The present invention relates generally to industrial presses. More particularly, this invention relates to press brakes.
Press brakes are commonly used to bend or otherwise deform sheet-like workpieces, such as sheet metal workpieces. A conventional press brake has an upper beam and a lower beam, at least one of which is movable toward and away from the other. Typically, the upper beam is movable vertically while the lower beam is fixed in a stationary position. It is common for a male forming punch and a female forming die to be mounted respectively on the upper and lower beams of a press brake.
Typically, the punch has a downwardly-oriented, workpiece-deforming surface (or “tip”). The configuration of this surface is dictated by the shape into which it is desired to deform a workpiece. The die typically has a recess, bounded by one or more workpiece-deforming surfaces, that is aligned with the tip of the punch. The configuration of this recess corresponds to the configuration of the punch's tip. Thus, when the beams are brought together, a workpiece between them is pressed by the punch into the die to give the workpiece a desired deformation (e.g., a desired bend).
In order to accurately deform a workpiece, it is necessary for the tools to be mounted securely on the tool holder. This is accomplished by forcibly clamping the tool holder about each tool. Multiple steps are sometimes required, for example, to mount a punch on the upper beam of a press brake. The punch may be moved into an initial-mount position by lifting the shank of the punch upwardly between a support plate and clamp of the tool holder. In some cases, when the punch is moved into this position, a safety key of the punch engages a safety slot of the tool holder. In other cases, a safety groove on the punch is engaged by a lip on the clamp of the tool holder. Either way, the tool holder subsequently is clamped forcibly on the shank of the punch. Even at this stage, the load-bearing surfaces of the tool holder and punch may not be securely engaged. Rather, additional steps may be required. For example, with many tool holder designs, the upper and lower tables of the press brake must subsequently be moved together until the punch comes into contact with a die on the lower table. By forcing the tip of the punch against the die, the punch can be urged upwardly relative to the tool holder until the load-bearing surface(s) of the punch is/are moved into contact with the corresponding load-bearing surface(s) of the tool holder. When a punch is in this operative position, the load-bearing surfaces of the tool holder and punch are engaged and the shank of the punch is clamped securely, e.g., between a support plate and clamp of the tool holder. During pressing operations, the punch is maintained in this position. Thus, it can be appreciated that several steps may be required to operatively mount a punch on the upper beam of a press brake.
It would be desirable to provide a tool holder that can be operatively clamped about a tool in such a way that the load-bearing surfaces of the tool holder and tool are engaged as an adjunct of the closing action of the tool holder on the tool (e.g., without having to press the tip of a preliminarily-clamped punch against a die on the lower table of the press brake). The present invention provides new press brake tool holder and tool technologies, which offer tool seating features and other advantages not found in other press brake tool holder systems.
In certain embodiments, the invention provides a tool holder for a press brake. The tool holder is adapted to move a press brake tool along a pressing axis when the tool is operatively mounted on the tool holder. In the present embodiments, the tool holder comprises a tool-mount channel configured for receiving a tang of the tool, the tool-mount channel being bounded by two confronting walls of the tool holder. In the present embodiments, the tool holder also comprises a seating member mounted on a portion (optionally a stationary portion) of the tool holder so as to be moveable between an open position and a closed position. Preferably, a leading end region of the seating member extends into the tool-mount channel when the seating member is in its closed position. In the present embodiments, this leading end region of the seating member has at least one contact surface that is adapted to bear forcibly against a desired surface on the tang of the tool so as to deliver to the tool a force having a seating component that is at least generally parallel to the pressing axis. In the present embodiments, the tool holder includes a driver adapted for selective operation by actuating the driver at a desired time, in response to which the seating member moves to its open position, such movement optionally involving at least part of the seating member moving away from the tool-mount channel.
One group of embodiments provides a tool holder for a press brake, where the tool holder is adapted to move a press brake tool along a pressing axis (e.g., back and forth vertically along a vertical pressing axis) when the tool is operatively mounted on the tool holder. In these embodiments, the tool holder comprises a tool-mount channel configured for receiving a tang of the tool, the tool-mount channel being bounded by two confronting walls of the tool holder. In the present embodiment group, the tool holder is provided with a pivotable push plate mounted on the tool holder so as to be moveable pivotally between a first configuration and a second configuration, the thus mounted push plate having a pivot point at a desired location. The tool holder also includes a seating member mounted on a portion (optionally a stationary portion) of the tool holder so as to be moveable between an open position and a closed position. Preferably, a leading end region of the seating member extends into the tool-mount channel when the seating member is in its closed position. This leading end region of the seating member has at least one contact surface that is adapted to bear forcibly against a desired surface on the tang of the tool so as to deliver to the tool a force having a seating component that is at least generally parallel to the pressing axis. Preferably, the seating member is operably coupled with the pivotable push plate such that the seating member moves to its closed position in response to the push plate pivoting to its first configuration.
In some embodiments, the invention provides a tool holder for a press brake, and the tool holder is adapted to move a press brake tool along a pressing axis when the tool is operatively mounted on the tool holder. Here, the tool holder comprises a tool-mount channel configured for receiving a tang of the tool, the tool-mount channel being bounded by two confronting walls of the tool holder. In the present embodiments, a single block defines at least part of each of the two confronting walls, and this block houses an internal hydraulic chamber. The tool holder also includes a seating member mounted on a portion (optionally a stationary portion) of the tool holder so as to be moveable between an open position and a closed position. Preferably, a leading end region of the seating member extends into the tool-mount channel when the seating member is in its closed position. In the present embodiments, the leading end region of the seating member has at least one contact surface that is adapted to bear forcibly against a desired surface on the tang of the tool so as to deliver to the tool a force having a seating component that is at least generally parallel to the pressing axis. In the present embodiments, the tool holder has a hydraulic driver adapted for being operated by delivering hydraulic fluid into the internal hydraulic chamber in response to which the seating member moves relative to the noted portion (which optionally is a stationary portion) of the tool holder.
