PREPREG, LAMINATE, AND INTEGRATED PRODUCT

Abstract
A prepreg includes [A], [B], and [C] described below. The [B] further comprises [B′]; a ratio of a mole number of an active hydrogen contained in [B′] to a mole number of an epoxy group in an epoxy resin contained in [B] is in a range of 0.6 to 1.1 both inclusive; [C] is present on a surface of the prepreg; and [A] that crosses over a boundary surface between a resin region containing [B] and a resin region containing [C] and that is in contact with both resin regions is present: [A] a reinforcing fiber;[B] an epoxy resin composition;an amine compound; and[C] a thermoplastic resin composition.
Description
FIELD OF THE INVENTION

The present invention relates to a prepreg in which an epoxy resin and a thermoplastic resin are impregnated into a reinforcing fiber, and to a laminate or an integrated product containing the epoxy resin, the thermoplastic resin, and the reinforcing fiber.


BACKGROUND OF THE INVENTION

A fiber-reinforced composite material that combines a thermosetting resin or a thermoplastic resin as a matrix with a reinforcing fiber such as a carbon fiber and a glass fiber is a lightweight material yet having excellent mechanical properties such as strength and rigidity, as well as excellent heat resistance and corrosion resistance. Therefore, this has been used in numerous fields, including aerospace, automobiles, railway vehicles, marine vessels, civil engineering and construction, and sporting goods. However, these fiber-reinforced composite materials are not suitable for manufacturing of a part and a structural body having a complex shape in a single molding process. For the applications described above, it is necessary to prepare a member made of a fiber-reinforced composite material and then to integrate this with a similar or different type of a member. A mechanical bonding method using a bolt, a rivet, a screw, or the like, and a bonding method using an adhesive are used to integrate a fiber-reinforced composite material composed of a reinforcing fiber and a thermosetting resin with a similar or a different member. The mechanical bonding method requires a pre-processing process of a bonding portion, such as drilling of a hole, which leads to not only the increase in the time in the manufacturing process and in the manufacturing cost, but also the decrease in the material strength due to drilling of the hole. The bonding method using an adhesive requires bonding and curing processes, which include preparation and application of the adhesive; thus, this leads to the increase in the time in the manufacturing process and to the insufficient reliability in terms of the adhesion strength.


The fiber-reinforced composite material using a thermoplastic resin as the matrix bonds between members by welding in addition to the mechanical bonding method and the bonding method using an adhesive as described above; thus, it is possible to reduce the time necessary for bonding between members. On the other hand, when mechanical properties at a high temperature and an excellent resistance to chemicals are required as in the case of an aircraft structural member, there has been a problem in that the heat resistance and the chemical resistance thereof were not so good as those of the fiber-reinforced composite material composed of a thermosetting resin and a reinforcing fiber.


Here, Patent Literature 1 describes a method for bonding a fiber-reinforced composite material composed of a thermosetting resin and a reinforcing fiber via an adhesive.


Patent Literature 2 describes a method for integrating a member formed of a thermoplastic resin with a member formed of a fiber-reinforced composite material that is obtained from a thermosetting resin. Specifically, a thermoplastic resin film is laminated to the surface of a prepreg sheet composed of a reinforcing fiber and the thermosetting resin, and then, this is heated and pressurized to obtain a fiber-reinforced composite material. The resulting fiber-reinforced composite material is then placed in a mold, and then, the thermoplastic resin is injection molded to bond the thermoplastic resin member formed by injection molding with the fiber-reinforced composite material.


In addition, Patent Literature 3 describes a method for manufacturing a laminate in which a thermoplastic resin adhesive layer is formed on the surface of a composite material composed of a thermosetting resin and a reinforcing fiber. It is described that this shows the adhesive effect with other members via a thermoplastic resin.


Patent Literature 4 describes a prepreg and its fiber-reinforced composite material, in which a particle, or a fiber, or a film formed of a thermoplastic resin is placed on the surface layer of a prepreg composed of a reinforcing fiber and a thermosetting resin.


PATENT LITERATURE



  • Patent Literature 1: Japanese Patent Application Laid-open No. 2018-161801

  • Patent Literature 2: Japanese Patent Application Laid-open No. H10-138354

  • Patent Literature 3: Japanese Patent No. 3906319

  • Patent Literature 4: Japanese Patent Application Laid-open No. H08-259713



SUMMARY OF THE INVENTION

However, the method described in Patent Literature 1 is a method for bonding fiber-reinforced composite materials composed of a reinforcing fiber and a thermosetting resin to each other by using an adhesive; but, because the thermosetting resin is a matrix resin, welding cannot be used as the method for bonding the fiber-reinforced composite material as it is. Because it takes a time for the adhesive to be cured, there is a problem in that the bonding process is time-consuming. On top of this, the bonding strength thereof was not sufficient.


In the method described in Patent Literature 2, the bonding strength at the bonding portion between the thermosetting resin in the fiber-reinforced composite material and the thermoplastic resin film was not sufficient.


The fiber-reinforced composite material of Patent Literature 3 could be integrated by welding via the thermoplastic resin and exhibited an excellent bonding strength at room temperature, but the bonding strength at high temperature was not sufficient.


In the method described in Patent Literature 4, it is indicated that the particle, the fiber, or the film made of the thermoplastic resin improves an interlaminar fracture toughness value, but the bonding strength in the boundary portion between the thermosetting resin in the fiber-reinforced composite material and the thermoplastic resin was not sufficient.


An object of the present invention is thus to provide: a prepreg giving a laminate suitable as a structural material, the prepreg having an excellent compression strength and an excellent dimensional accuracy of a molded member, being capable of bonding members of the same or different types by welding, expressing an excellent bonding strength, and having an excellent interlaminar fracture toughness value; and a laminate and an integrated product thereof.


To solve the problem described above, a prepreg according to the present invention includes the following compositions. That is, a prepreg includes [A], [B], and [C] described below. The [B] further comprises [B′]; a ratio of a mole number of an active hydrogen contained in [B′] to a mole number of an epoxy group in an epoxy resin contained in [B] is in a range of 0.6 to 1.1 both inclusive; [C] is present on a surface of the prepreg; and [A] that crosses over a boundary surface between a resin region containing [B] and a resin region containing [C] and that is in contact with both resin regions is present:


[A] a reinforcing fiber;


[B] an epoxy resin composition;


[B′] an amine compound; and


[C] a thermoplastic resin composition.


Furthermore, the laminate according to the present invention includes the following compositions. That is, the laminate includes the composition in which the cured product of the above-described prepreg constitutes at least some of the layers, or includes the following composition. That is, the laminate includes layers containing composition elements [A], [C], and [D] described below,


[A] a reinforcing fiber;


[C] a thermoplastic resin composition; and


[D] an epoxy resin cured product formed by curing an epoxy resin composition that contains an epoxy resin and an amine compound, a ratio of a mole number of an active hydrogen contained in the amine compound to a mole number of an epoxy group in the epoxy resin being in a range of 0.6 to 1.1 both inclusive. The reinforcing fiber [A] that crosses over a boundary surface between a resin region containing [C] and a resin region containing [D] and that is in contact with both resin regions is present.


Here, whenever the term “laminate” is used in this specification, this shall refer to any of these laminates in accordance with the context unless otherwise specifically mentioned. Also, without any particular restriction, as it can be seen from this specification, the laminate according to the present invention is a fiber-reinforced resin that can be typically prepared by using a preform containing the prepreg of the present invention.


The prepreg and the laminate according to the present invention use a thermosetting resin and a thermoplastic resin, in which not only these two are firmly bonded, but also they can well weld with the same type or a different type of member. Accordingly, the time required for the bonding process can be shortened as compared with a conventional fiber-reinforced composite material using a thermosetting resin and a reinforcing fiber; thus, it is possible to speed up the molding process of a structural member. In addition, by controlling the items to be used, i.e., the epoxy resin, the amine compound, and the ratio of the reactive groups of them, the laminate can be obtained that exhibits excellent compression strength and bonding strength and is excellent in the dimensional accuracy of the obtained member, as the structural material having excellent properties. When the laminate is applied to an aircraft structural member, a wind turbine blade, an automotive structural member, and computer applications such as an IC tray and a housing of a laptop computer, not only an excellent performance as the structural material is expressed, but also it is possible to significantly reduce the molding time and cost of the products relating to the above-mentioned applications.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a schematic diagram of the prepreg or the laminate according to the present invention, and illustrates a cross section that is perpendicular to the prepreg plane or the laminate plane relating to FIG. 2.



FIG. 2 is a schematic diagram of a cross section that is perpendicular to the prepreg plane or the laminate plane in the present invention, and is for the sake of explanation about the method to measure the roughness average length RSm and the roughness average height Rc.





DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

The reinforcing fiber of the composition element [A] used in the present invention includes a glass fiber, a carbon fiber, a metal fiber, an aromatic polyamide fiber, a polyaramide fiber, an alumina fiber, a silicon carbide fiber, a boron fiber, a basalt fiber, and the like. These may be used singly or in a combination of two or more of them as appropriate. These reinforcing fibers may be surface treated. The surface treatment includes a metal deposition treatment, a treatment with a coupling agent, a treatment with a sizing agent, and an adhesion treatment with an additive, and the like. In this specification, in the case that such a surface treatment is conducted to the reinforcing fiber, the reinforcing fiber shall include those in the state after having been subjected to the treatments as described above. These reinforcing fibers include the reinforcing fiber having an electric conductivity. The carbon fiber is preferably used as the reinforcing fiber because of its low specific gravity, high strength, and high elastic modulus.


Illustrative examples of the commercially available product of the carbon fiber include TORAYCA® T800G-24K, TORAYCA® T800S-24K, TORAYCA® T700G-24K, TORAYCA® T700S-24K, TORAYCA® T300-3K, and TORAYCA® T1100G-24K (all are manufactured by Toray Industries, Inc.).


The form and arrangement of the reinforcing fiber can be selected as appropriate from the reinforcing fibers arranged in one direction, a laminate of the reinforcing fibers arranged in one direction, a woven fabric, and the like. However, in order to obtain a lightweight laminate having a higher level of durability, it is preferable in each prepreg that the reinforcing fibers be long fibers arranged in one direction (fiber bundle) or in the form of continuous fibers such as a woven fabric.


The reinforcing fiber bundle may be composed of a plurality of fibers in the same form or a plurality of fibers in different forms. The number of the reinforcing fibers that constitute one reinforcing fiber bundle is usually in the range of 300 to 60,000; but considering the manufacturing of the base material, the number is preferably in the range of 300 to 48,000, while more preferably from 1,000 to 24,000. The range may be a combination of any of the upper limits and any of the lower limits described above.


In the reinforcing fiber of the composition element [A], a strand tensile strength thereof, measured in accordance with the resin-impregnated strand test method of JIS R7608 (2007), is preferably 5.5 GPa or greater, because the laminate having, in addition to a tensile strength, an excellent bonding strength can be obtained. The strand tensile strength is more preferably 5.8 GPa. The bonding strength here refers to the tensile shear adhesion strength obtained in accordance with ISO 4587:1995 (JIS K6850 (1994)).


The reinforcing fiber of the composition element [A] has a surface free energy of preferably in the range of 10 to 50 mJ/m2 as measured by the Wilhelmy method. By controlling the surface free energy within this range, the reinforcing fiber expresses a high affinity with the epoxy resin composition of [B] or with the epoxy resin cured product of [D] and the thermoplastic resin of [C], and a high bonding strength at the boundary surface in which the reinforcing fiber straddle between a resin region containing [B] or [D] and a resin region containing [C]. In addition, agglomeration of the reinforcing fibers among themselves is suppressed thereby resulting in good dispersion of the reinforcing fibers in the molded article and in less variation (coefficient of variation) in the bonding strength. The surface free energy of the reinforcing fiber is preferably in the range of 15 to 40 mJ/m2, while more preferably in the range of 18 to 35 mJ/m2.


The method to control the surface free energy of the reinforcing fiber includes the method in which an amount of an oxygen-containing functional group such as a carboxyl group and a hydroxyl group is controlled by oxidizing the surface thereof, or the method in which a single compound or a plurality of compounds is attached to the surface thereof. When a plurality of compounds is attached to the surface, a mixture of compounds having a high surface free energy and a low surface free energy may be attached. Hereinafter, the method to calculate the surface free energy of the reinforcing fiber will be explained. The surface free energy can be calculated by measuring the contact angle between the reinforcing fiber and each of three solvents (purified water, ethyleneglycol, and tricresyl phosphate) followed by the Owens' approximation method. The procedure is described below, but the measurement equipment and the detailed method thereof are not necessarily limited to the following.


By using DCAT11 manufactured by DataPhysics, firstly, after taking one monofilament out from the reinforcing fiber bundle, this is cut into eight fibers having the length of 12±2 mm, and then these are attached in parallel to a specialized holder FH12 (a flat plate whose surface is coated with an adhesive substance) with the distance of 2 to 3 mm between the monofilaments. The tips of the monofilaments are then trimmed and set in DCAT11 of the holder. For the measurement, a cell containing each solvent is brought close to the lower tips of the eight monofilaments at the speed of 0.2 mm/s and immersed to 5 mm from the tip of the monofilaments. Then, the monofilaments are pulled up at the speed of 0.2 mm/s. This operation is repeated four or more times. The force F received by the monofilament while being immersed in the liquid is measured using an electronic balance. This value is used to calculate the contact angle θ by the following equation.





COS θ=(force F (mN) received by 8 monofilaments)/(8 (number of monofilaments)×circumference of monofilament (m)×surface tension of solvent (mJ/m2))


The measurement was carried out with regard to the monofilaments extracted from three different locations of the reinforcing fiber bundle. That is, the average contact angle for a total of 24 monofilaments in one reinforcing fiber bundle was calculated.


The surface free energy of the reinforcing fiber γf is calculated as the sum of the surface free energy of the polar component γpf and the surface free energy of the nonpolar component γdf.


The surface free energy of the polar component γpf can be calculated as follows: by substituting the components of the surface tension and the contact angle of each liquid into the Owens' approximation formula (which is composed of the polar and the non-polar components of the surface tension specific to each solvent and the contact angle θ) and plotting them on X and Y, and then, by using the least square method to approximate a straight line, the value is obtained from the square of the slope a. The surface free energy of the nonpolar component γdf can be obtained by the square of the intercept b. The surface free energy of the reinforcing fiber γf is the sum of the square of the slope a and the square of the intercept b.






Y=a·X+b


X=√(polar component of solvent surface tension (mJ/m2))/√(non-polar component of solvent surface tension (mJ/m2))


Y=(1+COS θ)/(polar component of solvent surface tension (mJ/m2))/2√(non-polar component of solvent surface tension (mJ/m2))


Polar component of the surface free energy of reinforcing fiber γpf=a2


Non-polar component of the surface free energy of reinforcing fiber γdf=b2


Total surface free energy γf=a2+b2


The polar and the non-polar components of the surface tension of each solvent are as follows.


—Purified Water

Surface tension 72.8 mJ/m2; polar component 51.0 mJ/m2 and non-polar component 21.8 (mJ/m2)


—Ethyleneglycol

Surface tension 48.0 mJ/m2; polar component 19.0 mJ/m2 and non-polar component 29.0 (mJ/m2)


—Tricresol Phosphate

Surface tension 40.9 mJ/m2, polar component 1.7 mJ/m2 and non-polar component 39.2 (mJ/m2)


In a composition element [B] containing an amine compound of a composition element [B′] used in the present invention (“epoxy resin composition” as the composition element [B] in this specification shall mean the resin composition containing more than 50% by mass of an epoxy resin and exhibiting behavior as a thermosetting resin as a whole), the average epoxy value of all the epoxy resins included therein is calculated, for example, in the case that this includes two components of epoxy resin 1 and epoxy resin 2, as follows.


Average epoxy value (meq./g)=(parts by mass of epoxy resin 1/epoxy equivalent of epoxy resin 1+parts by mass of epoxy resin 2/epoxy equivalent of epoxy resin 2)/(parts by mass of epoxy resin 1+parts by mass of epoxy resin 2)×1000


Here, the epoxy equivalent is the value obtained by the method described in JIS K7236 (2009). When the average epoxy value of all the included epoxy resins is in the range of 6.0 to 11.0 meq./g both inclusive, the amount of the heat generated at the time of molding can be suppressed; thus, the variation in the degree of curing can be reduced. Accordingly, not only the laminate having an excellent degree of flatness can be obtained, but also the laminate expresses an excellent compression strength, so that this embodiment is preferable. It is more preferable that the average epoxy value of all the included epoxy resins be in the range of 7.5 to 9.0 meq./g both inclusive. This range may be a combination of any of the upper limits and any of the lower limits described above.


The average amine value of all the included amine compounds is calculated, for example, in the case this includes two components of amine compound 1 and amine compound 2, as follows.


Average amine value (meq./g)=(parts by mass of amine compound 1/active hydrogen equivalent of amine compound 1+parts by mass of amine compound 2/active hydrogen equivalent of amine compound 2)/(parts by mass of amine compound 1+parts by mass of amine compound 2)×1000


Here, the active hydrogen equivalent refers to the active hydrogen equivalent that is calculated by identifying the chemical structure and its ratio by means of a liquid chromatography mass spectrometry (LC/MS). When the average amine value of all the included amine compounds is in the range of 5.0 to 20.0 meq./g both inclusive, the amount of the heat generated at the time of molding is suppressed, resulting in decrease in the variation in the degree of curing, so that this embodiment is preferable. However, in order to obtain the laminate having an excellent degree of flatness, it is also important to suppress the variation in the degree of curing of the epoxy resin cured product by setting the epoxy value of the epoxy resin and the amount of the active hydrogen included in [B′] relative to the amount of the epoxy group included in


[B] to a certain level or more, as described below.


