The present invention relates to a tailored blank article consisting of multiple different plates for use in press forming, the tailored blank article comprising two or more kinds of raw plates in combination.
More specifically, the present invention relates to a blank plate (called as a tailored blank article or a TB article) which is manufactured by welding and joining two or more kinds of plates of different thickness or of the same thickness, the plates each having different mechanical properties and being made of such as a cold-rolled steel, a hot-rolled steel, a surface treated steel, a stainless steel, an aluminum plate, an aluminum alloy, or the like. The tailored blank article consisting of multiple different plates has work hardening properties of two or more kinds of raw plates properly combined so as to increase strain of a higher-strength plate in press forming before a lower-strength plate comes into a base plate break which may be raised when strength of the raw plates differs from each other, thereby improving formability of press forming.
In manufacturing press parts of automobiles, two or more kinds of parts are integrally formed so as to simplify manufacturing processes and reduce the number of dies. In case of producing such united parts from raw plates, many scraps are also produced undesirably. Thus, the method of continuously welding sheet plates of the same material by the laser welding, mash seam welding, electron beam welding, TIG welding, arc welding, etc. and press-forming the resulting article integrally has been developed so as to increase the yield of the raw plate. Furthermore, taking safety at the time of collision into consideration, a tailored blank article consisting of multiple different plates is widely used. Such a tailored blank article comprises raw plates each having a different strength required for a part of the parts and different thickness and being welded continuously.
Such a tailored blank article whose plates are joined together by continuous welding has the above-described economic effect. On the other hand, there is raised a problem of defective forming at the time of press forming due to material deterioration at continuously welded portions. Breaks at the time of press forming are classified into the “ductility rate-determining mode” and the “stress rate-determining mode”. In the “ductility rate-determining mode”, when a blank plate is stretched parallel to welded bead portions, welded bead portions with material deterioration comes into a break. In the “stress rate-determining mode”, when a blank plate is stretched while pinching the welded bead portions, the raw plate having lower strength comes into a base plate break.
To cope with such situations, a steel plate fulfilling 2.6≦f(C, Si, Mn, P, B)≦12.5 is invented and described in Japanese Patent Laid-Open Publication No. Hei. 7-26346 as an ultra-low-carbon steel plate excellent in formability after high density energy beam welding. However, it becomes clear that use of such an ultra-low-carbon steel plate may not attain necessary strength required for a part to which high strength raw plates are applied in these days, and that there is no effect against a break in the “stress rate-determining mode” even though there is an effect against a break in the “ductility rate-determining mode” due to improvement in properties of welded bead portions.
In this point, concerning strain distribution when a break occurs in the stress rate-determining mode, strain ratio of two or more kinds of raw plates can be obtained by elementary analysis using strength ratio of the raw plates from conventional art (for example, Plasticity and Working, Vol. 32, No. 370 (1991) 1383 to 1390 by Kouichi Ikemoto and others). The relational expression of stress-strain of two kinds of materials can be shown by σ1=K1ε1n1, σ2=K2ε2n2 where suffix 1 is for a plate having a high strength and suffix 2 is for a plate having a low strength. At a joined portion, the relation of σ1t1=σ2t2 holds since stress between the plates is balanced. Solving these equations, when a low strength plate reaches break limit, strain (ε1max) of a high strength plate is given by the following equation (1) using TS1 and TS2.
ε1max=n1{(t2/t1)(TS2/TS1)(exp(n2)/(exp(n1))}1/n1 (1)
where
However, even though the maximum strain of a high strength plate can be calculated, there is no description about a method of solving the problem of a break in the “stress rate-determining mode.” Thus, at building sites of press forming, in case the “stress rate-determining mode” of a tailored blank article consisting of multiple different plates occurs, it is required that plate thickness ratio be decreased so as to decrease raw plate strength ratio, or strength ratio be decreased.
Accordingly, the present invention has an object to overcome the above-mentioned drawbacks in press formability of tailored blank articles of multiple different plates in the prior art and to provide a tailored blank article consisting of multiple different plates having an excellent formability.
The present inventors have solved the problem of defective press forming of a tailored blank article consisting of multiple different plates, especially, a break in the “stress rate-determining mode” which cannot be effectively coped with so far. Specifically, the present inventors have attached importance to the work hardening properties of raw plates, and improves formability by remedying strength balance between a high strength plate and a low strength plate. The above object can be attained by providing:
In the present invention, the “n” value shows the work hardening properties between tensile elongation from λ5=5% to λ10=10%. When tensile loads at elongations of 5% and 10% are P5 (N) and P10 (N) respectively, the “n” value is defined by a value which is measured by the following equation,
n(5%-10%)=[log(P10/P5)+log[(1+λ10/100)/(1+λ5/100)]]/[log[log(1+λ10/100)/log (1+λ5/100)]]=[log(P10/P5)+0.0202]/0.2908 (2)
In the present invention, raw plates used in the tailored blank article are made of cold-rolled steel, plated steel such as galvanized steel, stainless steel, and non-ferrous metal such as aluminum, etc.