In one group of embodiments, the invention provides a method of operating a tool holder for a press brake, where the tool holder is adapted to move a press brake tool along a pressing axis when the tool is operatively mounted on the tool holder. In the present group of method embodiments, the tool holder comprises a tool-mount channel configured for receiving a tang of the tool, the tool-mount channel being bounded by two confronting walls of the tool holder. The tool holder also includes a seating member mounted on a portion (optionally a stationary portion) of the tool holder so as to be moveable between an open position and a closed position. Preferably, a leading end region of the seating member extends into the tool-mount channel when the seating member is in its closed position. In the present embodiments, the leading end region of the seating member has at least one contact surface that is adapted to bear forcibly against a desired surface on the tang of the tool so as to deliver to the tool a force having a seating component that is at least generally parallel to the pressing axis. The present method embodiments involve a hydraulic driver adapted for being operated by delivering hydraulic fluid into a hydraulic chamber of the driver in response to which the seating member moves relative to the noted portion (which optionally is a stationary portion) of the tool holder. The method comprises delivering such hydraulic fluid into the hydraulic chamber at a pressure of at least about 1,000 pounds per square inch.
In certain embodiments, the invention provides a tool holder for a press brake, the tool holder being adapted to move a press brake tool along a pressing axis when the tool is operatively mounted on the tool holder. In the present embodiments, the tool holder comprises a tool-mount channel configured for receiving a tang of the tool, the tool-mount channel being bounded by two confronting walls of the tool holder. In the present embodiments, the tool holder also comprises a push plate mounted on the tool holder so as to be moveable between a first configuration and a second configuration. Preferably, the push plate when in its first configuration is under a constant force that provides resistance to the push plate being moved out of its first configuration. In the present embodiments, the push plate is operably coupled to a driver adapted for selective operation by actuating the driver at a desired time so as to move the push plate to its second configuration. The tool holder also includes a seating member mounted on the tool holder so as to be moveable between an open position and a closed position. Preferably, a leading end region of the seating member extends into the tool-mount channel when the seating member is in its closed position. In the present embodiments, the leading end region of the seating member has at least one contact surface that is adapted to bear forcibly against a desired surface on the tang of the tool so as to deliver to the tool a force having a seating component that is at least generally parallel to the pressing axis. In the present embodiments, the seating member is operably coupled with the push plate such that when the push plate is in its first configuration the seating member is in its closed position and when the push plate is in its second configuration the seating member is in its open position. The tang of the tool preferably can be moved vertically into and out of the tool-mount channel when the seating member is in its open position.
Further, the invention provides a particular group of embodiments involving a press brake tool holder and a press brake tool, in combination. Here, the tool is operatively mounted on the tool holder. The tool holder has a tool-seating mechanism and is adapted to move the tool in a pressing direction during a pressing operation. In this group of embodiments, the tool comprises first and second ends, the first end defining a workpiece-deforming surface that is adapted for contacting a workpiece. The second end is defined by a tang. Preferably, the tang is provided with a resiliently-biased safety key having a retracted position and an extended position. Further, the safety key preferably is in its extended position and is resiliently biased against movement toward its retracted position. The tool also includes a load-receipt surface. The tool holder comprises a tool-mount channel in which is received the tool's tang, the tool-mount channel being bounded by two confronting walls of the tool holder. Preferably, at least one of the confronting walls defines a safety recess that is open to the tool-mount channel. In the present embodiments, an engagement portion of the tool's safety key is received in the safety recess. Here, the engagement portion of the safety key has a bottom surface that is located directly above a safety shelf of the tool holder, the bottom surface of the safety key's engagement portion being spaced above the tool holder's safety shelf. The tool holder in the present embodiments also includes a load-delivery surface, and the load-delivery surface is in direct contact with the tool's load-receipt surface. Further, the tool holder in the present embodiments includes a seating member mounted on, and for movement relative to, one of the two confronting walls of the tool holder. Preferably, the seating member is at least part of the tool-seating mechanism. In the present embodiments, at least part of the seating member is located in the tool-mount channel, and the seating member has a contact surface that is in direct contact with a desired surface on the tang of the tool. Preferably, the operatively-mounted tool has no externally-accessible actuator operably connected to the safety key to facilitate retracting the safety key from its extended position, and the tool holder preferably has no externally-accessible actuator that can be operated to retract the safety key of the operatively-mounted tool. The tool holder and tool are preferably configured such that the tool is prevented from being removed vertically from the tool-mount channel by pulling the tool in the pressing direction and/or by attempting to tilt the tool relative to the tool holder.
The tool holder will commonly be of the American style. However, the tool holder can take the form of various other press brake tool holder styles known in the art, including those currently in less widespread use. In fact, it will be appreciated that the tool holder TH can reflect any desired tooling style, including styles not yet developed, that would benefit from the features of this invention. The tool holder, of course, can be a press brake beam, an adapter mounted to a press brake beam, or any other type of press brake tool holder.
Certain embodiments of the invention provide a press brake tool holder in combination with a press brake tool. The tool TL can be a male forming punch or a female forming die. Typically, the tool TL has generally opposed first and second ends (or sides). Preferably, the first end (or side) of the tool defines a workpiece-deforming surface TP (e.g., at a tip of the tool) configured for making a desired deformation (e.g., a bend) in a workpiece when this surface TP is forced against the workpiece (e.g., when a tip of the tool is forced against a piece of sheet metal or the like). The second end (or side) of the tool has a tang T that is configured for being mounted in the tool-mount channel C, as will now be described.
The tang T of the tool TL is sized and shaped to be received in the tool-mount channel C. In some embodiments, such as where both confronting walls CW, CW′ are stationary during the clamping action of the tool holder, a clearance gap is provided to facilitate mounting and dismounting the tang T in the channel C. In some cases, a lateral width (i.e., the width along the x axis) of the channel C is slightly greater than a corresponding lateral width of the tang T. Preferably, this gap is less than about 0.1 inch, and more preferably is less than about 0.05 inch, such as about 0.01 inch.
In some cases, the tool TL has a safety key K. As shown in
In embodiments involving a tool TL with a safety key K, the key preferably comprises an engagement portion 580 that is adapted to project into a safety recess SR defined by the tool holder TH. In the case of a non-retractable safety key, the key will typically comprise a rigid projection from the tool's tang. When provided, the non-retractable safety key preferably is either integral to the tool's tang or rigidly joined to the tool's tang.
In the case of a retractable safety key, the key is mounted on the tool so as to be moveable between an extended position and a retracted position. In more detail, such a key preferably comprises a rigid engagement portion that is moveable relative to (e.g., generally toward and away from) the tool's tang. Such retractable safety keys are described in U.S. Pat. No. 6,467,327 and U.S. patent application Ser. No. 10/742,439. In some cases, the safety key is part of a key assembly (e.g., mounted inside and/or on the tool) comprising at least one spring member resiliently biasing the key toward its extended position.
