BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
The invention is described in more detail hereinafter with reference to an embodiment, in which:
FIG. 1 shows a perspective view of the construction of a bearing arrangement of the holding plates for a hydraulic press without a press frame and hydraulic drives according to the invention,
FIG. 2 shows schematically a section through the construction according to FIG. 1 with an indication of the press frame and the upper and lower hydraulic drives,
FIG. 3 shows schematically the plan view of the arrangement according to FIG. 2,
FIG. 4 shows schematically a similar view to FIG. 2 with a position measuring system,
FIG. 5 shows the view of the schematic arrangement according to FIG. 4 in the direction of the arrow 5,
FIG. 6 shows schematically the position indication of the press tool according to FIG. 2.
DETAILED DESCRIPTION OF THE INVENTION
While this invention may be embodied in many different forms, there are described in detail herein a specific preferred embodiment of the invention. This description is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiment illustrated.
A bearing plate 10 may be seen in FIG. 1 in which a guide post 12 of substantially rectangular and/or square cross section is supported. The guide post 12 is preferably formed in one piece and may also be configured in one piece with the bearing plate 10.
On one side of the guide post 12 are attached two parallel guide rails 14, 16, preferably by means of screwed connections, which in cross section are dovetail-shaped. The vertical parallel guide rails 14, 16 support guide carriages 18, 20, 22, 24, 26, 28 and 30, 32 which are attached to horizontal, axially spaced holding plates 34 to 40. The holding plates are of substantially the same construction and have a T-shape in section. The upper holding plate 34 serves to clamp an upper punch (not shown), the holding plate 36 is a die holding plate and serves to clamp a die and the lower holding plates 38, 40 serve to clamp lower punches. The holding plates 34 to 40 may be coupled to an upper and lower hydraulic drive, not shown in FIG. 1, for the purpose of vertical adjustment along the guide rails 14, 16. This is described in more detail below. The lower holding plates 38, 40 have apertures 42, 44 for passing through force transmission elements of a lower hydraulic drive to the respective holding plate located thereabove, i.e. in the present case of the die holding plate 36 and/or the holding plate 38.
To the upper end of the guide post 12 a horizontal alignment plate 46 is fastened, which comprises two bores 48 in the vicinity of the free end.
On the right side of the guide post 12 in FIG. 1, a measuring rule 47 is attached on which measurement slides 48, 50, 52, 54 slide. The measurement slides 48 to 54 are respectively coupled to a holding plate 34 to 40. By means of the measurement slides 48 to 54 and the measuring rule 47, the position of the holding plates 34 to 40 is detected and thus the position of the press tools, not shown.
The arrangement of the unit shown in FIG. 1 in a press frame is indicated in FIGS. 2 and 3.
As emerges from FIGS. 2 and 3, a press frame has four vertical frame posts 56 arranged in a square, which in the upper region are connected to one another by an upper connecting plate 58 and in the lower region by a connecting plate 60. The connecting plates 58, 60 which extend horizontally, have circular apertures 62 and/or 64.
The lower bearing plate 10 has a circular opening 66 in which a lower hydraulic drive 68 is positively inserted. The bearing plate 10 is screwed in the aperture of the connecting plate 60. The guide post 12 is supported on a radial shoulder 70 of the bearing plate 10 and is screwed thereto. In FIGS. 2 and 3, only one respective holding plate is indicated, for example the holding plate 38 for a lower punch. An upper bearing plate 72 positively receives an upper hydraulic drive 74. The bearing plate 72 may be screwed in the recess of the upper connecting plate 58. The bearing plate 72 has two bores of which one is shown at 76. They may be aligned with the bores 48 of the alignment plate 46. Through the pair of bores, locating pins may be inserted of which one is shown at 78 in FIG. 2. As a result, it is possible to position the bearing plate 72 horizontally relative to the alignment plate 46 and, as a result, also to bring the axis of the upper hydraulic drive 74 into alignment with the axis of the lower hydraulic drive 68, whereby a common vertical axis 73 is achieved. In the vertical direction, a relative movement may be allowed between the guide post 12 and the frame, shown here by the posts 56 and the connecting plates 60, 58.
