The present invention relates to a cartridge and a method for preparing hot and cold beverages. The invention also concerns a method for dispensing said beverages.
There are two basic ways of preparing a coffee with a dispensing machine: by loading the loose ingredients, such as coffee beans or soluble ingredients, in the machine, in bulk form, ready to be dosed and in some cases (such as used coffee grounds) eventually disposed of, or by making use of a cartridge, i.e. a capsule or a pod, containing a preset amount of product. The product in the cartridge can be e.g. ground coffee or a leaf product, or a soluble ingredient, such as chocolate or cappuccino pre-mix.
The use of a cartridge has the advantage of sealing within the cartridge a coffee preparation (i.e. a ground or soluble product) in its best condition, with the maximum of its flavor and aroma being trapped in the cartridge or cartridge container.
A problem with cartridges is that of producing a good amount of cream.
Another problem is related to self-sealed cartridges. These cartridges are provided with sealing means to seal them without making use of a separate container. The sealing means have to effectively seal the cartridge content from air oxidation and at the same time they should be easily opened when the cartridge has to be used.
A further, constant problem, especially with those cartridges containing a ground or leaf product, is that of improving the brewing conditions so as to obtain the best possible beverage. This is particularly important with coffee. WO02/076270 discloses a system for the preparation of a beverage from a product contained in a disposable cartridge in combination with a collecting device having beverage collecting means designed to contain the cartridge, wherein at least one throttling arrangement is provided at the exit of the capsule to provide a controlled flow of beverage leaving the cartridge.
Although this system ensures superior mixing quality of the beverage, it is not very flexible.
WO2004/030499 in the name of the present Applicant, discloses an, apparatus and a method for the preparation of a beverage according to which a plunger perforates the bottom wall of the cartridge through an outlet opening and generates in correspondence to said opening a throttling element having specific dimensions that result in delivering the beverage product for at least 75% of the total dispensing time.
This capsule, as well as the previously mentioned ones, has the drawback of requiring a plunger, i.e. a perforating member to open the outlet opening in the bottom wall of the capsule.
In EP-A-1555218, the bottom wall of the capsule is provided with an area where the thickness is less than that of the remaining bottom wall; within this area a plurality of grooves are located: once the pressure inside the capsule has reached a sufficient value the thinner portion of the bottom wall breaks open along the grooves to provide outlet means for the beverage.
This embodiment has the drawback that the thinner portion including the grooves cannot guarantee a consistently reliable sealing of the capsule because the thinner portion and the weakening grooves can easily be partly broken when accidentally compressed.
Therefore, there is the need for an improved cartridge and for an improved method for preparing dispensing beverages in an easy, reliable, cost-effective way.
It is an aim of the present invention to solve the above mentioned problems and provide an improved beverage dispensing cartridge and method that can give excellent beverage from one or more ingredients.
This aim is achieved by the present invention that provides a cartridge for a beverage dispensing apparatus.
The present invention also provides a method of preparing a beverage in a beverage dispensing cartridge.
According to the invention, the cartridge for a beverage dispensing apparatus has water inlet means for feeding water to said cartridge to prepare said beverage and build up pressure within said cartridge, and beverage outlet means for discharging said beverage from said cartridge, wherein said outlet means can withstand a mechanical deformation towards the interior of the cartridge as applied to the cartridge by compression once it has been placed in the apparatus and is in the dispensing step before hot water feeding. The outlet means are first deformed and then broken open after feeding water to the cartridge, by the combined action of said mechanical deformation and the force of the pressure built up within said cartridge.
This results in the capsule being held closed and under hot water pressure for a length of time that can be of a few seconds, e.g. three or more seconds, before they are opened by the inner pressure. Thanks to this the beverage quality is dramatically improved.
In a preferred embodiment, the outlet means are portions of the bottom wall of the cartridge defined by grooves. The grooves are thick enough to withstand the compression deformation force and will break upon the additional application of the force generated by the internal pressure.
To apply the forces on the outlets, these are preferably provided with protruding portions that protrude from the bottom wall so that the bottom wall of the capsule is supported by those protruding portions when the cartridge is placed in an external element, such as a beverage collecting unit, i.e. a unit that collects the beverage coming from the opened cartridge.
