al. May 1989 A
4997988 Roberts et al. Mar 1991 A
5103051 Navarrini et al. Apr 1992 A
5241110 Navarrini et al. Aug 1993 A
5318674 Behr et al. Jun 1994 A
5902908 Morita et al. May 1999 A
6255536 Worm et al. Jul 2001 B1
6388139 Resnick May 2002 B1
Foreign Referenced Citations (1)
Number Date Country
58-93728 Jun 1983 JP