Information
-
Patent Grant
-
6244085
-
Patent Number
6,244,085
-
Date Filed
Monday, February 7, 200024 years ago
-
Date Issued
Tuesday, June 12, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Pauley Petersen Kinne & Fejer
-
CPC
-
US Classifications
Field of Search
US
- 072 45316
- 072 416
- 072 3101
- 072 311
- 072 201
- 072 37
- 029 720
- 029 715
-
International Classifications
-
Abstract
A pressing tool for connecting pipe-shaped work pieces wherein the pressing tool has a fork-shaped receiver and a clamping tool interchangeably held in the receiver by a connecting bolt. The pressing tool has two clamping jaws which can be moved toward each other. A drive motor operates the clamping tool. The connecting bolt can be pushed through bores in the fork-shaped receiver and in the clamping tool, for maintaining the clamping tool in an exchangeable position within the fork-shaped receiver. A contactless electronic tracing device is arranged in the fork-shaped receiver, which determines a relative position of the clamping jaws in relation to the fork-shaped receiver. The contactless electronic tracing device also passes a signal to either an optical warning device or an acoustical warning device.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a pressing tool for connecting pipe-shaped workpieces, having a fork-shaped receiver, a clamping tool, which is interchangeably held in this receiver by a connecting bolt and has two clamping jaws, which can be moved toward each other, and of a drive motor for operating the clamping tool. A connecting bolt can be pushed through bores in the fork-shaped receiver and in the clamping tool for interchangeably maintaining the clamping tool in the fork-shaped receiver.
2. Description of Prior Art
Pressing tools are known, which have pipe-shaped workpieces that are pressed together and two elements that are connected with each other in this way. Known cylinder-shaped workpieces are, for example, press sleeves, press fittings or connecting sleeves, as well as pipe sections, which can be pushed into each other and pressed together. These pressing tools are mostly constructed in a pistol shape and have a clamping tool. The clamping tool encloses a workpiece to be pressed. When the pressing tool is activated, the clamping jaws of the clamping tool are pressed together. So that various diameters of workpieces, such as coupling elements, can be processed by the same pressing tool if designed in such a way that appropriately dimensioned clamping tools can be simply exchanged.
The pressing tool has a fork-shaped receiver, in which the clamping tool is interchangeably held by a connecting bolt. The fork-shaped receiver and the clamping tool have bores for this purpose, through which passes the connecting bolt.
However, such pressing tools are tools with an increased accident risk. Several work accidents have already occurred, wherein the clamping tool was ejected in an uncontrolled manner and the fork-shaped receiver was bent open and deformed. Moreover, these pressing tools preform an increased number of incorrect pressings. Damages occur with both electro-mechanically and electro-hydraulically operated pressing tools.
In accordance with European Patent Reference EP-A-0 712 696, a monitoring element monitors the connecting bolt in its completely pushed-in position and is connected with the drive motor via a switch element.
Even if the clamping tool is correctly held in the pressing tool, this alone does not assure precise pressing of the pipe-shaped workpieces. The reasons for qualitatively unsatisfactory pressings can be of a wide variety. Besides functional reasons of the pressing tool, there are reasons which are connected with unsatisfactory processing. For example, the tool, or respectively the clamping jaws, can be dirty, so that sufficient closing of the clamping tool cannot be achieved, or the size of the pipe connector or pressing sleeve does not correspond to the size for which the corresponding tool is provided.
For these reasons a pressing tool was proposed in accordance with European Patent Reference EP-A-0 858 850, in which the length of the stroke of the drive which acts on the clamping tool is monitored. The appropriate length of the stroke for completely closing the clamping tool is known. This length of the stroke can also be indirectly determined, for example by a volumetric measurement of the hydraulic fluid in the case where the pressing tool is hydraulically operated. However, to monitor correctly, the pressing tool must determine which clamping tool is in use. Such a clamping tool determination requires an electronic data exchange between the clamping tool and the pressing tool, as well as appropriate electronic logic means, by which the information can be evaluated for appropriate signals that indicate a correct or an incorrect pressing operation. Such electronic monitoring devices then can be combined without problems with further electronic information, which also indicates the correct operation and the perfect state of the pressing tool.
Since these pressing tools are often employed at building sites, soiling, in particular of the clamping tool, can hardly be avoided. Such soiling then often leads to interruptions in the electronic transmission, and therefore to erroneous information.
A pressing tool is also described in German Patent Reference DE-A-19 631 019 wherein the final press position of the clamping jaws is monitored. Accordingly, the clamping tool can detect this final press position and pass it on to a display device. One problem with transmitting information from the clamping tool to the pressing tool remains. Appropriate electronics must be integrated into the clamping jaws in addition to elements which are also mechanically intricate. Here, the functional ability of the checking means is often hard to determine, and the user can also not see whether their functioning is still assured. Accordingly, the device continuously provides the information that the pressing process is unsatisfactory, while in actuality the pressing process is satisfactory, but there is an error in monitoring.