In one group of embodiments, the press brake tool TL has a click-in/slide-out design. Reference is made to
In
With continued reference to
Thus, the click-in/slide-out embodiments of the invention preferably involve a tool holder and tool in a combination wherein the tool holder and tool have particular configurations. In these embodiments, the tool and tool holder are configured such that once the tool is mounted (even loosely) in the channel with the safety key's engagement portion 580 received in the tool holder's safety recess SR, the tool is prevented from being removed vertically from the channel by pulling on and/or attempting to tilt the mounted tool. Insofar as the tool is concerned, a safety key K on the tool preferably has an engagement portion 580 with a particular configuration. Insofar as the tool holder is concerned, a safety recess SR of the tool holder preferably has a particular configuration and/or a safety shelf SS of the tool holder preferably has a particular configuration. These portions of the tool holder and tool desirably are configured such that if the clamping force and/or clamping element(s) of the tool holder is/are released (e.g., such that the tool is only prevented from falling out of the channel C by virtue of the safety key's engagement portion 580 resting on the safety shelf SS or another surface of the tool holder), the safety key remains engaged with the safety recess and/or the safety shelf even if a press brake operator pulls on (e.g., in the pressing direction) the tool and/or attempts to tilt the tool. As noted above, one manner of achieving this feature is to provide the tool holder with a horizontal safety shelf SS and to provide the tool's safety key with a horizontal trailing surface 580P. Given the present teaching as a guide, of course, skilled artisans will be able to select other configurations (not requiring such horizontal surfaces) that would prevent vertical removal of the mounted tool. For example, the trailing surface(s) of the safety key's engagement portion and/or the tool holder's safety shelf could be tapered in such a way that they would not cam together so as to retract the safety key if an operator were to pull the loosely mounted tool in the pressing direction PD>
In certain embodiments, the tool holder TH has a safety shelf SS that is at least generally, or at least substantially, horizontal. With reference to
Thus, in some embodiments, the tool holder defines a safety recess SR. When provided, the safety recess SR preferably is sized to receive an engagement portion 580 of a desired safety key K. In some embodiments involving a tool holder TH in combination with a press brake tool TL, the tool holder TH has a safety recess SR at a location on the tool holder TH that is aligned with (e.g., is at the same elevation as) a safety key K on the tool TL. For example, some embodiments of this nature (such as those shown in
Thus, some embodiments of the invention provide a tool holder and tool in combination. Reference is made to
Typically, the tool holder TH has at least one load-delivering surface LD configured for engaging a load-receiving surface LR of a press brake tool TL. Preferably, the tool holder TH has one or more generally or substantially horizontal load-delivering surfaces LD each being adapted to engage and deliver force to (when the tool is operatively mounted on the tool holder) one or more corresponding generally or substantially horizontal load-receiving surfaces LR of the tool TL. In some embodiments involving a tool in combination with a tool holder, the tool holder has a load-delivering surface LD engaged with (e.g., carried directly against) a load-receiving surface LR of the tool TL. Preferably, these engaged surfaces LD and LR are generally or substantially horizontal. In some cases, the tool holder TH has two horizontal load-delivering surfaces LD. For example,
Each illustrated load-delivering surface LD of the tool holder TH is configured for engaging, and delivering force to, a corresponding load-receiving surface LR of a tool TL. In the figures, each horizontal load-delivering surface LD of the tool holder TH is shown as being a downwardly-facing surface, and each horizontal load-receiving surface LR of the tool is shown as being an upwardly-facing surface. In other embodiments (e.g., where the tool holder is on a lower beam), the horizontal load-delivering surface(s) LD of the tool holder is/are upwardly facing, and the horizontal load-receiving surface(s) of the tool is/are downwardly facing. Thus, the invention provides various combination embodiments wherein the tang of a tool is operatively mounted in the channel of the tool holder such that each load-delivering surface of the tool holder is generally or substantially horizontal and is carried directly against a corresponding generally or substantially horizontal load-receiving surface of the tool.
In certain embodiments, the tool holder TH is adapted for forcing the tool TL (e.g., when the tool is operatively mounted on the tool holder) against a workpiece by delivering force from the load-delivering surface(s) LD of the tool holder to the load-receiving surface(s) LR of the tool. In preferred embodiments of this nature, the tool holder TH is adapted for moving the operatively-mounted tool TL along a pressing axis PA (shown in
In some embodiments, the tool holder is operably coupled to a press brake ram that is adapted for moving the tool holder and the operatively-mounted tool together so as to force the workpiece-deforming surface TP of the tool TL against a workpiece WP. Preferably, the ram (which can be part of, or otherwise operably coupled with, a bed BE of the press brake) is adapted for moving the tool holder TH and the tool TL together in a pressing direction that is generally or substantially normal to the load-delivering surface(s) LD of the tool holder (e.g., in a vertical direction). In other embodiments, the tool holder is not adapted for moving the operatively-mounted tool, but rather is designed for securing the operatively-mounted tool in a stationary position during pressing operations.
Preferably, the tool holder TH has a closed configuration and an open configuration. When the tool holder TH is in its open configuration, the tang T of a press brake tool TL can be readily moved into and out of the tool holder's channel C. Reference is made to
In the illustrated embodiments, the tool holder TH includes at least one seating member (or “pusher member”) 80. Preferably, the seating member 80 is mounted on the tool holder TH (optionally, on a stationary portion of the tool holder) so as to be moveable between an open position and a closed position.
Preferably, a leading end region (or “clamping end region”) 80FR of the seating member 80 extends into the tool-mount channel C when the seating member is in its closed position. This can be seen, for example, in
In certain embodiments, the seating member extends into the tool-mount channel whether the seating member is in its closed position or its open position. In these embodiments, the seating member extends into the channel to a lesser extent when in the open position than when in the closed position.
Preferably, the seating member 80 comprises (e.g., is) a rigid body having generally-opposed front 80F and rear 80R ends (or sides). While not required in all embodiments, the seating member shown in the drawings is mounted on a stationary portion of the tool holder's body B. That is, the portion of the tool holder on which the seating member is mounted is not moved laterally (at least not substantially) during the closing action of the tool holder.
