Various embodiments of the invention may relate, generally, to the presentation of computer-aided detection/diagnosis (CAD) results.
Computer-aided detection/diagnosis (CAD) techniques show much promise as an aid to physicians. However, in general, a physician may often have only a very short time to review the results, and interaction with a computer system can affect the efficiency of the review.
Currently-known result display systems show the whole image, which requires the user to window/level the whole image to separately investigate each identified region of interest (ROI), and a magnifier (or panning or zoom) may be used to investigate the detail of each ROI. These current systems typically apply all parameters to the entire image, whereas different ROIs may have different optimal windowing/leveling parameters and/or magnification parameters. Consequently, the physician may have to repeatedly reset such parameters to investigate each identified ROI, which may take a considerable amount of time.
Various embodiments of the invention will now be described in conjunction with the accompanying drawings, in which:
As an alternative to such indicia in some embodiments of the invention, on command from the radiologist to show the ROIs, each ROI may be presented as a magnified region with optimized windowing and leveling, which may be derived according to the features found by the CAD algorithm.
It is further noted that this concept may be extended, in some embodiments of the invention, to show other registered image chips, such as those from dual-energy subtraction (DES), or CAD algorithm outputs, such as the determined ROI boundary, boundary of other adjacent detected features, certainty of nodularity (e.g. score), etc. In fact, the original ROIs to be superimposed or such other registered image chips may be other than CAD results. For example, they may correspond to ROIs entered by a user or input from some other non-CAD source.
In addition to the above, in some embodiments of the invention, the user may select a particular ROI chip and adjust its parameters (windowing, leveling, magnification, etc.) according to the user's preferences. This may be done, e.g., via the use of menus, sliding controls, or other graphical user interface (GUI) methods. Other processing and display parameters, such as inversion, brightness, etc., may also be user-selectable for a given ROI chip and/or for the entire image (with regard to the latter, the user may be able to select the entire image or portions of the entire image for such processing).
Some embodiments of the invention may permit multiple selectable image displays. For example, in some embodiments of the invention, the ROI chip mode may be activated by scrolling with the mouse wheel, by mouse clicks, or by keystrokes or button pushes on a user interface device (or, similarly, manipulations of a touch-screen display). For example, the user may be able to select among two or more of the following: the plain image (e.g., as shown in
This concept may be extended, in some embodiments of the invention, by allowing further scrolling (or other selecting) to present alternative chip content based on other images that may be registered. Examples of such additional chip content may include, but are not limited to, regular image with CAD; a soft-tissue image based on dual-energy techniques; a bone image based on dual-energy techniques, and/or a soft-tissue image generated from a regular image using software-based techniques (which may be called, e.g., a “virtual soft-tissue image,” and which may be generated by known techniques (such as the MTANN method developed at the University of Chicago) or by techniques as yet to be discovered). For example,
In some embodiments of the invention, after the default presentation of the ROI chips, the user may be permitted to drag, or otherwise move, them to other locations in the image, e.g., as multiple magnifiers (e.g., for the same ROI).
An alternative presentation, which may be used in some embodiments of the invention, is to show each magnified ROI only one at a time with a user interaction to move forward/backward through the ROIs. This may be used to address the possible issue of overlapping ROIs. In some embodiments of the invention, the display system may create a larger magnified ROI chip to encompass all of the overlapping ROIs (when they are too close to display as individual ROI chips.
As an extension of this concept, in some embodiments of the invention, a user may double click (or similarly select in a manner that may differ from the selection of a display mode) any location within the image and can bring up an ROI chip optimally windowed/leveled for that location. In a further embodiment, the ROI chip thus generated may be dragged, or otherwise moved, across the image with dynamic updating according to the image area below, or it may be “frozen” and dragged, or otherwise moved, to a new location with connectors to show its origin location. An example of this latter display technique is shown in
As a further extension of these techniques, the number of presented ROI chips may be limited by using CAD detection scores such that scrolling the mouse wheel (or other manual selection action) may be used to vary the number of ROI chips from a maximum number to a minimum number. This may correspond, for example, to stepping along the free receiver operating characteristic (FROC) curve to obtain a variable sensitivity/false positive per image (FPPI) operating point.
In some embodiments of the invention, hovering the mouse over the ROI chip, or similarly manually selecting it, may be customized to cause display of textual information related to the ROI. Such information may include, but is not limited to size, features, etc.
Furthermore, in some embodiments of the invention, a menu or other GUI selection scheme may be provided to permit a user to select such per-chip options as freeze/unfreeze (toggle), enable contour, add to DICOM-structured report, etc. Such a menu may be obtained, for example, by means of a right mouse click or other manual selection method.
As discussed above, in some embodiments of the invention, the windowing/leveling for an ROI chip may have been, in some way, automatically optimized. However, it may be useful for a user to be able to change the windowing/leveling, to contrast with the automatically optimized view. In some embodiments of the invention, there may also be provided additional images having different windowing/leveling settings for one or more ROI chips (and this may be a user-selectable option, e.g., for a particular ROI chip or for an image), and the user may be able to scroll through and/or otherwise select among these alternatively-windowed/leveled images. In one exemplary implementation of such an embodiment, the differently-windowed/leveled images may be provided for all ROI chips of a given image, and the user may be able to select among the differently-windowed/leveled images for all ROI chips, simultaneously; alternatively, it may be possible to select a single ROI chip and perform this for just that ROI chip.
Various embodiments of the invention may comprise hardware, software, and/or firmware.
Various embodiments of the invention have been presented above. However, the invention is not intended to be limited to the specific embodiments presented, which have been presented for purposes of illustration. Rather, the invention extends to functional equivalents as would be within the scope of the appended claims. Those skilled in the art, having the benefit of the teachings of this specification, may make numerous modifications without departing from the scope and spirit of the invention in its various aspects.
This application claims the priority of U.S. Provisional Patent Application No. 60/971,008, filed on Sept. 10, 2007, and incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60971008 | Sep 2007 | US |