This application claims the benefit of Italian Patent Application No. 102020000007942, filed on Apr. 15, 2020, which application is hereby incorporated herein by reference in its entirety.
The present disclosure relates to a presence detection device and method.
Presence detection devices are known, used for identifying the presence of individuals in a monitored area, in particular in order to identify intrusions of unauthorized persons and consequently activate alarm signals (it is emphasized that other purposes may, however, be envisaged, for example for applications of energy saving, or of domestic or industrial automation).
Such devices envisage the use of suitable sensors for detecting the presence of individuals in the monitored area.
Known presence sensors include, for example, temperature sensors based on detection of radiation in the infrared (IR) range, of a passive type (the so-called PIR sensors), i.e., ones that react to variations in temperature in the area under surveillance; of an active type, i.e., ones designed to evaluate the interruption of an emitted ray between a point of emission and a point of reception; or of a thermal-image type, i.e., ones designed to detect the so-called thermogram of a subject, i.e., a temperature image or map associated with infrared radiation (IR) emitted by the body of the subject.
Other sensors of a known type include microwave sensors, which usually are used with PIR sensors in so-called “dual-technology” presence detectors. The microwave sensors detect the movement of objects, whereas PIR sensors detect the variation of heat; the combination of the two detections generates an alarm signal.
Known presence detection systems that use appropriate combinations of one or more of the aforementioned sensors, for example a combination of one or more infrared temperature sensors and one or more ultrasound sensors, are, for example, described in U.S. Pat. No. 6,188,318 B1 or in U.S. Publication No. 2005/231353 A1, the aim being to improve the efficiency of detection and reduce the number of false positives and/or false negatives.
Infrared temperature sensors are moreover known, in particular based on thermopiles, made with integrated technology of semiconductor materials, for example with complementary metal oxide semiconductor (CMOS) technology. These sensors in general comprise an array of detection elements (so-called pixels), each implementing a thermocouple or hot-cold junction (for example, obtained with an N+ doped region and a P+ doped region), which are formed starting from a same substrate of semiconductor material, for example silicon, so that the “cold” junctions are at a known temperature.
In a known manner, a thermopile sensor detects a difference in temperature ΔT between the respective detection elements; in particular, when the sensor is heated by incident infrared radiation, a voltage VT=NαΔT is generated as a result of the Seebeck effect, being proportional to the difference in temperature ΔT between the elements of the thermocouple, to the Seebeck coefficient a and to the number of thermocouples N.
Even though in general presence detection devices of a known type may achieve satisfactory performance, these devices may have some drawbacks.
In particular, devices based on infrared temperature sensors are in general sensitive to environmental disturbance and to heating sources other than the individuals to be detected.
In this regard,
In particular, in the presence of at least one individual within the monitored area, and as long as the same individual remains within the same area before coming out, the temperature signal ST assumes, as a result of the heat emitted by the body of the individual, a value considerably higher than a so-called baseline level (corresponding to the value of the temperature signal ST in the absence of individuals in the monitored area, substantially due to the environmental heat in the same monitored area).
Therefore, by evaluating the difference between the value of the temperature signal ST and the baseline level and comparing this difference with a threshold of an appropriate value, a presence signal SP is generated, represented in
In the presence of a larger number of individuals in the monitored area, the temperature signal ST assumes an even higher value with respect to the baseline level, with a relative increase proportional to the number of individuals present.
As mentioned previously, one drawback linked to this type of sensors is represented by the fact that the presence of a source of environmental heat that adds to the baseline level (for example, resulting from turning-on a radiator, stove, or similar heating element, in the case of domestic or indoor application) causes a significant variation in the temperature signal ST, which may even be comparable with the variation associated with the presence of an individual, thus causing switching of the presence signal SP and a “false positive” in the presence detection.
It is known that a further drawback of devices based on infrared temperature sensors is represented by the fact that these devices are in general difficult to install and regulate.
