In printers, print heads are provided to fire droplets of ink onto print media. The fluid is provided in a cartridge. The cartridge may be separately provided from the print head, or may be integrated with the print head. In many cases, the cartridge is a consumable supply that can be exchanged with respect to the printer. In some cases, the cartridge is arranged to be refilled, for example while being mounted in the printer.
The pressure in the cartridge needs to be carefully controlled well because it has an effect on the fluid flow into and/or out of the print head. In turn, this may have an effect on fluid drop characteristics, which is one of the most important parameters of image quality.
For the purpose of illustration, certain embodiments of the present invention will now be described with reference to the accompanying diagrammatic drawings, in which:
In the following detailed description, reference is made to the accompanying drawings. The embodiments in the description and drawings should be considered illustrative and are not to be considered as limiting to the specific embodiment of element described. Multiple embodiments may be derived from the following description and/or drawings through modification, combination or variation of certain elements. Furthermore, it may be understood that also embodiments or elements that are not literally disclosed may be derived from the description and drawings by a person skilled in the art.
In most cartridges a certain back pressure is present in its inner volume to control the fluid flow. “Backpressure” may be understood as a pressure that is lower than the atmospheric pressure, which inhibits fluid from leaking out of the cartridge. If the cartridge lacks sufficient back pressure, ink may leak from the print head. On the other hand, if the backpressure is excessive, the nozzles may not fire properly. The back pressure is carefully controlled by a back pressure controlling mechanism present in the cartridge.
A known type of cartridge uses a porous member that is mounted in the fluid volume to absorb the fluid. Here, a back pressure effect is obtained by the capillary characteristics of the porous member. One disadvantage of this arrangement is that the porous member consumes space within the volume of the cartridge.
Another arrangement for controlling pressure and back pressure within a cartridge, and that tends to consume less space than a porous member, is an arrangement of a pressure bag and bias spring. The cartridge and the bag have an opening in its walls for permitting ventilation between the bag and an exterior of the cartridge. For example, this allows atmospheric air to enter into the bag. The bag is arranged to inflate or deflate within the cartridge in response to a pressure change inside or outside of the cartridge. When the bag is inflated in the cartridge, the bias spring presses against the bag to partly deflate the bag, which causes a small amount of back pressure. The bag construction is also used for priming the printer, wherein the bag is actively hyperinflated and deflated causing rapid pressurization for priming.
The cartridge 3 comprises an inner volume 18 for holding fluid. The inner volume 18 is defined by cartridge walls 19-24 (
The receiving structure 3 is arranged to establish a fluidic interface between the cartridge 3 and the fluid supply 5. The receiving structures 2 may be arranged off axis and/or on axis. The print head 4 may comprise a scanning print head 4 or a page wide array print head 4 (PWA). In the shown embodiment, the fluid ejection device 1 comprises an off axis system with a PWA, wherein the receiving structure 2 and the cartridges 3, when installed, have a fixed position with respect to the fluid ejection device 1. During printing a print medium 6 extends under the print head 4.
The fluid ejection device 1 is further provided with a control circuit 7 and a memory 7B. The receiving structure 2 and the cartridge 3 may comprise an electrical interface for connecting the respective cartridge 3 to the control circuit 7.