The illustrated seating member 80 is mounted slidably in a bore 80B extending through the tool holder's body B, which preferably defines the noted stationary portion of the tool holder. In some embodiments, this body B also defines at least part of each of the two confronting walls CW, CW′ (and/or an optional hydraulic reservoir for an actuator of the tool holder). In preferred embodiments of this nature, the body B is a single, integral block, desirably formed of a rigid material, such as metal (e.g., steel). The bore 80B can optionally extend along an axis that is generally or substantially perpendicular to the pressing axis PA of the tool holder. This orientation of the bore 80B, however, is by no means required.
In the illustrated embodiments, the seating member 80 is mounted in the bore 80B so as to be slidably moveable along the axis of the bore 80B. This axis 80BA is shown as being substantially horizontal, although this is not required. In certain embodiments, the bore 80B opens through one CW′ of the confronting walls CW, CW′ bounding the tool-mount channel C. That is, the bore 80B in such embodiments opens into the channel C.
In the illustrated embodiments, the bore 80B has a first outlet that opens through a desired one CW′ of the confronting walls CW, CW′, and the leading end region 80FR of the seating member 80 projects from this outlet (and into the channel C) when the seating member 80 is in its closed position. The illustrated bore 80B also has a second outlet from which a trailing end region of the seating member projects when the seating member is in its closed position. The second outlet preferably opens through a wall (or a wall surface) that is generally opposed to the desired one CW′ of the confronting walls CW, CW′. In other words, these first and second outlets preferably open through walls (or wall surfaces) that are generally opposed. This feature, however, is strictly optional.
Thus, the seating member 80 preferably comprises a rigid body. In some embodiments, this rigid body has a generally cylindrical configuration. An exemplary embodiment of this nature is shown in
In some cases, it is advantageous to provide the seating member 80 with at least one planar side surface 80P. This can facilitate mounting the seating member in a correspondingly configured bore for axial movement without rotation (e.g., so the seating member stays in a substantially constant rotational orientation while moving axially in such bore). This can also be achieved by mechanically linking the seating member 80 to a push plate 70, as described below. In either fashion, the seating member can be maintained in a particular orientation (e.g., such that a taper surface 80T′ of its leading end region is in a generally upwardly-facing orientation).
The leading end region 80FR of the seating member 80 preferably has at least one contact surface (e.g., a taper surface 80T′, a planar surface 80PS, and/or a corner surface) that is adapted to bear forcibly against a desired surface (optionally a taper surface TS) on the tang of a tool (which optionally has a predetermined tang configuration) so as to deliver to the tool a force having a seating component that is at least generally parallel to the pressing axis. Preferably, the seating component of this force moves the tool relative to the tool holder until the load-bearing surfaces LD, LR of the tool and tool holder are brought into contact with each other. Different embodiments of the invention achieve tool seating in different ways.
The exemplary seating member 80 in
With continued reference to
In
In other embodiments, the leading end region of the seating member 80 is not tapered, but the tool holder is provided in combination with a press brake tool the tang of which has an engagement portion EP with a taper surface TS against which the leading end region 80FR of the seating member is adapted to bear so as to deliver to the tool a force with a seating component that moves the tool (e.g., upwardly) so as to bring the load-receiving surface(s) of the tool into direct contact with the load-delivering surface(s) of the tool holder.
Thus, in embodiments where the tool holder TH is adapted for moving a tool along a pressing axis (e.g., during a pressing operation), the seating member 80 optionally is adapted for delivering to such a tool a force having both a seating component and a clamping component. In some embodiments of this nature, the seating component is generally parallel to the pressing axis PA, and the clamping component is generally perpendicular to the pressing axis. As noted above, the seating component can optionally be vertical (e.g., upward), while the clamping component is horizontal.
In certain embodiments, the tool holder TH includes a plurality of seating members 80. Reference is made to
Referring again to
As previously discussed, the seating member 80 can optionally have a generally cylindrical configuration. In some embodiments of this nature, the seating member 80 has at least one cross section (taken along a plane lying in both the Y axis and the Z axis) that is at least generally circular or at least generally oval. Additionally or alternatively, the seating member can optionally have at least one cross section (taken along the noted plane) that is not circular, but rather is square, rectangular, triangular, otherwise polygonal, or irregularly shaped.
In some embodiments, the tool holder TH is provided with a push plate 70 that is moveable between first and second configurations. The tool holder TH, for example, can have a push plate 70 to which at least one seating member 80 is mechanically linked or otherwise operably coupled. The illustrated push plate 70 is mechanically linked to a plurality of seating members 80, although this is not strictly required. Due to the illustrated mechanical linkage, each seating member 80 moves from its closed position to its open position in response to movement of the push plate 70 from its first configuration to its second configuration. The groove 80G on the illustrated seating member 80 facilitates this mechanical linkage in that the groove receives the clamping end 70E of the push plate 70. In embodiments of this nature, the clamping end 70E of the push plate 70 preferably is retained in the groove 80G at all times during movement of the plate 70 between its first and second configurations. Thus, the illustrated seating member 80 moves to its closed position in response to the push plate 70 moving to its first configuration, and this seating member moves to its open position in response to the push plate moving to its second configuration. In some embodiments, the seating member is adapted to move toward, and/or away from, its closed position in response to the push plate bearing against a surface 80S on the trailing end region (at or adjacent the rear end 80R) of the seating member 80.
In embodiments involving a push plate 70, the plate when in its first configuration can optionally be under a constant force that provides resistance to the plate being moved away from (i.e., out of) this configuration. The force can optionally be a spring-generated force. In
When provided, the push plate 70 preferably is operably coupled with the seating member 80 such that when the plate is in its first configuration (one example of which is shown in
In the illustrated embodiments, the trailing end region (which defines the rear end 80R) of the seating member 80 is located a distance from the channel C whether the seating member is in its open position or its closed position. This feature, however, is optional.
In certain embodiments, the tool holder TH can be operated so as to move the push plate 70 from its first configuration to its second configuration (one example of which is shown in
The seating member 80 can be mechanically linked to the push plate 70 by virtue of a male structure of the push plate being received in a female structure of the seating member. As noted above, the seating member can have a groove 80G. This groove 80G can serve as the female structure and can receive a male structure of the push plate. In the illustrations, the clamping end 70E of the push plate 70 serves as the male structure. Other mechanical linkages can be provided as well.
As has been described, some embodiments of the invention provide a pivotable push plate. Other embodiments provide a push plate that is mounted on the tool holder for linear movement. Still other embodiments do not involve a push plate at all. The features desired for a given application can be selected using the present disclosure as a guide.
