1. Field of Invention
The present disclosure relates in general to pressure assisted blowout preventer, and more specifically relates to using wellbore pressure to assist actuation of an operator in a blowout preventer.
2. Description of Prior Art
Wellbores in hydrocarbon bearing subterranean formations are formed by rotating a drill bit mounted on a lower end of a drill string. Typically, a wellhead housing is installed at the earth's surface and through which bit and string are inserted. A blow out preventer (BOP) stack usually mounts on top of the wellhead housing that provides pressure control of the wellbore, and often includes rams to shut in the wellbore should pressure in the wellbore become uncontrollable. Additional rams are often included with BOP stacks that are for shearing the string within the BOP stack, and also for pressure testing within the BOP. Further typically included with BOP stacks are flow lines and valves to allow fluid flow through the BOP stack for remediating overpressure in the wellbore.
Wellbore pressure communicates to inside the wellhead, and thus to the BOP; which generates a force that opposes ram and packer actuation. Pressure increases in the wellbore further increasing the force opposing ram and packer movement, thereby increasing the amount of force required for actuating the ram and packer. Rams and packers are generally hydraulically powered, and often by systems having limited capacity. Because a typical BOP is regularly tested, the resistive force created by wellbore pressure results in more frequent replenishment of the system, or installing actuation systems having larger capacity. Hydraulic systems with large capacity are not only costly, but impractical in some subsea applications.
Disclosed herein are example embodiments of a blowout preventer (BOP) with a hydraulic equalizing circuit, and methods of actuating a ram. An example embodiment of a BOP includes an annular body having a main bore in pressure communication with a wellbore, an operator assembly having an end that selectively projects radially into the body, a piston coupled with the operator assembly, and a balance rod coupled to a side of the piston distal from the main bore, and having a pressure surface in selective pressure communication with the main bore. The BOP may further include a piping circuit for providing selective communication between the pressure surface of the balance rod and the main bore. In this example, the piping circuit includes an accumulator vessel with opposite ends respectively in pressure communication with the main bore and the pressure surface of the balance rod, and a piston in the accumulator vessel that defines a fluid seal between the opposite ends, so that when pressure in the main bore is communicated to the pressure surface through the accumulator, the piston blocks fluid flow between the main bore and pressure surface. Further included in this example is a selector valve for controlling flow in a fluid path between the accumulator vessel and pressure surface of the balance rod and that is responsive to pressure in the main bore. An example of the selector valve allows pressure communication between the accumulator vessel and the pressure surface when the pressure in the main bore is above a designated pressure, and blocks pressure communication between the accumulator vessel and the pressure surface when the pressure in the main bore is below a designated pressure. In an alternative, the selector valve provides pressure communication between the pressure surface and a pressure source for driving piston when the pressure in the main bore is below a designated pressure. The piston can optionally be reciprocatingly disposed in a cavity of a cylinder. Examples exist wherein the balance rod is an elongate member that is substantially coaxial with the piston and inserts into a sealed plenum having a port that is in a path of fluid communication between the main bore and the pressure surface. In an alternative, the pressure surface is disposed in a plane that is generally parallel with an axis of the main bore. A ram is optionally mounted on the end of the operator assembly that projects radially into the body.
Another example of a BOP includes an annular body having a main bore in pressure communication with a wellbore, an operator assembly having an operational end that selectively projects radially inward into the annular body and into shearing contact with a tubular in the main bore, a pressure surface coupled with the operator assembly that faces radially outward from the operational end, and that is in selective pressure communication with the main bore. The pressure surface can be on a piston that is reciprocatingly disposed in a cylinder mounted to the annular body, so that exposing the pressure surface to pressure in the main bore, urges the piston radially inward to push the operational end into shearing contact with the tubular. Optionally, a piston can be coupled with the operator assembly and extend radially outward therefrom, and an elongate balance arm can be coupled to a side of the piston distal from the operator assembly, and wherein the pressure surface is on an end of the balance arm distal from the piston. In this example the side of the piston facing the balance arm is selectively pressurized to generate a piston force for urging the piston radially inward, and wherein the piston force is greater than a force exerted onto the pressure surface by communicating pressure from the main bore. The pressure between the main bore and pressure surface can be communicated through a piping circuit that comprises an accumulator having a piston that separates fluid from the main bore with fluid in the piping circuit that is in contact with the pressure surface. The BOP can further include a selector valve for selectively providing communication between the main bore and the pressure surface when pressure in the main bore is above a designated value, and blocking communication between the main bore and the pressure surface when pressure in the main bore is below a designated value. In this example, the pressure surface is on a piston that is reciprocatingly disposed in a cylinder mounted to the annular body, so that exposing the pressure surface to pressure in the main bore, urges the piston radially inward to push the operational end into shearing contact with the tubular, and wherein the selector valve diverts fluid in a low pressure side of the cylinder to ambient when the piston is urged radially inward.
