This invention relates to an improved alloy flow system for use in the pressure casting of alloys.
In a number of recent patent applications, we have disclosed inventions relating to the pressure casting of alloys, utilising what is referred to as a controlled expansion port (or CEP). Those applications include PCT/AU98/00987, relating to magnesium alloy pressure casting and PCT/01/01058, relating to aluminium alloy pressure casting. They also include the further applications PCT/AU01/00595 and PCT/AU01/01290, as well as Australian provisional applications PR7214, PR7215, PR7216, PR7217 and PR7218 each filed on 23 Aug. 2001. These further applications relate variously to the pressure casting of magnesium, aluminium and other pressure castable alloys and to devices and apparatus for use in pressure casting of those alloys.
As indicated, a CEP is utilised in the inventions of the above-identified patent applications. A CEP is a relatively short part of the alloy flow path which increases in cross-sectional area, from an inlet end to an outlet end of the CEP, such that alloy flowing through the CEP has a substantially lower flow velocity at its outlet end relative to the inlet end. The reduction in flow velocity is such that, in its flow through the CEP, the alloy undergoes a change in its state. That is, with molten alloy received from a pressurised source of supply to the inlet end of the CEP, the reduction in flow velocity from that attained at the inlet end to that at the outlet end is such that the state of the alloy changes from the molten state at the inlet end to a semi-solid or thixotropic state at the outlet end.
In its flow beyond the outlet end, and substantially throughout a die cavity with which the flow path communicates, the alloy most preferably is retained in the semi-solid or thixotropic state. With sufficiently rapid solidification of alloy in the die cavity, and back from the die cavity back to or into the CEP, a resultant casting produced is able to be characterised by a microstructure having fine, spheroidal or rounded primary particles of degenerate dendritic form in a matrix of secondary phase. With sufficiently rapid solidification back into the CEP, the alloy solidified in the CEP is able to have a similar, related microstructure, but with this exhibiting fine striations or banding extending transversely of the CEP, that is, transversely with respect to the direction of alloy flow through the CEP. The striations or banding are a reflection of intense pressure waves which are generated in the alloy in its flow through the CEP. Those pressure waves give rise to the formation of the degenerate dendritic primary particles in generating the change in state of the alloy from a molten to a semi-solid or thixotropic state. The intense pressure waves also cause alloy element separation on the basis of density, with this being made manifest by the striations or banding, but also by radial separation of elements in the primary particles such as in a somewhat decaying sinusoidal form.
The use of a CEP in the inventions of the above-identified patent applications gives rise to a number of highly practical benefits. A principal one of those benefits is the microstructure detailed above. The primary particles are able to be less than 40 μm in size, such as about 10 μm or less. This fine primary phase and the fine matrix of secondary phase contributes significantly to physical properties of castings, such as tensile properties, fracture toughness and hardness.
A further benefit from the use of a CEP in those inventions is that substantial cost savings are obtainable. The savings result in part from the tonnage of alloy cast, to achieve a given product weight, being substantially reduced relative to the tonnage of alloy cast for the same product weight by current practice. The runner systems of current practice are large relative to the metal flow systems of those inventions, such that the volume and hence weight of solidified metal in the feed systems used in current practice is large relative to the casting volume and weight, and thus necessitate a higher tonnage of alloy cast to achieve the same product weight. Additionally, the tonnage of alloy loss also is correspondingly reduced with the reduction in tonnage of alloy cast. Moreover, those inventions facilitate production of a given casting on a smaller machine relative to current practice. Also, for a given casting, the use of a CEP in those inventions gives rise to greater flexibility in choice of location of an inlet to a die cavity, relative to the limited choice in current practice.
In general, the CEP of the inventions of the above-mentioned patent applications increases the range of shapes and sizes of castings able to be produced. This applies where die cavity fill is by direct injection in which an inlet to a die cavity is at a location from which alloy flows outwardly to peripheral regions of the die cavity. Indeed, the use of a CEP increases the opportunity to employ direct injection for many castings. However, the increased range of shapes and sizes of castings also applies where die cavity fill is by indirect or edge feed in which an inlet to a die cavity is at a location from which alloy flows across the die cavity and then peripherally, or simply flows peripherally, to achieve die cavity fill.