Alternatively, the protruding parts can be located on and be integral with the collecting unit. However, it is preferred to have the protruding portions integral with the outlets of the cartridge.
The collecting element is provided with a perforated portion of the bottom wall of the cartridge, to compress and deform the same toward the inside of the cartridge. The force applied by the external element is not sufficient per se to open the outlet means by breaking the bottom wall along the above mentioned grooves, which can withstand this mechanical deformation of the bottom towards the interior of the cartridge.
When the cartridge is pressurized by feeding pressurized water to it, the pressure inside the cartridge is only counterbalanced by the reaction force exerted by the external element at the bottom wall portions supported on the protrusions by the beverage collecting element. Where the wall bottom does not contact the collecting unit, a cut force is generated which results in the breakage of the bottom wall along said outlet grooves, i.e. in the opening of the cartridge outlet means.
In other words, when a pressure build-up is achieved within the cartridge, the portions of the cartridge bottom wall not supported by the collecting unit housing the cartridge are biased toward the outside of the cartridge, while the portions of the bottom wall supported by the collecting unit or external, element (and already biased by the same element toward the inside) resist said deformation, this promoting breakage of the wall along the grooves there provided.
According to another aspect of the invention, there is provided a method of dispensing a beverage characterized in feeding said beverage to said outlet means through at least one passage located within said cartridge between said beverage preparing chamber and said outlet means and in temporarily and at least partially blocking said at least one passage by means of a blocking element, until a pressure sufficient to deform and/or break said blocking element is reached within said cartridge, whereby said beverage flows through said passage to said outlet means.
For the purposes of this invention, a “passage” means any space within the brewing or dissolving chamber and the outlet means of the cartridge through which the beverage flows. According to a preferred embodiment the passage is defined by the bottom wall of the cartridge and an area without holes of the filter support, the blocking element being a wall extending between said bottom wall and said filter support full area. The blocking wall can be deformed to open the passage in one or more points and is located between the filter support area with holes and the outlet means, i.e. along the flow path of the beverage.
The beverage dispensing system according to the present invention results in a number of advantages.
A first advantage is in the improved sealing of the cartridge. Because the outlet discharge openings are opened by the combined use of pressure and mechanical compression, with a plunger, they can be thick enough to provide the required sealing of the bottom of the capsule, contrary to known art, where they had to be provided with thin fracture lines to ensure their opening under pressure.
A further advantage is that the cream quality is improved by the use of the invention cartridge.
Another advantage is, inter alia, that the brewing time, i.e. the time for preparing the beverage, is extended and increased with respect to the time required according to known methods, ceteris paribus. Such extended time provides a better extraction from the ground coffee (or leaves) and a better dissolution of the soluble products, this resulting in a better final beverage.
Moreover the cartridge according to the present invention allows for preparing a beverage having better organoleptic characteristics with respect to the beverage which can be obtained with traditional cartridges under same conditions.
Further characteristics and advantages of the present invention will be more evident from the following description, given as a non limiting example with reference to the attached drawings, wherein:
FIGS. 10A and 10Bb are a perspective and a sectional view of the upper portion of the collecting device of
With reference to the drawings, cartridge 1 comprises a lower portion 2 and a top portion 3 that are secured together by any suitable way, e.g. glued, thermally welded etcetera, to provide a container for the beverage product. Top portion 3 is shown provided with a sealing foil 4 that will be punctured by pointed elements 5, i.e. by a plurality of puncturing means, upon feeding water from a pump: this embodiment is disclosed in co-pending application n. PCT/IT2004/000503 filed 17.09.2004 in the name of “Tuttoespresso”. The invention scope is not limited to the shown embodiment; other known embodiments, e.g. such as the presence of holes or the use of puncturing means not carried by the cartridge, can be used in the present invention and are within the scope of protection of this application. As a matter of fact, also cartridges that are not of the self-sealed type, e.g. those cartridges that have a top portion 3 provided with a plurality of holes and are packaged in a separate, sealed, container, are within the present invention scope of protection, provided they have the claimed internal pressure build-up means in the form of the sealed outlets hereinafter discussed.