The mole number of the epoxy group in the epoxy resin included in the composition element [B] is calculated as follows.





Mole number of epoxy group in epoxy resin=parts by mass of epoxy resin/epoxy equivalent of epoxy resin


When the composition element [B] contains epoxy resin of two or more components, this is the sum of the mole numbers of the epoxy group in each component. For example, in the case that this contains two epoxy resin components (component 1 and component 2), the calculation is conducted as follows.





Mole number of epoxy group in epoxy resin=parts by mass of component 1/epoxy equivalent of component 1+parts by mass of component 2/epoxy equivalent of component 2


The mole number of the active hydrogen in the amine compound of composition element [B′] is calculated as follows





Mole number of active hydrogen in amine compound=parts by mass of amine compound/equivalent amount of active hydrogen in amine compound


In the case that the composition element [B′] contains two or more amine compounds, this is the sum of the mole numbers of the active hydrogen in each component and is calculated in the same way as the mole number of the epoxy group. When the ratio of the mole number of the active hydrogen in [B′] to the mole number of the epoxy group in [B] is in the range of 0.6 to 1.1 both inclusive, the laminate expresses an excellent compressive strength. In addition, the heat generated at the time of curing is suppressed and the variation in the degree of curing of the epoxy resin cured product is reduced; thus, the laminate has an excellent degree of flatness. In addition, the remaining epoxy group interacts with the thermoplastic resin of a composition element [C], so that the resulting integrated product expresses an excellent bonding strength. It is more preferable that the ratio of the mole number of the active hydrogen contained in [B′] to the mole number of the epoxy group contained in [B] be in the range of 0.65 to 0.95 both inclusive. This range may be a combination of any of the upper limits and any of the lower limits described above.


The epoxy resin cured product of a composition element [D] in the laminate according to the present invention is typically a thermally cured product of the epoxy resin composition of the composition element [B] containing the amine compound of the composition element [B′] in the prepreg according to the present invention. The temperature condition for the thermal curing may be set appropriately in accordance with the epoxy resin, the amine compound, and the curing accelerator including the kinds and amounts thereof. For example, when diaminodiphenylsulfone is used as the amine compound, the temperature condition of 180° C. for 2 hours may be preferably used, and when dicyandiamide is used as the amine compound, the temperature condition of 135° C. for 2 hours may be preferably used.


Illustrative examples of the epoxy resin to be used in the composition element [B] include bisphenol epoxy resins such as a bisphenol A epoxy resin, a bisphenol F epoxy resin, a bisphenol AD epoxy resin, a bisphenol S epoxy resin, and a brominated epoxy resin such as a tetrabromobisphenol A diglycidyl ether, an epoxy resin having a biphenyl skeleton, an epoxy resin having a naphthalene skeleton, an epoxy resin having a dicyclopentadiene skeleton, novolac epoxy resins such as a phenol novolac epoxy resin and a cresol novolac epoxy resin, N,N,O-triglycidyl-m-aminophenol, N,N,O-triglycidyl-p-aminophenol, N,N,O-triglycidyl-4-amino-3-methylphenol, N,N,N′,N′-tetraglycidyl-4,4′-methylenedianiline, glycidylamine epoxy resins such as N,N,N′,N′-tetraglycidyl-2,2′-diethyl-4,4′-methylenedianiline, N,N,N′,N′-tetraglycidyl-m-xylylenediamine, N,N-diglycidylaniline, and N,N-diglycidyl-o-toluidine, resorcinol diglycidyl ether, and triglycidyl isocyanurate.


When 40 to 100 parts by mass of a glycidylamine epoxy resin having 3 or more glycidyl groups relative to 100 parts by mass of the total epoxy resin is included in the composition element [B] according to the present invention, the cured product having a high heat resistance can be obtained; so, this embodiment is more preferable. The content thereof is still more preferably in the range of 80 to 100 parts by mass. Illustrative examples of the glycidylamine epoxy resin containing 3 or more glycidyl groups include N,N,O-triglycidyl-m-aminophenol, N,N,O-triglycidyl-p-aminophenol, N,N,O-triglycidyl-4-amino-3-methylphenol, N,N,N′,N′-tetraglycidyl-4,4′-methylenedianiline, N,N,N′,N′-tetraglycidyl-2,2′-diethyl-4,4′-methylenedianiline, and N,N,N′,N′-tetraglycidyl-m-xylylenediamine.


Illustrative examples of the amine compound to be used in the composition element [B′] include a dicyandiamide, an aromatic amine compound, a tetramethylguanidine, and a thiourea-added amine.


In particular, by using an aromatic amine compound as the amine compound of [B′], the epoxy resin having an excellent heat resistance can be obtained. Illustrative examples of the aromatic amine compound include 3,3′-diisopropyl-4,4′-diaminodiphenylsulfone, 3,3′-di-t-butyl-4,4′-diaminodiphenylsulfone, 3,3′-diethyl-5,5′-dimethyl-4,4′-diaminodiphenylsulfone, 3,3′-diisopropyl-5,5′-dimethyl-4,4′-diaminodiphenylsulfone, 3,3′-di-t-butyl-5,5′-dimethyl-4,4′-diaminodiphenylsulfone, 3,3′,5,5′-tetraethyl-4,4′-diaminodiphenylsulfone, 3,3′-diisopropyl-5,5′-diethyl-4,4′-diaminodiphenylsulfone, 3,3′-di-t-butyl-5,5′-diethyl-4,4′-diaminodiphenylsulfone, 3,3′,5,5′-tetraisopropyl-4,4-diaminodiphenylsulfone, 3,3′-di-t-butyl-5,5′-diisopropyl-4,4′-diaminodiphenylsulfone, 3,3′,5,5′-tetra-t-butyl-4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, and 3,3′-diaminodiphenylsulfone.


The epoxy resin composition of the composition element [B] according to the present invention, in which the amine compound of [B′] is the main component as the curing agent, may contain another curing agent or curing accelerator. It is preferable that the mass of [B′] relative to the total mass of the curing agent and the curing accelerator contained in the epoxy resin composition of [B] be 80% or more. Illustrative examples of the other curing agent include an acid anhydride and a phenol novolac compound. Illustrative examples of the curing accelerator include phosphorus-based curing accelerators such as triphenylphosphine and a tetraarylphosphonium tetraarylborate, as well as a cationic polymerization initiator, a tertiary amine, an imidazole compound, and a urea compound.


In addition, it is preferable that the epoxy resin composition of the composition element [B] contain, as a viscosity controller, a thermoplastic resin component that is soluble in the epoxy resin in the state of being dissolved therein. The thermoplastic resin component described above is a thermoplastic resin component other than a thermoplastic resin included in the composition element [C]. The term “soluble in the epoxy resin” means that there is a temperature range in which the epoxy resin component being mixed with the thermosetting resin forms a homogeneous phase upon heating or heating with stirring. Here, the term “forming a homogeneous phase” means that there is no separation by a visual observation. The term “state of being dissolved” refers to the state in which the epoxy resin including the thermoplastic resin component is in a homogeneous phase in a certain temperature range. Once a homogeneous phase is formed in a certain temperature range, it does not matter whether or not separation occurs outside this temperature range, for example, at room temperature.


The epoxy resin component that is soluble in the thermosetting resin of the composition element [B] is preferably the thermoplastic resin generally having in the main chain thereof a bond selected from the group consisting of a carbon-carbon bond, an amide bond, an imide bond, an ester bond, an ether bond, a carbonate bond, a urethane bond, a thioether bond, a sulfone bond, and a carbonyl bond. Also, the thermoplastic resin component may partially have a cross-linked structure; and also, this may be crystalline or amorphous. In particular, preferable is at least one resin selected from the group consisting of polyamide, polycarbonate, polyacetal, polyphenylene oxide, polyphenylene sulfide, polyarylate, polyester, polyamideimide, polyimide, polyetherimide, polyimide having a phenyl trimethylindane structure, polysulfone, polyether sulfone, polyether ketone, polyether ether ketone, polyaramide, polyvinyl formal, polyvinyl butyral, a phenoxy resin, polyether nitrile and polybenzimidazole. In order to obtain a good heat resistance, from a viewpoint of being less prone to cause thermal deformation when used as a molded article, the glass transition temperature thereof is preferably 150° C. or higher, while more preferably 170° C. or higher; so, polyetherimide and polyethersulfone are mentioned as preferable examples for this.