In addition, systems based on microwave sensors are susceptible to the presence of objects made of metal material in the monitored area, which can act as a shield to the radiation emitted, creating “shadow areas” where detection is not possible. In general, minor movements, or even the presence of fluorescent light, are sufficient to cause generation of alarms (with a consequent possibility of false positives). Moreover, microwave sensors do not make a distinction between human beings and objects (for example, curtains, in indoor premises, or leaves or bushes in outdoor premises).
In general, in anti-intrusion systems, a further critical aspect is represented by the discrimination between pets and actual intruders; it is therefore possible for false alarms and consequent erroneous alarm signals to be generated.
The aim of the present solution is to overcome the drawbacks of the known art by providing a presence detection system, in particular for anti-intrusion purposes, having improved characteristics.
In accordance with an embodiment, a detection device includes: an infrared temperature sensor configured to provide a temperature signal associated with an heat emission of at least one individual within a monitored area; an electrostatic-charge-variation sensor configured to provide a charge-variation signal indicative of a variation of electrostatic charge associated with the at least one individual; and a processing unit, coupled to the infrared temperature sensor and to the electrostatic-charge-variation sensor, the processing unit configured to detect a presence of the at least one individual within the monitored area by receiving the temperature signal and the charge-variation signal, and jointly processing the temperature signal and charge-variation signal.
In accordance with another embodiment, a method for detecting a presence of at least one individual within a monitored area includes: providing, by an infrared temperature sensor, a temperature signal associated with a heat emission of at least one individual within the monitored area; providing, by an electrostatic-charge-variation sensor, a charge-variation signal indicative of a variation of electrostatic charge associated with the at least one individual; and jointly processing the temperature signal and the charge-variation signal to detect a presence of the at least one individual within the monitored area.
In accordance with a further embodiment, a presence detection system comprises: an infrared sensor; an electrostatic-charge-variation sensor; and a processor configured to: extract features from charge variation signal provided by the electrostatic-charge-variation sensor, determine whether the extracted features match features associated with a human presence, determine a temperature difference of a temperature signal provided by the infrared sensor, determine whether the temperature difference is outside of a first temperature range, and generate a presence detection signal when the extracted features match features associated with the human presence and the temperature difference is outside of the first temperature range within a same time interval.
For a better understanding of the invention, embodiments thereof are now described purely by way of non-limiting example and with reference to the attached drawings, wherein:
As will be described in detail hereinafter, one aspect of the present solution envisages, for detecting the presence of one or more individuals within a monitored area, a detection device based on the joint, or combined, use of an infrared temperature sensor and of an electrostatic-charge-variation sensor.
The present disclosure relates to a presence detection device and method for systems including, but not limited to, anti-intrusion systems.
In a known manner, the electric charge is a fundamental component of nature. The electric charge of an electrostatically charged body can be easily transferred to another body, in conditions of direct contact or at a distance. When the charge is transferred between two electrically insulated objects, a static charge is generated so that the object with an excess of electrons is negatively charged and the object with a deficit of electrons is positively charged. The displacement of charges is of a different nature, according to whether the object is a conductor or a dielectric. In a conductor, electrons are distributed throughout the material and are free to move, based on the influence of external electrical fields. In a dielectric, there are no electrons free to move, but electric dipoles, with random directions in space (therefore with a resulting zero net charge), which, however, can be oriented or deformed by means of an external electrical field, thus generating an orderly distribution of charges and therefore a polarization. The charge may in any case be mobile, according to the properties of the material and other environmental factors.
In the present solution, the electrostatic-charge-variation sensor of the detection device is configured to detect, via a capacitive detection, the variations of electrical field that arise as a result of the presence of an individual within a monitored area, due to transfer of charges from the body of the individual towards the ground.