There are circumstances in which, despite the benefits of using a CEP, difficulties can be encountered in obtaining optimum benefit of the inventions of the above-mentioned patent applications. These difficulties may be evident from a required microstructure not being attained fully throughout a casting, due for example to an insufficient back pressure to alloy flow, or insufficient cooling, resulting from the geometric form of the die cavity for some castings. Generally the difficulties are encountered with indirect or edge feeding arrangements in the production of castings which are small in size and/or are relatively thin or have relatively thin sections. With these castings, it is difficult to control alloy flow velocities within the die cavity and, due to this and the small die cavity volume, die cavity fill time tends to be very short. Also, while the small die cavity volume is small and results in relatively rapid alloy solidification within the die cavity, the relatively low ratio of that volume to the volume of alloy in the metal flow system tends to result in an insufficient rate of solidification back from the die cavity along the flow path of the flow system.
The present invention is directed to providing an improved alloy flow system for use in pressure casting of alloys, such as by hot- or cold-chamber die casting machines, which at least reduces the severity of the above-mentioned difficulties. At least in preferred forms, the improved system of the present invention enables those difficulties to be substantially overcome, thereby increasing the range of castings able to be produced with optimum benefit by use of a CEP.
Depending on the size and shape of a die cavity for producing a given casting, a metal flow system including a CEP in the inventions of the above-mentioned patent applications may have the outlet end of the CEP communicating directly with the die cavity. Indeed, subject to the form of a region of the die cavity with which the CEP communicates in those inventions, that region of the die cavity may define at least an outlet end portion of the length of the CEP. However, in an alternative arrangement, the flow system of those inventions communicates with the die cavity through a secondary runner such that alloy flowing beyond the outlet end of the CEP flows through the secondary runner before flowing into the die cavity. As in the case where the outlet end of the CEP opens directly to, or within, the die cavity, the secondary runner does not provide a constriction to alloy flow in the metal flow system. That is, the secondary runner has a cross-sectional area throughout its length which generally is uniform but is not less than the cross-sectional area of the outlet end of the CEP, while there is no gate or similar constriction at the outlet end of the secondary runner.
The alternative form of metal flow system, in which there is a secondary runner between the outlet end of the CEP and the die cavity, usually is used in arrangements for indirect or edge feed to a die cavity. It principally is in the context of indirect or edge feed that the present invention has its application.
A metal flow system according to the present invention defines a metal flow path by which alloy receivable from a pressurised source of alloy is able to flow into a die cavity. A first part of the flow path includes a runner and a CEP, with the CEP having its smaller inlet end at an outlet end of the runner. A second part of the length of the flow path, from the outlet end of the CEP to a location at which the flow path communicates with the die cavity, has a form which enables the flow velocity of the alloy to decrease progressively from the level at the outlet end of the CEP. The decrease in flow velocity is such that, at the location at which the flow path communicates with the die cavity, the alloy flow velocity is at a level significantly below that at the outlet of the CEP as to be appropriate for the size and form of the die cavity, such that the change in the alloy to a semi-solid or thixotropic state, generated by the CEP, is maintained substantially throughout filling of the die cavity and such that the alloy then is able to undergo rapid solidification in the die cavity and back along the flow path towards the CEP.
Thus, the invention provides a metal flow system for high pressure die casting of alloys using a machine having a pressurised source of molten alloy and a mould defining at least one die cavity, wherein the system defines a metal flow path by which alloy received from the pressurised source is able to flow into the die cavity, wherein:
The invention also provides a method of producing alloy castings using a high pressure die casting machine having a pressurised source of molten alloy and a mould defining at least one die cavity, in which the alloy flows from the source to the die cavity along a flow path, wherein:
As indicated, the second part of the flow path decreases the alloy flow velocity below the flow velocity level at the outlet end of the CEP. The second part of the flow path is herein more briefly referred to as the “CEP exit module” or “CEM”.
The progressive reduction in flow velocity achieved in the CEM ensures an appropriate flow velocity at the location at which the flow path communicates with the die cavity. That flow velocity is such that, in the die cavity, the alloy is unable to revert to a significant extent, if at all, to the liquid state. In the die cavity, the flow velocity may decrease further. However, the velocity at that location is such that, even if the flow velocity tends to increase in the die cavity, whether throughout flow in the die cavity or in a localised region, the increase is unable to be to a level enabling the alloy to revert to a significant extent to a liquid state.