A mechanical interface is provided for connecting the cartridge 3 to the receiving structure 2, so that the fluidic and electrical interfaces are connected. The mechanical interface may be arranged to allow lateral insertion of the cartridge 3, in a lateral direction Ld, so that the fluidic and electrical interfaces on the front face 17 of the cartridge 3 connect to corresponding interfaces of the receiving structure 2. For example, the receiving structure 2 may comprise a guide 8 for guiding the cartridge 3 into the receiving structure 2. The cartridge 3 may comprise a corresponding slide arrangement in its bottom (not visible in figures). In the shown embodiment the guide 8 comprises a T-rail. The receiving structure 2 may comprise a latch 9 for locking the cartridge 3 to the receiving structure 2, by engaging a corresponding notch (not shown) in the cartridge 3. A release mechanism 10 may be provided, for releasing and/or pushing out the cartridge 3 when the latch 9 is unlocked. Furthermore, the receiving structure 2 may comprise an electrical interface 11, of which only the backside is shown In
The fluid cartridge 3 is provided with two fluidic interfaces 13, 14 for connection with two corresponding fluidic interfaces 15, 16 of the receiving structure 2. As shown in
As can be seen from
The pressure bag 25 has a fluidic connection with the first cartridge fluidic interface 13. In an installed position of the cartridge 3, the pressure fluid such as air is guided through the first cartridge fluidic interface 13 into and out of the bag 25. A channel 39 (
In an inflated condition, the bag 25 may have a relatively small width Wb, following the thin shaped inner volume 18 of the cartridge 3, as diagrammatically illustrated in dashed lines in
The bag 25 is arranged to maintain a certain approximate back pressure in the inner volume 18. In an embodiment, the bag 25 functions as a part of a pressure accumulator arrangement that prevents that the back pressure becomes too low, preventing dripping of fluid out of the cartridge 3 and/or print head nozzles. As a part of a pressure accumulator, the bag 25 reacts to changes in pressure, for example due to changes in temperature and/or pressure outside and/or inside of the cartridge 3, for example by letting air out of the bag 25 when the cartridge inner pressure increases relative to an outer pressure. In a further embodiment, the bag 25 may function as a part of a pressure regulation arrangement by preventing a back pressure from becoming too high, which may be caused by fluid ejecting out of the cartridge 3 and/or changes in temperature and/or pressure. The pressure regulator arrangement may allow fluid, such as air and/or ink, to enter in the inner volume 18 of the cartridge 3. Furthermore, the bag 25 may function as a part of a priming arrangement, by being arranged to hyper-inflate, in that way rapidly increasing an inner pressure of the cartridge 3. As a part of a priming arrangement, the bag 25 may be connected to a pump (not shown), for example through the first fluid interfaces 13, 15. In an embodiment, the cartridge 3 comprises a pressure regulation, a pressure accumulation and a priming arrangement. An embodiment wherein the bag 25 functions as a part of an integrated pressure regulation, pressure accumulation and priming arrangement is explained below.
In an embodiment, the integrated pressure accumulator, pressure regulator and priming arrangement comprises a bag 25, a resilient element 26A, a lever 31 and a valve 32. The cartridge 3 may comprise a resilient element 26A in its volume to provide a resilient force against the bag 25. In use, the bag 25 may suck in pressure fluid to compensate for a decrease in pressure. For example, the bag 25 would inflate by ambient air until the pressure in the bag 25 is approximately the same as the ambient air at the cartridge exterior. The resilient element 26A prevents the bag 25 from expanding too far by pushing against the bag 25. The resilient element 26A thereby maintains a certain backpressure in the inner volume 18. Such mechanism may prevent leaking of the nozzles. The resilient element 26A and the bag 25 are adapted to maintain the back pressure at a suitable level, providing for a pressure accumulation arrangement.
In the shown embodiment, the resilient element 26A comprises a leaf spring 26. The leaf spring 26 may be relatively flat. The leaf spring 26 may be arranged between and/or against a side wall 21 of the cartridge 3 and the bag 25. The leaf spring 26 may comprise at least one or at least two bias legs 27 that bias the spring 26 towards the bag 25. The spring 26 may comprise an engagement surface 28 for engaging the bag. 25. In the shown embodiment, the spring 26 comprises two opposite pre-biased curved legs 27 that are arranged around the outer contour of the engagement surface 28 of the spring 26. The legs 27 may be curved in a surface perpendicular to said side wall 21, to bias the spring 26 away from the side wall 21. The curves in the legs 27 are adapted so that the leaf spring 26 exerts a relatively constant force against the bag 25 relatively independent of the depression of the spring 26. The engagement surface 28 may have a relatively large surface for engaging a relatively large portion of one of the two surfaces 29, 43 of the bag 25. For example at least 40% of the surface 29 of the bag 25 may engage the engagement surface 28 of the spring 26, at least in an at least partially deflated condition of the bag 25. For example, in the embodiment shown in
A further feature of the leaf spring 26 may include at least one gripping extension 30 for gripping and assembling the leaf spring 26. In the shown embodiment, the spring 26 comprises four gripping extensions 30, one at each outer corner of the respective legs 27. During assembly, at least one gripping extensions 30 may be attached to the lid, and placed inside the cartridge 3, against the bag 25, as is shown in
In the shown embodiment, a lever 31 is provided that may pivot approximately around a pivot axis P. The lever 31 may engage a valve 32 that seals a third fluidic interface 33. The valve 32 may comprise a rubber disk 34 that closes off the third fluidic interface 33 and a contact ball 35 between the lever 31 and the disk 34. The third fluidic interface 33 may be connected to an air and/or ink supply, for allowing further air and/or ink to stream into the inner volume 18. In one embodiment, the fluid ejection device 1 comprises on and/or off axis fluid cartridges, and in use, ink may be provided through the third fluidic interface 33. In another embodiment, the fluid ejection device 1 comprises on and/or off axis fluid cartridges, and in use, air may be provided through the third fluidic interface 33.