SUMMARY OF THE INVENTION
It is one object of this invention to provide a pressing tool that has two clamping jaws that move toward each other, which permits monitoring without an electronic data transmission from the clamping tool to the pressing tool, and which is as inexpensive as possible and allows the user to easily determine that the monitoring process is operational.
This object is achieved by a pressing tool discussed in this specification and in the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
A preferred exemplary embodiment of this invention is shown in the drawings, wherein:.
FIG. 1
shows a perspective view of a first pressing tool with a clamping tool;
FIG. 2
is an exploded perspective view of another embodiment of a corresponding representation of a second pressing tool with a clamping tool;
FIG. 3
shows a horizontal section taken through a fork-shaped receiver with a connecting bolt inserted, without a clamping tool;
FIG. 4
is an exploded perspective view of another preferred embodiment of a clamping tool;
FIG. 5
shows a top view of a clamping tool in an assembled state with a bearing plate on a top omitted.
DESCRIPTION OF PREFERRED EMBODIMENTS
A pressing tool for pipe-shaped workpieces is shown in a perspective view in each of
FIGS. 1 and 2
. The pressing tool comprises an electromechanical or electro-hydraulic device, which is designed in the shape of a pistol. The device, or respectively the pressing tool, has a housing
2
with a grip
1
. The pistol-shaped housing
2
terminates in a fork-shaped receiver
3
at an end remote from the grip
1
. An interchangeable clamping tool
4
with two clamping jaws
40
is releasably fastened in the fork-shaped receiver
3
. Together, the clamping jaws
40
form a circular opening
41
corresponding to a diameter of the workpiece to be pressed. The clamping tool
4
has two clamping jaws
40
, which are securely seated between bearing plates
42
, shown in detail in
FIG. 4. A
bore
43
, extending vertically with respect to the longitudinal direction of the housing
2
, extends through the bearing plates
42
. In the assembled state, the bearing plates
42
are enclosed by the fork-shaped receiver
3
. The fork-shaped receiver
3
has two lateral jaws
31
, through each of which the bore
30
extends. When the clamping tool is assembled, the two bores
30
are aligned with the bores
43
in the bearing plates
42
. A connecting bolt
5
can be pushed or passed through the bores
30
and thus can fix the clamping tool
4
in the fork-shaped receiver
3
. A drive device, seated in the housing
2
and not shown, acts via a piston rod or a spindle on the clamping tool
4
and thus moves the two clamping jaws
40
in relation toward each other, so that a pressing process can be performed.
The correct insertion of the connecting bolt
5
is checked here by means of a monitoring element
6
, shown in FIG.
3
. The pressing tool can only be operated when the connecting bolt
5
is in a completely inserted position.
The fork-shaped receiver
3
is schematically represented in FIG.
3
. Besides the bearing bore
30
, which extends in an aligned manner through the two jaws
31
, the connecting bolt
5
also guides. In the embodiment shown, a receiving space
36
is milled into one of the two jaws
31
of the receiver
3
. The receiving space
36
is covered by a cover plate
33
. A printed circuit board
35
is arranged in the receiving space
36
. A bore, which is used as a sensor receptacle
32
, leads from the receiving space
36
into the space
37
between the two jaws
31
. A sensor
34
is arranged in the sensor receptacle
32
. The sensor
34
is connected at least electrically with the printed circuit board
35
.
If the fork-shaped receiver
3
, or respectively the jaws
31
, do not provide sufficient space for attaching the receiving space
36
, it is also possible for only a single sensor receptacle bore
32
to be provided, in which a sensor
34
is housed, while the printed circuit board
35
with the appropriate electronic devices for signal processing can be housed in the housing
2
.
The sensor
34
is an electronic element. The sensor
34
can in principle be a transmitting as well as a receiving unit. However, it is also easily possible to only provide a transmitter, while the receiver can be housed in the oppositely located jaw
31
and can be brought into a communicating connection with the transmitter. In this case monitoring can be provided by a photoelectric or acoustical barrier.
If, however, as in the example shown here, the sensor
34
is only arranged in one jaw
31
of the fork-shaped receiver
3
, then the sensor
34
is designed as a transmitting-receiving unit and detects whether a transmitted signal is reflected at all, or is reflected with a predetermined quality. In this case the sensor
34
is employed as a reflection barrier. The reflection barrier can also be operated optically, acoustically or even electro-magnetically. Such means are sufficiently known and their exact design need not be addressed here.