The arrangement according to FIG. 2 is indicated schematically in FIGS. 4 and 5. The same parts in FIG. 2 are shown in FIGS. 4 and 5 with the same reference numerals. A die 102 may also be seen on the die holding plate 36, an upper punch 104 on the upper holding plate 34 and a lower punch 106 on the lower holding plate 38. The upper and lower punches 104, 106 cooperate with the die 102.
The press tools are shown in FIGS. 4 and 5 in a reference position, the upper edge of the die 102 being important for the referencing. By means of the referencing, the tool zero point of the system is determined. Further tools refer to this zero point. The thermal reference plane is the clamping plane of the holding plate 36 for the die 102, i.e. the upper face of the die holding plate 36 with which the measurement slides 50 cooperate. In this plane at 108, the measuring rule 47 is fastened to the post 12 and namely only in this plane.
The measurement of the tool lengths is not directly possible but—as mentioned above—is possible via the holding plates 34 to 38. Thus the temperature, which is measured when referencing, may be included therewith. A temperature measurement takes place at the points denoted with a “T”, i.e. on the holding plates 34 to 38, upper punch 104 and lower punch 106 as well as also in the die 102. When the tool lengths 1 are measured during operation, therefore, the value detected during referencing has to be included in the measured temperature. Moreover, alterations to the length occur with the press forces which are measured by means of force transducers, sensors or the like. These values also have to be considered together for the correction of the respective tool positions.
In order to be able to carry out the disclosed operations, a computer is required, into which the signal values measured by the measuring rule 47 as well as the temperature values and force values are entered, in order to calculate the current respective lengths 1 for determining the position of the tools.
Relative to FIG. 5, it still remains to be added that on opposing sides support elements 120, 122 are provided which are supported on the plate 10 and in turn mechanically support the die holding plate 36. They are arranged such that they may be rotated about a vertical axis in order to be arranged optionally below the die holding plate 36 or outside thereof. If the die holding plate is stationary for the ejection method, the support elements 120, 122 adopt the position shown in FIG. 5. With the withdrawal method, however, the die holding plate 36 is movable.
In FIG. 6 a control computer 126 is indicated into which the temperature values T from the individual sensors are entered. Moreover, individual press forces P which are measured by press force measuring elements, not shown, are entered into the computer 126. The measuring signals of the measurement slides 48, 50 and 52 on the measuring rule 47 are finally entered into the computer and which, by means of the lengths 1 for the lower and upper punches 104, 106 and the die 102, determines the individual positions of the press tools by considering the temperature values and the press force values by which the length values have to be corrected. After measuring the corrected length values, corresponding position values POS, PM and PUS are then recorded for the press tools for the purpose of controlling and/or regulating the hydraulic cylinder for the press tools. In FIG. 6, only the outlets for an upper and a lower hydraulic cylinder are indicated by HZO and HZU.
The above disclosure is intended to be illustrative and not exhaustive. This description will suggest many variations and alternatives to one of ordinary skill in this art. All these alternatives and variations are intended to be included within the scope of the claims where the term “comprising” means “including, but not limited to”. Those familiar with the art may recognize other equivalents to the specific embodiments described herein which equivalents are also intended to be encompassed by the claims.
Further, the particular features presented in the dependent claims can be combined with each other in other manners within the scope of the invention such that the invention should be recognized as also specifically directed to other embodiments having any other possible combination of the features of the dependent claims. For instance, for purposes of claim publication, any dependent claim which follows should be taken as alternatively written in a multiple dependent form from all prior claims which possess all antecedents referenced in such dependent claim if such multiple dependent format is an accepted format within the jurisdiction (e.g. each claim depending directly from claim 1 should be alternatively taken as depending from all previous claims). In jurisdictions where multiple dependent claim formats are restricted, the following dependent claims should each be also taken as alternatively written in each singly dependent claim format which creates a dependency from a prior antecedent-possessing claim other than the specific claim listed in such dependent claim below.
This completes the description of the preferred and alternate embodiments of the invention. Those skilled in the art may recognize other equivalents to the specific embodiment described herein which equivalents are intended to be encompassed by the claims attached hereto.