The lever 31 is moved by inflating or deflating the bag 25. In a deflated condition of the bag 25, the lever 31 may push against the valve 32 so as to seal the third fluidic interface 33. In an inflated condition of the bag 25, the lever 31 may release the valve 32 with respect to the third fluidic interface 33 because the bag 25 moves the lever 31 away from the third fluidic interface 33. Here, the valve 32 may acts as a pressure regulator and/or a check valve. In the shown embodiment the lever 31 engages the engagement surface 28 of the spring 26. Inflation or deflation of the bag 25 moves the spring 26, which in turn moves the lever 31. For example, when a back pressure inside the cartridge 3 increases during printing, the bag 25 Inflates, causing the lever 31 to release the valve 32, allowing for air and/or ink to enter into the inner volume 18, thereby again increasing the inner pressure and deflating the bag 25 until a certain equilibrium is achieved, which in this embodiment may be a slight back pressure as explained earlier.
In a further embodiment, the bag 25 functions as part of a priming arrangement. The bag 25 may be hyper-inflated for priming, causing a rapid increase of pressure in the inner volume 18 because of the relatively large expansion of the bag 25. The hyperinflation causes air and/or ink to be let out through the respective fluidic interface 16 and/or the print head nozzles. During this priming action, the valve 32 may function as a check valve. Priming may be activated through the first fluidic interfaces 13, 15, that are connected to a pressure fluid supply and/or a pump. The priming action may be activated through the control circuit 7 of the fluid ejection device 1.
In the embodiment described above, the bag 25 actuates a valve 32 through a resilient element 26A and a lever 31, however, in other embodiments the valve 32 may be actuated directly by the bag 25, or directly through one of the resilient element 26A or lever 31, or through other arrangements.
The channel 39 opens into the pressure bag 25. For example, the channel 39 comprises a channel mouth 40 that opens into the inner volume 18. The bag 25 is attached to the cartridge wall 20 so that the opening 38 and the channel mouth 40 overlap. In this way the pressure fluid may be transported between the bag 25 and the exterior of the fluid cartridge 3.
In the shown embodiment, the channel 39 has a longitudinal, longitudinally extended shape, including one or more curves and having a relatively thin diameter. The channel 39 comprises a labyrinth. The channel 39 is arranged to reduce water vapor loss from the bag 25 while allowing gas to flow through. The total length of the channel 39 may be at least approximately 30, or at least approximately 40 times the diameter D of the channel, for example at least 30, or at least 40 times the average diameter D. However, in other embodiments the channel comprises a through opening through the respective cartridge wall 20, for example having a much smaller length vs. diameter ratio.
The bag 25 is attached to the wall 20 in an attachment zone. The attachment zone is the bag and wall surface wherein the bag 25 is attached to the respective wall 20. In the shown embodiment, an attachment feature 41 is provided for attaching the bag 25 to the wall 20. The attachment feature 41 is arranged to attach the bag 25 to the wall 20. The attachment feature 41 is relatively thin. The attachment feature 41 may be a separate feature between the bag 25 and the wall 20, or may comprise a deformation or the like to attach the bag 25 and the wall 20.
In the shown embodiments the attachment feature 41 comprises adhesive. Applying adhesive allows for relatively easy assembly of the bag 25 within the cartridge 3. For example, the bag 25 may be adhered to the substantially planar bottom of the first shell 36, in a flat condition, and with its opening 38 connected to the mouth 40 of the channel 39.
In other embodiments, the attachment feature 41 may comprise a staked, welded, and/or heat sealed attachment. In the process of welding, staking and/or heat sealing the bag 25 and the wall 20 together, the parts 20, 25 may locally melt and join. Multiple suitable welding techniques exist. One form of staking is heat staking, as known in the art.
A relatively thin attachment feature 41 may be provided, for relatively direct attachment to the planar side wall 20, or at least the planar part thereof, aiding in an overall thinner shape of the bag 25 and the whole cartridge 3. In a deflated condition, the substantially flat bag 25 may extend against the planar part of the side wall 20, allowing for more space efficient use, and larger quantities of ejection fluid that may flow relatively freely in the cartridge 3.
