Information
-
Patent Grant
-
6662617
-
Patent Number
6,662,617
-
Date Filed
Wednesday, September 12, 200123 years ago
-
Date Issued
Tuesday, December 16, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 072 1
- 072 3
- 072 199
- 072 345
- 072 432
-
International Classifications
-
Abstract
A press for transforming work pieces including a drive apparatus for driving at least one press tappet and at least one tappet element. The drive apparatus is connected with at least one extractor element through a lever linkage. A tool with a tool lower element and a tool upper element which is mounted on the press tappet. At least one extractor element is provided to extract the work piece following the transformation process. A coupling which connects the drive apparatus with at least one extractor element or disengages it therefrom. At least one measuring sensor which is part of a triggering apparatus arranged inside the lever linkage and which is in a position to measure the force acting on the extractor element continuously. The triggering apparatus is provided to disengage the coupling in the event of a deviation of the force value measured continuously by at least one measuring sensor from a force standard value specified in reference to a certain point in the motion of the extractor element by a certain amount.
Description
This application claims the priority of Germany Application No. 10045312.0 filed Sep. 12, 2000, the disclosure of which is expressly incorporated by reference herein.
BACKGROUND AND SUMMARY OF THE INVENTION
The invention relates to a press as well as a process for transforming work pieces.
A press with a safety shutdown is known from DE 197 01 282 A1 where the drive of the tappet is disengaged by means of a coupling apparatus which receives a signal from a monitoring apparatus if the force exerted upon the tappet deviates from a specified standard value by more than a specified amount. Among other things, it can also be provided with this press that the monitoring apparatus shuts down one or more extractors.
But it is not indicated in this document how this shutdown of the extractor is to be undertaken. It is, however, unambiguous that the shutdown can only be undertaken in connection with shutting down the tappet and consequently can only be undertaken only when a disturbance arises in the area of the tappet.
It is the object of the present invention to create a press for transforming work pieces where in the event of a disturbance in the area of the extractor elements, damage to the extractor elements of the entire press are avoided.
Through at least one measuring sensor which in accordance with the invention is arranged within the lever linkage, the force acting upon at least one extractor element is measured, owing to which at any point in time there is a monitoring on the sequence of the extraction process.
In this way, the triggering apparatus of the invention having the measuring sensor can then disengage the coupling if the height of the force measured deviates from a standard force value specified at a certain point of the motion of the extractor element by a specific amount. In this way, in the event of a disturbance in the area of at least one extractor element, the drive apparatus is disconnected from the extractor element, and the extractor element is shut down. In this way, damage to the extractor element or the entire press can be avoided in cases in which disturbances arise in the region of the extractor element.
Through the process of the invention for transforming work pieces, it is possible to shut down the extractor element already before reaching a maximal force, since already when a certain tolerance is exceeded, that is, a recognizable tendency toward higher emerging forces, the flow of power between the drive apparatus and the extractor element is interrupted.
In an advantageous refinement of the process of the invention, the possibility offers itself of undertaking an adaptation of the force standard values for each operating point in connection with changes of the force acting from the drive apparatus on the extractor element which can arise owing to the shape of the lever linkage. Here the functions of the force or the path of the drive apparatus traversed and the extractor element are adapted to each other, which can be designated as “dynamization.”
BRIEF DESCRIPTION OF THE DRAWINGS
Further advantageous configurations and refinements of the invention emerge from the remaining dependent claims as well as the embodiment represented below on the basis of the drawings in terms of principles, wherein:
FIG. 1
is a schematic representation of an extraction system of the press of the invention;
FIG. 2
is an alternate embodiment of the extraction system of FIG.
1
.
FIG. 3
depicts an extractor element with a part of the associated lever linkage in a first embodiment;
FIG. 4
is a further detailed construction and arrangement of the first embodiment of FIG.
3
.
FIG. 5
shows an extractor element with a part of the associated lever linkage in a second embodiment; and.
FIG. 6
is a modification of the second embodiment.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
FIG. 1
shows an extractor system
1
which has several rod-like extractor elements
1
a
. The extractor system
1
is a component of a press for transforming work pieces
3
, and the extractor elements
1
a
are provided to extract the work pieces
3
out of a lower tool
4
which is an element of a further tool
5
. The tool
5
moreover has an upper tool
6
in an inherently familiar manner which is or can be provided with an extractor system
1
in a way not represented and is installed on a tappet
7
. The tappet
7
executes a stroke motion characterized with an arrow “A” in order to transform the work pieces
3
, and is for this purpose connected with a not represented drive apparatus. Basically an eccentric press, a toggle-lever press or any other desired press
2
can be used as press
2
.
The extractor system
1
or the extractor elements
1
a
are connected with a drive apparatus
9
through a lever linkage
8
whereby the drive facility
9
is either connected with the aforementioned drive facility for the tappet
7
or is identical with the same. The drive apparatus
9
, here a curve-controlled eccentric drive apparatus, has a drive shaft
9
a
which rotates in accordance with the arrow designated with “B.” Between the drive apparatus
9
and the lever linkage
8
, there is located a coupling
10
, which is the present case is formed by a hydraulic piston/cylinder unit, and has a cylinder
10
a
as well as a piston
10
b.
