Pressure changer for a breast implant

Information

  • Patent Grant
  • 11234808
  • Patent Number
    11,234,808
  • Date Filed
    Tuesday, February 4, 2020
    4 years ago
  • Date Issued
    Tuesday, February 1, 2022
    2 years ago
Abstract
Apparatus, including an enclosure, a fluid-tight bag located within the enclosure, and a fluid-tight valve connected to the fluid-tight bag. The apparatus also has a tube, having a first end connected to the fluid-tight bag via the fluid-tight valve, and a second end connected to a balloon within a breast implant fitted to an implantee. The apparatus further includes a spindle, located within the enclosure, connected to the fluid-tight bag, and configured to rotate under control of the implantee so as to roll the fluid-tight bag onto the spindle or to unroll the fluid-tight bag from the spindle, and thus transfer a fluid, contained in the balloon, the tube, and the fluid-tight bag, therebetween.
Description
FIELD OF THE INVENTION

This invention relates generally to mastectomy, and specifically to procedures performed after a mastectomy.


BACKGROUND OF THE INVENTION

There are a number of devices which are known in the art that may be used after a mastectomy.


U.S. Pat. No. 3,852,833, to Koneke, et al., whose disclosure is incorporated herein by reference, describes a breast prosthesis which comprises a semi-rigid flat bottom portion with a first inner covering portion extending over the bottom.


U.S. Pat. No. 4,433,440, to Cohen, whose disclosure is incorporated herein by reference, describes a breast prosthesis comprising inner and outer flexible containers, each having a self-sealing valve associated therewith. The valves are arranged in such a fashion that each container can be separately filled with fluid.


U.S. Pat. No. 8,080,057, to Kronowitz, whose disclosure is incorporated herein by reference, describes a prosthesis that may be inserted into a breast and may be inflated to preserve the shape of the breast skin envelope. The prosthesis may include a base, and a balloon coupled to the base, where the balloon may be inflated to preserve the shape of the breast skin envelope.


U.S. Pat. No. 8,394,118, to Jones, et al., whose disclosure is incorporated herein by reference, describes a tissue expansion system, comprising an implantable tissue expander comprising an expandable chamber completely surrounding a compressed gas reservoir, wherein the expandable chamber is adapted to be a non-elastic chamber with a pre-formed breast shape.


U.S. Patent Application 2005/0284215, to Falsetti, whose disclosure is incorporated herein by reference, describes apparatus for the preoperative estimation of breast implant volume, in which a volume of air, water, or other substance is used to inflate one or more bladders located within the cups of a brassiere-like garment.


Documents incorporated by reference in the present patent application are to be considered an integral part of the application except that, to the extent that any terms are defined in these incorporated documents in a manner that conflicts with definitions made explicitly or implicitly in the present specification, only the definitions in the present specification should be considered.


SUMMARY OF THE INVENTION

An embodiment of the present invention provides apparatus, including:


an enclosure;


a fluid-tight bag located within the enclosure;


a fluid-tight valve connected to the fluid-tight bag;


a tube, having a first end connected to the fluid-tight bag via the fluid-tight valve, and a second end connected to a balloon within a breast implant fitted to an implantee; and


a spindle, located within the enclosure, connected to the fluid-tight bag, and configured to rotate under control of the implantee so as to roll the fluid-tight bag onto the spindle or to unroll the fluid-tight bag from the spindle, and thus transfer a fluid, contained in the balloon, the tube, and the fluid-tight bag, therebetween.


In a disclosed embodiment the apparatus includes a motor within the enclosure, connected to the spindle so as to rotate the spindle. The motor and the spindle may be configured to remain in a fixed position within the enclosure while the spindle rotates. Alternatively, the apparatus includes tracks within the enclosure along which the motor and the spindle are configured to slide while the spindle rotates.


In a further disclosed embodiment the apparatus includes a pressure sensor connected to the fluid-tight bag so as to measure pressure therein.


In a yet further disclosed embodiment the apparatus includes a controller within the enclosure configured to operate the spindle, and a further controller, located remote from the enclosure and under control of the implantee, configured to communicate wirelessly with the controller.