The bag 25 is attached to a substantially planar inner surface of the respective side wall 20. The planar inner surface to which the bag 25 is attached is substantially parallel to the direction of insertion Ld of the cartridge 3. The respective wall and bag 25 may be free from special arrangements for attaching the bag 25, such as fitments. The bag 25 may be directly attached against the respective surface of the wall 20, for example by adhesive, staking and/or welding, and may be deflated up to a substantially flat condition against said side wall 20.
In
It is noted that in prior art cartridges with a pressure bag, the attachment features used are fitments and/or special protrusions to attach to the bag to a cartridge wall. For example, during manufacture, first the fitment is attached to the bag, and then the bag is attached to the wall by attaching the fitment to the wall, or to a protrusion extending from the wall.
In contrast, the bag 25 of this disclosure can be attached directly to the flat surface of the side wall 20, using relatively thin attachment features 41, so that said fitments or protruding walls can be left out. The inner wall 20 has a substantially planar surface for attaching the bag 25, instead of specially construed ribs or the like, allowing for a simpler construction. In turn, inner volume 18 is gained for containing relatively more ink within the cartridge 3. The cartridge 3 is relatively thin. The bag 25 may have a relatively flat and simple shape because fitments for attaching the bag to the wall may be redundant due to the relatively simple attachment features 41 proposed in this disclosure. Furthermore, the side wall 20 may be relatively flat because of the direct attachment of the bag 25 by the attachment feature 41, in turn made possible by the simple shape of the bag 25. Moreover, as a result of the relatively flat shape of the bag 25 extending along the wall 20 to which it is attached, undesirable interaction between the second fluid and the attachment feature 41 may be prevented because the fluid is prevented from flowing between the bag 25 and the wall 20.
In further embodiments, the bag 25 is attached to the side wall 20 by a combination of adhesive and one of a welding and staking feature. This may provide for a better attachment, for example in case of relatively aggressive inks.
An embodiment of an adhesive comprises PSA (Pressure Sensitive Adhesive). PSA bonds by applying pressure to it. The bag 25 can be attached relatively fast and easy by using the PSA. It also appeared that the PSA and ejection fluid may be relatively compatible. In an embodiment, the ejection fluid and the PSA do not negatively interact during an average lifetime of the cartridge 3. Interaction between the PSA and the ejection fluid may be reduced because the flat surface 43 of the bag 25 extends along and at least partly engages the planar surface of the respective cartridge wall 20. Multiple PSA embodiments are suitable. One example of a PSA comprises acrylic and rubber components. Non-PSA embodiments may also be suitable, such as certain Ultraviolet cured adhesives and/or Radiofrequency and/or microwave cared adhesives.
The bag 25 is attached to the wall 20 near and around the channel mouth 40. The applied attachment feature 41 may be applied to form a ring shaped attachment zone, extending around the channel mouth 40 and opening 38. By applying the attachment feature 41 around the mouth 40, a substantially fluid tight connection may be maintained between the bag 25 and the wall 20. In certain embodiments, the attachment zone extends exclusively near the channel mouth 40 and left away from a circumferential edge zone 44.
By attaching the bag 25 to the wall 20 near the mouth 40 and/or opening 38, ejection fluid may be kept away from the attachment zone, because little or no ejection fluid may flow between the bag film 45 that extends against or near the side wall 20. By having the attachment zone away from the edges 42A-D, it may be prevented that the bag 25 peels off during inflation, especially near the circumferential edge zone 44, and when hyper-inflating. In an embodiment, by applying the adhesive near the mouth 40 and/or opening 38 the adhesive may be pressed against the wall 20 at inflation.
In one embodiment, the outer diameter d of the attachment zone, as formed by the attachment feature 41 (see
The bag 25 may basically comprise two films 45, 46 that are attached together near the circumferential edges 42A-D. The films 45, 46 may be staked together, for example heat staked, near the edges 42A-D. One of the films 46 may have been provided with the opening 38 before attaching the films 45, 46. The staked bag 25 has a circumferential stake seam edge 49. In another embodiment, the bag 25 is formed of one film 45 that is folded and then staked.
As illustrated by
As indicated by step 120, the attachment feature 41 is applied around the opening 38 or around the mouth 40 of the channel 39. In one embodiment, adhesive is applied around the mouth 40. In a further embodiment, the adhesive is applied around the opening 38. In again another embodiment, adhesive is applied around both. In other embodiments, the bag 25 is staked or welded to the wall 20.