The clamping tool
4
, which is specially designed for a particular embodiment, is shown in
FIGS. 4 and 5
. The clamping tool
4
has two clamping jaws
40
, the same as the clamping tools in accordance with the prior art. Each one of the clamping jaws
40
has half an opening, which together define an opening
41
. Grooves or flutes are cut into the half-openings
41
″, in which the material of the pipe-shaped workpieces, which can be plastically deformed, is received. The two clamping jaws
40
are held between two bearing plates
42
. The bearing plates
42
correspondingly have two bearing bores
45
″ which, in the assembled state of the clamping tool
4
, are aligned with each other and with the appropriate bearing bore
47
between the clamping jaws
40
. Respectively one bearing bolt
45
, which is secured on both ends by retaining rings
46
, passes through the bearing bores
45
″ as well as the bearing bore
47
of the clamping tool
40
. A compression spring
7
, which is used as a restoring spring, is arranged between the two clamping jaws
40
. The compression spring
7
is seated in appropriate blind bores in the two clamping jaws
40
. Each clamping jaw
40
has a pressure, or respectively striking surface
48
. In the closed state of the clamping tool
4
, these two surfaces rest on each other, or at least approximately on each other. In addition, each clamping jaw
40
has a recess
49
which provides space for a pivot lever
50
. A pivot shaft
51
accordingly projects from the clamping jaw
40
into the area of the recess
49
.
The special shape of the pivot lever
50
is shown in
FIG. 5
, in particular. With respect to the pivot shaft
41
, the pivot lever
50
is two-armed. The two lever arms
52
and
54
extend approximately at right angles with respect to each other. The considerably shorter lever arm
52
has a tracing end
53
which, in the closed state of the clamping tool
4
, rests on the pressure surface
48
. If the clamping tool is opened, the lever
50
can be pivoted into the position represented by dashed lines. A torsion spring, not shown, which can be arranged around the pivot shaft
51
, for example, pushes the pivot lever
50
into a position drawn in dashed lines as long as the clamping tool
4
is opened. In place of a torsion spring it is also possible for another type of spring, for example a relatively small arched spring plate, to provide this function of the restoration of the pivot lever
50
.
The pivot lever
50
is designed in such a way that the ratio of length of the two lever arms
52
and
54
is approximately 1:10. This is necessary, because the pivot movement of the clamping jaws
40
during the actual pressing process is relatively small. Accordingly it is necessary to greatly multiply the path, so that it is possible to obtain dependable information despite small movements. When the two clamping jaws
40
are closed toward each other, the tracing end
53
rests on the pressure surface
48
, as already mentioned, and the lever arm
54
is pivoted into the position shown in FIG.
5
. This can only take place sensibly if the clamping tool
4
is mounted in the fork-shaped receiver
3
. In this case the clamping tool
4
projects with the two bearing plates
42
, in which the bores
43
are arranged, into the fork-shaped receiver
3
, and the connecting bolt
5
extends through the bearing bores
30
in the jaws
31
of the receiver
3
, as well as through the two bores
43
of the bearing plates
42
. Here, the bearing plates
42
are designed to have a tongue
44
, in which the bore
43
is arranged. Thus, the tongue
44
projects into the fork-shaped receiver
3
. In principle the tongue
44
covers the sensor receptacle
32
and blocks the signal path of the sensor
34
. The bearing plates
42
accordingly have bores
56
, through which the sensor signal can pass. The pivot lever
50
pivots suddenly in front of the bores
56
only after the tool
4
is closed. Only when the tool
4
is completely closed does the transmitted signal of the sensors meet a reflector
55
, which can be attached in the end area of the lever arm
54
. The signal reflected by the reflector
55
then is detected by the receiving unit of the sensor
34
, which emits a signal to the control unit, not shown in the drawings. As already previously mentioned, the control unit can be arranged on the printed circuit board
35
, or in an area of the housing
2
which is not visible.
Although the embodiments described in this specification are preferred embodiments, they are not the only preferred embodiments. For example, with differently designed clamping tools, other movements can also occur which, however, can also be monitored by a sensor which is housed in the fork-shaped receiver
3
. This can also occur indirectly, so that in principle not the clamping jaws, but the piston rod, which acts on the clamping jaws, is detected. However, this can also take place in a completely analogous manner.
This invention is of particular interest because it functions completely independently of the size of the opening
41
, or respectively of the size of the clamping tool. For monitoring, it is thus not necessary to provide information regarding the clamping tool used to the logic device. Accordingly, information need not flow from the clamping tool to the pressing tool. Therefore no electrical connection is required between the two units. If the clamping tool is not employed, it is normally closed and the pivot levers
50
are maintained in the extracted position. In this position they are completely protected and covered by the bearing plates
42
. Practically no soiling or mechanical wear can occur. The actual tool itself, to which the sensor device is attached, is handled more carefully anyway. Accordingly, soiling occurs here also much more rarely. But the sensor device is completely protected in the jaws
31
of the fork-shaped receiver
3
.
