The invention relates to a press-in contact having a crimp arm for a printed-circuit board and serving to connect an electrical conductor of a cable with a conductor trace of the circuit board.
It is known that a cable end, the electrical conductor of which is to be electrically contacted to a conductor trace of a printed-circuit board, is prepared and contacted in the following manner: The cable, which has either only a single electrical conductor or multiple electrical conductors, is freed of its insulation (stripped) in the end region and is fitted into a throughgoing hole in the printed-circuit board and then soldered there to the conductor trace which surrounds the hole. Thus, although an electrically reliable and mechanically stable connection is established between the cable and the printed-circuit board, this is not always advantageous, since not all types of cable (circular conductors, stranded conductors, ribbon cable, and the like) may be readily used. Furthermore, a soldered connection is problematic when the surrounding temperatures cause softening under heat and even complete melting of the solder.
The object of the invention, therefore, is to provide a universal contact that can be economically manufactured and by means of which a conductor trace of a printed-circuit board may be quickly and easily connected in an electrically and mechanically reliable manner to the electrical conductor. In particular, the aim is to avoid problems at especially high surrounding temperatures.
This object is achieved. according to the invention, in that the device for contacting an electrical conductor of a cable to a conductor trace of a printed-circuit board is designed as a press-in contact having a press-in part which may be inserted into a hole in the printed-circuit board and electrically connected to the conductor trace, and having a contacting region for securing and electrically contacting the end of the electrical conductor of the cable. The invention thus provides a press-in contact which may be easily manufactured in a stamping/bending process. The stamping/bending process has the advantage that in an automated process the press-in contact is shaped so that it may automatically be further processed (installed) and also provides the necessary electrical and mechanical contact security. To this end, the press-in contact has a press-in part by means of which it is inserted through a hole in the printed-circuit board and is secured in a force-fit and/or form-fit manner. The appropriate shaping of the press-in part ensures that on the one hand the electrical contacting with the conductor trace is reliably and durably established, and on the other hand the press-in contact is mechanically fixed in place on the printed-circuit board, so that the electrical conductor may be mounted at its contacting region facing away from the press-in part. The contacting region for the electrical conductor is designed in such a way that the prepared end of the electrical conductor may be attached at that location to an electrically conductive material or the like by soldering, welding, crimping, or gluing. The embodiment of the contacting region as a crimping region is particularly preferred, since a crimped connection produces a gas-tight and thus durable connection, and various types of electrical conductors (circular conductors or ribbon conductors of various cross-sectional diameters) may be secured to the press-in contact.
In other words, the press-in part and/or the contacting region may be designed in such a way that the press-in contact may be easily, quickly, and durably secured in a reliable manner by means of a force-fit and/or form-fit and/or material-fit connection to the conductor trace of the conductor trace or to the electrical conductor. Pressing the press-in contact into the hole in the printed-circuit board, thereby electrically contacting the conductor trace and press-in contact to one another and fixing the press-in contact in position on the printed-circuit board and thus fastening it, also has the advantage that surrounding temperatures may exist which otherwise would melt a soldered connection. At such surrounding temperatures it is also of significant advantage when the connection between the press-in contact and the electrical conductor is likewise resistant to high temperature, such as a crimped connection, for example.
One illustrated embodiment, to which the invention is not restricted, is illustrated in
On the side of the press-in contact 1 facing away from the press-in part 3 a contacting region 5 is present, to which an electrical conductor, not illustrated here (for example, a circular conductor, stranded conductor, ribbon cable, or the like) is electrically and mechanically secured after stripping (i.e., removal of the outer sheathing). In addition to contacting methods such as soldering, welding, electrical adhesive bonding, or the like, crimping in particular may be considered, for which purpose the contacting region 5 has an approximately U-shaped cross section having two arms 6 before insertion of the electrical conductor. After the electrical conductor has been inserted into the contacting region 5, the crimping process is carried out by use of a suitable crimping tool, by which the two arms 6 are bent inward and thereby contact the electrical conductor in a gas-tight manner. It is particularly advantageous for the contacting region 5, in particular the crimping region, to be matched to the geometry of the electrical conductor in order to achieve the optimum connection results.
An examination of
The press-in contact 1 shown in the figures has the particular advantage that it may be quickly and economically manufactured in a stamping and bending process.
The invention therefore preferably (but not in a limiting manner) involves a strict crimp/press-in contact. This affords the possibility of, for example, contacting stranded cable on rigid or flexible printed-circuit boards (FPCB's) with conductor traces located thereon. This is primarily of advantage when the module (for example, an electronic device having a printed-circuit board in a housing) is exposed to temperatures that exceed the operating range of soldered connections. The press-in part and the crimped region may be implemented in different variants, in particular with respect to size, cable cross section, press-in zone, insulation crimp, etc. It would also be possible to provide a soldered or welded region instead of a crimped region.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 056 386 | Nov 2005 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3514746 | Kinkaid et al. | May 1970 | A |
4533204 | Moynagh et al. | Aug 1985 | A |
5374204 | Foley et al. | Dec 1994 | A |
5718606 | Rigby et al. | Feb 1998 | A |
6478633 | Hwang | Nov 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20070123083 A1 | May 2007 | US |