Press for transforming work pieces

Information

  • Patent Grant
  • 6662617
  • Patent Number
    6,662,617
  • Date Filed
    Wednesday, September 12, 2001
    22 years ago
  • Date Issued
    Tuesday, December 16, 2003
    20 years ago
Abstract
A press for transforming work pieces including a drive apparatus for driving at least one press tappet and at least one tappet element. The drive apparatus is connected with at least one extractor element through a lever linkage. A tool with a tool lower element and a tool upper element which is mounted on the press tappet. At least one extractor element is provided to extract the work piece following the transformation process. A coupling which connects the drive apparatus with at least one extractor element or disengages it therefrom. At least one measuring sensor which is part of a triggering apparatus arranged inside the lever linkage and which is in a position to measure the force acting on the extractor element continuously. The triggering apparatus is provided to disengage the coupling in the event of a deviation of the force value measured continuously by at least one measuring sensor from a force standard value specified in reference to a certain point in the motion of the extractor element by a certain amount.
Description




This application claims the priority of Germany Application No. 10045312.0 filed Sep. 12, 2000, the disclosure of which is expressly incorporated by reference herein.




BACKGROUND AND SUMMARY OF THE INVENTION




The invention relates to a press as well as a process for transforming work pieces.




A press with a safety shutdown is known from DE 197 01 282 A1 where the drive of the tappet is disengaged by means of a coupling apparatus which receives a signal from a monitoring apparatus if the force exerted upon the tappet deviates from a specified standard value by more than a specified amount. Among other things, it can also be provided with this press that the monitoring apparatus shuts down one or more extractors.




But it is not indicated in this document how this shutdown of the extractor is to be undertaken. It is, however, unambiguous that the shutdown can only be undertaken in connection with shutting down the tappet and consequently can only be undertaken only when a disturbance arises in the area of the tappet.




It is the object of the present invention to create a press for transforming work pieces where in the event of a disturbance in the area of the extractor elements, damage to the extractor elements of the entire press are avoided.




Through at least one measuring sensor which in accordance with the invention is arranged within the lever linkage, the force acting upon at least one extractor element is measured, owing to which at any point in time there is a monitoring on the sequence of the extraction process.




In this way, the triggering apparatus of the invention having the measuring sensor can then disengage the coupling if the height of the force measured deviates from a standard force value specified at a certain point of the motion of the extractor element by a specific amount. In this way, in the event of a disturbance in the area of at least one extractor element, the drive apparatus is disconnected from the extractor element, and the extractor element is shut down. In this way, damage to the extractor element or the entire press can be avoided in cases in which disturbances arise in the region of the extractor element.




Through the process of the invention for transforming work pieces, it is possible to shut down the extractor element already before reaching a maximal force, since already when a certain tolerance is exceeded, that is, a recognizable tendency toward higher emerging forces, the flow of power between the drive apparatus and the extractor element is interrupted.




In an advantageous refinement of the process of the invention, the possibility offers itself of undertaking an adaptation of the force standard values for each operating point in connection with changes of the force acting from the drive apparatus on the extractor element which can arise owing to the shape of the lever linkage. Here the functions of the force or the path of the drive apparatus traversed and the extractor element are adapted to each other, which can be designated as “dynamization.”











BRIEF DESCRIPTION OF THE DRAWINGS




Further advantageous configurations and refinements of the invention emerge from the remaining dependent claims as well as the embodiment represented below on the basis of the drawings in terms of principles, wherein:





FIG. 1

is a schematic representation of an extraction system of the press of the invention;





FIG. 2

is an alternate embodiment of the extraction system of FIG.


1


.





FIG. 3

depicts an extractor element with a part of the associated lever linkage in a first embodiment;





FIG. 4

is a further detailed construction and arrangement of the first embodiment of FIG.


3


.





FIG. 5

shows an extractor element with a part of the associated lever linkage in a second embodiment; and.





FIG. 6

is a modification of the second embodiment.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT





FIG. 1

shows an extractor system


1


which has several rod-like extractor elements


1




a


. The extractor system


1


is a component of a press for transforming work pieces


3


, and the extractor elements


1




a


are provided to extract the work pieces


3


out of a lower tool


4


which is an element of a further tool


5


. The tool


5


moreover has an upper tool


6


in an inherently familiar manner which is or can be provided with an extractor system


1


in a way not represented and is installed on a tappet


7


. The tappet


7


executes a stroke motion characterized with an arrow “A” in order to transform the work pieces


3


, and is for this purpose connected with a not represented drive apparatus. Basically an eccentric press, a toggle-lever press or any other desired press


2


can be used as press


2


.




The extractor system


1


or the extractor elements


1




a


are connected with a drive apparatus


9


through a lever linkage


8


whereby the drive facility


9


is either connected with the aforementioned drive facility for the tappet


7


or is identical with the same. The drive apparatus


9


, here a curve-controlled eccentric drive apparatus, has a drive shaft


9




a


which rotates in accordance with the arrow designated with “B.” Between the drive apparatus


9


and the lever linkage


8


, there is located a coupling


10


, which is the present case is formed by a hydraulic piston/cylinder unit, and has a cylinder


10




a


as well as a piston


10




b.