An actuation lever
11
is mounted on the piston
10
b
which is connected with a rocker arm
12
or acts upon the same. The rocker arm
12
consists of two arms
12
a
and
12
b
which are arranged on both sides of an approximately central point of rotation
13
of the rocker arm
12
, whereby arm
12
a
is installed on actuation lever
11
and arm
12
b
actuates an individual extractor element
1
a.
In the present case, the extractor elements
1
a
are thus activated when the piston
10
a
moves out and consequently exerts pressure on the actuation lever
11
. As already mentioned above, the work piece
3
is ejected in this way. Of course, a moving out of the extractor element
1
a
when piston
10
b
moves in, and consequently a traction stress upon the actuation lever
11
, would also be possible.
Between arm
12
b
of the rocker arm
12
and extractor element
1
a,
a measuring sensor
14
is situated, which is part of a triggering apparatus
15
. Moreover, the triggering apparatus
15
has an evaluation apparatus
16
connected with the measuring sensor as well as a memory apparatus
17
and a valve
18
. The measuring sensor
14
is in a position to measure continuously the force acting on the extractor element
1
a,
and forwards the force measured to the evaluation apparatus
16
. In the evaluation apparatus
16
, the force values measured are constantly compared with standard values entered into the memory apparatus
17
for forces arising in the normal case and with a deviation of a measured force value by a specific value from the associated standard value, the triggering apparatus
15
ensures that the coupling
10
is disengaged. The amount by which the actual force values may deviate from the stored standard values is stored in the memory apparatus
17
as so called envelopes and can be freely programmed for any point. If several evaluation elements la with assigned lever linkages
8
are present, as this is here the case, then each of these extractor elements
1
a
is allocated a corresponding trigger apparatus
15
. Of course, only one extractor element
1
a
could be provided.
For disengaging the coupling
10
, the evaluation apparatus
16
emits a signal to valve
18
constructed as a quick breaking 2/2 way valve which then within a very short time switches over and consequently ensures that the cylinder
10
a
becomes pressureless. In this way, the coupling
10
can transfer no more force to the actuation lever
11
, and the extractor element
1
a
likewise becomes power-free. Such a deviation of actual force from the associated standard value can arise in connection with disturbances in the area of an individual extractor element
1
a
or also in the area of the entire extractor system
1
. Through the disengagement of the coupling
10
described, the extractor elements
1
a
are no longer driven by drive apparatus
9
, owing to which damage to extractor elements
1
a
and the entire press
2
are avoided.
In an alternative configuration in accordance with
FIG. 2
, a preliminary relief apparatus
101
, constructed as a hydraulic cylinder in the present example, is arranged between the extractor pin
1
a
and measuring sensor
14
in the device in accordance with FIG.
1
. The preliminary relief device
101
is relieved through the preliminary relief valve
100
, which is arranged between preliminary relief apparatus
101
and valve
18
. This takes place in the following manner. Valve
18
is opened through relief of the pressure through valve
100
in the hydraulic cylinder
101
. In this way, the pressure in the coupling
10
subsides and is consequently relieved.
In
FIG. 3
, the more exact construction and the arrangement of the measuring sensor
14
in the lever linkage
8
is represented. Thus, measuring sensor
14
is comprised by a cylindrical element
19
which is provided with strain gauges
20
on its periphery and which is accommodated in a recess
21
in rocker arm
12
. Through strain gauges
20
, the force acting on the individual extractor element
1
a
is continuously measured, whereby the connection of the strain gauges
20
with the evaluation apparatus
16
is not explicitly represented in this case. Alternatively, the measuring sensor
14
could also be comprised quartz element arranged within the lever linkage
8
. For amplifying the signals of the strain gauges
20
, a measuring amplifier
22
is situated between measuring sensor
14
and the evaluation apparatus
16
which operates in an inherently familiar manner. The rocker arm
12
and consequently also the measuring sensor
14
accommodated therein is represented in
FIG. 3
in both its end positions.
The more exact construction and the arrangement of measuring sensor
14
in lever linkage
8
is represented in FIG.
4
. The measuring sensor
14
is thus formed by a cylindrical element
19
which is provided with strain gauges
20
on its periphery and is accommodated in a recess in the rocker arm
12
. The force acting on the individual extractor element
1
a
is continuously measured by strain gauges
20
, whereby the connection of strain gauges
20
with the evaluating apparatus
16
is not explicitly represented in this case. Alternatively, the measuring sensor
14
can also be formed by a quartz element arranged inside the lever linkage
8
. A measuring amplifier
22
which operates in an inherently familiar manner is situated between the measuring sensor
14
and the evaluation device
16
for amplifying the strain gauge
20
signals. The rocker arm
12
and consequently also the measuring sensor
14
accommodated therein is represented in both end positions in FIG.