The bottom wall 9 is internally provided with a ridge in the form of a circular wall 10 that extends substantially vertically upwards and that (
In the shown embodiment, wall 10 has deformable portions that become openings when water is fed to the cartridge. The shown filter support 7 is provided with a plurality of holes 11 that are located only within the portion defined by circular wall 10 and that are not present in the central area of the filter. Thus the beverage preparation chamber 12, defined by top portion 3 and filter supporting element 7 is connected by holes 11 to a pressure chamber 13 defined by filter supporting element 7, circular wall 10 and bottom wall 9. When water is fed to preparation chamber 12 it mixes with the preparation product therein contained and the resulting beverage flows through holes 11 to pressure chamber 13.
According to one aspect of the invention, there is provided at least one passage P that connects the beverage preparing chamber 12 with beverage outlet means 14. In the shown embodiment such passages are defined by internal ridges or walls 10B that extend vertically from the bottom wall 9 to filter support 7 to canalize the beverage flow to the circular wall 10. Passage P is provided with a blocking means to temporarily prevent the resulting beverage from flowing from chamber 12 through chamber 13 to the cartridge outlet discharge means 14 before a sufficient internal pressure is achieved.
In other words the blocking means acts as pressure build-up means and, once a sufficient pressure is reached within the cartridge, the blocking means deforms and/or collapses to permit the beverage flow toward the outlet openings through passage P.
In the shown embodiment, the blocking means is portion 10A of circular wall 10 that extends between walls 10B and that is deformable, usually plastically deformable, or collapsable, once the pressure in pressure chamber 13 has reached a sufficient value (e.g. from 3 to 20 bar). When the wall portions 10A are deformed and partially flattened, the beverage will flow through the passage P to the area outside circular wall 10, between wall 10 and the wall of the lower portion 2 of the cartridge.
In other words, the wall portions 10A temporarily obstruct the passages P to the cartridge outlet means. Once the temporary blocking means 10A has been deformed by the pressurized beverage present in chamber 13, it results in a throttling element defined by the opened passage P that let the beverage flow to outlet means 14. The presence of a throttling means is of further benefice to the beverage quality.
As previously mentioned, the presence of the deformable portion 10A of the wall 10 is a preferred feature of the invention.
At least one outlet opening is provided in the bottom wall 9 for discharging the prepared beverage from the cartridge to a collecting unit and eventually to a final container (e.g. a cup or a glass).
According to present invention, bottom wall 9 of cartridge is provided with a plurality of dispensing outlets defined by fracture lines, or grooves, 15. In the shown figures the required outlets 14 are located at the periphery of the bottom wall 9; however (
In order to open the one or more outlet openings (9B, 14) these portions of the bottom wall 9 are provided with projecting elements that, in the preferred embodiment shown, are integral with the opening portions 9B or 14 and are formed e.g. by a wedge-shaped part of said opening portions. In other words, the bottom wall 9, in correspondence of the portions 9B and 14 defined by fracture lines 15, extends externally to provide a projecting portion. To avoid portions 9B, 14 to fall into the beverage collecting unit, a retaining means is provided to secure said portions to the bottom wall 9 of the capsule. In the shown embodiment said retaining means is consisting in integral hinges 16; it is clear that the hinges are obtainable in any suitable way, e.g by shaping the corresponding internal portion of the bottom wall.
According to the present invention, the capsule outlet discharge portions 9B, 14 are opened by the combined action of a mechanical pressure imparted by a portion of the seat for the capsule of a collecting unit 17 (
If besides making use of the invention feature of mechanical pressure and build-up of internal pressure to open the outlets, the capsule is provided with the internal collapsable wall 10 as above discussed, the beverage preparation will involve two steps of building up internal pressure: a first step that leads to the deformation of portions 10A of circular wall 10 to open passage P, and a second step that will result in the opening of outlet portions 14 of bottom wall 9 of the invention cartridge.