One group of embodiments provides a tool holder having a tool-mount channel, a seating member, and a pivotable push plate. In these embodiments, the push plate is mounted on the tool holder so as to be moveable pivotally between first and second configurations. The seating member in such embodiments preferably is operably coupled with the push plate such that the seating member moves (e.g., axially and/or horizontally) to its closed position in response to the push plate pivoting to its first configuration. This can optionally be accomplished by virtue of an articulating joint between the seating member 80 and the push plate 70, as described below.
In some pivotable push plate embodiments, the seating member has a trailing end region that is located a distance from the tool-mount channel whether the seating member is in its open or closed position. Some embodiments of this nature provide an arrangement wherein when the push plate 70 pivots to its first configuration the plate 70 bears against a surface 80S of the seating member 80 so as to force the seating member to its closed position. In the illustrated embodiments, this surface 80S is defined by the trailing end region of the seating member. This is perhaps best appreciated with reference to
Thus, one group of embodiments provides a tool holder with a push plate mounted on the tool holder so as to be moveable pivotally between a first configuration and a second configuration. As noted above, the tool holder preferably includes a seating member 80 mounted on a portion (optionally a stationary portion) of the tool holder so as to be moveable between an open position and a closed position. In pivotable push plate embodiments, the seating member preferably is operably coupled to the pivotable push plate such that the seating member moves to its closed position in response to the push plate pivoting to its first configuration. In some embodiments of this nature, the seating member is mechanically linked to the push plate by virtue of an articulating joint that facilitates simultaneous linear movement of the seating member and pivotal movement of the push plate.
In pivotable push plate embodiments, the plate has a desired pivot point PP. In some embodiments of this nature, the push plate when in its first configuration receives a force (e.g., is under a constant force) that provides resistance to the push plate pivoting out of its first configuration and/or biases the push plate toward its first configuration. This force can optionally be generated by at least one spring member SP located vertically further from the channel C than is the pivot point PP. One or more spring members SP of this nature can optionally be mounted between the push plate 70 and a wall SW (or respective walls) of the tool holder. In certain pivotable push plate embodiments, the tool holder is provided with a driver that is adapted for selective operation and that is operably coupled to the push plate such that the plate pivots to its second configuration (overcoming the noted force) in response to actuating the driver.
In some embodiments involving a tool holder and tool in combination, the tool holder TH is adapted for moving the tool TL in a pressing direction PD, the seating member 80 is adapted for delivering a force to the tool, and at least one of the leading end region 80FR of the seating member and the engagement portion EP of the tool's tang T comprises a taper surface 80T′, TS, such that the noted force has a seating component that is at least generally parallel, and generally opposed, to the pressing direction PD. The pressing direction PD, for example, can be a generally or substantially vertical downward direction, and the seating force component can be a generally or substantially vertical upward force component. In such cases, the force preferably also has a generally or substantially horizontal clamping component.
In certain combination embodiments, the engagement portion EP of the tool's tang T has a recess R in which at least a portion of the leading end region 80FR of the seating member 80 is received when the seating member is in its closed position. This is perhaps best seen in
In some combination embodiments, the channel C of the tool holder TH includes at least one safety recess (or “safety groove”) SR, and the tang T of the tool TL includes a safety key K that is engaged with the safety recess so as to prevent the tang from falling out of the tool holder's channel. This can also be appreciated with reference to
Preferably, the tool holder TH includes a driver D that serves as an actuator, and thus is adapted for being operated so as to open and/or close the tool holder. The illustrated embodiments provide a tool holder TH that assumes, or stays in, its closed configuration during any loss of power to the tool holder. Thus, when the illustrated driver D is in a non-energized state, the tool holder TH stays in its closed (e.g., clamped) configuration, thereby securely retaining any tools mounted on the tool holder. This provides an advantageous fail-safe feature.
Thus, the tool holder in the illustrated embodiments has a tool-mount channel, a seating member, and a driver D. The driver preferably is adapted for selective operation, such that by actuating the driver at a desired time the seating member in response moves to its open position. This movement of the seating member can optionally involve at least part of the seating member moving away from the tool-mount channel C. Each driver D shown in
Whether or not the driver is hydraulic, it preferably is operably coupled to the push plate such that the plate moves to its second configuration in response to actuating the driver. In some embodiments of this nature, the seating member is mechanically linked to the push plate such that the seating member is forced by the push plate to move to its open position when the push plate moves to its second configuration. As noted above, the push plate can be mechanically linked to the seating member by an articulating joint, which optionally facilitates linear movement of the seating member and simultaneous pivotal movement of the push plate.
The illustrated driver D is hydraulic. However, the driver D can alternatively be mechanical, pneumatic, and/or thermally responsive. In certain embodiments, the driver D is a solenoid selected from the group consisting of a hydraulic solenoid, a pneumatic solenoid, and an electrical solenoid.
In one alternate embodiment, the driver D comprises a thermally-responsive actuator of the type described in U.S. patent application Ser. No. 10/876,886, entitled “Thermally-Actuated Press Brake Tool Holder Technology”, the entire contents of which are incorporated herein by reference. Each hydraulic subassembly shown in the drawings, for example, can optionally be replaced with a reservoir/polymer/heating element subassembly. A subassembly of this nature, for example, can involve a thermally-responsive polymer disposed in a reservoir of the tool holder. Preferably, a piston-like body is in fluid communication with the polymer, and the polymer can be heated (e.g., by operating a heating element in, or adjacent to, the reservoir) so as to cause the polymer in the reservoir to expand and bear forcibly against the piston-like body, thus moving the piston-like body in such a way that the tool holder is actuated (e.g., opened).
In embodiments where the tool holder has a hydraulic driver, a hydraulic subassembly can be built directly into the body of the tool holder. The body (e.g., a single block) of the tool holder, for example, can define one or more internal channels and/or recesses in which internal components of the hydraulic subassembly are disposed. These internal components can optionally include hydraulic fluid, O-rings, a hydraulic cylinder, etc. Preferably, the hydraulic subassembly includes a cylinder or another moveable body 50D, 150D that acts like a piston P. In the illustrated embodiments, at least part of the body 50D, 150D is moveable in response to delivering hydraulic fluid into the hydraulic chamber HC.