3
. The preliminary relief element
101
is situated between recess
21
and the cylindrical element
19
. The preliminary relief valve
100
is connected in series after preliminary relief element
101
and is already described in FIG.
2
and opens valve
18
automatically in the event of an overload.
FIG. 5
illustrates an extractor system
1
for the upper tool
6
where the lever linkage
8
is constructed as a toggle linkage
8
′. Here too once gain a rocker arm
12
′ is provided whose point of rotation
13
′ nonetheless does not lie in the middle as with rocker arm
12
described above, but outside, and indeed on the side facing the actuation lever
11
′ likewise provided here. Consequently the extractor element
1
a
is actuated by an area of rocker arm
12
′ which in relation to the mode of functioning of the lever linkage
8
′ represents no basic change from the embodiment represented in FIG.
3
. Here too once again a triggering apparatus
15
′ is provided which has the components already described above, but which are not completely represented. Coupling
10
′, which is executed in the form of an inherently known pawl coupling, is in the immediate vicinity of rocker arm
12
′ arranged in the direction of the flow of force in front of the same and within or in front of the actuation lever
11
. Valve
18
′ is once again directly assigned to coupling
10
′.
Since with toggle linkages
8
′ of this sort, depending on the position of the drive shaft
9
a
′ of drive apparatus
9
′, the force arising on the extractor element
1
a
is not proportional to the force occurring on drive shaft
9
a
′, an adaptation of the force standard values is undertaken for each operating point of the extractor element
1
a
in connection with such a deviation, which is imported into the memory apparatus
17
. With the “dynamization” undertaken here, the functions of force or the path of the drive apparatus
9
′ and the extractor element
1
a
covered are adapted to each other, which once again has effects on the envelopes of the allowable force course.
As shown in
FIG. 6
, the preliminary relief device
101
is arranged between rocker arm
12
′ and measuring sensor
14
. As already described in
FIG. 2
, the preliminary relief valve
100
is connected in series after the preliminary relief device
101
and opens the valve
18
automatically in the event of an excess load above the previously set triggering pressure.
The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.
Claims
- 1. A press for transforming work pieces, comprising:a drive apparatus for driving at least one press tappet and a plurality of extractor elements for extracting the work pieces after the transforming process wherein said drive apparatus is connected with the extractor elements through a lever linkage; a tool with a tool lower element and a tool upper element, which is mounted on the press tappet; a coupling which selectively connects the drive apparatus with the extractor elements, or disengages the drive apparatus from said the extractor elements; at least one measuring sensor, comprising a triggering apparatus operatively associated with the lever linkage and positioned to measure individually and continuously the force acting on the extractor elements, wherein a triggering apparatus operates to disengage the coupling in the event of a deviation of the force value, measured by at least one measuring sensor from a standard value specified in reference to a specific point of motion of individual ones of the extractor elements by a predetermined amount.
- 2. The press according to claim 1, wherein the triggering apparatus has at least one evaluation apparatus for evaluating the force values measured by the measuring sensor.
- 3. The press according to claim 2, wherein within the evaluation apparatus, the force values ascertained by the measuring sensor are compared with force values which are stored in a memory apparatus.
- 4. The press according to claim 2, wherein, between the measuring sensor and the evaluation apparatus, a measuring amplifier is arranged.
- 5. The press according to claim 1, wherein the coupling is constructed as a piston/cylinder unit and the triggering unit has a valve through which the coupling is disengageable.
- 6. The press according to claim 1, wherein the extractor elements are arranged in the tool upper element.
- 7. The press according to claim 1, wherein the extractor elements are arranged in the tool lower element.
- 8. The press according to claim 1, wherein the measuring sensor comprises a cylindrical element arranged inside the lever linkage which is provided with strain gauges.
- 9. The press according to claim 1, wherein the measuring sensor comprises a quartz element arranged inside the lever linkage.
- 10. The press according to claim 1, wherein a preliminary relief element is arranged between each of the extractor elements and the measuring sensor.
- 11. The press according to claim 10, wherein a preliminary relief valve is arranged between the preliminary relief element and a valve.
- 12. A process for transforming work pieces with a tool arranged in a press comprising,extracting the pieces from the tool after the transforming by extractor elements operatively driven through a lever linkage from a drive apparatus, and interrupting the flow of force between the drive apparatus and selected ones of the extractor elements when there is a deviation of the force individually measured with respect to each of the extractor elements from a force standard value specified in reference to a certain point in the motion of the extractor element.
- 13. The process according to claim 12, wherein, in the event of a change in the force from the drive apparatus acting on the individual extractor elements through the lever linkage, an adaptation of the force standard values is undertaken for selected operating points of the extractor elements to which the change in force occurs.
Priority Claims (1)
Number |
Date |
Country |
Kind |
100 45 312 |
Sep 2000 |
DE |
|
US Referenced Citations (5)
Foreign Referenced Citations (1)
Number |
Date |
Country |
19701282 |
Jul 1998 |
DE |