In particular, the human body is conductive, and the electric charge is normally balanced; each step made by the individual generates an unbalancing in the electric charge of the body, thus causing a flow of charges, i.e., a current, for overall charge balancing. This electric current can therefore be detected (as described in detail hereinafter), for identifying the presence of the individual within the monitored area.
an infrared temperature sensor 2, in particular a thermopile-based sensor made with CMOS technology, of a per-se known type (not described in detail herein), configured to provide a temperature signal ST, associated with the presence of an individual in a monitored area, as a function of the detected temperature (in particular, the variation of this temperature signal ST with respect to a baseline value may be used to generate a presence signal SP, as discussed previously);
an electrostatic-charge-variation sensor 4, which will be described in detail hereinafter, configured to provide a charge-variation signal SQ indicative of a variation of electrostatic charge associated with the presence of the individual; and
a processing unit 6, which is coupled to the infrared temperature sensor 2 and to the electrostatic-charge-variation sensor 4 in order to receive the temperature signal ST and the charge-variation signal SQ and is configured to jointly process the aforementioned temperature signal ST and charge-variation signal SQ in order to detect the presence of at least one individual in the monitored area.
In particular, as on the other hand will be described in detail hereinafter, the processing unit 6 is configured to implement a “time AND” operation, in order to verify the simultaneous presence of a first and a second presence indication, provided on the basis of processing of the charge-variation signal SQ and of the temperature signal ST, respectively.
In addition, the same processing unit 6 is configured to automatically adjust the baseline value of the temperature signal ST in a manner conditioned with respect to the processing of the charge-variation signal SQ, in particular so as to enable updating of the baseline value only in the absence of individuals in the monitored area, so as to update it as a function of the actual environmental noise present in the same monitored area.
The processing unit 6 comprises, for example, a microcontroller, or a Machine Learning Core (MLC) processor resident in an Application-Specific Integrated Circuit (ASIC), coupled to the infrared temperature sensor 2 and to the electrostatic-charge-variation sensor 4 for processing the temperature signal ST and charge-variation signal SQ. The aforementioned infrared temperature sensor 2, electrostatic-charge-variation sensor 4, and processing unit 6 may be made within a same package provided with appropriate electrical-connection elements towards the outside, for example for connection with a host electronic apparatus.
The input electrode 8 forms part of a differential input 9 of an instrumentation amplifier 12, being coupled to a corresponding first input terminal 9a.
An input capacitor C1 and an input resistor R1 are connected in parallel between the first input terminal 9a and a second input terminal 9b of the differential input 9.
During operation, an input voltage Vd across the input capacitor C1 varies due to process of electrical charge/discharge through the body of the individual, in particular due to contact with the ground and the resulting electric current. After a transient (the duration of which is given by the constant R1·C1 defined by the parallel between the capacitor C1 and the resistor R1), the input voltage Vd returns to its steady-state value.
The instrumentation amplifier 12 is basically constituted by two operational amplifiers OP1 and OP2, having non-inverting input terminals connected, respectively, to the first and second input terminals 9a, 9b and inverting terminals connected together by means of a gain resistor RG2.
A biasing (buffer) stage OP3 biases the instrumentation amplifier 12 to a common-mode voltage VCM, through a resistor R1 coupled to the second input terminal 9b.
The output terminals of the operational amplifiers OP1 and OP2 are connected to the respective inverting input terminals by means of a respective gain resistor RG1; an output voltage Vd′ is present between the output terminals.
As will be evident, the gain Ad of the instrumentation amplifier 12 is equal to (1+2·R1/R2); therefore, the aforementioned output voltage Vd′ is equal to Vd·(1+2·R1/R2).
The components of the instrumentation amplifier 12 are chosen so that the instrumentation amplifier 12 will have a low noise and a high impedance (for example, of the order of 109 Ω) in its passband (for example, comprised between 0 and 500 Hz).
The aforementioned output voltage Vd′ is provided at the input of an analog-to-digital converter (ADC) 14, which provides at the output the aforementioned charge-variation signal SQ for the processing unit 6. The charge-variation signal SQ is, for example, a high-resolution (16 or 24 bits) digital stream.
According to a different embodiment, if an analog-to-digital converter 14 with appropriate characteristics (e.g., differential input, high input impedance, high resolution, dynamic range optimized for the quantities to be measured, low noise) is available, the instrumentation amplifier 12 can be omitted, the input voltage Vd being in this case directly supplied to the input of the analog-to-digital converter 14.