The bag 25 is attached to a cartridge inner wall 20 wherein the bag film 45 extends parallel to the planar part of the inner wall 20. The bag 25 is attached to the wall 20 so that the opening 38 is in open connection with the channel 39. The attachment feature 41 attaches the bag 25 to the wall 20 around the mouth 40 of the channel 39, as indicated by step 45.
In step 230, adhesive is provided around one of the opening 38 and the mouth of the channel 39. For example, the adhesive is applied around the mouth 40. In step 240, the bag 25 is engaged with the wall 20 so that the opening 38 of the bag 25 and the mouth 40 of the channel 39 overlap. In this way, the inside of the bag 25 is in open communication with the channel 39. In a step 250, the adhesive is pressurized between the bag 25 and the wall 20. For example, the bag 25 is pressed against the cartridge wall 20. In an embodiment, the adhesive comprises PSA, and the PSA is pressurized until it bonds. The resulting PSA feature may be approximately 0.5 millimeters thick, or thinner. In a further embodiment, the adhesive is applied exclusively near and around at least one of the mouth 40 of the channel 39 and the opening 38, and not near the circumferential edge zone 44 of the bag 25.
In further steps, as already explained above with reference to
The bag 25 may comprise more than two films 45, 46.
The fluid cartridge 3 may be used for providing controlled quantities of fluid to a print head 4 or other type of ejector. In certain embodiments, the fluid may comprise a liquid or gas, to be connected to any type of fluid ejection device 1, not necessarily a printer. For example, the fluid ejection device 1 may be any type of fluid dispense or administration device, wherein the fluid may for example be a pharmaceutical substance.
The bag 25 and manufacturing methods as explained above may facilitate smaller and thinner fluid cartridges 3 since fitments and ribs in the inner volume 18 of the cartridges 3 may be reduced. Leaving out fitments from the bag 25 may also provide longer spring 26 and bag 25 travel, and subsequently, better pressure control. Fuller inflation and deflation may be achieved within a relatively thin cartridge inner volume. This may be a step forward since conventionally thinner cartridge volumes used a foam type pressure mechanisms instead of pressure bag mechanisms.
Moreover, because of the simple bag shape and a reduction of fitments, the complexity and number of parts of the cartridges 3 may be reduced, thereby reducing costs of construction, shipment and storage. The bags 25 may be produced through planar films 45, 46, which would be difficult to achieve if fitments were attached. The adhesive may allow for simple and low cost installation of the bag 25.
Certain embodiments of the bag 25 can be manufactured and installed at relatively low cost. Certain embodiments of the bag 25 showed to be suitable for hyper-inflation for performing a priming function. The bag 25 showed a good accumulator function, allowing easy expansion and contraction, at different temperature and pressure circumstances. While more complex prior art bags may show more hysteresis, the relatively simple bag shape and the planar attachment wall 20 presented in this disclosure may show little or no hysteresis, as compared to some prior art bags. Also, the simple bag construction provides a relatively wide range of options for the bag film material, so that a film 45 can be chosen that has a good compatibility with ink.
Furthermore, because the wall 20 and bag 25 are relatively flat, ejection fluid may be relatively free to slosh, which may prevent settling of the ejection fluid. The bag 25 may flatten substantially completely because of the simple shape of the bag 25 and the substantially planar surface of the wall 20 to which it is attached, facilitating efficient use of the inner volume 18. The flat construction of the side wall 20 allows for the long, thin shaped channel 39 to extend within the side wall 20.