In an alternative embodiment the fluid consists of a liquid. Alternatively, the fluid consists of a gas.


There is further provided, according to an embodiment of the present invention, a method, including:


providing an enclosure;


locating a fluid-tight bag within the enclosure;


connecting a fluid-tight valve to the fluid-tight bag;


connecting a first end of a tube to the fluid-tight bag via the fluid-tight valve, and a connecting a second end of the tube to a balloon within a breast implant fitted to an implantee;


and


connecting a spindle, located within the enclosure, to the fluid-tight bag, and configuring the spindle to rotate under control of the implantee so as to roll the fluid-tight bag onto the spindle or to unroll the fluid-tight bag from the spindle, and thus transfer a fluid, contained in the balloon, the tube, and the fluid-tight bag, therebetween.


The present disclosure will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings, in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram illustrating use of a breast implant pressure changer assembly, according to an embodiment of the present invention;



FIG. 2 is a schematic diagram of the assembly in a partly disassembled form, according to an embodiment of the present invention;



FIGS. 3A and 3B are schematic diagrams of an assembly base and operative elements of an assembly, according to an alternative embodiment of the present invention; and



FIG. 4 is a schematic graph of pressure vs. time, according to an embodiment of the present invention.





DETAILED DESCRIPTION OF EMBODIMENTS
Overview

After a mastectomy, a temporary implant, used to create a pocket, may be inserted into the breast. To create the pocket, a balloon, with a valve external to the breast, may be incorporated into the temporary implant and volumes of saline solution, each volume typically being of the order of 100 ml, may be periodically injected into the balloon. The time between injections is usually of the order of two—three weeks, and each injection typically requires a visit to a doctor's surgery. In addition, the relatively sudden injection of a large amount of fluid may be uncomfortable or even somewhat painful.


To overcome these problems, an embodiment of the present invention provides an enclosure, and a fluid-tight bag is located within the enclosure. A first end of a tube is connected to the fluid-tight bag via a fluid-tight valve that is connected to the bag. A second end of the tube is connected, typically via another fluid-tight valve, to a balloon within a breast implant fitted to an implantee.


A spindle is located within the enclosure and is connected to the fluid-tight bag. The spindle is under control of the implantee, and is configured to rotate the fluid-tight bag onto the spindle, or to unroll the fluid-tight bag from the spindle. The rolling and unrolling transfers fluid that is contained in the balloon, the tube, and the fluid-tight bag between these three elements.


Since the rolling and unrolling are under control of the implantee, the implantee is able to select the times of fluid injection to the balloon (or fluid removal from the balloon) to suit her schedule. Furthermore, it has been found that using an embodiment of the present invention is more comfortable than the periodic injections described above.


DETAILED DESCRIPTION

Reference is now made to FIG. 1, which is a schematic diagram illustrating use of a breast implant pressure changer assembly 10, according to an embodiment of the present invention. Assembly 10 comprises within the assembly a fluid-filled, fluid-tight, bag 12, and the bag is coupled to a tube 14 that is terminated by a fluid-tight valve 16. Typically the fluid filling the bag comprises saline solution, although in some embodiments the fluid may comprise air. A user 20, also herein termed implantee 20, of assembly 10 has been fitted with a temporary implant 24 after a mastectomy on a breast 22. The implant comprises a balloon, so is also herein referred to as balloon 24. Balloon 24 is coupled to a tube 30 which is terminated by a fluid-tight valve 32. Valve 32 and at least part of tube 30 are external to breast 22, and so are typically designed to be relatively inconspicuous.


A coupling tube 34 connects between valve 16 and valve 32. When both valves are open, balloon 24, tubes 30, 34, and 14, and bag 12 form a closed sealed system 40. As described in more detail below user 20 is able to change the volume of bag 12, the change of volume leading to a change of pressure in system 40. The change of pressure in system 40 forms a corresponding change in pressure of balloon 24, leading in turn to a change of volume of the balloon. The change of volume of bag 12 typically comprises the user reducing the bag volume, leading to an increase in volume of the balloon. In some cases user 20 may desire to increase the bag 12 volume, for example to counteract an overpressure. Assembly 10 is consequently configured to allow the user to decrease or increase the volume of bag 12.