In a way not illustrated, the charge-variation signal SQ can be supplied to a first input of a multiplexer block, which can moreover receive on at least one further input the aforementioned temperature signal ST (and possibly, on further inputs, further detection signals). The output of the multiplexer block is in this case coupled to an input of the processing unit 6, supplying, sequentially in time, the aforementioned charge-variation and temperature signals SQ, ST (and possibly further detection signals) for joint processing by the same processing unit 6.
In particular, as will be in any case highlighted hereinafter, the processing unit 6 is configured to carry out in parallel (i.e., in a way substantially simultaneous over time) two distinct processing branches, a first processing branch 20 and a second processing branch 3o, respectively for processing the temperature signal ST and the charge-variation signal SQ (in the embodiment described, both signals being of a digital type), to detect the presence of at least one individual in the monitored area, on the basis, in combination, of the results supplied by the aforementioned processing branches.
The processing branches 20, 30 are executed continuously over time, within a respective cyclic loop.
In detail, the first processing branch 20 envisages, in an initial step (block 21), acquisition of a new value or sample (or of a set of values or samples) of the temperature signal ST.
Next, at block 22, an update of a baseline value BL of the temperature signal ST is enabled (or not enabled), as a function of, and in a way conditioned to, an enable signal EN received from the second processing branch 30. As will be described in detail hereinafter, the value of this enable signal EN is indicative of the presence, or absence, of individuals in the monitored area, as determined from the processing of the charge-variation signal SQ.
In particular, in the case where updating is enabled (in the absence of individuals in the monitored area), at block 23, the baseline value BL is updated, in a per se known manner, for example by updating of a moving-window average or by implementation of an appropriate filter, for example of a low-pass type with a suitable time constant, designed to supply at the output the aforementioned baseline value BL.
Updating of the baseline value BL enables automatic adjustment of the temperature detection made by the infrared temperature sensor 2 to the environmental conditions and to the possible variations thereof (for example, on account of turning-on or activation of an external heat source or of any other source of noise). In particular, given that the aforementioned enable signal EN is indicative of the absence of individuals in the monitored area, updating of the baseline value BL can be carried out in an optimized way with dedicated operations, for example as regards the speed of response of the aforementioned moving average and/or filtering operations, without problems of interference with the possible detection of presence of individuals in the same monitored area.
Then, at block 24, the value of a temperature difference (or gradient) ΔT is calculated as the difference, in absolute value, between the value of the temperature signal ST and the aforementioned baseline value BL (possibly appropriately updated, as discussed previously).
As represented by block 25, this temperature gradient ΔT is compared, in absolute value, with a temperature threshold THT, of a pre-set value, indicative of the variation of the temperature signal ST associated with the presence of at least one individual in the monitored area (the value of this temperature threshold THT can be determined beforehand or in an initial characterization step).
If the temperature gradient ΔT is, in absolute value, lower than the temperature threshold THT, processing returns to block 21, to calculate a new value of the same temperature gradient (considering the subsequent value, or a set of subsequent values, of the temperature signal ST).
If, instead, the temperature gradient ΔT is, in absolute value, equal to or higher than the temperature threshold THT, the first processing branch 20 provides a first presence indication, indicative of the presence of at least one user in the monitored area.
In parallel, the second processing branch, designated by 30, envisages, as represented by block 31, continuously over time within a respective cyclic loop, acquisition and processing of the charge-variation signal SQ (possibly preliminarily subjected to appropriate filtering actions).
In particular, at block 32, firstly a preliminary check of the charge-variation signal SQ is carried out in order to identify a significant variation thereof with respect to a reference (or baseline) value.
In one embodiment, this preliminary check can be carried out by means of a comparison of the charge-variation signal SQ with a charge threshold ThQ. This charge threshold ThQ may be fixed and pre-set, or, alternatively, may be of an adaptive type, i.e., variable as a function of the evolution of the charge-variation signal SQ. Calculation of the charge threshold ThQ of an adaptive type can be carried out by exploiting techniques known in the art; for example, it is possible to use sliding time windows or overlapping time windows, or again other techniques for real-time adaptive-threshold calculation.