An actuation lever


11


is mounted on the piston


10




b


which is connected with a rocker arm


12


or acts upon the same. The rocker arm


12


consists of two arms


12




a


and


12




b


which are arranged on both sides of an approximately central point of rotation


13


of the rocker arm


12


, whereby arm


12




a


is installed on actuation lever


11


and arm


12




b


actuates an individual extractor element


1




a.


In the present case, the extractor elements


1




a


are thus activated when the piston


10




a


moves out and consequently exerts pressure on the actuation lever


11


. As already mentioned above, the work piece


3


is ejected in this way. Of course, a moving out of the extractor element


1




a


when piston


10




b


moves in, and consequently a traction stress upon the actuation lever


11


, would also be possible.




Between arm


12




b


of the rocker arm


12


and extractor element


1




a,


a measuring sensor


14


is situated, which is part of a triggering apparatus


15


. Moreover, the triggering apparatus


15


has an evaluation apparatus


16


connected with the measuring sensor as well as a memory apparatus


17


and a valve


18


. The measuring sensor


14


is in a position to measure continuously the force acting on the extractor element


1




a,


and forwards the force measured to the evaluation apparatus


16


. In the evaluation apparatus


16


, the force values measured are constantly compared with standard values entered into the memory apparatus


17


for forces arising in the normal case and with a deviation of a measured force value by a specific value from the associated standard value, the triggering apparatus


15


ensures that the coupling


10


is disengaged. The amount by which the actual force values may deviate from the stored standard values is stored in the memory apparatus


17


as so called envelopes and can be freely programmed for any point. If several evaluation elements la with assigned lever linkages


8


are present, as this is here the case, then each of these extractor elements


1




a


is allocated a corresponding trigger apparatus


15


. Of course, only one extractor element


1




a


could be provided.




For disengaging the coupling


10


, the evaluation apparatus


16


emits a signal to valve


18


constructed as a quick breaking 2/2 way valve which then within a very short time switches over and consequently ensures that the cylinder


10




a


becomes pressureless. In this way, the coupling


10


can transfer no more force to the actuation lever


11


, and the extractor element


1




a


likewise becomes power-free. Such a deviation of actual force from the associated standard value can arise in connection with disturbances in the area of an individual extractor element


1




a


or also in the area of the entire extractor system


1


. Through the disengagement of the coupling


10


described, the extractor elements


1




a


are no longer driven by drive apparatus


9


, owing to which damage to extractor elements


1




a


and the entire press


2


are avoided.




In an alternative configuration in accordance with

FIG. 2

, a preliminary relief apparatus


101


, constructed as a hydraulic cylinder in the present example, is arranged between the extractor pin


1




a


and measuring sensor


14


in the device in accordance with FIG.


1


. The preliminary relief device


101


is relieved through the preliminary relief valve


100


, which is arranged between preliminary relief apparatus


101


and valve


18


. This takes place in the following manner. Valve


18


is opened through relief of the pressure through valve


100


in the hydraulic cylinder


101


. In this way, the pressure in the coupling


10


subsides and is consequently relieved.




In

FIG. 3

, the more exact construction and the arrangement of the measuring sensor


14


in the lever linkage


8


is represented. Thus, measuring sensor


14


is comprised by a cylindrical element


19


which is provided with strain gauges


20


on its periphery and which is accommodated in a recess


21


in rocker arm


12


. Through strain gauges


20


, the force acting on the individual extractor element


1




a


is continuously measured, whereby the connection of the strain gauges


20


with the evaluation apparatus


16


is not explicitly represented in this case. Alternatively, the measuring sensor


14


could also be comprised quartz element arranged within the lever linkage


8


. For amplifying the signals of the strain gauges


20


, a measuring amplifier


22


is situated between measuring sensor


14


and the evaluation apparatus


16


which operates in an inherently familiar manner. The rocker arm


12


and consequently also the measuring sensor


14


accommodated therein is represented in

FIG. 3

in both its end positions.




The more exact construction and the arrangement of measuring sensor


14


in lever linkage


8


is represented in FIG.


4


. The measuring sensor


14


is thus formed by a cylindrical element


19


which is provided with strain gauges


20


on its periphery and is accommodated in a recess in the rocker arm


12


. The force acting on the individual extractor element


1




a


is continuously measured by strain gauges


20


, whereby the connection of strain gauges


20


with the evaluating apparatus


16


is not explicitly represented in this case. Alternatively, the measuring sensor


14


can also be formed by a quartz element arranged inside the lever linkage


8


. A measuring amplifier


22


which operates in an inherently familiar manner is situated between the measuring sensor


14


and the evaluation device


16


for amplifying the strain gauge


20


signals. The rocker arm


12


and consequently also the measuring sensor


14


accommodated therein is represented in both end positions in FIG.


3


. The preliminary relief element


101


is situated between recess


21


and the cylindrical element


19


. The preliminary relief valve


100


is connected in series after preliminary relief element


101


and is already described in FIG.