In one aspect of the invention, a fluid cartridge 3 is provided, that may comprise an inner volume 18 for holding a fluid, defined by inner walls 19-24, a pressure bag 25 in the inner volume 18, for containing a pressure fluid, comprising a film 45, 46, and a channel 39 arranged in the cartridge wall 20, comprising a channel mouth 40 opening into the pressure bag 25, for transporting pressure fluid between the bag 25 and an exterior of the fluid cartridge 3, wherein the bag film 45 is attached to a substantially planar inner wall 20, around the channel mouth 40, the attached bag film portion extending parallel to the inner wall 20. In an embodiment, in a deflated condition of the pressure bag 25, the bag 25 extends substantially parallel to a planar surface of said inner wall 20. In an embodiment, the attachment feature 41 for attaching the bag 25 to said inner wall 20 has a thickness of approximately 2 millimeter or less, for example approximately 1 millimeter or less, or for example approximately 0.5 millimeter or less. In an embodiment, the bag 25 and said substantially planar inner wall 20 are attached along an attachment zone. This attachment zone may extend exclusively around the mouth 40 of the channel 36, and not in a circumferential edge zone 44 of the bag 25, which globes in an inflated condition of the bag 25, so that tension in the attachment zone is prevented. In a further embodiment, the attachment feature 41 comprises adhesive, for example PSA (pressure sensitive adhesive). In again a further embodiment, a resilient element 26A extends within the inner volume 18. In an embodiment, the resilient element 26A has a relatively flat engagement surface 28 that engages the pressure bag 25 for pressing the pressure bag 25 towards deflation, without being attached to the pressure bag 25. In an embodiment, the cartridge 3 has a relatively thin outer shape with a length versus width ratio of at least approximately 4:1. In an embodiment, the fluid cartridge 3 is an ink cartridge for connection to an inkjet printer, the fluid in the inner volume 18 comprising ink, and the fluid in the pressure bag 25 comprising air.
In a further aspect, a method of manufacturing a fluid cartridge 3 is provided. The method may comprise perforating a film 45 to form an opening 38, forming a bag 25 with said film 45, and attaching the bag film 45 to a substantially planar inner wall 20, parallel to the substantially planar inner wall 20, so that the opening 38 is in open connection with a fluid channel 39 in the wall 20 and the bag film 45 is attached to the wall 20 around the opening 38. In an embodiment, the method comprises attaching the bag 25 exclusively near and around at least one of the mouth 40 of the channel 39 and the opening 38, and not in a circumferential edge zone 44 of the bag 25 that globes in an inflated condition of the bag 25, so that tension in an attachment zone 41 is prevented. In a further embodiment, the method comprises attaching the bag 25 to the wall 20 by an attachment feature 41 having a thickness of 2 millimeters or less, for example by adhesive such as PSA. In again a further embodiment, the forming of the bag 25 comprises providing at least two films 45, 46 parallel to each other, wherein one film 45 comprises an opening 38, staking a circumferential edge 42, 49 in the films 45, 46 so as to form a pocket 132 between the films 45, 46, and cutting the pocket 132 out of the films 45, 46, around the staked edge 42, 49.
In again a further aspect, a fluid cartridge may be provided, comprising inner walls 19-24, forming an inner volume 18 for ejection fluid, a pressure bag 25 extending in the inner volume 18, attached to one of the inner walls 19-24, the pressure bag 25 being attached so that in a deflated condition the bag 25 is relatively flat and extends with its flat side surface 43 against, and parallel to, a planar part of the inner wall 20 to which it is attached.
The above description is not intended to be exhaustive or to limit the invention to the embodiments disclosed. Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims. The indefinite article “a” or “an” does not exclude a plurality, while a reference to a certain number of elements does not exclude the possibility of having more elements. A single unit may fulfil the functions of several items recited in the disclosure, and vice versa several items may fulfil the function of one unit.
In the following claims, the mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage. Multiple alternatives, equivalents, variations and combinations may be made without departing from the scope of the invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2010/054357 | 10/27/2010 | WO | 00 | 3/26/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/057755 | 5/3/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5917523 | Baldwin et al. | Jun 1999 | A |
5975686 | Hauck et al. | Nov 1999 | A |
6050682 | Pawlowski, Jr. | Apr 2000 | A |
6213598 | Hou et al. | Apr 2001 | B1 |
6220702 | Nakamura et al. | Apr 2001 | B1 |
6739710 | Lin et al. | May 2004 | B2 |
6866374 | Taku | Mar 2005 | B2 |
6874873 | Thielman et al. | Apr 2005 | B2 |
7093710 | Shimizu et al. | Aug 2006 | B2 |
7556365 | Stathem | Jul 2009 | B2 |
7618135 | Stathem et al. | Nov 2009 | B2 |
20020047883 | Hou et al. | Apr 2002 | A1 |
20030122908 | Lin | Jul 2003 | A1 |
20030142180 | Gonzales | Jul 2003 | A1 |
20070222829 | Stathem | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
0633137 | Jan 1995 | EP |
1093922 | Apr 2001 | EP |
1541358 | Jun 2005 | EP |
520709 | Feb 2003 | TW |
I221123 | Sep 2004 | TW |
Number | Date | Country | |
---|---|---|---|
20130201263 A1 | Aug 2013 | US |