The present invention will be better understood from the following detailed descriptions of the preferred embodiments according to the present invention, taken in conjunction with the accompanying drawings, in which
The following descriptions of the preferred embodiments are provided to understand the features and the structures of the present invention.
Please refer to
(a) Plating a thin layer on a conductive substrate 11: A thin layer 22 is plated on a conductive substrate 21, where the conductive substrate 21 is made of silicon, aluminum or a conductive glass; the thin layer 22 is made of iron, cobalt, nickel, molybdenum or a mixture of any or some of the above metals having active particles for catalysis; and the thin layer 22 has an image.
(b) Covering a CNT layer on the thin layer 12: A CNT layer 23 is covered on the thin layer 22 and the CNT layer 23 has at least one CNT 231, where the CNT layer is obtained through a plasma enhanced chemical vapor deposition (PECVD) to obtain the CNT 231 on the thin layer 22 with a n arrangement; or is obtained through a screen printing method by printing or brushing a CNT polymer on the thin layer 22.
(c) Depositing a semiconductor material on the CNT 13: A semiconductor material 24 is deposited on each CNT 231 through a chemical vapor deposition (CVD), where the CVD is a PECVD or an atmospheric pressure plasma chemical vapor deposition (AP-PCVD); and the semiconductor material 24 is made of silicon, silicon carbide, silicon nitride, indium nitride or indium phosphide.
(d) Plating a transparent conductive layer on the CNT layer 14: A transparent conductive layer is plated on the CNT layer 23, where the transparent conductive layer 25 is made of titanium nitride and is plated on the CNT layer 23 through an ion sputtering; or is made of indium tin oxide (ITO) and is plated on the CNT layer 23 through an electron gun evaporation.
(e) Setting a voltage source 15: A voltage source 26 is set at the outside of the structure obtained through step (a) till step (d) with an end connecting to the transparent conductive layer 25 and another end connecting to the conductive substrate 21.
Thus, a novel preparing method of a CNT-based semiconductor sensitized solar cell is obtained.
By putting a solar cell made through the above steps according to the first preferred embodiment in an environment having a sunlight 27, owing to the semiconductor material 24 deposited on the CNT 231, the sun light 27 excites the semiconductor material on the CNT 231 to produce excitons. Electron-and-hole pairs are thus separated. The electrons 28 are transferred to the conductive substrate 21 through the CNT 231; the holes 29 are transferred to the transparent conductive layer 25 through the semiconductor material 24; and, as a result, the structure is connected with the voltage source 26 to form an electric circuit.
Please refer to
(a1) Plating a thin layer on a conductive substrate 31: A thin layer is plated on a conductive substrate made of silicon, where the conductive substrate can be made of aluminum or a conductive glass, too; and the thin layer is made of iron, cobalt, nickel, molybdenum or a mixture of any or some of the above metals having active particles for catalysis.
(b1) Forming a CNT layer on the thin layer 32: Through a plasma enhanced chemical vapor deposition (PECVD), at least one CNT is obtained with an arrangement on the thin layer to form a CNT layer. Or, the CNT layer is formed through a screen printing method by printing or brushing a CNT polymer on the thin layer.
(c1) Obtaining a polymer having silicon quantum dots adhered to each CNT 33: A structure obtained through step (a1) and step (b1) is soaked in a polymer solution having silicon quantum dots to obtain a polymer having silicon quantum dots adhered to every CNT.
(d1) Plating a transparent conductive layer on the CNT layer 34: A transparent conductive layer made of titanium nitride is plated on the CNT layer through an ion sputtering. Or, the transparent conductive layer is made of ITO and is plated on the CNT layer through an electron gun evaporation.
(e1) Setting a voltage source 35: A voltage source is set at the outside with an end connecting to the transparent conductive layer and another end connecting to the conductive substrate.
Thus, a novel preparing method of a CNT-based semiconductor sensitized solar cell is obtained.
Please refer to
(a2) Plating a thin layer on a conductive substrate 41: A thin layer is plated on a conductive substrate made of conductive glass, where the conductive substrate can be made of silicon or aluminum, too; and the thin layer is made of iron, cobalt, nickel molybdenum or a mixture of any or some of the above metals having active particles for catalysis.
(b2) Forming a CNT layer on the thin layer 42: Through a screen printing method, a CNT polymer is printed or brushed on the thin layer to form a CNT layer. Or, the CNT layer is formed through a plasma enhanced chemical vapor deposition (PECVD) to obtain at least one CNT on the thin layer with an arrangement.
(c2) Obtaining a polymer having silicon quantum dots adhered to each CNT by brushing 43: A polymer solution having silicon quantum dots is brushed through a coating method on each CNT to obtain a polymer having silicon quantum dots adhered to every CNT.
(d2) Plating a transparent conductive layer on the CNT layer 44: A transparent conductive layer made of ITO is plated on the CNT layer through an electron gun evaporation. Or, the transparent conductive layer is made of titanium nitride to be plated on the CNT layer through an ion sputtering.
(e2) Setting a voltage source 45: A voltage source is set at the outside with an end connecting to the transparent conductive layer and another end connecting to the conductive substrate.
Thus, a novel preparing method of a CNT-based semiconductor sensitized solar cell is obtained.
To sum up, the present invention is a preparing method of a CNT-based semiconductor sensitized solar cell, where an amount of fabrication material is reduced; a fabrication cost is lowered and a lifetime of a solar cell is prolonged.
The preferred embodiments herein disclosed are not intended to unnecessarily limit the scope of the invention. Therefore, simple modifications or variations belonging to the equivalent of the scope of the claims and the instructions disclosed herein for a patent are all within the scope of the present invention.