2


and opens valve


18


automatically in the event of an overload.





FIG. 5

illustrates an extractor system


1


for the upper tool


6


where the lever linkage


8


is constructed as a toggle linkage


8


′. Here too once gain a rocker arm


12


′ is provided whose point of rotation


13


′ nonetheless does not lie in the middle as with rocker arm


12


described above, but outside, and indeed on the side facing the actuation lever


11


′ likewise provided here. Consequently the extractor element


1




a


is actuated by an area of rocker arm


12


′ which in relation to the mode of functioning of the lever linkage


8


′ represents no basic change from the embodiment represented in FIG.


3


. Here too once again a triggering apparatus


15


′ is provided which has the components already described above, but which are not completely represented. Coupling


10


′, which is executed in the form of an inherently known pawl coupling, is in the immediate vicinity of rocker arm


12


′ arranged in the direction of the flow of force in front of the same and within or in front of the actuation lever


11


. Valve


18


′ is once again directly assigned to coupling


10


′.




Since with toggle linkages


8


′ of this sort, depending on the position of the drive shaft


9




a


′ of drive apparatus


9


′, the force arising on the extractor element


1




a


is not proportional to the force occurring on drive shaft


9




a


′, an adaptation of the force standard values is undertaken for each operating point of the extractor element


1




a


in connection with such a deviation, which is imported into the memory apparatus


17


. With the “dynamization” undertaken here, the functions of force or the path of the drive apparatus


9


′ and the extractor element


1




a


covered are adapted to each other, which once again has effects on the envelopes of the allowable force course.




As shown in

FIG. 6

, the preliminary relief device


101


is arranged between rocker arm


12


′ and measuring sensor


14


. As already described in

FIG. 2

, the preliminary relief valve


100


is connected in series after the preliminary relief device


101


and opens the valve


18


automatically in the event of an excess load above the previously set triggering pressure.




The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.



Claims
  • 1. A press for transforming work pieces, comprising:a drive apparatus for driving at least one press tappet and a plurality of extractor elements for extracting the work pieces after the transforming process wherein said drive apparatus is connected with the extractor elements through a lever linkage; a tool with a tool lower element and a tool upper element, which is mounted on the press tappet; a coupling which selectively connects the drive apparatus with the extractor elements, or disengages the drive apparatus from said the extractor elements; at least one measuring sensor, comprising a triggering apparatus operatively associated with the lever linkage and positioned to measure individually and continuously the force acting on the extractor elements, wherein a triggering apparatus operates to disengage the coupling in the event of a deviation of the force value, measured by at least one measuring sensor from a standard value specified in reference to a specific point of motion of individual ones of the extractor elements by a predetermined amount.
  • 2. The press according to claim 1, wherein the triggering apparatus has at least one evaluation apparatus for evaluating the force values measured by the measuring sensor.
  • 3. The press according to claim 2, wherein within the evaluation apparatus, the force values ascertained by the measuring sensor are compared with force values which are stored in a memory apparatus.
  • 4. The press according to claim 2, wherein, between the measuring sensor and the evaluation apparatus, a measuring amplifier is arranged.
  • 5. The press according to claim 1, wherein the coupling is constructed as a piston/cylinder unit and the triggering unit has a valve through which the coupling is disengageable.
  • 6. The press according to claim 1, wherein the extractor elements are arranged in the tool upper element.
  • 7. The press according to claim 1, wherein the extractor elements are arranged in the tool lower element.
  • 8. The press according to claim 1, wherein the measuring sensor comprises a cylindrical element arranged inside the lever linkage which is provided with strain gauges.
  • 9. The press according to claim 1, wherein the measuring sensor comprises a quartz element arranged inside the lever linkage.
  • 10. The press according to claim 1, wherein a preliminary relief element is arranged between each of the extractor elements and the measuring sensor.
  • 11. The press according to claim 10, wherein a preliminary relief valve is arranged between the preliminary relief element and a valve.
  • 12. A process for transforming work pieces with a tool arranged in a press comprising,extracting the pieces from the tool after the transforming by extractor elements operatively driven through a lever linkage from a drive apparatus, and interrupting the flow of force between the drive apparatus and selected ones of the extractor elements when there is a deviation of the force individually measured with respect to each of the extractor elements from a force standard value specified in reference to a certain point in the motion of the extractor element.
  • 13. The process according to claim 12, wherein, in the event of a change in the force from the drive apparatus acting on the individual extractor elements through the lever linkage, an adaptation of the force standard values is undertaken for selected operating points of the extractor elements to which the change in force occurs.
Priority Claims (1)
Number Date Country Kind
100 45 312 Sep 2000 DE
US Referenced Citations (5)
Number Name Date Kind
2522451 Johansen Sep 1950 A
3160089 Platou Dec 1964 A
3481171 Alexander et al. Dec 1969 A
3825811 Smith et al. Jul 1974 A
3955396 Carrieri May 1976 A
Foreign Referenced Citations (1)
Number Date Country
19701282 Jul 1998 DE