The present invention relates to a press-forming method of a component with an L shape used as a framework member or the like of an automobile.
The present application claims priority on Japanese Patent Application No. 2010-115208, filed in Japan on May 19, 2010, the contents of which are cited herein by reference.
An automobile framework structure is formed by joining framework members such as a front pillar reinforcement, a center pillar reinforcement, or a side sill outer reinforcement manufactured by press-forming a blank metal sheet. For example,
In general, when a component having an L shape (hereinafter, sometimes called an L-shaped component) such as the framework member 110 is press-formed, a drawing method is employed in order to suppress generation of wrinkles. In the drawing method, as shown in (a) and (b) of
As described above, a blank metal sheet to be drawn requires high ductility. For example, when a steel sheet having small ductility and high strength is used as the blank metal sheet to draw an L-shaped component, cracks or wrinkles are likely to be generated due to insufficient ductility. Accordingly, typically, the L-shaped component such as a front pillar reinforcement or a center pillar reinforcement is manufactured using a steel sheet having excellent ductility and relatively low strength as the blank metal sheet. Therefore, in order to ensure strength, the thickness of the blank metal sheet needs to be high, so that there is a problem with increases in component weight and costs. Such a problem also occurs when a framework member 110′ having a T shape is press-formed by combining two L shapes as shown in
In Patent Documents 1 to 4, bend-forming methods for manufacturing components having simple cross-sectional shapes such as a hat shape or a Z shape are described. However, such methods cannot be used for manufacturing the L-shaped component.
In consideration of the problem, an object of the present invention is to provide a press-forming method of a component with an L shape, the method being capable of press-forming a component with an L shape from a blank metal sheet with high yield even though a high-tensile material with low ductility and high strength is used for the blank metal sheet.
In order to accomplish the object, the invention uses the following methods.
(1) A first aspect of the present invention is a forming method that forms a press component with an L shape from a blank metal sheet, the press component having a top sheet section and a vertical wall section which is connected to the top sheet section via a bent section having a part curved in an arc shape and which has a flange section on an opposite side to the bent section, the top sheet section being arranged on an outside of the arc of the vertical wall section, the method including: disposing the blank metal sheet between a die and both of a pad and a bending die; and forming the vertical wall section and the flange section while at least a part of the blank metal sheet is caused to slide on a part of the die corresponding to the top sheet section, the forming of the vertical wall section and the flange section being performed in a state where the pad is made close to or brought into contact with the blank metal sheet.
(2) In the forming method described in (1), in the forming of the vertical wall section and the flange section, a part of the metal sheet may be pressurized as an out-of-plane deformation suppressing area by the pad.
(3) In the forming method described in (1), in the forming of the vertical wall section and the flange section, a portion of the metal sheet that is made close to or brought into contact with an out-of-plane suppressing area of the pad as the out-of-plane deformation suppressing area may be formed in a state where a clearance between the pad and the die is equal to or larger than a thickness of the blank metal sheet and is maintained to be equal to or smaller than 1.1 times the thickness of the blank metal sheet.
(4) In the forming method described in (2) or (3), the out-of-plane deformation suppressing area may be, among areas of the top sheet section divided by a tangent line of a boundary line between the bent section and the top sheet section, the tangent line being defined at a first end portion which is one end portion of the part curved in the arc shape of the bent section when viewed in a direction perpendicular to a surface of the top sheet section, an area of the blank metal sheet which contacts with the part of the die corresponding to the top sheet section on a side including a second end portion which is other end portion of the part curved in the arc shape of the bent section.
(5) In the forming method described in any one of (2) to (4), in the end portion of the blank metal sheet, among portions of the part of the blank metal sheet corresponding to the out-of-plane deformation suppressing area, a portion which becomes the end portion of the part further on the top sheet side than the bent section may be on the same plane as that of the top sheet section.
(6) In the forming method described in any one of (1) to (5), the top sheet section may have an L shape, a T shape, or a Y shape.
(7) In the forming method described in any one of (1) to (6), a height of the vertical wall section may be equal to or larger than 0.2 times a length of the part curved in the arc shape of the bent section, or equal to or larger than 20 mm.