The present invention will further be described below in detail.
The maximum plastic strain (ε1max) necessary for a high strength raw plate differs according to parts.
In
In the general steel plate manufacturing, since strength of a plate is high, the “n” value tends to become low relatively, it is difficult to make the “n” value ratio of a high strength steel plate 1 or more. However, since residual γ steel or stainless steel can be employed to provide a high “n” value, combinations fulfilling the “n” value ratios shown in
Concerning the range of necessary “n” value ratio (n1/n2), when it is assumed that the plate thickness-strength-product ratio of (t1·TS1/t2·TS2) is 1.2 (1n1.2=0.18) or more, since plastic strain of a high strength steel plate is required to be 0.2 or more, it is necessary that the relation of (n1/n2)≧1.1 holds from FIG. 2. In a practical tailored blank article, the “n” value of a high strength plate tends to be low greatly. Thus, taking the working method into consideration so that plastic strain of a high strength steel plate is kept at the value of 0.1 or more, the relation of (n1/n2)≧0.75 is desirable. On the other hand, the maximum “n” value of a raw plate used in the present invention is approximately 0.5 of a stainless steel plate, and a general hot-rolled steel plate has a low “n” value of approximately 0.13. Thus, the relation of (n1/n2)≦0.5/0.13=3.8 holds.
In a tailored blank article for press forming characterized in that the tensile strength of a steel plate having a low tensile strength is less than 380 MPa, the relation of 0.75≦(n1/n2)≦3.8 holds from above reasons. On the other hand, in case of a tailored blank article for press forming characterized in that the tensile strength of a steel plate having a low tensile strength is 380 MPa or more and less than 590 MPa, since n2 is low or approximately 0.15 to 0.2, it is preferred to use a diploid steel plate or a residual γ steel plate whose “n” value is 2 or more, thereby compensating formability of a steel plate having a high tensile strength. Further, it is desired that the ratio (n1/n2) of work hardening property values be set to be 1.0 (=2.0/2.0) or more.
The present invention will further be described below in detail with reference to embodiments, while it should be understood that the present invention is not limited to the following embodiments.
Table 1 shows properties of plates used in a tailored blank article consisting of multiple different plates, in which a soft cold-rolled steel plate (A: SPCEN) and a high strength cold-rolled steel plate (B: 440 MPa) as low strength raw plates, each being 0.80 mm in thickness, and various 590 MPa high tension steel plates (C-F) as high strength raw plates, each also being 0.80 mm in thickness, are shown. The respective tailored blank articles were formed by combining, that is, welding and joining either the A or the B plate to any one of the C-F plates using 5 kW CO2 laser.
The break pattern is the “stress rate-determining mode” in which a low strength raw plate comes into a break.
According to the present invention, by giving the necessary “n” value ratio to a tailored blank article consisting of multiple different raw plates made of such as cold-rolled steel, hot-rolled steel, plated steel such as galvanized steel, stainless steel, non-ferrous metal sheet plate such as aluminum and aluminum alloy, and the like, it becomes possible to provide a tailored blank article consisting of multiple different plates which can effectively cope with a break in the “stress rate-determining mode,” which cannot be effectively coped with by the conventional tailored blank article consisting of multiple different plates for improving formability.
The tailored blank article excellent in press formability according to the present invention is extremely effective in forming a deep-drawing and an overhang, and is industrially valuable.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTJP00/07314 | 10/20/2000 | WO | 00 | 6/11/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0236281 | 5/10/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5641417 | Glagola et al. | Jun 1997 | A |
6060682 | Westbroek et al. | May 2000 | A |
6185635 | O'Loughlin et al. | Feb 2001 | B1 |
6426153 | Duley et al. | Jul 2002 | B1 |
6453752 | Houston et al. | Sep 2002 | B1 |
6739647 | Obara et al. | May 2004 | B2 |
Number | Date | Country |
---|---|---|
48-125 | Jan 1973 | JP |
7-26346 | Jan 1995 | JP |
10-180470 | Jul 1998 | JP |
11-021633 | Jan 1999 | JP |
11-104749 | Apr 1999 | JP |
2000-015353 | Jan 2000 | JP |
2000-233288 | Aug 2000 | JP |