The present disclosure relates to a press brake system. In particular, a rotary tool assembly for a press brake.
The process of forming sheet metal typically incorporates the use of a metal forming press brake consisting of two forming assemblies which are pressed against one another by the press brake. The press brake typically includes an upper ram assembly which includes a heavy metal ram, a punch holder that clamps and holds a punch that is driven down into a stable forming die mounted on a lower bed assembly. The bed assembly includes a clamping system to hold the lower die in place while metal forming is performed. The process creates a bend on the sheet metal that forms to the contour of the die. Since the punch and the die are affixed during the bending process, in order to make an opposite or reverse angled bend in the sheet metal, the press brake must be paused and the sheet metal workpiece must be turned over in order to allow the press brake to form the opposite or reverse bend. Pausing the press brake and moving the sheet metal workpiece is inefficient. Thus, there is a need for a press brake system that provides faster and more efficient forming process.
As described herein, an improved press brake punch and die system is provided in order to address the concerns discussed above.
The features, aspects, and advantages of the disclosed press brake and tool system will become apparent from the following description, and the accompanying exemplary embodiments shown in the drawings, which are briefly described below.
The press brake machine described herein may be generally structured, for example, in the manner of the press brake machine disclosed in application Ser. No. 16/541,021, filed on Aug. 14, 2019 (incorporated by reference herein in its entirety). An exemplary press brake machine may include a ram located above a bed. The machine may include one or more hydraulic cylinders that force the ram (and a connected punch) downward toward the bed (and a connected die). Alternatively, the force of hydraulic pressure may be used to force the bed upward. The press brake machine processes a workpiece (e.g., sheet metal) by bending the workpiece to form a desired shape.
According to an embodiment disclosed herein, a press brake is configured to bend a workpiece includes an upper beam configured to hold an upper rotary tool. The upper rotary tool includes an upper punch and an upper die. The press brake includes a lower beam configured to hold a lower rotary tool, wherein the lower rotary tool includes a lower punch and a lower die. The upper rotary tool is configured to rotate between two positions wherein one or the other of the upper punch and the upper die is positioned to make contact with the workpiece. The lower rotary tool is configured to rotate between two positions wherein one or the other of the lower punch and the lower die is positioned to make contact with the workpiece. The upper rotary tool is configured to position the upper punch downwards when the lower rotary tool positions the lower die upwards so that the upper punch and the lower die are configured to bend the workpiece when one of the upper beam and lower beam is moved in a direction towards the workpiece.
Both rotary tools 131 and 141 are configured to rotate in order to create different bends. For example, upper rotary tools 131 may rotate so that the upper die 133 is facing the workpiece 200 while the lower rotary tools 141 rotates so that the lower punch 143 is facing the workpiece 200.
In sum, an improved press brake system is provided for efficient workpiece bending.
As utilized herein, the terms “approximately,” “about,” “substantially”, and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the disclosure as recited in the appended claims.
It should be noted that the term “exemplary” as used herein to describe various embodiments is intended to indicate that such embodiments are possible examples, representations, and/or illustrations of possible embodiments (and such term is not intended to connote that such embodiments are necessarily extraordinary or superlative examples).
The terms “coupled,” “connected,” and the like as used herein mean the joining of two members directly or indirectly to one another. Such joining may be stationary (e.g., permanent) or moveable (e.g., removable or releasable). Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another.
References herein to the positions of elements (e.g., “top,” “bottom,” “above,” “below,” etc.) are merely used to describe the orientation of various elements in the FIGURES. It should be noted that the orientation of various elements may differ according to other exemplary embodiments, and that such variations are intended to be encompassed by to present disclosure.
It is important to note that the vehicle network system as shown in the various exemplary embodiments is illustrative only. Although only a few embodiments have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter described herein. For example, elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes and omissions may also be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present disclosure.