The arrangement of the metal flow system of the invention most preferably is such that, in its flow from and beyond the CEP, the alloy maintains a substantially coherent moving front. That is, in progressing along the CEM, the front remains substantially normal to the flow direction or is able to spread so as to progress substantially tangentially to radially diverging flow directions. A substantially coherent moving front also is able to be maintained by alloy flowing throughout the die cavity. Depending on the form of the die cavity, the front may either remain substantially normal to the flow direction, or it may spread so as to progress substantially tangentially to radially diverging flow directions in progressing to remote regions of the die cavity.
As indicated above, some alloy flow systems of the inventions of the above-identified patent applications have a secondary runner and, in some respects, this is similar to the CEM of the present invention. However, such secondary runner does not provide any significant reduction in alloy flow velocity below that at the outlet end of the CEP. Also, the CEM of the system of the present invention generally is of greater flow length than is necessary for a secondary runner of those inventions.
The CEM in the system of the invention can take a variety of forms. In a first form, the CEM defines or comprises a channel which has a width which is substantially in excess of its depth and a transverse cross-sectional area greater than the area of the outlet of the CEP. The width of the channel may exceed its depth by at least an order of magnitude. The channel is such that it enables alloy flowing into it from the CEP to spread in a radial fashion and thereby undergo a reduction in flow velocity. The cross-sectional area of the channel may increase in the direction of alloy flow to thereby cause a further decrease in alloy flow velocity.
In that first form, the channel may be substantially flat or, if appropriate for the die cavity for a given casting, it may be curved across its width. However, it alternatively can have a saw-toothed or corrugated configuration, to define peaks and troughs across its width, somewhat similar to some forms of chill vent. The channel may increase in cross-sectional area due to one of the width and depth of the channel may be constant along its length, with the other progressively increasing, preferably uniformly. However, if required, each of the width and depth may increase in the direction of alloy flow. With a saw-tooth or corrugated form, it generally is more convenient for only the width to increase, although this form has the benefit of maximising flow length for a given spacing between the CEP outlet end and the location at which the flow path communicates with the die cavity.
With the first form, in which the CEM defines a channel having a width substantially in excess of its depth, the arrangement generally is such that the alloy flow path communicates with the die cavity through an opening having a width substantially in excess of its depth. This is well suited to die cavity fill by indirect or edge feed, particularly when the die cavity is for producing a thin casting.
In a second form, the CEM defines or comprises a channel having a width and depth which have dimensions of the same order, and a transverse cross-section which progressively increases in the direction of alloy flow. This form, in having a progressively increasing cross-section, also provides a required low flow velocity at the location at which the flow path communicates with the die cavity.
Subject to the form of the die cavity at the location at which the flow path communicates with it, the channel of the second form of the CEM may be open at its end remote from the CEP, with the open end defining that location. However, it is preferred that the location is defined by an elongate opening extending along a side of the channel. In that preferred arrangement, the channel may extend substantially linearly from the CEP, along a side edge of the die cavity, with the elongate opening being along the side of the channel adjacent to the edge of the die cavity. However, it is preferred that the channel is curved, to facilitate it being of a suitable length, so as to provide an end portion of the channel remote from the CEP which extends along a side edge of the die cavity. Particularly with such curved form of channel, the flow path may be bifurcated, beyond the CEP in the direction of alloy flow, to provide at least two channels each having such an end portion with such elongate opening. In the bifurcated arrangement, the opening of each channel may provide communication with the die cavity at a common edge, or a respective edge, of the die cavity. Where two curved channels communicate with the die cavity at a common edge, the end of each channel remote from the CEP may terminate a short distance from each other, such that their side openings are longitudinally spaced along the common edge of the die cavity. However, in an alternative arrangement, the two channels may merge at those ends to thereby form respective arms of closed loop, in which case the openings again may be so spaced, or they may form a single elongate opening common to each arm.