In
In the invention embodiments, the cartridge has at least one outlet opening that can be provided centrally or peripherally (as in the above discussed embodiment) or at both locations. It is stressed that the presence of the collapsible wall portions 10A or of wall 10C is a further feature possibly and optionally added (or possibly alternative) to the feature of the presence of projecting portions on the outlet openings or in correspondence thereof.
In the present embodiment, the water will initially enter the cartridge through a plurality of holes provided in top portion 3, prepare a beverage by brewing or dissolving the beverage product in chamber 12 and flow through holes 11 into chamber 13 (and open the blocked passage(s) P defined by walls 10A and 10B, if present). Once the beverage inside the cartridge has reached a sufficient pressure, outlets 9B and 14 are opened.
The one or more outlet portions 9B, 14 of the bottom wall 9 are provided with a groove 15 that defines the portion of the wall that will open to let out the beverage. The opening of outlets 14 is carried out in part with an external element that pushes the portions of bottom wall 9 that correspond to the outlet opening 9B and 14 towards the interior of the cartridge. This external element is in the form of a portion of a collecting unit 17 for the beverage, as shown in
As shown in the figures, outlet openings 9B and 14 are preferably provided with a projecting portion 14A that, in the preferred embodiment shown, is integral with the outlet opening portions 9B and 14. The vice versa embodiment contemplates the presence of corresponding projections on the collecting unit for the cartridge. As a matter of fact, the protrusions could be located on the bottom wall 9 adjacent to grooves 15 but outside outlets 9B or 14 so as to concentrate the cut forces on the grooves and have the outlets open from inside outside; however the previously disclosed embodiment with protrusions integral to the outlets is highly preferred for easyness of functioning, reliability and cleanliness of the apparatus.
The projecting portions 14A are preferably shaped so as to concentrate the deformation stresses on a part of the groove 15 and make it easier to open the outlets; a preferred shape of the projecting portion is the wedge shape shown in the figures. In other words, the bottom wall 9 in correspondence of the portions 14 defined by grooves 15, extends externally to provide projecting, wedge-shaped, portions 14A.
With reference to
The lower portion 22 of collecting and dispensing means comprises a circular collecting chamber 23 coaxially arranged around a central piston 20 and a central collecting chamber 20A, and one or more dispensing ducts to direct the beverage to a cup.
In the embodiment disclosed by the figures, embodiment here shown only as an example, circular chamber 23 has a slanted bottom, i.e. a bottom wall 18 that is lining on a plane that is angled to the horizontal plane of unit 17. Chamber 23 is used to dispense coffee and bottom wall 18 directs the collected beverage to an outlet hole 24 that is connected to dispensing duct 19. Chamber 20A is connected to duct 19A and is used to dispense beverages obtained from soluble products such as chocolates or cappuccino, or the milk portion of a cappuccino, while the coffee portion is obtained by another part of the cartridge. In other embodiments according to the invention, only one collecting chamber is provided.
The upper part 21 of the collecting device 17 (
The length L of wall 25 extending between horizontal wall 26 and end portion 27 of said wall 25 is less than the sum of the length L1 of the vertical wall 2 of the cartridge (where L1 goes from the lower surface of flange 2A to the bottom end of the wall,
As schematically shown in
In other words, if housing element 36 is present, the length of wall 25 of element 21 is such that edge 27 is slightly lower than the edge of element 36 and the flange 2A impinges on element 36 (dotted lines in left part of
In this embodiment, length L is therefore the distance between perforated wall 26 and top edge of element 36.
In any case of the difference in above mentioned lengths L, L1 and L2 is such that when the cartridge is housed in collecting element 17 and is compressed against end 27 of wall 25 (or end of element 36) to provide the required sealing before feeding water to the cartridge, the wall 26 impinges on portions 14A of outlets 14 and pushes them upwards, i.e. towards the top of the cartridge, probably with other areas of the cartridge. In this condition, that is also shown schematically in
At this step, water has not been fed to the cartridge.