(8) In the forming method described in any one of (1) to (7), the forming of the vertical wall section and the flange section may be performed so that the pad is made close to or brought into contact with a region of the blank metal sheet; and the region of the blank metal sheet may be, among portions of the top sheet section, a portion which is in contact with a boundary line between the top sheet section and the part curved in the arc shape of the bent section, and which is within at least 5 mm from the boundary line.
(9) In the forming method described in any one of (4) to (8), in the flange section, in a portion of the vertical wall section connected to the part curved in the arc shape of the bent section, widths of a flange portion of the first end portion side from a center portion in a longitudinal direction of the flange of the portion connected to the opposite side to the top sheet section and a flange portion in front of the flange portion of the first end portion side by 50 mm or larger may be equal to or larger than 25 mm and equal to or smaller than 100 mm.
(10) In the forming method described in any one of (1) to (9), a radius of curvature of a maximum curvature portion of the boundary line between the part curved in the arc shape of the bent section and the top sheet section may be equal to or larger than 5 mm and equal to or smaller than 300 mm.
(11) In the forming method described in any one of (1) to (10), a pre-processed blank metal sheet may be press-formed as the blank metal sheet.
(12) In the forming method described in any one of (1) to (11), a blank metal sheet having a breaking strength of equal to or higher than 400 MPa and equal to or lower than 1,600 MPa may be used as the blank metal sheet.
(13) A second aspect of the present invention is a forming method of a press component having an L shape, including: performing forming by the forming method according to any one of items 1 to 12 to form a shape of a single L character, a shape of a plurality of L characters, or a shape of any L character, when a shape having a plurality of L characters is press-formed.
(14) A third aspect of the present invention is a forming method of a press component having an L shape, for forming an L shape which has a vertical wall section, a flange section connected to one end portion of the vertical wall section, and a top sheet section that is connected to an end portion of the vertical wall section on the opposite side to a side connected to the flange section and extends in the opposite direction to the flange section and in which a part or the entirety of the vertical wall section is curved so that the flange section is on the inside, by pressing a blank metal sheet, including: performing forming by disposing a blank metal sheet having a shape in which an end portion of a part of the blank metal sheet corresponding to a lower side of the L shape is inside the top sheet section, on a die, and pressing the vertical wall section and the flange section with a bending die while pressing the top sheet section with a pad.
(15) In the forming method described in (14), a width of the flange section on the upper side from the center of the curve of the vertical wall section may be equal to or larger than 25 mm and equal to or smaller than 100 mm.
(16) A fourth aspect of the present invention is a forming method of a press component having an L shape, for forming an L shape which has a vertical wall section, a flange section connected to one end portion of the vertical wall section, and a top sheet section that is connected to an end portion of the vertical wall section on the opposite side to a side connected to the flange section and extends in the opposite direction to the flange section and in which a part or the entirety of the vertical wall section is curved so that the flange section is on the inside, by pressing a blank metal sheet, including: disposing the blank metal sheet having a shape in which an end portion of a part of the blank metal sheet corresponding to the lower side of the L shape is inside the top sheet section, a margin thickness is provided in the flange section on the upper side from the center of the curve of the vertical wall section, and the sum of the thickness of the flange section and the margin thickness is equal to or larger than 25 mm and equal to or smaller than 100 mm, on a die; performing forming by pressing the vertical wall section and the flange section with a bending die while pressing the top sheet section with a pad; and trimming the margin thickness of the flange section.
(17) In the forming method described in (16), a radius of curvature of a maximum curvature portion of the curve of the vertical wall section may be equal to or larger than 5 mm and equal to or smaller than 300 mm.
(18) In the forming method described in (16) or (17), a pre-processed blank metal sheet may be press-formed as the blank metal sheet.
(19) In the forming method described in any one of (16) to (18), a steel sheet having a breaking strength of equal to or higher than 400 MPa and equal to or lower than 1,600 MPa may be used as the blank metal sheet.
(20) A fifth aspect of the present invention is a forming method of a press component having an L shape, including: performing forming by the forming method according to any one of items 16 to 19 to form a shape of a single L character, a shape of a plurality of L characters, or a shape of any L character, when a shape having a plurality of L characters is press-formed.
