Claims
- 1. In a stylographic drafting pen of the type comprising a housing which surrounds an ink reservoir, a writing nib which communicates ink, in a longitudinal direction, from said reservoir to form a drop at the tip of a writing tube, and a venting channel which communicates, at a first end, with said ink reservoir through a vent hole and, at a second end, with ambient air, the improvement comprising:
- (a) a venting channel which has a cross-sectional area variation from said first to said second end, as a function of longitudinal distance of a given vent cross-section, h.sub.3, in elevation above said vent hole which is spaced a longitudinal distance L.sub.2 above said tip (whereat h.sub.3 =0), wherein said vent cross-sectional variation is defined so that variations in the hydrostatic pressure, which is experienced at the pen tip, as a consequence of ink travel within the venting channel to a given value of h.sub.3, are balanced and offset by variations in the capillary force which then acts upon the air/ink interface of a meniscus of ink formed as a result of the cross-sectional value of said vent cross-section which is defined at said given value of h.sub.3,
- and
- (b) wherein, said venting channel improvement further comprises, for a given value of a preferred mean radius of curvature of a droplet at the pen point (r.sub.m.sbsb.2), a given ink surface tension (.gamma.) and density (.rho.), a height of the vent hole above the tip of the writing pen (L.sub.2), the gravity acceleration constant (g), a given contact angle (.theta.) between said ink and the material defining the walls of said venting channel, a venting channel cross-sectional area variation which is a decreasing function as h.sub.3 increases away from said tip, wherein at any h.sub.3 the cross-section value will ensure that the mean radius of curvature of an ink meniscus (r.sub.m.sbsb.3) at that h.sub.3 is governed by the relationship, as follows: ##EQU20##
- 2. In a stylographic drafting pen, according to claim 1, the further improvement which comprises defining that total pressure, at the writing tip, which is to be balanced by variations of h.sub.3 from h.sub.3 =0, by an allowable droplet extension (Z), measured down from said tip, and a mean radius of curvature for said drop (r.sub.m.sbsb.2) by a relationship to the radius of said writing tube (r.sub.2), which is, as follows: ##EQU21## wherein Z is less than or equal to r.sub.2 and r.sub.m.sbsb.2 is greater than or equal to r.sub.2.
- 3. In a stylographic drafting pen according to claim 2, the further improvement which comprises defining said vent hole distance (L.sub.2) as a function of an acceptable value for the mean radius of curvature of a droplet at said writing tip (r.sub.m.sbsb.2), whereby, for a given ink having a surface tension (.gamma.) and a density (.rho.), where g is the acceleration due to gravity, said function is as follows: ##EQU22##
- 4. In a stylographic drafting pen according to claim 1, the further improvement which comprises said first end of said venting channel communicating to said ink reservoir at a point which is proximate to the edge of said ink reservoir which is closest to said writing tip.
- 5. In a stylographic drafting pen according to claim 4, wherein said second end of said venting channel extends through said writing nib at a point proximate the tip of the writing tube.
- 6. In a stylographic drafting pen according to claim 1, the further improvement which comprises two spirals defining said venting channel, said spirals being interconnected at a point of smallest cross-section which is located farthest away from said vent hole, wherein the largest cross-sectional area of each spiral communicates, respectively, with said ink reservoir, at said first end, and with ambient air through a port, proximate said writing tube tip, at said second end of said venting channel.
- 7. A pressure balanced stylographic drafting pen of the type comprising a housing which surrounds an ink reservoir, a writing nib which communicates ink from said reservoir, in a longitudinal direction, to the tip of a writing tube, and a venting channel which communicates, at a first end, to an ink reservoir through a vent hole and, at a second end, to an ambient air port, which comprises:
- (a) a venting channel which has a cross-sectional area variation as a function of the distance (h.sub.3) of a given cross-section from said first end of the venting channel, wherein said cross-sectional area variation is a function of a mean radius of curvature (r.sub.m.sbsb.3) for a meniscus of ink which forms at an ink air interface of an ink column at a given value of h.sub.3 ; wherein
- (b) said vent hole, at the first end of said venting channel, is located a distance (L.sub.2) from the tip of said writing tube and said vent hole is also proximate to the writing nib end of said ink reservoir; and
- (c) said venting channel extends longitudinally, for increasing values of h.sub.3, in a double-spiral fashion, wherein said venting channel first end communicates with said vent hole, with an initial cross-sectional area thereat which then decreases in cross-sectional area as h.sub.3 increases away from said writing tip, to a position on said housing whereat said venting channel returns in a second spiral, towards the second end of said venting channel, said second end communicating with said ambient air port and being proximate the writing tube of said pen, wherein said variations in vent channel cross-section enable hydrostatic pressure increases, as ink fills said venting channel, to be directly balanced and offset by a variable capillary force upon the ink/air interface at the meniscus of said ink column, with said capillary force being a direct function of h.sub.3,
- (d) wherein the initial value for the venting channel cross-section of h.sub.3 =0 is defined by a relationship, for an ink having a given surface tension (.gamma.), a given density (.rho.), and a given wetting angle between said ink and the material of which the venting channel is constructed (.theta.) so that a desired mean radius of curvature for an ink droplet at the writing tip (r.sub.m.sbsb.2) will be maintained stable, and not break away, in response to increased values of hydrostatic pressure from increasing columns of ink within said venting channel according to a relationship where g is the acceleration due to gravity, as follows: ##EQU23##
- 8. A stylographic writing pen according to claim 7, wherein the value of L.sub.2 is approximately between 1.00 centimeter and 3.00 centimeters, said ink is India ink with a surface tension (.gamma.) of approximately 30 to 45 (dyne/centimeters) and a density (.rho.) of 1.05 (grams per centimeter), and the initial total pressure at the tip is established with an L.sub.2 wherein r.sub.m.sbsb.2 is approximately equal to the radius of said tubular writing tip (r.sub.2).
Parent Case Info
This is a continuation of application Ser. No. 079,912 filed Sept. 28, 1979, now abandoned, which is a continuation-in-part of Ser. No. 877,638 filed Feb. 14, 1978 now abandoned.
US Referenced Citations (15)
Foreign Referenced Citations (15)
Number |
Date |
Country |
1259733 |
Jan 1968 |
DEX |
1273368 |
Jul 1968 |
DEX |
1561871 |
Apr 1970 |
DEX |
1911950 |
Sep 1970 |
DEX |
1906013 |
Sep 1970 |
DEX |
1911951 |
Sep 1970 |
DEX |
2019917 |
Nov 1971 |
DEX |
1786443 |
Mar 1972 |
DEX |
2136155 |
Jan 1973 |
DEX |
2216015 |
Oct 1973 |
DEX |
2460345 |
Jul 1975 |
DEX |
986766 |
Aug 1951 |
FRX |
135599 |
May 1979 |
DDX |
1192124 |
May 1970 |
GBX |
1192123 |
May 1970 |
GBX |
Continuations (1)
|
Number |
Date |
Country |
Parent |
79912 |
Sep 1979 |
|
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
877638 |
Feb 1978 |
|