An example method of actuating a ram in a BOP includes providing an operator assembly comprising operator arm that couples with the ram, and a pressure surface coupled with the operator arm that faces radially away from the ram, and selectively providing pressure communication between a main bore in the BOP and the pressure surface that generates a force which urges the operator arm and ram radially inward. In the method, a piston can be coupled with the operator arm, and wherein the pressure surface is disposed on a side of the piston facing away from the ram. Optionally in the method, a piston can be coupled with the operator arm and a balance arm can extend from the piston radially away from the ram, and wherein the pressure surface is on a portion of the balance arm distal from the ram, the method further comprising communicating pressure from a pressure source onto a surface of the piston facing away from the ram.
Some of the features and benefits of the present invention having been stated, others will become apparent as the description proceeds when taken in conjunction with the accompanying drawings, in which:
While the invention will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.
The method and system of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments are shown. The method and system of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout.
It is to be further understood that the scope of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation.
A balance arm 42 is shown coupled with a side of piston 34 opposite its attachment to operator arm 38. Balance arm 42 is generally elongate and projects radially outward from piston 34 along a path generally coaxial with piston 34 and operator arm 38. Balance arm 42 extends from cavity 36 into a cavity 44 formed within plenum 32. Seal between balance arm 42 and cavity 44 isolates end of balance arm 42 from cavity 36. A port 45 is formed through a sidewall of plenum 32 and provides a pressure communication path between cavity 44 and a piping circuit 46 that provides selective pressure communication with main bore 18. Piping circuit 46 is made up of a line 48 having an end that connects to port 45, and has an opposite end connecting to a passage 50 formed in main body 26. An end of passage 50 opposite its connection with line 48 communicates with main bore 18. A valve 52 is provided in line 48 for controlling pressure communication through line 48, thereby selectively providing pressure communication between main bore 18 and cavity 44. As such, in one example of operation, valve 52 may be selectively opened so that pressure in main bore 18 can be applied to an end of balance arm 44 distal from piston 34, and in turn exert a force onto balance arm 42, thereby assisting piston 34 to urge operator arm 38 radially inward. In this example, a pressure surface 53 is defined on the end of balance arm 42 distal from piston 34, where the application of pressure in main bore 18 onto pressure surface 53 generates the force on balance arm 42, which counters the resistive force on the operator arm 38 produced by pressure in the main bore 18.
Further in the example of
In one optional embodiment, a selector valve 74 is shown in line 64 for controlling communication between main bore 18 and cavity 44. Operation of selector valve 74 depends on pressure in main bore 18, which is communicated to selector valve 74 via tubing 76 shown having an upstream end connected to line 60 and a downstream end connected to a control port in selector valve 74. In one example of operation, when pressure in main bore 18 is at least as great as pressure in pressure source 68, selector valve 74 is positioned to allow flow through line 64. Under these conditions, exposing plenum 44, and thus pressure surface 53, to pressure in main bore 18 when it is greater than pressure from pressure source 68, increases the force exerted onto operator arm 18, and overcomes resistive forces generated from pressure in main bore 18 that are exerted radially outward against operator arm 38. Further shown in the example embodiment of
Still referring to
An optional discharge line 96 is shown connected to a port 98 on an upstream end, where line 96 and port 98 are for dumping fluid from cavity 36 on the low pressure side LP of piston 34 when piston 34 is urged radially inward. Port 98 is formed through a side wall of cylinder 24 on a low pressure side of piston 34, and discharge line 96 connects to selector valve 92 on a downstream end. In one example of operation, a pressure kick or other high pressure episode is experienced in main bore 18, packer 28 (
In the alternate example of
The present invention described herein, therefore, is well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While a presently preferred embodiment of the invention has been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present invention disclosed herein and the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3933338 | Herd | Jan 1976 | A |
4440232 | LeMoine | Apr 1984 | A |
4997162 | Baker | Mar 1991 | A |
5735502 | Levett et al. | Apr 1998 | A |
6164619 | Van Winkle | Dec 2000 | A |
7195224 | Le | Mar 2007 | B2 |
7424917 | Martin | Sep 2008 | B2 |
7628207 | Leonardi | Dec 2009 | B2 |
20150167417 | Larson | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
1456501 | Nov 2008 | EP |
Entry |
---|
“AF Valves”, Subsea valves, Cameron Iron Works USA Inc, p. No. 742, 1988. |
Number | Date | Country | |
---|---|---|---|
20160319623 A1 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14104898 | Dec 2013 | US |
Child | 15207204 | US |