The tool holder can optionally include an internal hydraulic line IL. In some embodiments, the internal hydraulic line IL is provided in the form of a bore at least a length of which extends through the body (e.g., a block) B of the tool holder. In one subgroup of embodiments, the block B also defines at least part of one of the confronting walls CW, CW′ of the tool holder TH. Hydraulic fluid will generally (e.g., during use) be disposed within the hydraulic line IL, the block B will commonly be a piece of metal, and the hydraulic fluid can advantageously be in direct contact with an inner surface BW of the hydraulic line length that is defined by the block (e.g., such that this inner surface is defined by the metal of the block).
Optionally, the tool holder includes an internal hydraulic line IL that is adapted for use at pressures in excess of about 1,000 psi, such as between about 1,000 psi and about 5,000 psi, perhaps optimally between about 3,500 psi and about 5,000 psi. In certain method embodiments, the method comprises delivering hydraulic fluid (e.g., oil), optionally pressurized at 1,000 psi or more, through the internal hydraulic line IL and into the hydraulic chamber HC, with the result that the tool holder is actuated (i.e., moved into either an open or closed configuration).
As noted above, certain embodiments provide a tool holder TH wherein the channel C is bounded by two confronting walls both defined (at least in part) by a single (e.g., one-piece) block of the tool holder. In some embodiments of this nature, the block defines one or more internal channels and/or recesses. For example, the block can have (e.g., can bound) an internal hydraulic chamber HC and/or one or more internal hydraulic lines IL (optionally bounded by a wall BW of the block). In these embodiments, the driver D preferably is adapted for being operated by delivering hydraulic fluid to the hydraulic chamber HC in response to which at least one seating member 80 mounted on a portion (optionally a stationary portion and/or a portion defined by the block B) of the tool holder moves (e.g., slides horizontally and/or axially) relative to such portion of the tool holder. In some embodiments of this nature, the seating member comprises a rigid body mounted slidably in a bore extending through such portion of the tool holder. Embodiments involving a hydraulic subassembly built into the body of the tool holder provide a number of advantages, including compactness, functionality in making narrow bends in workpieces, and flexibility in terms of hydraulic pressures.
In alternate embodiments, the tool holder TH is provided with a hydraulic subassembly that is mounted on a side of the tool holder. In these embodiments, for example, a hydraulic manifold can be mounted on a desired side of the tool holder.
In one group of embodiments, the tool holder is provided with a hydraulic driver and a pivotable push plate. Here, the driver is adapted for being actuated by delivering hydraulic fluid to the driver, in response to which the push plate preferably pivots to its second configuration, which in turn preferably causes the seating member to move to its open position. Preferably, this movement of the seating member 80 involves at least part of the seating member moving away from the tool-mount channel C and/or moving relative to the tool holder portion on which the seating member is mounted.
Some preferred embodiments provide a hydraulic driver that is devoid of (i.e., does not include) any flexible-wall hydraulic or pneumatic lines (e.g., bellows or hoses). In some embodiments of this nature, the driver D includes an internal hydraulic chamber HC and/or internal hydraulic lines IL having internal walls BW defined by the tool holder's body B (which preferably is a rigid block, e.g., of metal). These embodiments can be provided to facilitate higher fluid pressure than is conventional for flexible-wall bellows, hoses, etc.
With reference to
In certain embodiments, a moveable body 50D, 150D that is part of, or cooperates with, the driver D is moveable in response to delivering hydraulic fluid into the hydraulic chamber HC.
Thus, certain embodiments provide a tool holder TH that assumes, or stays in, a closed configuration during any loss of power. In embodiments of this nature, the default configuration of the tool holder TH is its closed configuration, in which configuration any tools mounted on the tool holder are securely retained. This fail-safe functionality can be provided in different ways. In some cases, this is accomplished by providing the tool holder with a mechanism that constantly biases the tool holder toward its closed configuration.
The recess DR optionally extends along an axis that is at least generally perpendicular to the tool holder's pressing axis PA. Preferably, the moveable body 50D is mounted in the recess DR so as to be slidable along the axis of the recess DR, e.g., between a retracted position and an extended position. When the moveable body 50D is in its extended position, it desirably bears (e.g., forcibly) against the push plate 70. The recess DR preferably has an outlet that opens through a wall (e.g., defined by the body B) of the tool holder. Preferably, this outlet is at least somewhat (or at least substantially entirely) covered by the push plate 70.
As noted above, in certain embodiments, the tool holder TH includes a push plate 70 mounted on the tool holder so as to be moveable between a first configuration and a second configuration. Preferably, the first configuration is a closed configuration (as shown in
With continued reference to
In some embodiments of the nature exemplified in
The plate 70 illustrated in
Thus,
In
If so desired, the seating member 80 (in any embodiment) can be resiliently biased (e.g., by one or more springs) away from the channel C (e.g., in embodiments where the push plate and seating member are not mechanically linked) so that the seating member automatically moves away from the channel C when the push plate 70 moves into its second configuration. Alternatively, the seating member 80 can simply be mounted for free sliding in the bore 80B. More preferably, the push plate 70 and seating member 80 are mechanically linked, as noted above, such that when the push plate moves from its first configuration to its second configuration, the seating member is forced (e.g., pushed and/or pulled) by the push plate to move from its closed position to its open position. The illustrated mechanical linkage has been described. Other types of mechanical linkage can also be used.
The invention provides one group of embodiments wherein the tool holder includes a hydraulic driver that is operably connected to a hydraulic pump. In some of these embodiments, the pump is adapted for generating a discharge pressure of greater than 1,000 psi, preferably between about 2,000 psi and about 5,000 psi, and perhaps more preferably between about 3,500 psi and about 5,000 psi. Suitable hydraulic pumps are commercially available from a number of suppliers, such as Enerpac, which maintains a distributorship in Milwaukee, Wis., U.S.A. Some methods of the invention involve operating the tool holder by actuating a hydraulic pump so as to generate a discharge pressure of greater than 1,000 psi, preferably between about 2,000 psi and about 5,000 psi, and perhaps more preferably between about 3,500 psi and about 5,000 psi. In embodiments involving an interior hydraulic line IL, this results in the delivery of hydraulic fluid at such pressure through the hydraulic line. For example, certain methods provide a tool holder including a piston (optionally defined at least in part by a cylinder) and a hydraulic chamber, and the methods involve operating the hydraulic pump at a discharge pressure within one or more of the noted-pressure ranges (e.g., so as to deliver such pressurized hydraulic fluid into the hydraulic chamber), thereby forcing the piston to move in such a way that the push plate is caused to move (i.e., responds by moving) to its second configuration.