Claims
- 1. In a pressing tool, for connecting pipe-shaped workpieces, having a fork-shaped receiver, a clamping tool, interchangeably held in the receiver by a connecting bolt and having two clamping jaws which can be moved toward each other, and by a drive motor for operating the clamping tool, wherein the connecting bolt can be pushed through bores in the fork-shaped receiver and in the clamping tool for maintaining the clamping tool exchangeably in the fork-shaped receiver, the improvement comprising:a contactless electronic tracing device being one of an optically operating sensor and an acoustically operating sensor arranged in the fork-shaped receiver which determines a relative position of the clamping jaws in relation to the fork-shaped receiver and passes a signal to at least one of an optical warning device and an acoustical warning device, the fork-shaped receiver having two at least approximately parallel jaws, and a sensor element is arranged in each of the jaws from which one of a passage and an interruption of the signal from the one jaw to the other jaw can be checked.
- 2. The pressing tool in accordance with claim 1, wherein a transmitter and a receiver element is provided in a single element of the fork-shaped receiver, and the signal transmitted by the transmitter element is reflected at a clamping tool element when the clamping tool attains an end position.
- 3. The pressing tool in accordance with claim 2, wherein a two-armed lever is arranged on at least one of the clamping jaws of the clamping tool, and when the clamping tool is closed a pivot lever pivots into a signal path of the sensor arranged in the fork-shaped receiver so that the signal of the transmitter is reflected at the pivot lever.
- 4. The pressing tool in accordance with claim 3, wherein the two-armed pivot lever has a reflector surface.
- 5. The pressing tool in accordance with claim 3, wherein the pivot lever is seated in a recess of a clamping jaw and pivots around a shaft and has a tracing end which can contact with the other of the clamping jaws.
- 6. The pressing tool in accordance with claim 5, wherein the two-armed pivot lever has one arm which when pivoted into the signal path is several times longer than the arm which has a tracing end.
- 7. The pressing tool in accordance with claim 5, wherein the pivot lever is arranged in each of the clamping jaws.
- 8. In a pressing tool, for connecting pipe-shaped workpieces, having a fork-shaped receiver, a clamping tool, interchangeably held in the receiver by a connecting bolt and having two clamping jaws which can be moved toward each other, and by a drive motor for operating the clamping tool, wherein the connecting bolt can be pushed through bores in the fork-shaped receiver and in the clamping tool for maintaining the clamping tool exchangeably in the fork-shaped receiver, the improvement comprising:a contactless electronic tracing device arranged in the fork-shaped receiver which determines a relative position of the clamping jaws in relation to the fork-shaped receiver and passes a signal to at least one of an optical warning device and an acoustical warning device, the two clamping jaws pivotably arranged between two bearing plates, and the bearing plates having recesses through which the signal can pass.
- 9. The pressing tool in accordance with claim 7, wherein the two pivot levers are symmetrically arranged on each one of the clamping jaws so that the clamping tool can be used in two possible assembled positions.
- 10. In a pressing tool, for connecting pipe-shaped workpieces, having a fork-shaped receiver, a clamping tool, interchangeably held in the receiver by a connecting bolt and having two clamping jaws which can be moved toward each other, and by a drive motor for operating the clamping tool, wherein the connecting bolt can be pushed through bores in the fork-shaped receiver and in the clamping tool for maintaining the clamping tool exchangeably in the fork-shaped receiver, the improvement comprising:a contactless electronic tracing device being one of an optically operating sensor and an acoustically operating sensor arranged in the fork-shaped receiver which determines a relative position of the clamping jaws in relation to the fork-shaped receiver and passes a signal to at least one of an optical warning device and an acoustical warning device, the fork-shaped receiver having two at least approximately parallel jaws, a sensor element arranged in a bore in one of the jaws and directed into a space between the two jaws to trace a relative position of one of the jaws with respect to the fork-shaped receiver.
Priority Claims (1)
Number |
Date |
Country |
Kind |
0258/99 |
Feb 1999 |
CH |
|
US Referenced Citations (5)
Foreign Referenced Citations (5)
Number |
Date |
Country |
196 31 019 A1 |
Aug 1997 |
DE |
0 712 696 B1 |
Sep 1995 |
EP |
0 858 850 A1 |
Jan 1998 |
EP |
0 941 812 A1 |
Sep 1999 |
EP |
0 941 813 A1 |
Sep 1999 |
EP |