In a possible embodiment, the charge threshold ThQ can be chosen as the average of the charge-variation signal SQ (in the time window considered) plus a multiple of the standard deviation of the same charge-variation signal SQ (in the same window considered):
ThQ=mean(SQ)+n·stddev(SQ),
with “n” chosen in the range between 2 and 6, for example 4 (where “mean” is the operation of arithmetic mean, and “stddev” is the operation of standard deviation). The time window is chosen with an appropriate value, according to the type of application; the Applicant has found that values compatible with processing on a microcontroller (i.e., taking into account the buffer, the memory used, and the calculation resources), can range from 2 to 10 seconds.
If the preliminary check on the charge-variation signal SQ does not lead to identification of a significant variation, processing returns to block 31, for a new processing cycle of the charge-variation signal SQ.
In addition, once again in the case where the aforementioned significant variation of the charge-variation signal SQ is not identified, the enable signal EN (for example, of a high value) is provided to the first processing branch 20 (at block 22) to enable modification and automatic updating of the baseline value of the temperature signal ST (as previously discussed).
If, instead, the aforementioned significant variation of the charge-variation signal SQ is identified, the aforementioned automatic updating of the baseline value of the temperature signal ST is disabled (the enable signal switches, for example, to the low value) and a further and more in-depth analysis of the charge-variation signal SQ is carried out in order to verify the presence of features that are indicative of the presence of at least one individual in the monitored area.
This further analysis may envisage, in a simpler embodiment (and one that is less burdensome from the computational standpoint) identification of (positive and/or negative) peaks in the evolution of the charge-variation signal SQ with respect to a reference value, due to the transfer of electrostatic charges from or towards the ground as a result of the presence of the individual in the monitored area.
As will be highlighted also hereinafter, the Applicant has in fact verified the possibility of identifying peaks in the charge-variation signal SQ at each step made by the individual, as a result of the aforementioned transfer of charges from the body of the individual from or towards the ground.
In a different embodiment, illustrated in the aforementioned
The aforementioned significant features characterize the evolution of the charge-variation signal SQ, for example of a corresponding envelope, and may be identified and detected via processing of the same charge-variation signal SQ. Advantageously, to carry out the aforementioned operations of feature extraction and analysis it is possible to use automatic-learning artificial-intelligence algorithms of the so-called machine-learning type, appropriately trained, for example by means of neural networks, SVMs, Bayesian networks, etc.
In any case, on the basis of the aforementioned further analysis, the presence, or absence, in the charge-variation signal SQ, of features indicative of the presence of at least one individual is verified, at block 35.
If the features are not present, a subsequent cycle of processing of the charge-variation signal SQ is envisaged (in the example, the process returns to the aforementioned block 31).
If the features are present, a second presence indication is provided, regarding the presence of at least one individual in the monitored area.
Next, at block 40, processing envisages verifying the simultaneous presence, i.e., the presence substantially at the same instant or time interval, of the aforementioned first and second indications, in order to validate (in the case of positive verification of the simultaneous presence) the detection of the presence of at least one individual in the monitored area. In other words, in block 40 an operation of (time) AND is carried out between the first and second presence indications, thus reinforcing the presence indication supplied, individually, by the infrared temperature sensor 2 and by the charge-variation sensor 4.
It is highlighted that the aforementioned operation of time AND may, for example, be performed as described in the Italian Patent Application 102020000001603 filed on 28, Jan. 2020 in the name of the present Applicant.
It is moreover highlighted that a certain delay (for example, of the order of some tens of milliseconds) between the two detections of the first and second indications is in any case acceptable, given that it falls within the normal delay of generation, acquisition and processing of the two signals (by means of operations carried out with procedures different from one another).
In the case where the simultaneous presence of the first and second indications is verified, the process passes from block 40 to block 41, where a presence signal SP is generated at the output, indicative of the detected presence of at least one individual in the monitored area. The presence signal SP may, in particular, be a signal that assumes a first value (for example, a high value) throughout the time interval within which at least one individual enters, and remains within, the monitored area.
It is moreover evident that, outside the aforementioned time interval ΔT, i.e., in the absence of individuals within the monitored area, the charge-variation signal SQ has significantly different features, and in particular an amplitude lower than the charge threshold ThQ. In this time interval, as discussed previously, updating of the baseline value of the temperature signal ST is therefore enabled.