According to the invention, when the component with the L shape (L-shaped component) is press-formed from the blank metal sheet, a part of the blank metal sheet corresponding to the lower side portion of the L shape of the L-shaped component is drawn toward the vertical wall section. As a result, in the flange section in which cracks are more likely to be generated due to a reduction in the thickness of the sheet during typical drawing, excessive drawing of the member is reduced, so that generation of cracks is suppressed. In addition, in the top sheet section in which wrinkles are more likely to be generated due to an inflow of an excessive metal material during typical drawing, the member is drawn, so that generation of wrinkles is suppressed.
In addition, since a large trim area for blank holding does not need to be provided in the part of the blank metal sheet corresponding to the lower side portion of the L shape of the L-shaped component, unlike a typical forming method, the area of the blank metal sheet can be reduced, thereby increasing the yield. Moreover, since ductility needed by the blank metal sheet for forming is reduced, in addition to a steel sheet which has excellent ductility and relatively low strength and is thus typically used, a steel sheet having relatively low ductility and high strength can be used as the blank metal sheet. Accordingly, the thickness of the blank metal sheet can be reduced, thereby contributing to a reduction in weight of the automobile.
Hereinafter, a press-forming method according to an embodiment of the invention will be described in detail.
In the press-forming method according to this embodiment, a component having a top sheet section 11 and a vertical wall section 12 which is connected to the top sheet section 11 with a bent section 15 having a part 15a curved in an arc shape and has a flange section 13 on the opposite side to the bent section 15, is formed from a steel sheet (a blank metal sheet). The top sheet section 11 exists on the outside of the arc of the vertical wall section 12. In this press-forming method, the vertical wall section 12 and the flange section 13 are formed while at least a part of the area of the steel sheet S (at least a part of the area of the steel sheet S corresponding to the top sheet section 11) is allowed to slide (in-plane movement) on a part of a die 51 corresponding to the top sheet section 11. More specifically, the steel sheet S is disposed between the die 51 and both of a pad 52 and a bending die 53, and in a state where the pad 52 is made close to or brought into contact with the steel sheet S, the vertical wall section 12 and the flange section 13 are formed while at least a part of the steel sheet S is caused to slide on the part of the die 51 corresponding to the top sheet section 11.
In addition, “a state where the pad is made close to the steel sheet” means a state where the steel sheet and the pad do not come in contact with each other when the steel sheet slides on the part of the die corresponding to the top sheet section, and the steel sheet and the pad come in contact with each other when the steel sheet is likely to undergo out-of-plane deformation (or buckling) on the corresponding part.
During forming of the vertical wall section 12 and the flange section 13, a part of a metal sheet S may be pressurized as an out-of-plane deformation suppressing area (area F) at a predetermined load pressure by the pad 52.
For example, when a pad load pressure is set to be high and thus “the portion that abuts on the top of the die 51” of the steel sheet S cannot sufficiently slide (perform in-plane movement) between the die 51 and the pad 52 during pressing, cracks are generated in the flange section 13.
In addition, when the load pressure by the pad 52 is set to be low and thus out-of-plane deformation of “the portion that abuts on the top of the die 51” of the steel sheet S cannot be restrained during pressing, wrinkles are generated in the top sheet section 11.
When a metal sheet which is generally used for automobile components and the like and has a tensile strength of 200 MPa to 1,600 MPa is formed, when the metal sheet is pressured at a pressure of equal to or higher than 30 MPa, cracks are generated in the flange section 13. On the other hand, when the metal sheet is pressurized at a pressure of equal to or lower than 0.1 MPa, out-of-plane deformation of the top sheet section 11 cannot be sufficiently suppressed. Therefore, it is preferable that pressurizing by the pad 52 be performed at a pressure of equal to or higher than 0.1 MPa and equal to or lower than 30 MPa.
Moreover, in consideration of a pressing machine or a die unit for manufacturing general automobile components, since a load is low at a pressure of equal to or lower than 0.4 MPa, it is difficult to stably pressurize the pad 52 using a cushion gas. In addition, at a pressure of equal to or larger than 15 MPa, a high-pressure pressurizing apparatus is needed, and thus equipment costs are increased. Therefore, it is more preferable that pressurizing by the pad 52 be performed at a pressure of equal to or higher than 0.4 MPa and equal to or lower than 15 MPa.