The progressive decrease in alloy flow velocity in the CEM of the metal flow system of the invention, and the progressive increase in cross-sectional area of that second part which causes that decrease, may be continuous. Also, the progressive decrease in velocity and increase in area may be substantially uniform, or it may be step-wise, along at least a section of the second part. The first and second forms for the CEM described above are well suited to providing a continuous decrease in velocity, produced by a continuous increase in cross-sectional area, such as along at least a major part of the length of the second part.
In a third form, providing a step-wise decrease in flow velocity, the CEM includes a chamber into which alloy received from the CEP flows, with the chamber achieving a step-wise reduction in the alloy flow velocity. The CEP may communicate directly with the chamber, or communication may be by means of a channel between the CEP outlet end and the chamber. That channel has a cross-sectional area which is at least equal to that of the CEP outlet end and which may be uniform between the CEP and the chamber. However, alternatively, the channel may increase in cross-section, from the CEP to the chamber, to provide a progressive decrease in alloy flow velocity prior to the step-wise decrease achieved in the chamber.
In the third form, the CEM includes channel means which provides communication between the chamber and the die cavity and which has a form at least substantially maintaining the flow velocity level attained in the chamber. That communicating channel means may be of a form similar to that of the first form of CEM described, while it may have a substantially uniform or slightly increasing cross-section. Alternatively, the channel means may comprise at least one channel, but preferably at least two channels, similar to the second form of the CEM described above except that, if required, such channel or each such channel may have a substantially uniform cross-section.
The chamber of the third form can have a variety of suitable shapes. In one convenient arrangement, it may have the form of an annular disc. That arrangement is suitable for use where the communicating means is at least one channel. Where, in that arrangement, the communicating means comprises at least two channels, the channels may communicate with a common die cavity, or with a respective die cavity.
The at least one channel of the communicating means of the third form of CEM may open to its die cavity at an end opening of the channel, or at an elongate side opening as described with reference to the second form.
In each form of the invention, the CEM most preferably is disposed parallel to the parting plane of a mould defining the die cavity. The first part of the flow path may be similarly located, such that its runner and CEP also are parallel to that plane, with alloy received from a sprue or runner portion extending through one mould part to that plane. Alternatively, the first part of the flow path may extend through such mould part, with the outlet of the CEP at or closely adjacent to the parting plane.
As indicated above, flow velocities for achieving the required change in alloy from its molten state to a semi-solid or thixotropic state is detailed in the above-mentioned patent applications. However, for a magnesium alloy, the flow velocity at the inlet end of the CEP generally is in excess of about 60 m/s, preferably at about 140 to 165 m/s. For an aluminium alloy, the inlet end flow velocity generally is in excess of 40 m/s, such as about 80 to 120 m/s. For other alloys, such as zinc and copper alloys, capable of being converted to a semi-solid or thixotropic state, the CEP inlet end flow velocity generally is similar to that for aluminium alloys, but can vary with the unique properties of individual alloys. The reduction in flow velocity to be achieved in the CEP generally is such as to achieve a flow velocity at the CEP outlet end which is from about 50 to 80%, such as from 65 to 75% of the flow velocity at the inlet end.
The reduction in flow velocity to be achieved in the CEM of the system of the invention, below the flow velocity attained at the outlet end of the CEP will vary with the size and form of castings to be produced. However, in general, the CEM reduces the flow velocity such that the flow velocity into the or each die cavity is from about 20% to 65% of the flow velocity at the outlet end of the CEP. Depending on the die cavity form, the flow velocity may be able to increase therein, in at least some regions, although it generally is preferred that the alloy flow velocity further decreases throughout the die cavity. When the flow velocity is able to increase in at least a region of the die cavity, this preferably results in an increase to not more than about 75% of the flow velocity at the outlet end of the CEP.
The preceding description of the invention makes reference to a die cavity or the die cavity. However, it is to be understood that the invention is applicable to multi-cavity moulds. In such case, the CEM defined by the system of the invention may divide or extend to provide separate flow to a common die cavity or to each of at least two die cavities. Indeed, as illustrated herein by reference to the drawings, providing such separate flow from a common CEP generally facilitates attainment of the required reduction in alloy flow velocity.