As noted above, the push plate 70 can optionally be mounted pivotally on the tool holder. In some embodiments, for example, the push plate 70 is mounted pivotally on the tool holder such that the plate 70 is prevented from moving substantially in a direction (e.g., in a vertical direction) parallel to the tool holder's pressing axis PA. In some embodiments, one or more pivot pins PTP (defining the pivot point PP of the push plate 70) are used to pivotally anchor the push plate 70 to the tool holder TH. For example, the push plate 70 can optionally be mounted on the tool holder TH such that the plate 70 is prevented from moving substantially in any manner other than by pivoting relative to the body B of the tool holder (e.g., such that the clamping end 70E of the push plate moves generally toward or away from the tool-mount channel when the plate pivots).
In certain embodiments, the push plate 70 when mounted on the tool holder TH is carried alongside the body B of the tool holder. This body B, for example, can be a single block of metal (e.g., steel). Optionally, such a block can define at least part of each wall CW, CW′, at least part of each load-delivering surface LD, an internal hydraulic chamber/reservoir HC, and/or an internal hydraulic line IL.
In preferred embodiments, the push plate (or “clamp plate”) 70 has a maximum thickness PT of between about 0.06 inch and about 0.75 inch. These dimensions, however, are by no means required.
In
In the illustrated embodiments, the push plate has a first portion FP and a second portion 2P. The first FP and second 2P portions of the illustrated plate 70 are located on opposite sides of the plate's pivot point PP. In the illustrated embodiments, the first portion FP of the push plate 70 and the second portion 2P of the push plate are defined by one integral body. That is, the illustrated push plate 70 is of one-piece construction. While this has advantages, it is not required.
In certain embodiments, the tool holder TH is provided with the following features: (1) a push plate 70 having a plurality of force-delivery fingers 70F and a plurality of slits SL, each slit extending entirely through the thickness of the push plate and being bounded by two of the force-delivery fingers; and (2) when the push plate is in its first configuration one (e.g., only one) of the fingers 70F bears forcibly against the seating member 80. In some embodiments of this nature, the tool holder TH is also provided with the following features: (3) the push plate 70 has a first portion FP and a second portion 2P, the second portion defines the fingers 70F, and the slits SL do not extend into the first portion. In the illustrated embodiments, a plurality of fingers 70 bear forcibly against respective seating members 80 (such that each finger is mechanically linked to (and is in direct contact with) a single seating member.
In some embodiments, the tool holder is provided with a push plate that is removably secured to the body of the tool holder. In these embodiments, the push plate and tool holder's body are two different pieces. The plate 70, for example, can optionally be mounted on the body of the tool holder by a plurality of removable fasteners (e.g., bolts). In other embodiments, the push plate is permanently joined, or integral, to the body of the tool holder.
When the illustrated push plate 70 is in its second configuration, the clamping end (or “first end”) 70E of the push plate is spaced further from the tool holder's body B (and further from the channel C) than it is when the plate 70 is in its first configuration. Further, the clamping end 70E of the illustrated push plate 70 bears forcibly against the seating member 80 when the push plate is in its first configuration. These features, however, are not strictly required.
The invention provides various methods involving the tool holder TH. In one group of embodiments, there is provided a method of operating a press brake. Here, the method comprises: (a) providing a press brake tool holder TH and a press brake tool TL in a combination wherein the tool holder TH has a channel C in which a tang T of the tool TL is received and securely clamped. The tool holder TH in the present method preferably comprises: (i) a driver D; (ii) a push plate 70 to which the driver is operably coupled, the push plate being mounted on the tool holder so as to be moveable between a first configuration and a second configuration, the push plate being in its first configuration, wherein the driver is adapted for being operated so as to move the push plate to its second configuration, and (iii) a seating member 80 mounted on the tool holder TH so as to be moveable between an open position and a closed position, the seating member being in its closed position such that a leading end region 80FR of the seating member bears against the tang T of the tool TL (e.g., so as to deliver a force to the tool), the seating member being operably coupled with the push plate such that the plate bears upon the seating member and provides resistance against the seating member being moved to its open position. The present method comprises operating the driver D (optionally by carrying out a hydraulic fluid delivery step, such as one of those described above) so as to move the push plate 70 (optionally by pivoting the plate) from its first configuration to its second configuration, thereby eliminating or reducing the force on the tool (e.g., as a result of the seating member(s) moving to the open position in response to the push plate moving to its second configuration).
In certain embodiments of the present group, the invention provides a method of closing the tool holder TH. Here, the push plate 70 is moved from its second configuration to its first configuration. This causes the push plate 70 to bear forcibly against the seating member 80, which in turn causes the seating member to bear against the tool TL so as to deliver a force to the tool. Optionally, the clamping end 70E of the push plate 70 bears against a surface 80S on the trailing end region of the seating member 80, causing the leading end region 80FR of the seating member to bear against an engagement portion EP of the tool's tang T. Preferably, this results in a seating force being delivered to the tool so as to move the tool until the load-bearing surfaces LD, LR of the tool and tool holder come into contact.
As noted above, the force delivered to the tool TL (e.g., during closing of the tool holder on the tool's tang) preferably has a seating component and a clamping component. The seating component preferably moves the tool TL so as to bring the load-receiving surface(s) LR of the tool TL into direct contact with the load-delivering surface(s) LD of the tool holder TH. The clamping component preferably forces the tang T of the tool against a wall CW bounding the tool-mount channel C. Preferably, the seating component is at least generally or substantially parallel to the pressing axis PA, while the clamping component is at least generally or substantially perpendicular to the pressing axis PA. In certain preferred embodiments, the seating component is vertical (and in some cases, is an upward vertical force component), while the clamping component is horizontal.
As noted above, certain embodiments provide a method of operating a tool holder having a hydraulic driver. In some embodiments of this nature, the hydraulic driver is adapted for being operated by delivering hydraulic fluid into a hydraulic chamber of the driver, in response to which at least one seating member (and optionally a plurality of seating members all mounted on the same wall CW′) 80 moves relative to a stationary portion of the tool holder on which the seating member is mounted. Here, the method optionally comprises delivering such hydraulic fluid into the hydraulic chamber at a pressure of at least about 1,000 psi, between about 2,000 psi and about 5,000 psi, and/or between about 3,500 psi and about 5,000 psi.