The pressure mentioned herein is an average surface pressure obtained by dividing a pad pressurizing force by the area of the contact portion of the pad 52 and the steel sheet S, and may be slightly locally uneven.
In addition, during forming of the vertical wall section 12 and the flange section 13, the forming may be performed in a state where, as an out-of-plane deformation suppressing area (the area F), a portion of the steel sheet S that is made close to or brought into contact with an out-of-plane deformation suppressing area of a pad maintains a clearance between the pad 52 and the die 51. Here, the clearance may be equal to or larger than the thickness of the steel sheet S and equal to or smaller than 1.1 times the thickness of the steel sheet S.
For example, when the portion corresponding to the top sheet section 11 is formed in the state where the clearance between the pad 52 and the die 51 is equal to or larger than the thickness of the steel sheet S and is maintained to be equal to or smaller than 1.1 times the thickness thereof, the steel sheet S can sufficiently slide (perform in-plane movement) in the die unit 50 since an excessive surface pressure is not applied to the sheet S. Moreover, when a surplus thickness is provided in the top sheet section 11 as the forming proceeds and thus a force to cause the steel sheet S to undergo out-of-plane deformation is exerted, out-of-plane deformation of the steel sheet S is restrained by the pad 52, so that generation of cracks or wrinkles can be suppressed.
When the portion corresponding to the top sheet section 11 is formed by setting the clearance between the pad 52 and the die 51 to be smaller than the thickness of the steel sheet S, an excessive surface pressure is exerted between the steel sheet S and the die 51, and thus the steel sheet S cannot sufficiently slide (perform in-plane movement) in the die unit 50 and cracks are generated in the flange section 13.
On the other hand, when the portion corresponding to the top sheet section 11 is formed by setting the clearance between the pad 52 and the die 51 to be equal to or larger than 1.1 times the thickness of the steel sheet S, out-of-plane deformation of the steel sheet S cannot be sufficiently strained during pressing, so that the steel sheet S is significantly left at the top sheet section 11 as the forming proceeds. Therefore, in addition to the generation of significant wrinkles, buckling occurs in the top sheet section 11, so that the portion cannot be formed into a predetermined shape.
With regard to a portion of the metal sheet which is generally used for automobile components and the like and has a tensile strength of 200 MPa to 1,600 MPa, the portion being close to or brought into in contact with the out-of-plane suppressing area of the pad 52 as the out-of-plane deformation suppressing area (the area F), when the portion is formed in the state where the clearance between the pad 52 and the die 51 is equal to or larger than the thickness of the sheet and is maintained to be equal to or smaller than 1.1 times the thickness of the sheet, small wrinkles are generated if the clearance between the pad 52 and the die 51 is equal to or larger than 1.03 times the thickness of the sheet. Therefore, it is more preferable that the clearance between the pad 52 and the die 51 be equal to or larger than the thickness of the sheet and equal to or smaller than 1.03 times the thickness of the sheet.
Specifically, in the press-forming method according to this embodiment, as shown in (a) and (b) of
An L-shaped component 10 has the planar top sheet section 11 having an L shape, the vertical wall section 12, and the flange section 13 as shown in
According to the invention, as shown in
The steel sheet S has a shape from which the L-shaped component 10 is developed. That is, the steel sheet S has parts corresponding to the top sheet section 11, the vertical wall section 12, the flange section 13, and the like in the L-shaped component 10.
As the steel sheet S (the blank metal sheet), a pre-processed steel sheet (blank metal sheet) which is subjected to pre-processing such as press-forming, bend-forming, or perforating may also be used.
During forming of the vertical wall section 12 and the flange section 13, it is preferable that, in the end portion A (first end portion) which is one end portion of the part 15a curved in the arc shape of the bent section 15 when viewed in a direction perpendicular to a surface of the top sheet section 11 (press direction), among portions of an area of the top sheet section 11 divided by a tangent line of a boundary line between the bent section 15 and the top sheet section 11, an area (a hatched portion of
In addition, it is preferable that, in the steel sheet S, in a part of the top sheet section 11, which abuts on a boundary line between the top sheet section 11 and the part 15a curved in the arc shape of the bent section 15, an area within at least 5 mm from the boundary line be pressurized by the pad 52. On the other hand, for example, when only an area within 4 mm from the boundary line is pressurized by the pad 52, wrinkles are more likely to be generated in the top sheet section 11. Here, the generation of wrinkles does not have a significant effect on product strength compared to the generation of cracks.