In order that the invention may more readily be understood, description now is directed to the accompanying drawings, in which:
With reference to
The alloy feed system 14 defines an alloy flow path which has a first part defined by nozzle 16, shown in more detail in
In overall form and detail, nozzle 16 is in accordance with the invention of the above-mentioned patent application PCT/AU01/01290. As shown in
In the arrangement of nozzle 16, runner 22 is of constant cross-section throughout its length, except for a short distance at its outlet end at which it tapers down to the cross-section of the inlet end 24a of CEP 24. From its inlet end 24a, the cross-section of CEP 24 increases uniformly to its outlet end 24b. The arrangement is such that, at the alloy flow rate set by the machine in supplying molten alloy to the inlet end 22a of runner 22, the alloy attains a suitable relatively high flow velocity at inlet end 24a, and a suitable relatively low flow velocity at outlet end 24b, of CEP 24. The suitable flow velocities are such that intense pressure waves are generated in the alloy in CEP 24 such that the alloy undergoes a change in its state from liquid to semi-solid or thixotropic. The suitable flow velocities vary with the alloy concerned and, while they are detailed in the above-mentioned patent applications, they also are discussed later herein.
In the arrangement shown, the bore of housing 20 flares over a very short end portion 35, beyond the outlet end 24b of CEP 24. This may provide a transition to the CEM 18 of the metal flow path and, like CEM 18, serves to further reduce the flow velocity of the alloy relative to its level at end 24b of CEP 24. Alternatively, that flared end portion 35 may co-operate with a spreader cone, such as described with reference to
The CEM 18 of the alloy flow path is defined by a shallow, rectangular channel 36 into the centre of which the bore of housing 20 opens. Channel 36 is defined by mould halves 12 and 13, and has its width and length dimensions parallel to the parting plane P-P between mould halves 12 and 13. Thus, channel 36 is perpendicular to nozzle 16.
Channel 36 provides alloy flow to each of the die cavities 10 and 11 in which the alloy flow velocity decreases below the level prevailing at outlet end 24b of CEP 24. This is achieved by the alloy spreading radially outwardly in channel 36, from end 24b, as represented by the broken circles shown in
Alloy flow continues to achieve filling of each die cavity 10,11. Alloy flow throughout each of cavities 10,11 is able to be at a sufficiently low flow velocity, below the flow velocity at end 24b of CEP 24, that back pressure against alloy flow is able to maintain the alloy in a semi-solid or thixotropic state. That is, even though there may be a region of either die cavity in which flow velocity may increase, such increase is not able to be sufficient to enable any significant, localised reversion of alloy back to a liquid state.
The arrangement of mould halves 12,13 is such that heat energy extraction from alloy in each die cavity 10,11, on completion of cavity fill, provides rapid solidification of alloy in each cavity 10,11 and back along channel 36 to the CEP. The thin cross-section of channel 36 facilitates this. Also, heat energy extraction, principally by die half 12 and its insert 26, enables that cooling to progress back into the CEP, despite heating by coil 30, due to the metal to metal contact between housing 20 and insert 26, around end 24b of CEP 24.
In
While the movable die half is not shown, there is illustrated a spreader cone 46 of that half. With the mould die halves clamped together, cone 46 is received within flared end portion 135 of the bore of nozzle housing 120, beyond the outlet end 124b of CEP 124. Thus, semi-solid or thixotropic alloy flowing from CEP 124 spreads frusto-conically prior to entering channel 136. Depending on the cone angles of portion 135 and core 46, the flow velocity of alloy entering channel 136 may be the same as, or slightly different from that attained at outlet end 124b of CEP 124, although it usually will be substantially unchanged.
Within channel 136, the alloy first spreads radially and thereby decreases in flow velocity. On flowing through portion 42 of channel 136, the flow velocity is further decreased through to open end 136a, due to the opposite sides of channel 136 diverging to end 136a. Thus, alloy flowing into and filling die cavity 110 is able to be maintained in a semi-solid or thixotropic state. The saw-toothed like configuration (with one or more than one tooth) of portion 42 of channel 136 increases the back-pressure, thereby assisting in maintaining the alloy in that state. Apart from the differences detailed, overall performance with the arrangement of
The partial view of
The third embodiment of
As with the embodiment of
In the embodiment of
Within channel 236, there is an arcuate wall 50 which extends between the top and bottom main surfaces of channel 236. Wall 50 defines a recess 52 which opens towards the outlet end 224b of CEP 224, such that any solid slug or the like from a previous casting cycle, carried into chamber 236 with the alloy, is able to be captured and retained.