There is no particular restriction on the thermoplastic resin that constitutes the composition element [C] (“thermoplastic resin compostions” as the composition element [C] herein means a resin composition that contains more than 50% by mass of the thermoplastic resin and exhibits the behavior of the thermoplastic resin as a whole); then, illustrative examples thereof include: polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, and a liquid crystal polyester; polyolefins such as polyethylene, polypropylene, and polybutylene; a styrene resin, a urethane resin, and polyoxymethylene; polyamides such as polyamide 6 and polyamide 66; polycarbonate, polymethyl methacrylate, polyvinyl chloride, polyphenylene sulfide, polyphenylene ether, a modified polyphenylene ether, polyimide, polyamideimide, polyetherimide, polysulfone, a modified polysulfone, and polyether sulfone; polyarylene ether ketones such as polyketone, polyether ketone, polyether ether ketone, and polyether ketone ketone; polyarylate, polyether nitrile, a phenolic resin, and a phenoxy resin. The thermoplastic resin may also be a copolymer or a modified version of the above-mentioned resins and/or a blend of two or more of them. Among these, from a viewpoint of heat resistance, the composition element [C] includes preferably one or two or more resins selected from polyarylene ether ketone, polyphenylene sulfide, and polyetherimide with the amount thereof being 60% or more by mass therein. An elastomer or a rubber component may be added to improve the impact resistance. In addition, other fillers and additives may be included as appropriate in accordance with the use and the like so far as such addition does not impair the purpose of the present invention. Illustrative examples thereof include an inorganic filler, a flame retardant, a conductive agent, a crystal nucleating agent, a UV absorber, an antioxidant, a vibration-damping agent, an antibacterial agent, an insect repellent, an odor repellent, an anti-coloring agent, a heat stabilizer, a mold release agent, an antistatic agent, a plasticizer, a lubricant, a colorant, a pigment, a dye, a foaming agent, an antifoaming agent, and a coupling agent.


When the thermoplastic resin contained in the composition element [C] has a functional group exhibiting a reactivity with the epoxy group present at the terminal or in the main skeleton, a covalent bond is formed by chemical reaction with the remaining epoxy group thereby giving an integrated product having an excellent bonding strength; thus, this is a preferable embodiment. Illustrative examples of the functional group exhibiting a reactivity with the epoxy group include a carboxyl group, an amino group, a hydroxyl group, and an isocyanate group.


In the prepreg according to the present invention, there is a reinforcing fiber of [A] that straddles the boundary surface between the resin region containing [B] and the resin region containing [C] and is in contact with both the resin regions. When there is the reinforcing fiber of [A] that straddles the boundary surface between the resin region containing the composition element [B] and the resin region containing the composition element [C] and is in contact with both the resin regions, [A] chemically and/or physically bonds with [B] and [C]; thus, this causes exfoliation of the resin region containing [B] from the resin region containing [C] to be difficult, thereby expressing an excellent bonding strength. The chemical and/or physical bonding of the composition element [A] on the boundary surface with the composition element [B] and the composition element [C] improves the adhesion of the resin region containing the composition element [B] to the resin region containing the composition element [C].


In the prepreg according to the present invention, it is preferable that the resin region containing [B] and the resin region containing [C] be layered adjacent to each other. FIG. 1 is a schematic diagram of the prepreg or the laminate according to the present invention, and FIG. 2 is a schematic diagram of a cross section that is perpendicular to the prepreg plane or the laminate plane, described in FIG. 1 as a cross section observation surface 5, and is for the sake of explanation about the method to measure the roughness average length RSm and the roughness average height Rc.


In the prepreg according to the present invention, layered and adjacent means the state in which, for example, as illustrated in FIG. 2, a resin region 7 containing [C] and a resin region 8 containing [B], which are continuous in the plane direction, exist in close contact with each other while forming a boundary surface 10 in the cross section obtained by cutting perpendicularly to the prepreg plane direction. When the resin region 7 containing [C] is not in a layered and continuous state, but exists in a particulate, a fibrous, an unwoven, or other form, the ratio of the area where the epoxy resin included in [B] is exposed on the surface increases and the covering rate of [C] on the outermost surface decreases, so that the welding property tends to be lowered.


Furthermore, when the prepreg is viewed in plane, from a direction that differs by an angle of 45 degrees, regardless of whether clockwise or counterclockwise, to the fiber direction of any fiber [A] in contact with both the resin regions, a cross section perpendicular to the prepreg plane containing the fiber [A] that straddles both the resin regions is obtained. In this cross section, namely, the cross section obtained by cutting or the like perpendicularly to the plane direction of the prepreg, a roughness average length RSm of 100 μm or less and a roughness average height Rc of 3.5 μm or more are preferable in order to improve the bonding strength, where these length and height are of a cross section curve formed by the boundary of the two resins and are defined by JIS B0601 (2001).


When the roughness average length RSm is 100 μm or less, not only the chemical and/or physical bonding force but also the mechanical bonding force of interlocking makes it difficult for the resin region containing the composition element [B] and the resin region containing the composition element [C] to be exfoliated from each other. The lower limit thereof is not particularly restricted; but from the viewpoint of avoiding a decrease in the mechanical bonding strength due to stress concentration, this is preferably 15 μm or more. In addition, when the roughness average height Rc of the cross section curve is 3.5 μm or higher, not only the mechanical bonding force due to interlocking is expressed, but also the composition element [A] on the boundary surface chemically and/or physically bonds with the composition element [B] and the composition element [C], so that the adhesion of the resin region containing the composition element [B] with the resin region containing the composition element [C] is improved. The preferable range of the roughness average height Rc of the cross sectional curve is 10 μm or more; with this, the composition element [A] is more easily included in both the resin regions, thereby enhancing the adhesion furthermore. This is especially preferable when this is 20 μm or more. The upper limit thereof is not particularly restricted; but from the viewpoint of avoiding a decrease in the mechanical bonding strength due to stress concentration, this is preferably 100 μm or less.


For the measurement of the roughness average height Rc and the roughness average length RSm of the cross section curve, known methods may be used. For example, after the composition element [B] is cured, the measurement may be made from the cross section image obtained by using an X-ray CT, from the elemental analysis mapping image obtained by using an energy dispersive X-ray spectrometer (EDS), or from the cross section observation image obtained by using an optical microscope, a scanning electron microscope (SEM), or a transmission electron microscope (TEM). In these observations, the composition element [B] and/or the composition element [C] may be stained to adjust the contrast. In the image obtained by any of the above methods, the roughness average height Rc and the roughness average length RSm of the cross section curve are measured in the area of a 500 μm square.


An example of the method for measuring the roughness average height Rc and the roughness average length RSm of the cross section curve is illustrated in FIG. 2. In an observed image 9 illustrated in FIG. 2, the resin region 7 containing the composition element [C] is in close contact with the resin region 8 containing the composition element [B]; and this is illustrated as the boundary surface 10 in the observed image 9. A plurality of the composition elements [A] 6 is present on the boundary surface 10.


An example of the method for measuring the roughness average height Rc and the roughness average length RSm of a cross section curve (measurement method 1 of the cross section curve element) is described below. The edge on the side of the resin region 8 containing the composition element [B] in a rectangular observed image 9 is used as a baseline 11; then, perpendicular baselines 12 are drawn with the interval of 5 μm from the resin region 8 containing the composition element [B] to the resin region 7 containing the composition element [C]. The point where the perpendicular baseline 12 drawn from the baseline 11 intersects the composition element [C] for the first time is plotted, and the line connecting these plotted points is used as the cross section curve 13. The obtained cross section curve 13 is subjected to the filtering process based on JIS B0601 (2001) to calculate the roughness average height Rc and the roughness average length RSm of the cross section curve 13.


In the prepreg according to the present invention, it is preferable that the basis weight of the thermoplastic resin of the composition element [C] be 10 g/m2 or more. The basis weight of 10 g/m2 or more is preferable, because this provides a sufficient thickness to express an excellent bonding strength. The basis weight of 20 g/m2 is more preferable. Although the upper limit thereof is not particularly restricted, this is preferably 500 g/m2 or less, because this amount of the thermoplastic resin is not too much relative to the reinforcing fiber, so that the laminate having excellent specific strength and specific modulus can be obtained. Here, the basis weight refers to the mass (g) of the composition element [C] included in 1 m2 of the prepreg.


In the prepreg according to the present invention, the amount of the reinforcing fiber per unit area is preferably in the range of 30 to 2,000 g/m2. When the amount of the reinforcing fiber is 30 g/m2 or more, the number of the laminate films to obtain a predetermined thickness can be reduced in the laminate molding, so that the workability is likely to be improved. On the other hand, when the amount of the reinforcing fiber is 2,000 g/m2 or less, the draping property of the prepreg is likely to be improved.


The content of the reinforcing fiber in the prepreg according to the present invention is preferably in the range of 30 to 90% by mass, more preferably in the range of 35 to 85% by mass, while still more preferably in the range of 40 to 80% by mass. The range may be a combination of any of the upper limits and any of the lower limits described above. When the content of the reinforcing fiber is 30% or more by mass, the amount of resin is not too much relative to the fiber; thus, the laminate's advantages of the excellent specific strength and of the specific modulus is likely to be obtained, and upon molding of the laminate, the amount of heat generated at the time of curing is unlikely to become excessively high. When the content of the reinforcing fiber is 90% or less by mass, the chance of poor impregnation of the resin is likely to be reduced thereby leading to the decrease in formation of the void in the resulting laminate.