In
A driving mechanism of the pad 52 used to pressurize the steel sheet S so that in-plane movement can be allowed in the part corresponding to the out-of-plane deformation suppressing area (the area F) may be a spring or a hydraulic pressure, and a cushion gas may be used as the pad 52.
In addition, with regard to part that approaches or comes in contact with the out-of-plane deformation suppressing area (the area F), a driving mechanism of the pad 52 used to form the vertical wall section 12 and the flange section 13 in a state where a clearance of the pad 52 and the die 51 is maintained to be equal to or larger than the thickness of the steel sheet S and to be equal to or smaller than 1.1 times the thickness thereof may be a motor cylinder, a hydraulic servo apparatus, or the like.
In the press-forming method according to this embodiment, the steel sheet S having a shape from which a formed body is developed, which is shown in
As described above, as the bending die 53 is lowered in the press direction, the steel sheet S is deformed along the shapes of the vertical wall section 12 and the flange section 13. Here, in the steel sheet S, the part corresponding to the vertical wall section 12 of the lower side portion of the L shape flows into the vertical wall section 12. That is, since the position in the steel sheet S corresponding to the top sheet section 11 of the lower side portion of the L shape is stretched, generation of wrinkles in the top sheet section 11, in which wrinkles are more likely to be generated due to an inflow of an excessive metal material during typical drawing, is suppressed. In addition, since the position in the steel sheet S corresponding to the flange section 13 of the lower side portion of the L shape is not excessively stretched, generation of cracks in the flange section 13, in which cracks are more likely to be generated due to a reduction in the thickness of the sheet during typical drawing, is suppressed. As the generation of wrinkles and cracks is suppressed as described above, a large trim area for blank holding does not need to be provided in the part of the steel sheet S corresponding to the lower side portion of the L shape of the L-shaped component, unlike a typical forming method.
The shape of the steel sheet S may be a shape in which an end portion of at least a part thereof is on the same plane as the top sheet section 11 (a shape in which the end portion is not wound during press-forming). That is, as shown in
If the height H of the vertical wall section 12 to be formed is smaller than 0.2 times the length of the part 15a curved in the arc shape of the bent section 15 or smaller than 20 mm, wrinkles are more likely to be generated in the vertical wall section 12. Therefore, it is preferable that the height H of the vertical wall section 12 be equal to or larger than 0.2 times the length of the part 15a curved in the arc shape of the bent section 15 or equal to or larger than 20 mm.
In addition, since a reduction in the thickness of the sheet due to forming is suppressed, in addition to a steel sheet having high ductility and relatively low strength (for example, a steel sheet having a breaking strength of about 1,600 MPa), even a steel sheet having low ductility and relatively high strength (for example, a steel sheet having a breaking strength of about 400 MPa) can be properly press-formed. Therefore, as the steel sheet S, a high-strength steel sheet having a breaking strength of equal to or higher than 400 MPa and equal to or lower than 1,600 MPa may be used.
Moreover, in the press-forming method according to this embodiment, the width hi of the flange section 13 on the upper side from the center of the curve of the vertical wall may be equal to or larger than 25 mm and equal to or smaller than 100 mm. More specifically, it is preferable that the press-forming be performed so that in the flange section 13, in a portion of the vertical wall section 12 connected to the part 15a curved in the arc shape of the bent section 15, the widths hi of a flange portion 13a of the end portion A side from a center line C in a longitudinal direction (peripheral direction) of the flange section 13 of the portion connected to the opposite side to the top sheet section 11 and a flange portion 13b (that is, an area O) in front of the flange portion of the end portion A side by 50 mm are equal to or larger than 25 mm and equal to or smaller than 100 mm.
The width hi is defined as a shortest distance from an arbitrary position in the flange end portions of the flange portions 13a and 13b, to a position on the boundary line between the vertical wall section and the flange section.