Once then water feeding step is started, the pressure within the cartridge increases because there is no outlet for the water fed to the cartridge. The pressure formed within the cartridge by the liquid applies a force to the lateral and bottom cartridge walls; because the bottom wall is spaced from the circular wall 26 of upper portion 21 of the collecting unit, it can be moved downwards. Therefore, the internal pressure of the cartridge forces the bottom wall 9 downward, towards perforated circular wall 26 and piston 20 (see
The combined action of mechanical pressure of wall 26 on elements 14A and of the pressure within the cartridge on bottom wall 9, results in the breaking of the grooves, i.e. of the breakable lines, 15 and in the opening of outlet means 14 and/or 9B (
The above remarks apply mutatis mutandis to the embodiment providing also, or alternatively, a centrally located outlet opening 9B with a projecting portion 14A (
The invention thus provides a path that includes a throttling along the beverage path, said throttling comprising the outlet opening that is obtained after breaking grooves 15 and the narrow passage between the opened outlets 14, 9B and the collecting unit perforated flange (or wall) 26′ and/or piston 20.
The opening time for the cartridge, i.e. the length of the time between starting the water pumping and the opening of the outlets can be adjusted ceteris paribus by appropriate selection of the cartridge material and design of the cartridge and of the collecting unit 17.
Materials suitable for the invention capsule are PP omo and copolymers, and HDPE (High Density Polyethylene), with tensile strength within the range of 23 to 29 MPa for copolymers, and 32-36 for omopolymers. Preferred materials are mixtures of copolymers and omopolymers of polypropylene in a mixture omo/copolymers within the range of 30/70 to 50/50, said mixture having a tensile strength within the range of 27 to 31 MPa.
Projecting portions 14A have a maximum height (i.e. they protrude from bottom wall 9) within the range of 1.2 to 4.2 mm and preferably of 2.0-3.0 mm. The value of the mechanical deformation, i.e. of the deformation, or displacement, of the cartridge outlets in the pre-water feeding step preferably is within the range of 0.5-2.5 mm, depending on the plastic material.
In a preferred embodiment, the wedge portion 14A maximum height L2 is 2.5 mm and the difference (L1+L2)−L is 1.7 mm. This means that when compressed before feeding water to the cartridges, the protrusions are deformed but are not pushed completely inside the cartridge: there are about 0.8 mm of the protrusions 14A still protruding from the bottom wall of the cartridge, i.e. the outlets are not open, yet. With this deformation value, the outlets are still closed when water is fed to the cartridge and will break open only after a sufficient pressure is reached; in the shown embodiment the pressure required to open the cartridge is 6-8 bar and the outlet will open by breaking along grooves 15 after about 3 seconds.
The above discussed embodiment is particularly useful for preparing fresh coffee from ground coffee, but the same features can be used with other products for preparing beverages.
As shown, the cartridge housing 28 is provided with a lower flange having a perforated wall 26 and with two seats 29 and 30 for housing two gaskets. The element 28 is housed in an adapter 31 that is positioned in a collecting unit 32 that is to be used with the water feeder 33 of a commercially available coffee machine.
A rod or similar element 35 is provided at the bottom of collecting unit 32; this rod has the same purpose of piston 20 in collecting unit 17, i.e. it gives a support to the bottom wall 9 of the cartridge so as to avoid that it is deformed outwards when pressurized hot water is fed to the cartridge, letting the beverage flow out of unit 32.
When the cartridge has been inserted in the housing 28 in collecting unit 32 and unit 32 has been inserted in water feeder 33 (
The invention will now be further discussed with reference to the following examples.