Operation with the embodiment of
The fourth embodiment of
In the embodiment of
From the outlet end 324b of CEP 324, the alloy spreads in end portion 335 of the bore of housing 320 and then enters a central region 54 of channel 336. At the region 54, the depth of channel 336 is increased such that region 54 provides a circular recess which can assist in stabilising alloy flow. From region 54, the alloy is divided so as to flow in opposite directions to each open end 336a and 336b of channel 336, and then into the respective die cavity 310,311.
Molten alloy received into runner 322, from a pressurised source of the machine, is caused to undergo a decrease in flow velocity in CEP 324, from that attained at end 324a, to that attained at end 324b, of CEP 324. The decrease is such that the alloy state is changed from molten to semi-solid or thixotropic. The remainder of the alloy flow path is such that the flow velocity is further decreased through to respective open ends 336a,336b of channel 336. This further decrease results from the alloy spreading radially from the outlet end of housing 320, in region 54, to the extent permitted by the opposite sides of channel 336. The alloy then flows along channel 336, to each of the opposite ends 336a and 336b, in which the flow velocity continues to decrease due to the opposite sides diverging slightly from region 54 to the opposite ends 336a, 336b. Finally, as channel 336 is inclined at an angle to the end of each die cavity 310,311 at which open ends 336a and 336b, respectively, provide communication, the ends 336a and 336b have a greater area than transverse cross-sections normal to the longitudinal extent of channel 336, thereby enabling a further reduction in alloy flow velocity at ends 336a and 336b.
The arrangement is such that alloy passing through open ends 336a and 336b has a flow velocity which is substantially lower than the flow velocity at the outlet end 324b of CEP 324. The substantially lower flow velocity is such as to maintain the alloy in the semi-solid or thixotropic state, and to facilitate maintenance of that state during filling of die cavities 310,311. The arrangement also facilitates rapid solidification of alloy in cavities 310,311, on completion of die fill, such that solidification is able to proceed rapidly back from cavities 310,311, along channel 336 and into CEP 324.
In one working example in accordance with
In the working example, the open ends 336a,336b had a width of 30 mm and a depth of 0.9 mm. The die cavity 310 had a 2 mm depth dimension normal to the plane P-P, while the cavity 311 had a corresponding dimension of 1 mm. In each die cavity, the alloy was able to flow on a front, to achieve die cavity fill, which spreads as it moved away from the respective open end 336a,336b. Thus, alloy flow velocity further decreased in each cavity 310,311, offsetting any tendency for the alloy to revert to a liquid state.
In the arrangement of
Each arm 67,68 of CEM channel 66 has a respective first portion 67a,68a which extends laterally outwardly from an enlargement 69 at the outlet end 64b of CEP 64. From the outer end of portion 68a, arm 68 has a second portion 68b which extends in the same direction as, but away from, CEP 64. Beyond portion 68b, arm 68 has a third portion 68c which extends laterally inwardly towards a continuation of the line of CEP 64. While not shown, arm 67 also has respective second and third portions, beyond portion 67a, which correspond to portions 68b and 68c of arm 68. Each arm 67,68 provides communication with the die cavity 62, within a U-shaped recess 72 at an end of cavity 62.
Runner 63, CEP 64 and channel 66 are of bi-laterally symmetrical trapezoidal form in transverse cross-section, as shown for portion 67a of arm 67 in
A working example was based on
Each arm was provided with an elongate opening by which it was in communication with the die cavity 62. Relative to the locations C,D,E and the end of arm 68, the opening for arm 68 (and similarly for arm 67) had an average width of 0.5 mm from C to D, of 0.6 mm from D to E and of 0.8 mm from E to the end. The overall length of each slot was 35.85 mm, with the overall flow velocity therethrough decreasing from 70 m/sec at C to less than 50 m/s at the end of each arm beyond E.