When points of which the widths hi are smaller than 25 mm exist in the flange portions 13a and 13b, a reduction in the thickness of the flange section is increased, and therefore cracks are more likely to be generated. This is because a force to draw the front end portion of the lower side portion of the L shape into the vertical wall section 12 during forming is concentrated on the vicinity of the flange section.
When points of which the widths hi are larger than 100 mm exist in the flange portions 13a and 13b, an amount of the flange section 13 compressed is increased, and therefore wrinkles are more likely to be generated.
Therefore, by causing the width hi to be equal to and larger than 25 mm and equal to and smaller than 100 mm, generation of wrinkles and cracks in the flange section 13 can be suppressed.
Accordingly, when a component having a shape in which the width hi of the flange section on the inside of the L shape is smaller than 25 mm is manufactured, it is preferable that after press-forming the L shape having the flange section of which the width is equal to or larger than 25 mm, unnecessary portions be trimmed.
Furthermore, a radius of curvature of a maximum curvature portion of the curve of the vertical wall section 12, that is, a radius (RMAX) of curvature of a maximum curvature portion of the boundary line between the part 15a curved in the arc shape of the bent section 15 and the top sheet section 11, be equal to or larger than 5 mm and equal to or smaller than 300 mm.
When the radius of curvature of the maximum curvature portion is smaller than 5 mm, the periphery of the maximum curvature portion is locally pulled outward, and therefore cracks are more likely to be generated.
When the radius of curvature of the maximum curvature portion is larger than 300 mm, the length of the front end of the lower portion of the L shape is lengthened and thus the distance drawn into the inside (the vertical wall section 12) of the L shape is increased during press-forming, so that a sliding distance between the die unit 50 and the steel sheet S is increased. Therefore, wear of the die unit is accelerated, resulting in a reduction in the life-span of the die. It is more preferable that the radius of curvature of the maximum curvature portion be smaller than 100 mm.
In the above-described embodiment, the forming method of a member having a single L shape is exemplified. However, the invention can also be applied to forming of a component having a shape of two L characters (a T-shaped component and the like), or a component having a shape of two or more L characters (a Y-shaped component and the like). That is, when a shape having a plurality of L characters is to be press-formed, forming may be performed by the forming method of the L shape described above to form a shape of a single L character, a plurality of L characters, or any L character. In addition, the top sheet section 11 may have an L shape, a T shape, or a Y shape. Moreover, the top sheet section 11 may have a T shape or Y shape which is left-right asymmetric.
In addition, a vertical positional relationship between the die 51 and the bending die 53 is not limited to that of the invention.
Moreover, the blank metal sheet according to the invention is not limited only to the steel sheet S. For example, blank metal sheets suitable for press-forming, such as, an aluminum sheet or a Cu—Al alloy sheet may also be used.
In Examples 1 to 52, formed bodies each of which has a top sheet section, a vertical wall section, and a flange section were formed using a die unit having a pad mechanism. Perspective views ((a) in the figures) of the formed bodies formed in Examples 1 to 52, and plan views of an area O (an area of (arc length)/2 mm+50 mm), an area F (an out-of-plane deformation suppressing area), and a pressurized position which was actually pressurized and is shown as hatched sections ((b), (c), and (d) in the figures) are shown in
In Tables 1A and 1B, figures corresponding to the respective examples are indicated, and with regard to the material of the blank metal sheet used in each example, “blank metal sheet type”, “sheet thickness (mm)”, and “breaking strength (MPa)” are shown.
In Tables 2A and 2B, with regard to the shape of the formed body formed in each example, “top sheet shape”, “arc length (mm)”, “arc length×0.2”, “radius of curvature of maximum curvature portion of arc”, “height H of vertical wall section”, “A end flange width (mm)”, “shape of arc”, “winding of end portion”, “shape of front of A end”, and “additional shape of top sheet section” are shown.
In Tables 3A and 3B, with regard to the forming condition, “pressurized position”, “pressurized range from boundary line (mm)”, “pre-processing”, “forming load (ton)”, “pad load pressure (MPa)”, and “ratio of clearance between pad and die to sheet thickness (clearance between pad and die/sheet thickness)” are shown.
In Tables 4A and 4B, results of “wrinkle evaluation of flange section”, “crack evaluation of flange section”, “wrinkle evaluation of top sheet section”, “crack evaluation of top sheet section”, and “wrinkle evaluation of vertical wall section” are shown.
