The present invention relates to a press apparatus for wood products, in which the inner adhesion surfaces' adhesive of wood products produced substantially continuously can be cured under heating and compression. These kinds of wood products are, for example, the LVL-beam (Laminated Veneer Lumber) and different wooden boards produced in a similar way. The billets of these products are produced as continuous stacks by layering veneer sheets between which adhesive has been applied. The billets are then led to a compression treatment, where in at least some point the billet is heated for curing the adhesive. Continuous presses, in which the product to be compressed is between two rotating endless belts, have conventionally been used in production lines for these products. Heating devices operating according to different principles have been placed along the compression range for conducting heat to the product under compression.
The heating may be implemented by using the convection principle in which the heat is conducted to the press belts, and from them onwards to the product. High-frequency heating (RF, HF) is also commonly used, where the wave-energy created by the heating device is led directly to the product for achieving a dielectric heating effect.
A continuous press is structurally expensive and demanding in terms of directing the heating.
A synchronous press providing a reasonable production capacity must be long, which is structurally demanding. Furthermore, it requires a stacking device having a length of at least one compression length of the product to be pressed.
Different operational problems have also been associated with the available equipments. Heat transfer from the surface to the interior is slow with devices operating according to the convection principle. Increasing the transfer rate of the temperature gradient by raising the surface temperature includes its own problems such as a sudden evaporation of water in wood material and the adhesive. On the other hand, in high-frequency heating the product is heated substantially uniformly in the depth direction, but problems due to sudden local evaporation of water have occurred also in this heating method. Primarily it is specifically the adhesion point that might snap open when releasing compression too early.
For each operation cycle the leading end of the product has to wait for rather a long period in a stacking device preceding a synchronous press having a long construction, at which time the behavior of the adhesive may cause problems, such as absorption, pre-mature curing etc.
A substantial improvement for these problems has been achieved with a press apparatus according to the invention, which is intended for the production of a substantially continuous wood product. The apparatus is based on a so-called synchronous press in which the product is led to an opening between press plates acting against each other, and the product in place between the plates is compressed by forcing the press plates towards each other. During compression, heat is conducted to the product by using some of the aforementioned methods. At least two presses are located in series at a predetermined distance from each other, so that when conveying a continuous product forward a working measure, each section of the product will spend a same amount of time in each press and a same amount of time between each press. That is, each product section will undergo an uniform treatment if the operating parameters of each press are held constant during operation. The precondition for this operation is: the distance between presses=L/(n−1), where L=working length of a press, n=number of presses.
For each press operating in series uniform operation parameters can be determined, that is compression pressure and heat input. Operation schemes where the operation parameters of presses operating in series differ from each other give, however, different degrees of freedom for the operation, where an advantageous product specific operation pattern can be determined for each product. Especially the amount of heat input at different stages is a useful operating variable. Also, an individual compression time can be regulated if necessary, although presumably the presses operate synchronously.
The “resting periods” between the presses are also advantageous for the operation. During a resting period the internal temperature differences of the product are able to equalize to some extent, and especially the elevated vapor pressure of local moist areas is able to equalize.
The apparatus sections between the presses can be in free contact with the environment, or alternatively be surrounded with an appropriate insulation. When using high-frequency heating, the insulation can be a radiation insulation. Heat insulation may also come in question, especially if convection heating is utilized in the presses.
The accompanying drawing illustrates a schematic example of the implementation of the present invention with four synchronous presses 2 located in series for compression heating a substantially continuously fed LVL-product 1. In the accompanying drawing, L is the working length of each press and e is the distance between each press.
Number | Date | Country | Kind |
---|---|---|---|
20115421 | May 2011 | FI | national |
Number | Name | Date | Kind |
---|---|---|---|
3814787 | Carlsson | Jun 1974 | A |
4543147 | Noto et al. | Sep 1985 | A |
4822447 | Obermeier | Apr 1989 | A |
5470428 | Sanko | Nov 1995 | A |
5472556 | Sanko | Dec 1995 | A |
7882879 | Patterson et al. | Feb 2011 | B2 |
20080264274 | Haller et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
101954665 | Jan 2011 | CN |
867272 | Sep 1998 | EP |
Entry |
---|
Finnish Search Report dated Feb. 7, 2012, corresponding to Foreign Priority Application No. 20115421. |
Number | Date | Country | |
---|---|---|---|
20120279666 A1 | Nov 2012 | US |