The electronic apparatus 50 comprises a main controller 52 (a microcontroller, a microprocessor, or a similar digital processing unit), coupled to the processing unit 6 of the detection device 1 in order to receive the information regarding the presence of at least one individual in the monitored area.
In the embodiment described previously, the main controller 52 receives from the processing unit 6 of the detection device 1 the presence signal SP, for example in order to activate an appropriate anti-intrusion alarm (or serving other purposes, for example for energy saving, or for domestic or industrial automation).
The advantages achieved by the present solution emerge clearly from the foregoing description.
In any case, it is again underlined that, in the detection device 1, monitoring of the charge variation allows to reinforce the information associated with the sole temperature detection made by the infrared temperature sensor.
The detection device 1 enables a performance optimization (in particular, reducing the number of false detections, i.e., false positives and false negatives, due to the presence of noise due to heat sources or electrostatic charges in the environment), with an optimized energy consumption and a small occupation of space (in particular, with the possibility of integration in a single package of both detection technologies, namely, the temperature detection and the charge-variation detection).
As described previously, it is advantageous the possibility to use the presence indication provided by processing of the charge-variation signal SQ for enabling, or not, updating of the baseline value BL of the temperature signal ST so as to eliminate (or markedly reduce) the false detections associated with environmental noise.
In addition, advantageously, processing of the features of the charge-variation signal SQ enables discrimination with a high reliability of the presence of individuals or pets within the monitored area. In particular, the presence of pets does not generally lead to generation of the second presence indication by the second processing branch 30; at most, the presence of pets can lead to generation of a signal with smaller amplitude (which therefore can be filtered out with a sufficiently high threshold) or with features that are different, as regards shape and frequency, from those associated with the detection of human presence.
Finally, modifications and variations may be applied to the present solution, without thereby departing from the scope specified in the claims.
In particular, in a way not illustrated, appropriate filtering operations may be envisaged (for example, using low-pass or high-pass filters) for the temperature and charge-variation signals ST, SQ, preliminary to the processing operations described. This filtering may have the function of “cleaning-up” the temperature and charge-variation signals ST and SQ from noise or components of disturbance at non-significant frequencies (e.g., around 50 Hz or 60 Hz for the charge-variation signal SQ). It is moreover possible to carry out a frequency analysis (e.g., by means of Fast Fourier Transform—FFT) of the charge-variation signal SQ in order to identify the features thereof for recognizing whether the individual is going upstairs or downstairs and the relative number of steps.
In a way not illustrated, the detection device 1 can integrate further sensors and envisage further processing channels dedicated to other detections.
Moreover, in one embodiment, the charge-variation sensor 4 may be arranged in a manner delocalized with respect to the temperature sensor 2. In this case, the detection device 1 is not integrated within a single package, and, for example, a wireless communication may be envisaged between the control unit 6 and the charge-variation sensor 4.
The above embodiment may be advantageous, for example, for orienting the monitoring area of the charge-variation sensor 4 in a specific way towards known sources of disturbance (for example, constituted by heat sources, whose switching-on could be interpreted as the presence of an individual in the monitored area).
In various embodiments, the methods described herein may be implemented, at least in part, using a processor coupled to a non-transitory computer readable medium, such as a memory. The non-transitory computer readable medium may include instructions executable by the processor to implement embodiment algorithms. The processor may include a central processing unit (CPU), a microprocessor, a microcontroller or other processing circuitry known in the art that is capable of executing machine readable instructions. In alternative embodiments, the methods described herein may be implemented using dedicated digital logic, programmable digital logic such as a field programmable gate array (FPGA), a digital signal processor (DSP), or other suitable digital hardware.
Furthermore, it is underlined that the detection device 1 may comprise a different sensor for providing the temperature-variation signal used in combination with the charge-variation signal for presence detection, for example, an infrared temperature sensor of an active type.
Number | Date | Country | Kind |
---|---|---|---|
102020000007942 | Apr 2020 | IT | national |