The present invention generally relates to a hydraulic device. More particularly, the present invention pertains to a pressure balanced hydraulic device and method of pressure balancing the hydraulic device.
Hydraulic systems often convey hydraulic fluid at relatively high pressure from one component to another in the hydraulic system. For example, it is common to convey hydraulic fluid from a pump to a valve stack. Due to the relatively high pressures of the hydraulic fluid, these components typically experience a great deal of force urging them apart. To keep the components together, the hydraulic systems typically include robust fasteners and support brackets. Unfortunately, these connections are heavy and utilize a great deal of raw materials which decreases the portability of the hydraulic system while increasing the cost.
Accordingly, it is desirable to provide a device and method of making the device that is capable of overcoming the disadvantages described herein at least to some extent.
The foregoing needs are met, at least to a great extent, by the present invention, wherein in one respect a device and method of making the device is provided that in some embodiments pressure balances a hydraulic system.
An embodiment of the present invention pertains to a hydraulic device. The hydraulic device includes a hydraulic pump, a valve stack, an interface tube, and an upper and lower seal. The valve stack has a pressure balanced connecting having an interface tube receiving bore. The interface tube is to convey a hydraulic fluid from the hydraulic pump to the valve stack. The interface tube has an axial bore open at a first end and closed at a second end with an outlet proximal to the second end. The upper seal is to seal the interface tube in the interface tube receiving bore. The upper seal is disposed annularly about the interface tube between the outlet and the second end. The lower seal is to seal the interface tube in the interface tube receiving bore. The lower seal is disposed annularly about the interface tube proximal to the outlet and between the outlet and the first end. The upper seal and the lower seal are configured to balance a pressure of the hydraulic fluid from the outlet.
Another embodiment of the present invention relates to a method of making a hydraulic device. In this method, an interface tube receiving bore is disposed in a valve stack and an interface tube is disposed on a hydraulic pump. The interface tube has an axial bore open at a first end and closed at a second end with an outlet proximal to the second end. A pressure balanced connection is generated by inserting the interface tube in the interface receiving bore. The interface tube includes an upper and a lower seal. The upper seal is to seal the interface tube in the interface tube receiving bore. The upper seal is disposed annularly about the interface tube between the outlet and the second end. The lower seal is to seal the interface tube in the interface tube receiving bore. The lower seal is disposed annularly about the interface tube proximal to the outlet and between the outlet and the first end. The upper seal and the lower seal are configured to balance a pressure of the hydraulic fluid from the outlet.
Yet another embodiment of the present invention pertains to a method of reducing a weight of a hydraulic device. In this method, an interface tube receiving bore is disposed in a valve stack and an interface tube is disposed on a hydraulic pump. The interface tube has an axial bore open at a first end and closed at a second end with an outlet proximal to the second end. A pressure balanced connection is generated by inserting the interface tube in the interface receiving bore. The pressure balanced connection reduces forces urging the valve stack away from the hydraulic pump. The interface tube includes an upper and a lower seal. The upper seal is to seal the interface tube in the interface tube receiving bore. The upper seal is disposed annularly about the interface tube between the outlet and the second end. The lower seal is to seal the interface tube in the interface tube receiving bore. The lower seal is disposed annularly about the interface tube proximal to the outlet and between the outlet and the first end. The upper seal and the lower seal are configured to balance a pressure of the hydraulic fluid from the outlet. The weight of the hydraulic device is reduced by reducing a value stack bracket weight in response to the reduced forces.
There has thus been outlined, rather broadly, certain embodiments of the invention in order that the detailed description thereof herein may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of course, additional embodiments of the invention that will be described below and which will form the subject matter of the claims appended hereto.
In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of embodiments in addition to those described and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein, as well as the abstract, are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception upon which this disclosure is based may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
An embodiment of the invention will now be described with reference to the drawing figures, in which like reference numerals refer to like parts throughout.
The motor 12 includes any suitable engine, motor, actuator, or the like. More particularly, the motor 12 includes any suitable electric motor, pneumatic motor, and combustion engine. Engines are typically rated by the power output (e.g., duty) and the specific engine or actuator selected may depend on such factors as, for example, the particular task to be performed, the availability of electricity, the availability of fuel, the working environment, and the like. Similarly, the hydraulic pump 16 may include any suitable units and are typically selected to have a duty rating corresponding to that of the motor 12. By selecting components having the same or similar duty rating, the hydraulic system 10 may be optimized.
The hydraulic fluid reservoir 18 is configured to retain a sufficient supply of the hydraulic fluid 28. In general, the hydraulic fluid reservoir 18 is not subject to an elevated pressure. Accordingly, the hydraulic fluid reservoir 18 may be made from relatively light and/or thin materials such as, for example, aluminum, magnesium, polymers, and the like. As shown in
The interface tube 20 is configured to convey pressurized hydraulic fluid from the hydraulic pump 16 to the valve stack 24. As described herein, the interface tube 20 may include a pressure balanced connection 30 at one or both ends. For example, the interface tube 20 includes a first end disposed at the hydraulic pump 16 and a second end disposed at the valve stack 24. According to this or other embodiments, one or both of the first and second ends may include the pressure balanced connection 30. For the purposes of this disclosure, the pressure balanced connection 30 includes any suitable connection or mated conduit balance or distribute forces acting on the connected components such that pressure-generated forces acting to urge the components apart are balanced, at least to a large extent, by pressure-generated forces acting to urge the components together.
The valve stack bracket 22, is fastened to a frame 32 and configured to provide a support member for the valve stack 24. In conventional hydraulic systems, the valve stack bracket is made relatively thick and strong to prevent the pressure of the hydraulic fluid from tearing the valve stack off the hydraulic system. It is an advantage of the hydraulic system 10 that the pressure balanced connection 30 reduces or eliminates the forces urging the valve stack 24 off the hydraulic system 10. As such, the valve stack bracket 22 may be optionally removed or made thinner, lighter, less expensively, and the like as compared to conventional valve stack brackets. If the valve stack bracket 22 is removed, the valve stack 24 may be affixed directly to the hydraulic fluid reservoir 18, for example.
The valve stack 24 is configured to provide a connection for the hydraulic hose 26 (shown in
The hydraulic hose 26 is configured to convey the hydraulic fluid 28 to and/or from a hydraulically driven device (not shown). Typically, there are two of the hydraulic hoses 26 with one delivering the pressurized hydraulic fluid 28 to the hydraulically driven device and one to return the hydraulic fluid 28 to the valve stack 24 and, from there, back to the hydraulic fluid reservoir 18.
Also shown in
The many features and advantages of the invention are apparent from the detailed specification, and thus, it is intended by the appended claims to cover all such features and advantages of the invention which fall within the true spirit and scope of the invention. Further, since numerous modifications and variations will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation illustrated and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
This application is a Non-provisional Patent Application and claims priority to U.S. Provisional Application Ser. No. 61/838,602, filed on Jun. 24, 2013, titled “PRESSURE BALANCED HYDRAULIC DEVICE AND METHOD”, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61838602 | Jun 2013 | US |