In the production of each casting, the alloy state changed from molten in the runner 63, to semi-solid or thixotropic in the CEP 64. That change was retained throughout flow along channel 66 and throughout the die cavity fill. The castings were of exceptional quality and microstructure, resulting from maintenance of the alloy in a semi-solid or thixotropic state, and rapid solidification in the die cavity and then back along the channel 66 into CEP 64.
As will be appreciated, the areas shown for locations A to D are for one arm of CEM channel 166. However, relating these to the areas for CEP 164 needs to take into account the fact that each arm provides for the flow of only half of the alloy flowing through the CEP.
In
Chamber 84 may be thinner than channel 82 and channels 86 as shown in
Operation with the arrangement of
To obtain the tensile bars 91, the casting 90 is cut along the junction between each end of tie 92 and the respective side of each bar 91 while metal 93 is severed from the side of the tensile bar 91 to which it is attached. The shape of the severed metal 93 is shown in more detail in
As can be seen from
Along a first part of its length from CEP outlet 98b, the CEM 97 is of a form which generates resistance to alloy flow therethrough. This is achieved by alternate ribs 101a and 102a, defined by the respective mould parts, which extend laterally with respect to alloy flow through the CEM 97, and which protrude into the general rectangular form of the CEM. The width of the CEM 97 and the minimum distance A between successive ribs is calculated so that a required flow velocity for a given alloy is achieved. Thus, for example, a magnesium alloy which changes state from liquid to semi-solid in its flow through CEP 98 by being reduced in flow velocity from 150 m/s at inlet 98a to 100 m/s at outlet 98b, is able to be further reduced in flow velocity in its flow through CEM 97 whereby the alloy is retained in its semi-solid state throughout the die cavities even if increasing in flow velocity to a degree during that flow.
With a metal flow system of the form shown in
As indicated above, flow velocities for achieving the required change in alloy from its molten state to a semi-solid or thixotropic state depends on the alloy to be used. For a magnesium alloy, the flow velocity at the inlet end of the CEP generally is in excess of about 60 m/s, preferably at about 140 to 165 m/s. For an aluminium alloy, the inlet end flow velocity generally is in excess of 40 m/s, such as about 80 to 120 m/s. For other alloys, such as zinc and copper alloys, capable of being converted to a semi-solid or thixotropic state, the CEP inlet end flow velocity generally is similar to that for aluminium alloys, but can vary with unique properties of individual alloys. The reduction in flow velocity to be achieved in the CEP generally is such as to achieve a flow velocity at the CEP outlet end which is from about 50 to 80%, such as from 65 to 75% of the flow velocity at the inlet end. The further reduction in flow velocity obtained in the CEM of the system of the invention, i.e. between the outlet end of the CEP and the inlet to the or each die cavity may range from 20 to 65% of the flow velocity at the outlet end of the CEP. The arrangement preferably is such that an increase in flow velocity in the or each die cavity, if any, during flow throughout the or each die cavity is to a level not exceeding about 75% of the flow velocity at the outlet end of the CEP.
Finally, it is to be understood that various alterations, modifications and/or additions may be introduced into the constructions and arrangements of parts previously described without departing from the spirit or ambit of the invention.
Number | Date | Country | Kind |
---|---|---|---|
PS0585 | Feb 2002 | AU | national |
This is a continuation of PCT/AU03/00195 filed Feb. 14, 2003 and published in English.
Number | Name | Date | Kind |
---|---|---|---|
2735147 | Nielsen | Feb 1956 | A |
2763905 | Nielsen | Sep 1956 | A |
5685357 | Kato et al. | Nov 1997 | A |
6619370 | Sakamoto et al. | Sep 2003 | B1 |
Number | Date | Country |
---|---|---|
PR 7214 | Aug 2001 | AU |
PR 7215 | Aug 2001 | AU |
PR 7216 | Aug 2001 | AU |
PR 7217 | Aug 2001 | AU |
PR 7218 | Aug 2001 | AU |
0968782 | Jan 2000 | EP |
WO9009251 | Aug 1990 | WO |
WO9928065 | Jun 1999 | WO |
WO0191946 | Dec 2001 | WO |
WO0216062 | Feb 2002 | WO |
WO0230596 | Apr 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20050092456 A1 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/AU03/00195 | Feb 2003 | US |
Child | 10915709 | US |