This are no related applications.
Not applicable.
None.
1. Field of Invention
The field of art to which this invention relates is generally directed to suture anchors and more specifically to a press fit suture anchor constructed of allograft bone which holds a suture and a punch and inserter device for inserting the suture anchor.
2. Description of the Prior Art
As the treatment of injuries to joints and soft tissue has progressed, a need has developed for medical devices which can be used to attach tendons, ligaments and other soft tissue to bone. When surgically repairing an injured joint, it is preferable to restore the joint by reattaching the damaged soft tissues such as ligaments and tendons to a bone rather than replacing them with an artificial material.
An increase in the incidence of injuries to joints involving soft tissue has been observed. This increased incidence of injuries may be due, at least in part, to an increase in participation by the public in various physical activities such as sports and other recreational activities. These types of activities increase the loads and stress placed upon joints, sometimes resulting in joint injuries with corresponding damage to associated soft tissue. There are well over 500,000 surgical procedures performed in the United States annually in which soft tissue was attached to a bone in various joints including the shoulder, hip and knee.
One conventional orthopedic procedure for reattaching soft tissue to bone is performed by initially drilling holes or tunnels at predetermined locations through a bone in the vicinity of a joint. The surgeon approximates soft tissue to the surface of the bone using sutures threaded through these holes or tunnels. This method is a time consuming procedure resulting in the generation of numerous bone tunnels. The bone tunnels, which are open to various body fluids and infectious agents, may become infected, resulting in bone breakage and complications such as a longer bone-healing period may result. A known complication of drilling tunnels across bone is that nerves and other soft tissue may be injured by the drill bit or orthopedic pin as it exits the far side of the bone. Also, it may be anatomically impossible or at least very difficult to reach and/or secure a suture that has been passed through a tunnel. When securing the suture or wire on the far side of the bone, nerves and soft tissues can also become entrapped and damaged.
Screws are also used to secure soft tissues adjacent to the bone surface. Screws suffer from a disadvantage in that they tend to loosen with time, thereby requiring a second operation to remove the loosened screw. In addition, when the screws are set in bone, the heads of the screws frequently protrude above the surface of the bone in which they are set, thereby presenting an abrasive surface which may create wear problems with surrounding tissue. Once a hole has been made in the bone it may be impossible to relocate the hole a small distance away from its original position due to the disruption of the bone structure created by the initial hole. Finally, the nature of a screw attachment tends to require a flat attachment geometry as the pilot hole must generally be located on a relatively flat section of the bone, and toothed washers must frequently be used in conjunction with the screws to fasten the desired objects to the target bone. As a result of these constraints, it may be necessary to locate the attachment point at less than an optimal position.
Staples are also used to secure soft tissue adjacent the bone surface. Staples frequently have to be removed after they have been in position for some time, thereby necessitating a second operation. In addition, staples must generally be positioned so as to maximize their holding power in the bone which may conflict with the otherwise-optimal position for attachment of the objects to bone. Staples have also been known to crack the bone during deployment, or to accidentally transect the object (e.g. soft tissue) being attached to the bone, since it tends to be difficult to precisely control the extent of the staple's penetration into the bone. Additionally, once the staple has been set into the bone, the position of the staple is then effectively determined, thereby making it impossible to thereafter adjust the position of the staple or to adjust the degree of tension being applied to the object which is being attached to the bone without removing the staple and setting a new staple.
In order to overcome a number of the problems associated with the use of the conventional soft tissue to bone attachment procedures, suture anchors have been developed and are now frequently used to attach soft tissue to bone. A suture anchor, commonly referred to as a bone anchor, is an orthopedic, medical device which is typically implanted into a cavity drilled or punched into a bone. The bone cavity is generally referred to as a bore hole and if it does not extend through the bone is typically referred to as a “blind hole”. The bore hole is typically drilled through the outer cortical layer of the bone and into the inner cancellous layer. The suture anchor may be engaged in the bore hole by a variety of mechanisms including friction fit, barbs which are forced into the cancellous layer of bone or by threading into pre-threaded bores in the bone mass or using self tapping threads. Suture anchors have many advantages including reduced bone trauma, simplified application procedures, and decreased likelihood of suture failure. Suture anchors may be used in shoulder reconstruction for repairing the glenohumeral ligament and may also be used in surgical procedures involving rotator cuff repair, ankle and wrist repair, bladder neck suspension, and hip replacement.
Suture anchors typically have a hole or opening for receiving a suture. The suture extends out from the bore hole and is used to attach soft tissue. The suture anchors presently described in the art may be made of absorbable materials which absorb over time, or they may be made from various non-absorbable, biocompatible materials. Although most suture anchors described in the art are made from non-absorbable materials, the use of absorbable suture anchors may result in fewer complications since the suture anchor is absorbed and replaced by bone over time. The use of absorbable suture anchors may also reduce the likelihood of damage to local joints caused by anchor migration. Moreover, when an absorbable suture anchor is fully absorbed it will no longer be present as a foreign body. It is also advantageous to construct the bone anchor out of allograft cortical bone as this material will result in natural filling in of the bore with bone in the original bone base and the elimination of foreign material from the site. Another problem in the prior art is that the suture does not glide easily through the anchor making typin knots and sliding the knot to secure the tissue difficult.