In the wrinkle evaluations of the flange section, the top sheet section, and the vertical wall section, a case where no wrinkle was observed by visual inspection was evaluated as A, a case where small wrinkles were observed was evaluated as B, a case where wrinkles were observed was evaluated as C, a case where significant wrinkles were observed was evaluated as D, and a case where buckling deformation was observed was evaluated as X. In addition, in the crack evaluations of the flange section and the top sheet section, a case where no crack was generated was evaluated as O, a case where necking (a portion where the sheet thickness is locally reduced by 30% or higher) was generated was evaluated as Δ, and a case where cracks were generated was evaluated as X.
In Examples 1 and 41, a formed body shown in
In Examples 2 and 42, the formed body shown in
In Examples 3, 43, and 44, the formed bodies shown in
In Examples 45 to 52, the formed bodies shown in
In Example 4, a formed body shown in
In Example 5, a formed body shown in
In Example 6, a formed body shown in
In Examples 7 to 10, formed bodies shown in
In Examples 11 to 13, formed bodies shown in
In Examples 14 to 17, formed bodies shown in
In Examples 18 to 20, formed bodies shown in
In Example 21 to 23, formed bodies shown in
In Examples 24 to 28, formed bodies shown in
In Examples 29 to 32, formed bodies shown in
In Examples 33 to 36, formed bodies were press-formed by setting the maximum radius of curvature of the arc to 200 mm (Example 33), 250 mm (Example 34), 300 mm (Example 35), and 350 mm (Example 36). In these examples, it could be seen that by setting the radius of curvature of the maximum curvature portion of the arc to be 300 mm or smaller, generation of wrinkles of the vertical wall section could be suppressed.
In Examples 37 and 38, a T-shaped formed body shown in
In Examples 39 and 40, a T-shaped formed body shown in
According to the invention, even when the blank metal sheet having low ductility and high strength is used, the component having the L shape can be press-formed while suppressing generation of wrinkles and cracks.
Number | Date | Country | Kind |
---|---|---|---|
P2010-115208 | May 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/061504 | 5/19/2011 | WO | 00 | 7/25/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/145679 | 11/24/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5014537 | Nine | May 1991 | A |
5211047 | Kaneyuki | May 1993 | A |
7971467 | Yamada | Jul 2011 | B2 |
20090049886 | Okuzumi et al. | Feb 2009 | A1 |
20130239645 | Tanaka | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
19853130 | May 2000 | DE |
10318056 | Nov 2004 | DE |
01066024 | Mar 1989 | JP |
8-66730 | Mar 1996 | JP |
2003-103306 | Apr 2003 | JP |
2004-154859 | Jun 2004 | JP |
2005-186154 | Jul 2005 | JP |
2006-15404 | Jan 2006 | JP |
2008-307557 | Dec 2008 | JP |
101372025 | Feb 2009 | JP |
2009-255116 | Nov 2009 | JP |
2010-036217 | Feb 2010 | JP |
2292976 | Oct 2007 | RU |
741997 | Jun 1980 | SU |
884796 | Nov 1981 | SU |
Entry |
---|
Nakagawa et al., “Stamping Simulation of Laser-Welded, High Strength Steel Blanks”, Journal of the JSTP, vol. 35, No. 404, 1994, pp. 1115-1121. |
European Patent Search Report dated Sep. 30, 2011, issued in European Patent Application No. 11166738.2, (6 pages). |
PCT/ISA/210—International Search Report mailed on Jul. 26, 2011, issued in PCT/JP2011/061504. |
Japanese Office Action for JP Appl. No. 2012-223589 issued Apr. 22, 2014 (w/Engl. translation). |
Chinese Office Action for corresponding Chinese Application No. 201180008229.4 dated Jan. 6, 2014 (with English translation of Search Report). |
A.P.Nefedov, Design and Manufacture of Pressing Tools, Mechanical Engineering Publishers, pp. 78-79 (1973). |
Notice of Allowance dated Aug. 8, 2014 and its translation for Russian Application No. 2012133251. |
Number | Date | Country | |
---|---|---|---|
20120297853 A1 | Nov 2012 | US |