Another aspect of the present invention is the laminate that is produced by the method in which the preform having at least some of the layers thereof composed of the prepreg according to present invention is cured by pressurizing and heating, namely, the laminate having at least some of the layers thereof composed of the cured product of the prepreg according to the present invention; the preform being produced by laminating a plurality of the prepregs according to the present invention, or by laminating the prepreg according to the present invention with a prepreg other than the prepreg according to the present invention. Here, illustrative examples of the method for heating and pressurizing include a press molding method, an autoclave molding method, a bag molding method, a wrapping tape method, and an internal pressure molding method.


Alternatively, still another aspect of the present invention is a laminate including layers containing composition elements [A], [C], and [D], in which a reinforcing fiber of [A] that straddles a boundary surface between a resin region containing [C] and a resin region containing [D] and is in contact with both the resin regions is present.


When the prepreg is viewed in a plane, from a direction that differs by an angle of 45 degrees, regardless of whether clockwise or counterclockwise, to a fiber direction of any [A] in contact with both the resin regions, a cross section perpendicular to the plane of the laminate containing [A] that straddles both the resin regions is obtained; in this cross section, namely, in the cross section that is obtained by cutting or the like perpendicularly to the plane direction of the laminate, the roughness average length RSm of 100 μm or less and the roughness average height Rc of 3.5 μm or more are preferable. Here, the length and height are of a cross section curve formed by a boundary surface of the two adhered resin regions and defined by JIS B0601 (2001). The roughness average height Rc is more preferably 10 μm or more. The lower limit of RSm and the upper limit of Rc are not particularly restricted; but from the concern of a decrease in the mechanical bonding strength due to stress concentration, it is preferable that RSm be 15 μm or more and Rc be 100 μm or less.


The roughness average height Rc and roughness average length RSm of the cross section curve may be obtained by the method similar to the measurement method used in the prepreg according to the present invention as described before.


Illustrative examples of the molding method of the laminate according to the present invention include a press molding method, an autoclave molding method, a bag molding method, a wrapping tape method, an internal pressure molding method, a hand layup method, a filament winding method, a pultrusion method, a resin injection molding method, and a resin transfer molding method.


In the laminate according to the present invention, it is preferable that the thermoplastic resin composition of the composition element [C] be present on the surface thereof. In other words, it is preferable that the layer containing [A], [C] and [D] be present as the outermost layer, and that [C] be exposed to the surface thereof. In addition, in the laminate according to the present invention, it is preferable that the composition element [C] be present both on the surface of and inside the laminate; namely, it is preferable to have the layer containing [A], [C], and [D] also as an inner layer. When the thermoplastic resin of the composition element [C] is present on the surface of the laminate, the laminate according to the present invention can weld the same or different members via the composition element [C]; on the other hand, when the thermoplastic resin of the composition element [C] is present also inside the laminate, an excellent interlaminar fracture toughness value (GIIC) is obtained.


When the laminate according to the present invention is bonded by a certain heater to another member, namely, to a member of the same type as the member composing the laminate and/or a member of a different type (material to be welded) on the surface where [C] is present, especially the composition element [C] on the surface of the laminate, the integrated product having integrated (welded) with the laminate via the composition element [C] can be obtained. Illustrative examples of the different type of member (material to be welded) include a member made of a thermoplastic resin and a member made of a metallic material. The member made of the thermoplastic resin may contain a reinforcing fiber, a filler, and the like. There is no particular restriction on the integration method; here, illustrative examples thereof include a thermal welding, a vibration welding, an ultrasonic welding, a laser welding, a resistance welding, an induction welding, an insert injection molding, and an outsert injection molding.


The strength of the bonding portion of the integrated product can be evaluated in accordance with ISO 4587:1995 (JIS K6850 (1994)). The tensile shear adhesion strength measured in accordance with ISO 4587:1995 is preferably 25 MPa or more, while more preferably 28 MPa or more. In general, the laminate can be used for bonding of a structural material with the tensile shear adhesion strength of 20 MPa or greater, and the tensile shear adhesion strength here is higher than the tensile shear adhesion strength of a common adhesive measured under the testing ambient temperature of 23° C. (about 10 MPa). The higher the tensile shear adhesion strength, the better; so, there is no particular restriction on this, although the upper limit of the tensile shear adhesion strength of the integrated product of a normal laminate is 200 MPa.


The laminate according to the present invention is preferably used for an aircraft structural member, a wind turbine blade, an automotive exterior plate, computer applications such as an IC tray and a housing of a laptop computer, sporting goods such as a golf club shaft and a tennis racket, etc.


Examples

Hereinafter, the present invention will be described in detail by means of Examples. However, the scope of the present invention is not limited to these Examples. The unit “part” in the composition ratio means part by mass unless otherwise specifically noted. The measurement of various characteristics was performed under an ambient temperature of 23° C. and the relative humidity of 50% unless otherwise specifically noted.


<Materials Used in Examples and Comparative Examples>


The composition elements [A], [B], [B′], and [C] described below were used. The composition elements used in each Example and Comparative Example are listed in Tables 1 to 3.


Composition Element [A]: Reinforcing Fiber


After a common carbon fiber bundle as the raw material was obtained by the method described below, various compounds as the sizing agent were applied to the bundle to obtain the reinforcing fiber. First, acrylonitrile copolymer copolymerized with itaconic acid was spun and calcined to obtain the carbon fiber bundle having the total filament number of 24,000, the specific gravity of 1.8 g/cm3, the strand tensile strength of 4.9 GPa, and the strand tensile modulus of 230 GPa. The various compounds as the sizing agent each were mixed with acetone to obtain a solution of about 1% by mass of the compound uniformly dissolved therein. After applying the compounds to the carbon fiber bundle by the immersion method, this was heat-treated at 210° C. for 90 seconds in such a way as to control the amounts of the compounds adhered to the carbon fiber to 0.5 parts by mass relative to 100 parts by mass of the carbon fiber. The compounds used as the sizing agent for the carbon fiber as well as the surface free energies after application of the sizing agent are as follows.


CF1: Polyethylene glycol diglycidyl ether (“Denacol”® EX-841, manufactured by Nagase ChemteX Corp.), surface free energy: 20 mJ/m2


CF2: Bisphenol A diglycidyl ether (“jER”® 828, manufactured by Mitsubishi Chemical Corp.), surface free energy: 9 mJ/m2


CF3: Sorbitol polyglycidyl ether (“Denacol”® EX-614B, manufactured by Nagase ChemteX Corp.), surface free energy: 32 mJ/m2


Thermoplastic Resin Included in Composition Element [C]


PA6: A film formed of polyamide 6 (“Amilan”® CM1007 (manufactured by Toray Industries, Inc.; melting point of 225° C. with the terminal functional group of an amino group and a carboxyl group)) with the basis weight of 120 g/m2


PPS: A film formed of polyphenylene sulfide (“Torelina”® A670T05 (manufactured by Toray Industries, Inc.; glass transition temperature of 90° C. with the terminal functional group of a carboxyl group)) with the basis weight of 120 g/m2


PEKK1: A film formed of polyether ketone ketone (“KEPSTAN”® 6002 (manufactured by Arkema Inc.; melting point of 300° C. and glass transition temperature of 160° C. with the terminal functional group of a carboxyl group)) with the basis weight of 120 g/m2


PEKK2: A film formed of polyether ketone ketone (“KEPSTAN”® 7002 (manufactured by Arkema Inc.; melting point of 331° C. and glass transition temperature of 162° C. with the terminal functional group of a carboxyl group)) with the basis weight of 120 g/m2


PEEK: A film formed of polyether ether ketone (PEEK 450G (manufactured by Victrex plc; melting point of 343° C. and glass transition temperature of 143° C. with the terminal functional group of a hydroxyl group)) with the basis weight of 120 g/m2


Semi-aromatic PA: A film formed of polyamide 6T (melting point of 320° C. and glass transition temperature of 125° C. with the terminal functional group of an amino group and a carboxyl group)) with the basis weight of 120 g/m2


PES1: A film of polyether sulfone (“SUMIKAEXCEL”® 5003P, manufactured by Sumitomo Chemical Co., Ltd., glass transition temperature 225° C. with the terminal functional group of a hydroxyl group) with the basis weight of 120 g/m2


PES2: A film of polyether sulfone (“SUMIKAEXCEL”® 3600P, manufactured by Sumitomo Chemical Co., Ltd., glass transition temperature 225° C. with the terminal functional group of a chloro group) with the basis weight of 120 g/m2


<Measurement Method of Melting Point of Thermoplastic Resin>


The melting point of the thermoplastic resin was measured using a differential scanning calorimeter (DSC) in accordance with JIS K7121 (2012). In the case when a plurality of melting points was observed, such as in the case of a mixture, the highest melting point was used as the melting point of the thermoplastic resin.


<Preparation Method and Evaluation Method of Epoxy Resin Composition>


Epoxy resin compositions for each of the specific examples listed in Table 1 were prepared using the following compounds.