It is also a problem that most of the bone anchors currently used are prepacked with sutures attached in kit form forcing the surgeon to use a specific type of suture and the hospital to carry large numbers of bone anchors in inventory with varying suture sizes.
A number of prior art patents such as U.S. Pat. Nos. 6,508,830; 5,941,882 and 5,733,307 are directed toward threaded bone anchors which have driver positioning grooves or troughs cut longitudinally along the anchor body intersecting the threads to receive sutures during the bone anchor insertion process and to receive an associated driver. The U.S. Pat. No. 6,508,830 patent discloses a smooth surfaced suture anchor with a flat end surface defining an angled cut leading to a transverse suture throughgoing bore cut in the anchor body.
U.S. Pat. No. 5,824,011 is directed toward a threaded bone anchor with a suture receiving eyelet. The anchor body has channels cut into its sides to receive driver torque applicators. The anchor is provided with a male member having a suture receiving eyelet, the male member fitting into a same shaped female configuration in the driver head.
U.S. Pat. No. 6,111,164 shows a bone insert which is formed from human cortical bone which is adapted to be driven into bone and the aforementioned U.S. Pat. No. 6,508,830 shows a threaded allograft bone anchor which can be mounted into the bone.
Although suture anchors for attaching soft tissue to bone are available for use by the orthopedic surgeon, there is a need in this art for novel suture anchors having improved performance characteristics, such as ease of insertion and greater resistance to “pull-out”.
The present invention is directed toward a suture anchor constructed of allograft human bone which is press fit into a bone bore hole and has a smooth outer surface with plurality of longitudinal grooves cut into its outer surface to hold a suture loop.
The present invention provides a technical advantage in that it provides a channel in the suture anchor in which a suture loop resides during insertion of the bone anchor into the bone while also allowing the driver to apply a driving force to the proximal end of the anchor so that the anchor is less susceptible to mechanical breakage.
Accordingly, one of the objects of the present invention is to provide an allograft suture anchor which promotes the use of natural bone growth in the bone bore hole.
An additional advantage is a suture anchor made of allograft bone is radiopaque for the time it takes to incorporate making it visible under x-ray imaging.
It is another object of the present invention to provide a suture anchor in which the suture glides easily through the anchor to facilitate typing knots and sliding to knot to secure the tissue.
It is still another object of the present invention to provide a suture anchor which can be used with a wide variety of sutures from different manufacturers allowing the surgeon the choice of sutures and suture composition.
It is another object of the present invention to provide a suture anchor which is simple to apply and is mechanically stable when implanted in bone.
It is a further object of the present invention to provide an absorbable suture anchor made of cortical bone.
It is still another object of the present invention to provide a novel suture anchor for anchoring one end of a piece of conventional suture in bone which has high tissue acceptability, prevents back out and is reliable in use.
These and other objects, advantages, and novel features of the present invention will become apparent when considered with the teachings contained in the detailed disclosure along with the accompanying drawings.
The preferred embodiment and the best mode of the invention as shown in
It is also envisioned that the suture anchor may be manufactured from a biocompatible and bioresorbable material such as xenograft bone, plastic or a biocompatible metal such as titanium or stainless steel.
The proximal end 34 of the suture anchor 30 is flat for minimum soft tissue impingement after insertion of the suture anchor 30 in the bone. The width of each groove 40 is approximately 1.25 mm±0.05 mm and each groove 40 is positioned on opposite sides of the anchor body. The diameter of the cylindrical body 32 suture anchor 30 preferably runs between 4.7 mm and 6.5 mm and has a length ranging from 8.0 mm to 15.0 mm with a preferred length of 8 mm. The channels or grooves 40 have a width greater than or equal to the diameter of the strand of suture 100 and a depth which is preferably at least twice the diameter of the strand of suture loop 100 extending into the anchor body. The suture strand 100 is preferably a #2 suture and a standard suture made of absorbable, synthetic absorbable or non-absorbable material. It is envisioned that the width and depth of grooves 40 can be varied to receive greater size suture strands or a plurality of sutures.
Sutures 100 such as ORTHOBRAID® are initially inserted through the transverse throughgoing bore 42 with the strands tracking in the grooves 40. The suture anchor 30 is adapted for insertion into the distal end of a driver inserter 50 which is shown in
In operation, a combined punch, driver holder 70 as shown in
As the suture anchor 30 is driven into the bone bore 206, the bone mass surrounds the grooves 40 to hold the suture strand(s) 100 within the respective grooves 40 around the bone anchor 30. The suture anchor 30 is then seated in the bore 206 previously formed into the cancellous bone mass 204 with the proximal end past the cortical bone layer 202, the driver inserter 50 having been backed off. Because the suture loop 100 is a single or double strand of material, the failure strength is the suture line break strength rather than the pull out strength of the anchor from the bone. Pull out of the anchor is also diminished because of the deeper seating of the bone anchor and encompassing bone mass as well as a combination of the press fit of the anchor in the bone bore hole and the swelling of the anchor upon hydration at the site since it is freeze dried.
In the foregoing description, the invention has been described with reference to a particular preferred embodiment, although it is to be understood that specific details as shown are merely illustrative, and the invention may be carried out in other ways without departing from the true spirit and scope of the following claims.