As noted above, certain embodiments of the invention provide, in combination, a tool holder and a press brake tool. Here, the tang T of the tool TL is received in the channel C of the tool holder TH. In some embodiments of this nature, the tool holder includes: (a) a driver D; (b) a push plate 70, and; (c) a seating member 80. Preferably, the driver D is operably coupled with the push plate 70, as has been described. The push plate 70 can optionally be mounted on the tool holder TH so as to be moveable between a first configuration and a second configuration, as has also been described. In one group of combination embodiments, the push plate 70 is in its first configuration and the driver D is adapted for being operated so as to cause the push plate to move to its second configuration. In the present group of combination embodiments, the seating member 80 is in its closed position and the leading end region 80FR of the seating member 80 bears against the tang T of the tool TL (e.g., against an engagement portion of the tool's tang). Here, the seating member 80 is operably coupled with the push plate 70 such that the plate 70 applies resistance against the seating member being moved to its open position.
With continued reference to
While preferred embodiments of the present invention have been described, it is to be understood that numerous changes, adaptations, and modifications can be made to the preferred embodiments without departing from the spirit of the invention and the scope of the claims. Thus, the invention has been described in connection with specific embodiments for purposes of illustration. The scope of the invention is described in the claims, which are set forth below.
This application is a continuation-in-part of U.S. Ser. No. 11/053,134, entitled “PUSH PLATE TOOL HOLDER FOR PRESS BRAKE,” filed Feb. 8, 2005 now U.S. Pat. No. 7,308,817, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2755758 | Johansen | Jul 1956 | A |
3779122 | Sawvell | Dec 1973 | A |
4315425 | Zbornik et al. | Feb 1982 | A |
4506538 | Jones, Jr. | Mar 1985 | A |
4534203 | Cros | Aug 1985 | A |
4612796 | Smyth, Jr. | Sep 1986 | A |
4721293 | Schron et al. | Jan 1988 | A |
4787237 | Houston et al. | Nov 1988 | A |
4895014 | Houston | Jan 1990 | A |
4993255 | Treillet | Feb 1991 | A |
5009098 | van Merksteijn | Apr 1991 | A |
5022256 | van der Meulen | Jun 1991 | A |
5042352 | Lux | Aug 1991 | A |
5065610 | Yonezawa | Nov 1991 | A |
5245854 | Bruggink et al. | Sep 1993 | A |
5460027 | Takahashi | Oct 1995 | A |
5511407 | Kawano | Apr 1996 | A |
5513514 | Kawano | May 1996 | A |
5562892 | Kirk et al. | Oct 1996 | A |
5572902 | Kawano | Nov 1996 | A |
5642642 | Kawano | Jul 1997 | A |
5685149 | Schneider et al. | Nov 1997 | A |
5720169 | Schneider | Feb 1998 | A |
5782308 | Latten et al. | Jul 1998 | A |
5794486 | Sugimoto et al. | Aug 1998 | A |
5822989 | Sturdevant et al. | Oct 1998 | A |
6000273 | Stover | Dec 1999 | A |
6003360 | Runk et al. | Dec 1999 | A |
6109602 | Schron, Jr. et al. | Aug 2000 | A |
6138492 | Vining et al. | Oct 2000 | A |
6151951 | Kawano | Nov 2000 | A |
6241231 | Schron, Jr. et al. | Jun 2001 | B1 |
6446485 | Tarasconi | Sep 2002 | B1 |
6450004 | Edmondson et al. | Sep 2002 | B1 |
6463839 | Ohtsuka et al. | Oct 2002 | B2 |
6467327 | Runk et al. | Oct 2002 | B1 |
6481204 | Yuschak et al. | Nov 2002 | B1 |
6494075 | Pelech, Jr. | Dec 2002 | B1 |
6522953 | Schneider | Feb 2003 | B1 |
6557390 | Runk et al. | May 2003 | B2 |
6564611 | Harrington et al. | May 2003 | B2 |
6644090 | Gasparini | Nov 2003 | B2 |
6732564 | Runk et al. | May 2004 | B2 |
6843760 | Akami et al. | Jan 2005 | B2 |
6848291 | Johnson et al. | Feb 2005 | B1 |
6928852 | Enderink | Aug 2005 | B2 |
7004008 | Harrington et al. | Feb 2006 | B2 |
7021116 | Harrington et al. | Apr 2006 | B2 |
7069766 | Hayashi et al. | Jul 2006 | B2 |
7096708 | Gascoin | Aug 2006 | B2 |
7152453 | Johnson et al. | Dec 2006 | B2 |
7296457 | Morehead et al. | Nov 2007 | B2 |
7308817 | Shimota et al. | Dec 2007 | B2 |
7596983 | Pabich et al. | Oct 2009 | B2 |
20020023477 | Gianelli | Feb 2002 | A1 |
20030221476 | Sperrer | Dec 2003 | A1 |
20040163442 | Gascoin | Aug 2004 | A1 |
20040187552 | Enderink | Sep 2004 | A1 |
Number | Date | Country |
---|---|---|
1383200 | Nov 2003 | AT |
3136-440 | Mar 1983 | DE |
41 15 224 | Nov 1992 | DE |
19513576 | Oct 1996 | DE |
19845386 | May 2000 | DE |
10054644 | May 2001 | DE |
0 119 108 | May 1987 | EP |
0 237 800 | Sep 1987 | EP |
0 256 245 | Feb 1988 | EP |
0 494 714 | Jul 1992 | EP |
0 644 002 | Mar 1995 | EP |
1169151 | Dec 2002 | EP |
1493506 | Jan 2005 | EP |
2122977 | Jan 1972 | FR |
2416064 | Aug 1979 | FR |
2598946 | Nov 1987 | FR |
57089929 | Jun 1982 | JP |
9100034 | Apr 1997 | JP |
10-323720 | Dec 1998 | JP |
2003 191016 | Jul 2003 | JP |
2003 200219 | Jul 2003 | JP |
741999 | Jun 1980 | RU |
WO 0213985 | Feb 2002 | WO |
WO 02092253 | Nov 2002 | WO |
WO 2004024361 | Mar 2004 | WO |
WO2004024361 | Mar 2004 | WO |
WO 2004101188 | Nov 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060174679 A1 | Aug 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11053134 | Feb 2005 | US |
Child | 11230742 | US |