(1) Epoxy Resin Contained in Composition Element [B]


Tetraglycidyl diaminodiphenylmethane (“Araldite”® MY721, manufactured by Huntsman Advanced Materials Inc, epoxy equivalent of 113 (g/eq.), tetrafunctional glycidylamine epoxy resin)


Aminophenol epoxy resin (“Araldite”® MY0500, manufactured by Huntsman Advanced Materials Inc, epoxy equivalent of 100 (g/eq.), trifunctional glycidylamine epoxy resin)


Bisphenol A epoxy resin (“jER”® 825, manufactured by Mitsubishi Chemical Corp., epoxy equivalent of 175 (g/eq.))


Bisphenol A epoxy resin (“jER”® 1001, manufactured by Mitsubishi Chemical Corp., epoxy equivalent of 475 (g/eq.))


(2) Composition Element [B′]: Amine Compound


4,4′-Diaminodiphenylsulfone (Seika Cure S, manufactured by Wakayama Seika Kougyou Co., Ltd., active hydrogen equivalent of 62 (g/eq.))


Diethyltoluenediamine (Aradur® 5200, Huntsman Advanced Materials Inc, active hydrogen equivalent: 45 (g/eq.))


(3) Viscosity Controller


Polyether sulfone (SUMIKAEXCEL® PES5003P, manufactured by Sumitomo Chemical Co., Ltd.)


(4) Preparation Method of Epoxy Resin Composition


An epoxy resin and a viscosity controller described in Table 1 were charged into a kneading machine, and then, they were heated and kneaded to dissolve the viscosity controller. Then, the temperature was lowered to 100° C. or less with continuing the kneading. Then, an amine compound selected as appropriate from those listed in Table 1 was added, and the resulting mixture was stirred to obtain each of the epoxy resin compositions B-1 to B-12.


<Preparation Method and Evaluation Method of Epoxy Resin Cured Product>


The epoxy resin composition prepared by the above method was charged into a molding machine; then, the temperature was raised from 30° C. to 180° C. with the rate of 1.5° C./min in a hot air dryer. After thermally cured at 180° C. for 120 minutes, the temperature was lowered to 30° C. with the rate of 2.5° C./min to obtain a plate-like resin cured product having the thickness of 2 mm. From the epoxy resin cured product thus obtained, the specific examples listed in Table 1 were evaluated using the methods described below.


<Measurement Method of Glass Transition Temperature of Epoxy Resin Cured Product>


From the cured resin plate prepared by the above method, a test specimen having the thickness of 12.7 mm and the length of 45 mm was cut out; then, the test specimen was dried at 60° C. in a vacuum oven for 24 hours. The storage modulus curve thereof was obtained by a dynamic viscoelasticity testing according to JIS K 7244-7 (2007); then, the value of the temperature at the intersection of the tangent line in the glass state and the tangent line in the transition state in the storage modulus curve was defined as the glass transition temperature.


<Measurement Method of Flexural Modulus of Epoxy Resin Cured Product>


From the cured resin plate prepared by the above method, a test specimen having the length of 60 mm and the thickness of 10 mm was cut out, and then, this was dried in a vacuum oven at 60° C. for 24 hours. Next, this was subjected to a three-point bending test at a testing speed of 2.5 mm/min and a distance of 32 mm between the fulcrum points using a universal testing machine (“Instron”® 5565 model P8564, manufactured by Instron Japan) to obtain the flexural modulus in accordance with JIS K7171 (1994).


<Preparation Method of Prepreg>


Prepregs were prepared by the following two methods. The composition elements used in Examples are described in Tables 2 and Table 3.


[I] The reinforcing fibers of the composition element [A] (basis weight of 193 g/m2) was drawn to the reinforcing fiber sheet aligned in one direction with a continuous state, and while running in one direction, a resin sheet formed of the composition element [C] having the basis weight of 120 g/m2 was placed on the continuous reinforcing fiber sheet and heated with an IR heater to melt the composition element [C] so as to adhere to the entire one surface of the continuous reinforcing fiber sheet. Then, this was pressurized with a nip roll whose surface temperature was kept at the melting point of the composition element [C] or lower to cool the impregnated fiber-reinforced sheet to obtain a fiber-reinforced resin intermediate. The epoxy resin composition relating to the composition elements [B] and [B′] selected as described in Tables 2 and 3 was coated onto a release paper using a knife coater with the basis weight of 100 g/m2 to prepare an epoxy resin film; then, this epoxy resin film was overlaid on the opposite side of the impregnated side of the intermediate impregnated with the composition element [C]. So, the prepreg [I] was obtained by impregnating the intermediate with the epoxy resin composition with heating and pressurizing by means of a heat roll.


[II] The epoxy resin composition relating to the composition elements [B] and [B′] selected as described in Table 2 and Table 3 was coated onto a release paper using a knife coater with the basis weight of 50 g/m2 to prepare a resin film. This resin film was overlaid on both sides of the reinforcing fibers (basis weight: 193 g/m2) of the composition element [A] aligned in one direction; then, the prepreg [II] was obtained by impregnating the carbon fibers with the epoxy resin composition with heating and pressurizing by means of a heat roll.


<Preparation Method of Laminate and Evaluation of Mechanical Properties>


(1) Measurement Method of Tensile Shear Adhesion Strength


Prepregs [I] and [II] prepared as described above were cut into predetermined size to obtain two sheets of prepreg [I] and six sheets of prepreg [II]. The preforms were prepared by stacking them to [0°/90° ]2s (the symbol s indicates a mirror symmetry), in which the axial direction of the reinforcing fiber is defined as 0° and the orthogonal direction to the axis is defined as 90°. At this time, the two outermost layers of both sides were laminated with prepreg [I], and both surface layers of the preform were formed so as to be the thermoplastic resin layers containing the composition element [C]. The preform was set in the press mold, and then pressurized and heated by using a press machine with the pressure of 0.6 MPa at 180° C. for 120 minutes with keeping the shape of the preform by using a jig or a spacer, if necessary, to obtain the laminate.


The resulting laminate was cut into two pieces having the width of 250 mm and the length of 92.5 mm with the 0° direction as the longitudinal direction of the specimen; then, they were dried in a vacuum oven for 24 hours. Next, two panels were overlapped with the width of 25 mm×the length of 12.5 mm and the 0° direction as the longitudinal direction; then, this was kept under the pressure of 3 MPa at the temperature above the melting point of the used thermoplastic resin of the composition element [C] by 20° C. for 1 minute thereby welding the overlapped surfaces to obtain the integrally molded product. The resulting integrated product was adhered with a tab in accordance with ISO 4587:1995 (JIS K6850 (1994)); then, this was cut at the width of 25 mm to obtain the specimen.


The specimen thereby obtained was dried in a vacuum oven for 24 hours, and then the tensile shear adhesion strength thereof was measured at an ambient temperature of 23° C. in accordance with ISO 4587:1995 (JIS K6850 (1994)). The evaluation was made as follows on the basis of the measurement results. The results are described in Tables.


The strength is 28 MPa or greater: A


The strength is 25 MPa or greater and less than 28 MPa: B


The strength is 20 MPa or greater and less than 25 MPa: C


The strength is less than 20 MPa: D (Failure)


(2) Measurement Method of Compression Strength


Prepregs [I] and [II] prepared as described above were cut into predetermined size to obtain two sheets of prepreg [I] and four sheets of prepreg [II]. Two sheets of the prepreg [I] were placed as the outermost layers on both sides and the prepregs (II) were interposed between them; thus, the total 6 sheets of the prepregs were stacked in such a way as to be all in the same direction as the reinforcing fiber direction to obtain a preform. At this time, the preform was arranged such that both surface layers were the thermoplastic resin layers containing the composition element [C]. The preform was set in the press mold, and then pressurized and heated by using a press machine with the pressure of 0.6 MPa at 180° C. for 120 minutes with keeping the shape of the preform by using a jig or a spacer, if necessary, to obtain the laminate.


After the resulting laminate was adhered with a tab in accordance with SACMA-SRM⋅1R-94, a rectangular specimen having the length of 80 mm and the width of 15 mm was cut out with the reinforcing fiber axis as the longitudinal direction of the specimen. The obtained test specimen was dried in a vacuum oven at 60° C. for 24 hours, and then the compression strength thereof was measured in a 23° C. environment using a universal testing machine (“Instron”® 5565 model P8564, manufactured by Instron Japan) in accordance with SACMA-SRM⋅1R-94. This was then evaluated as follows based on the measurement results. The results are described in Tables.


The strength is 1.6 GPa or greater: A


The strength is 1.4 GPa or greater and less than 1.6 GPa: B


The strength is 1.2 GPa or greater and less than 1.4 GPa: C


The strength is less than 1.2 GPa: D (Failure)


(3) Measurement Method of Degree of Flatness (Dimensional Accuracy)


Prepregs [I] and [II] prepared as described above were cut into the size of 250 mm long and 125 mm wide to obtain two prepregs [I] and six prepregs [II]. Two sheets of the prepreg [I] were placed as the outermost layers on both sides and the prepregs (II) were interposed between them; thus, the total 8 sheets of the prepregs were stacked in such a way as to be all in the same direction as the reinforcing fiber direction to obtain a preform. At this time, the preform was arranged such that both surface layers were the thermoplastic resin layers containing the composition element [C]. The preform was set in the press mold, and then pressurized and heated by using a press machine with the pressure of 0.6 MPa at 180° C. for 120 minutes with keeping the shape of the preform by using a jig or a spacer, if necessary, to obtain the laminate.