A conventional cartridge, i.e. with outlet means already opened before feeding water to the cartridge, containing 7.0 g of roasted ground coffee, was used to prepare an espresso coffee. The particle size of at least the 90% of said coffee is less than 600 μm. The cartridge underwent a complete cycle and 35 ml of coffee were dispensed in 25 seconds. The hydraulic circuit of the dispensing machine made use a vibration pump (Hulka) and the time lapse between the water pump start and the beverage exit (beverage delay) has been measured. Moreover the amount of dry residue coffee has been measured in the resulting beverage, after water evaporation, as a percentage of the initial ground coffee weight. The results are as follows:
A cartridge according to the present invention, provided with four outlets peripherically located to the capsule has been used, containing 7.0 g of roasted ground coffee. The particle size of at least the 90% of said coffee is less than 600 μm. The cartridge was made of polypropylene omo/copolymers mixture in a 40/60 ratio with a tensile strength of 28 MPa. The difference (L1+L2)−L was 1.7 mm with a residual deformation to undergo of 0.8 mm; the opening pressure, as measured in the hydraulic circuit, above the cartridge, was 6 bar. The cartridge underwent a complete dispensing cycle and 35 ml of coffee were dispensed in 25 seconds. The hydraulic circuit of the dispensing machine made use of a vibration pump and the time lapse between the water pump start and the beverage exit (beverage delay) was measured. The amount of dry residue coffee has been measured in the resulting beverage, after water evaporation, in terms of percentage of the initial ground coffee weight. The results are as follows:
The dry residue coffee in the second example is greater than the dry residue coffee in the first example. In other words the cartridge according to the present invention allows for a better extraction of the coffee with respect to traditional cartridges at the same conditions. This data is consistent with the better characteristics of the obtained beverage.
Number | Date | Country | Kind |
---|---|---|---|
05026318 | Dec 2005 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2006/003462 | 12/4/2006 | WO | 00 | 6/18/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/063411 | 6/7/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4846052 | Favre et al. | Jul 1989 | A |
4853234 | Bentley et al. | Aug 1989 | A |
5008013 | Favre et al. | Apr 1991 | A |
5402707 | Fond et al. | Apr 1995 | A |
5649472 | Fond et al. | Jul 1997 | A |
5897899 | Fond | Apr 1999 | A |
6026732 | Kollep et al. | Feb 2000 | A |
6763759 | Denisart | Jul 2004 | B2 |
6777007 | Cai | Aug 2004 | B2 |
6786134 | Green | Sep 2004 | B2 |
6786135 | Hsu | Sep 2004 | B1 |
6786136 | Cirigliano et al. | Sep 2004 | B2 |
6832542 | Hu et al. | Dec 2004 | B2 |
6849285 | Masek et al. | Feb 2005 | B2 |
7685932 | Rahn et al. | Mar 2010 | B2 |
8033420 | Roseblade et al. | Oct 2011 | B2 |
8047126 | Doglioni Majer | Nov 2011 | B2 |
20020015768 | Masek et al. | Feb 2002 | A1 |
20030116029 | Kollep | Jun 2003 | A1 |
20040079237 | Denisart | Apr 2004 | A1 |
20040173102 | Halliday et al. | Sep 2004 | A1 |
20040177764 | Halliday et al. | Sep 2004 | A1 |
20040191371 | Halliday et al. | Sep 2004 | A1 |
20040197444 | Halliday et al. | Oct 2004 | A1 |
20040206245 | Halliday et al. | Oct 2004 | A1 |
20040241307 | Knitel | Dec 2004 | A1 |
20050011364 | Chen et al. | Jan 2005 | A1 |
20050034604 | Halliday et al. | Feb 2005 | A1 |
20050103204 | Halliday et al. | May 2005 | A1 |
20050120884 | Kerner | Jun 2005 | A1 |
20050279215 | Cai | Dec 2005 | A1 |
20050279219 | Turi | Dec 2005 | A1 |
20060011066 | Bunn et al. | Jan 2006 | A1 |
20060107841 | Schifferle | May 2006 | A1 |
20060130664 | Majer Doglioni | Jun 2006 | A1 |
20060137533 | Wise | Jun 2006 | A1 |
20060174769 | Favre et al. | Aug 2006 | A1 |
20060191420 | Mazzola et al. | Aug 2006 | A1 |
20060219098 | Mandralis et al. | Oct 2006 | A1 |
20060236871 | Ternite et al. | Oct 2006 | A1 |
20060288873 | Yang | Dec 2006 | A1 |
20070062375 | Liverani et al. | Mar 2007 | A1 |
20070144355 | Denisart et al. | Jun 2007 | A1 |
20080156196 | Doglioni Majer | Jul 2008 | A1 |
20110005399 | Epars et al. | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
1557373 | Jul 2005 | EP |
2005066040 | Jul 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080264267 A1 | Oct 2008 | US |