The degree of flatness of the resulting laminate was evaluated in accordance with JIS B7513 (1992). The resulting laminate was cut to the size having the length of 250 mm and the width of 125 mm; then, three of the four edge points of the laminate were grounded on a precision surface plate, and the height of the remaining one point from the plate was obtained. The height of each of the four edge points of the laminate from the plate thereof was obtained by the above method, in which the point not grounded on the precision surface plate was made the one point as described above. This measurement was repeated in turn for all points; then, the highest value of the four heights from the surface plate was defined as the degree of flatness of the laminate. From the measurement results, the evaluation was made as follows. The results are described in Tables.


The height is less than 5 mm: A


The height is 5 mm or more and less than 10 mm: B


The height is 10 mm or more and less than 15 mm: C


The height is 15 mm or more: D (Failure)


(4) Measurement Method of Interlaminar Fracture Toughness Value (GIIC)


The prepreg [I] prepared above was cut to a predetermined size, and a total of 20 sheets thereof were stacked in such a way as to be in the same direction as the reinforcing fiber direction. Then, the preform was prepared by inserting a release film for pre-crack introduction at the position between the 10th and 11th sheets in the middle. The preform was set in the press mold, and then pressurized and heated by using a press machine with the pressure of 0.6 MPa at 180° C. for 120 minutes with keeping the shape of the preform by using a jig or a spacer, if necessary, to obtain the laminate.


From the resulting laminate, a rectangular specimen having the length of 150 mm and the width of 20 mm was cut out with the reinforcing fiber axis as the longitudinal direction of the specimen. Then, this was dried in a vacuum oven at 60° C. for 24 hours. The obtained test specimen was subjected to evaluation of the interlaminar fracture toughness value (GIIC) in a 23° C. environment in accordance with JIS K7086 (1993).


<Measurement of Roughness Average Length RSm and Roughness Average Height Rc in Prepreg and Laminate>


Using the prepreg [I] prepared above, an image was taken using an optical microscope with the magnification of 1000 times in the cross section obtained by cutting perpendicularly to the prepreg plane direction at the angle of 45 degrees in the prepreg plane view to any fiber direction in [A] that is in contact with both the resin regions described above. In an arbitrary 500 μm square observation area in the obtained image, the roughness average length RSm and the roughness average height Rc were measured; these length and height being defined in JIS B0601 (2001) for the cross section curve element obtained by the measurement method 1 of the cross section curve element. In the case of the laminate, too, the laminate described in (1) Measurement Method of Tensile Shear Adhesion Strength was used; then, the image was taken using an optical microscope with the magnification of 1000 times in the observing cross section obtained by cutting perpendicularly to the plane direction, and the rest of the measurement was performed in the same manner as the case of the prepreg described above.


<Preparation Method of Laminates in Examples 1 to 19 and Comparative Examples 1 and 2>


In Examples 1 to 19 and Comparative Examples 1 and 2, laminates were prepared by the methods described in (1) Measurement Method of Tensile Shear Adhesion Strength, in (2) Measurement Method of Compression Strength, and in (3) Measurement Method of Degree of Flatness.


<Preparation Method of Laminates in Example 20 and Comparative Examples 3 to 5>


In Comparative Example 3, a polyamide 6 film (“Amilan”® CM1007 (manufactured by Toray Industries, Inc.)) with the basis weight of 50 g/m2 was attached to both surfaces of the reinforcing fiber sheet arranged in plane to one direction; then, this was pressurized with heating at 250° C. to obtain the prepreg of a reinforcing carbon fiber with the basis weight of 193 g/m2. The obtained prepreg was cut to a predetermined size; then, 8 sheets thereof were stacked to [0°/90° ]2s or to the same direction, or 6 sheets to the same direction for evaluations of the bonding strength, of the degree of flatness, and of the compression strength. Then, this was subjected to the pressure of 3 MPa by means of a press machine with heating at 250° C. for 10 minutes to obtain laminates. From the obtained laminates, the bonding strength, the compression strength, and the degree of flatness were measured by the method as described in Examples.


In Example 20, the prepreg [I] was cut to a predetermined size, and a total of 20 sheets thereof were stacked in such a way as to be in the same direction as the reinforcing fiber direction; and a release film for pre-crack introduction was inserted at the position between the 10th and 11th sheets in the middle to obtain a preform.


In Comparative Example 4, the prepreg [II] (not containing the composition element [C]) was cut to a predetermined size, laminated in the same manner as in Example 20, and then, a release film was inserted between the prepregs to obtain a preform.


In Comparative Example 5, polyamide particles (SP-500, manufactured by Toray Industries, Inc.) were evenly spread on one surface of the prepreg [II] (not containing composition element [C]) having been cut to a predetermined size such that the amount of the particles per unit area of prepreg might become 7 g/m2. Then, in the same way as Example 20, after lamination, a release film was inserted to obtain a preform.


In all of Example 20 and Comparative Examples 4 and 5, the obtained preform was pressurized by a press machine with a pressure of 0.6 MPa with heating at 180° C. for 120 minutes to obtain the laminate; then, with the method described in Examples, the interlaminar fracture toughness value (GIIC) thereof was evaluated.





















TABLE 1






B-1
B-2
B-3
B-4
B-5
B-6
B-7
B-8
B-9
B-10
B-11
B-12





























Epoxy
Composition
Bisphenol A epoxy
80
40
20
20
20
20
20

80
80
80
20


resin
element [B]
(″jER ®″ 825)














compo-
Epoxy resin
Tetraglycidyl
20
60
80
80
80
80
80


20
20
80


sition

diaminodiphenyl
















methane (″Araldite ®″
















MY721)
















Aminophenol epoxy







100








(″Araldite ®″
















MY0500)
















Bisphenol A epoxy








20







(″jER ®″ 1001)















Composition
4,4′-Diaminodiphenyl
28
33
36
32
46
51
57
5 6
28

47
26



Curing agent
sulfone (Seika Cure S)















containing
Diethyltoluenediamine









20





amine
(″Aradur ®″ 5200)















compound
Polyether sulfone
7
7
7
7
7
7
7
7
7
7
7
7



element [B′]
(″SUMIKAEXCEL ®″















Viscosity
PES5003P)















controller

































Composition
Average epoxy value
6.4
7.6
8.3
8.3
8.3
8.3
8.3
10.0
5. 0
6.4
6.4
8.3



(meq./g)















Average amine value
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
22.5
16.1
16.1



(meq./g)















Mole number of active
0.70
0.70
0.70
0.63
0.90
1.00
1.10
0.90
0.90
0.70
1.20
0.50



hydrogen/mole number















of epoxy group














Properties of epoxy
Glass transition
175
189
198
182
227
220
215
242
171
163
184
157


resin cured product
temperature (° C.)















Flexural modulus (GPa)
3.2
3.6
3.8
3.5
3.6
3.4
3.4
3.7
2 . 9
3. 0
2.9
3.3





























TABLE 2






Exam-
Exam-
Exam-
Exam-
Exam-
Exam-
Exam-
Exam-
Exam-
Exam-
Exam-
Exam-
Exam-



ple 1
ple 2
ple 3
ple 4
ple 5
ple 6
ple 7
ple 8
ple 9
ple 10
ple 11
ple 12
ple 13







Composition element
CF1
CF1
CF1
CF1
CF1
CF1
CF1
CF1
CF1
CF1
CF1
CF1
CF1


[A] Reinforcing fiber















Epoxy resin
B-1
B-2
B-3
B-4
B-5
B-6
B-7
B-8
B-9
B-10
B-3
B-3
B-3


composition















Composition element
PA 6
PA6
PA6
PA 6
PA6
PA6
PA6
PA6
PA6
PA 6
PPS
PEKK1
PEKK2


[C] Thermoplastic resin


































Epoxy
Average
6.4
7.6
8.3
8.3
8.3
8.3
8.3
10.0
5.0
6.4
8.3
8.3
8.3


resin
epoxy















compo-
value















sition
Average
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
22.5
16.1
16.1
16.1


data
amine
















value
















Mole
0.70
0.70
0.70
0.63
0.90
1.00
1.10
0.90
0.90
0.70
0.70
0.70
0.70



number
















of active
















hydrogen/
















mole
















number of
















epoxy group

































Roughness average
45
46
46
47
47
47
49
45
48
43
56
48
53


length















RSm of prepreg (μm)















Roughness average
21
22
22
21
21
20
20
23
21
24
19
21
20


height















Rc of prepreg (μm)















Roughness average
45
45
48
45
45
46
48
46
50
42
57
47
54


length















RSm of laminate















(μm)















Roughness average
23
23
22
20
20
21
22
24
20
23
19
22
21


height















Rc of laminate (μm)


































Laminate
Degree of
B
A
A
B
A
B
B
C
B
B
A
A
A


Dimen-
flatness (mm)
6.3
4.8
4.2
6.3
4.8
7.0
7.5
10.5
7.1
9.1
4.2
4.1
4.1


sional
















accuracy
















Laminate
Tensile
A
A
A
C
A
B
B
B
B
B
B
A
A


proper-
shear
28.6
28.5
28.5
24.2
28.1
27.4
27.3
27.4
27.6
27.3
27.3
28.3
29.1


ties
adhesion
















strength at
















23° C.
















(MPa)
















Compression
B
A
A
B
A
B
B
A
C
C
A
A
A



strength
1.43
1.64
1.76
1.48
1.66
1.53
1.51
1.68
1.22
1.28
1.80
1.82
1.81



(GPa)




























TABLE 3













Compar-
Compar-
Compar-
Compar-
Compar-



Exam-
Exam-
Exam-
Exam-
Exam-
Exam-
Exam-
ative
ative
ative
ative
ative



ple
ple
ple
ple
ple
ple
ple
Example
Example
Example
Example
Example



14
15
16
17
18
19
20
1
2
3
4
5







Composition element [A]
CF1
CF1
CF1
CF1
CF2
CF3
CF1
CF1
CF1
CF1
CF1
CF1


reinforcing fiber














Epoxy resin composition
B-3
B-3
B-3
B-3
B-3
B-3
B-1
B-11
B-12

B-1
B-1


Composition element [C]
PEEK
Semi-
PES1
PES2
PA6
PA6
PA6
PA6
PA6
PA6

PA6


Thermoplastic resin

aromatic









particle




PA






























Epoxy
Average epoxy
8.3
8.3
8.3
8.3
8.3
8.3
6.4
6.4
8.3

6.4
6.4


resin
value














compo-
Average amine
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1

16.1
16.1


sition
value














data
Mole number
0.70
0.70
0.70
0.70
0.70
0.70
0.70
1.20
0.50

0.70
0.70



of active















hydrogen/mole















number of















epoxy group































Roughness average length
49
50
56
56
46
45
45
46
46





RSm of repreg (μm)














Roughness average height
21
22
19
19
21
22
21
18
23





Rc of prepreg (μm)
































Roughness
average length
49
51
57
56
47
44
47
48
45






















RSm of laminate (μm)














Roughness average height
23
23
18
20
22
23
20
19
24





Rc of laminate (μm)
































Laminate
Degree of
A
A
A
A
A
A

C
B
D




Dimen-
flatness (mm)
4.3
4.4
4.5
4.5
4.2
4.2

10.8
6.9
16.1




sional















accuracy















Laminate
Tensile shear
A
A
A
C
C
A

C
D
B




proper-
adhesion
28.9
28.5
28.8
24.3
24.5
30.2

24.4
18.2
27.8




ties
strength at















23° C. (MPa)















Compression
A
A
A
A
A
A

D
D
D





strength
1.81
1.79
1.78
1.78
1.76
1.76

1.14
1.05
0.96





(GPa)















Interlaminar






3.7



0.8
2.3



fracture















toughness















Guc (KJ/m2)









REFERENCE SIGNS LIST






    • 1 Prepreg or laminate


    • 2 Composition element [A]


    • 3 Composition element [C], and composition element [B] or composition element [D]


    • 4 Axial direction of any fiber bundle


    • 5 Observing cross section


    • 6 Composition element [A]


    • 7 Resin region containing composition element [C]


    • 8 Resin region containing composition element [B] or


    • 8 composition element [D]


    • 9 Observation image


    • 10 Boundary surface


    • 11 Baseline


    • 12 Perpendicular baseline




Claims
  • 1. A prepreg comprising [A], [B], and [C] described below wherein the [B] further comprises [B′]; a ratio of a mole number of an active hydrogen contained in [B′] to a mole number of an epoxy group in an epoxy resin contained in [B] is in a range of 0.6 to 1.1 both inclusive; [C] is present on a surface of the prepreg; and [A] that crosses over a boundary surface between a resin region containing [B] and a resin region containing [C] and that is in contact with both resin regions is present:[A] a reinforcing fiber;[B] an epoxy resin composition;[B′] an amine compound; and[C] a thermoplastic resin composition.
  • 2. The prepreg according to claim 1, wherein, when a cross section perpendicular to a plane of the prepreg including the [A] from a direction that differs by an angle of 45 degrees, in a plane view of the prepreg, to a fiber direction of any [A] in contact with both the resin regions of [B] and [C] is obtained, a roughness average length RSm is 100 μm or less and a roughness average height Rc is 3.5 μm or more; the length and the height being of a cross section curve formed by the boundary surface of both the resin regions in contact with each other in the cross section and being defined by JIS B0601 (2001).
  • 3. The prepreg according to claim 1, wherein the resin region containing [B] and the resin region containing [C] are configured to form layers adjacent to each other to form the boundary surface.
  • 4. The prepreg according to claim 1, wherein a ratio of a mole number of an active hydrogen contained in [B′] to a mole number of an epoxy group in the epoxy resin contained in [B] is in a range of 0.65 to 0.95 both inclusive.
  • 5. The prepreg according to claim 1, wherein at least one of a condition that an average epoxy value of all epoxy resins contained in [B] is in a range of 6.0 to 11.0 meq./g both inclusive and a condition that an average amine value of all amine compounds contained in [B′] is in a range of 5.0 to 20.0 meq./g both inclusive is satisfied.
  • 6. A laminate comprising layers containing composition elements [A], [C], and [D] described below, [A] a reinforcing fiber;[C] a thermoplastic resin composition; and[D] an epoxy resin cured product formed by curing an epoxy resin composition that contains an epoxy resin and an amine compound, a ratio of a mole number of an active hydrogen contained in the amine compound to a mole number of an epoxy group in the epoxy resin being in a range of 0.6 to 1.1 both inclusive,wherein the reinforcing fiber [A] that crosses over a boundary surface between a resin region containing [C] and a resin region containing [D] and that is in contact with both resin regions is present.
  • 7. The laminate according to claim 6, wherein, when a cross section perpendicular to a plane of the laminate including the [A] from a direction that differs by an angle of 45 degrees, in a plane view of the laminate, to a fiber direction of any [A] in contact with both the resin regions of [C] and [D] is obtained, a roughness average length RSm is 100 μm or less and a roughness average height Rc is 3.5 μm or more; the length and the height being of a cross section curve formed by the boundary surface of both the resin regions in contact with each other in the cross section and being defined by JIS B0601 (2001).
  • 8. The laminate according to claim 6, wherein the resin region containing [C] and the resin region containing [D] are layered adjacent to each other to form the boundary surface.
  • 9. The laminate according to claim 6, wherein the resin region containing [C] is present on a surface of the laminate.
  • 10. The laminate according to claim 6, wherein a ratio of a mole number of an active hydrogen in the amine compound contained in [D] to a mole number of an epoxy group in the epoxy resin contained in [D] is in a range of 0.65 to 0.95 both inclusive.
  • 11. The laminate according to claim 6, wherein at least one of a condition that an average epoxy value of epoxy resins contained in [D] is in a range of 6.0 to 11.0 meq./g both inclusive and a condition that an average amine value of amine compounds contained in [D] is in a range of 5.0 to 20.0 meq./g both inclusive is satisfied.
  • 12. The prepreg according to claim 1, wherein the thermoplastic resin contained in [C] has a functional group selected from the group consisting of a carboxyl group, an amino group, a hydroxyl group, and an isocyanate group.
  • 13. The prepreg according to claim 1, wherein the reinforcing fiber having, as measured by a Wilhelmy method, a surface free energy of 10 to 50 mJ/m2 is used as [A].
  • 14. A laminate comprising a cured product of the prepreg according to claim 1 that constitutes at least some of layers of the laminate.
  • 15. An integrated product, wherein another member is integrated with the laminate according to claim 9 by bonding to a surface on which the resin region containing [C] is present, the surface being a surface of the laminate.
  • 16. The laminate according to claim 6, wherein the thermoplastic resin contained in [C] has a functional group selected from the group consisting of a carboxyl group, an amino group, a hydroxyl group, and an isocyanate group.
  • 17. The laminate according to claim 6, wherein the reinforcing fiber having, as measured by a Wilhelmy method, a surface free energy of 10 to 50 mJ/m2 is used as [A].
Priority Claims (1)
Number Date Country Kind
2019-223483 Dec 2019 JP national
CROSS REFERENCE TO RELATED APPLICATIONS

This is the U.S. National Phase application of PCT/JP2020/043322, filed Nov. 20, 2020 which claims priority to Japanese Patent Application No. 2019-223483, filed Dec. 11, 2019, the disclosures of these applications being incorporated herein by reference in their entireties for all purposes.

PCT Information
Filing Document Filing Date Country Kind
PCT/JP2020/043322 11/20/2020 WO