In some embodiments assembly 10 comprises a switch 44 which implantee 20 uses to change the volume of bag 12, i.e., to increase the volume of the bag or to decrease the volume of the bag. Alternatively or additionally, implantee 20 may change the volume of bag 12 using a remote system, for example by operating an application in a system controller 48, typically a smartphone, which communicates wirelessly with assembly 10. The wireless communication typically uses a standard protocol and technology, such as Bluetooth low energy (BLE).


A DC motor 50 is coupled to a spindle 56 around which bag 12 rolls or unrolls when the motor is operated. Motor 50 is powered by a battery 52, and the motor and the battery are both within assembly 10. A pressure sensor 60 is connected to bag 12, so as to measure the pressure of the fluid in the bag. Assembly 10 also comprises an assembly controller 62 which communicates with the pressure sensor and the DC motor so as to control the operation of rolling or unrolling of the bag. If, as explained above, a wireless remote system operates assembly 10, assembly controller 62 is also configured to communicate wirelessly with controller 48.



FIG. 2 is a schematic diagram of assembly 10 in a partly disassembled form, according to an embodiment of the present invention. Assembly 10 comprises a cover 70 which fits over an assembly base 72, the base holding operative elements of the assembly. Illustrated in FIG. 2 is bag 12, which connects to tube 14. When DC motor 50 is activated, it turns spindle 56, via gear wheels 54, so that the bag rolls or unrolls on the spindle. Motor 50, gear wheels 54, and spindle 56 are fixed within base 72. The figure illustrates assembly 10 with bag 12 in an unrolled configuration. When the bag rolls onto the spindle, it withdraws tube 14 into the assembly. When the bag unrolls from the spindle, the pressure in the bag, which is typically greater than atmospheric pressure, keeps the bag inflated and constrains the bag to move within assembly 10 so that tube 14 moves out from the assembly. (Connecting valve 16 is not illustrated in FIG. 2.) Mounted within assembly base 72, but not visible in the figure, are battery 52 and processor 62. Attached to bag 12, also not visible in the figure, is pressure sensor 60.



FIGS. 3A and 3B are schematic diagrams of assembly base 72 and operative elements of an assembly 80, according to an alternative embodiment of the present invention. Apart from the differences described below, the operation of assembly 80 is generally similar to that of assembly 10 (FIGS. 1 and 2), and elements indicated by the same reference numerals in both assembly 10 and assembly 80 are generally similar in construction and in operation. For simplicity, cover 70 is not shown in FIGS. 3A and 3B.


In contrast to assembly 10, in assembly 80 motor 50, gear wheels 54, and spindle 56 are mounted into a sub-assembly 82 which is constrained to move as a single unit within base 72, typically by providing tracks 86 along which the sub-assembly slides. FIG. 3A illustrates bag 12 when it is not rolled onto spindle 56. FIG. 3B illustrates bag 12 when it is partly rolled onto spindle 56. As for assembly 10, in assembly 80 the rolling or unrolling of the bag is controlled by rotation of motor 50. However, since sub-assembly 82 is able to move, rolling of the bag moves the sub-assembly in a direction shown by an arrow 84 in FIG. 3B. Unrolling of the bag moves the sub-assembly in a direction opposite to that of the arrow. The motion of the sub-assembly in the direction opposite to that of the arrow is assisted by the pressure of the fluid in bag 12. In contrast to assembly 10, wherein tube 14 moves into and out of the assembly, in assembly 80 tube 14 is substantially fixed, and does not move.


During both unrolling and rolling of bag 12, there is typically a delay in equalization of pressure within system 40, because of the length of tubes 14 and 34, as well as because the tubes are typically narrow. To allow for this delay, as well as for general safety concerns, assembly controller 62 is typically configured to halt operation of motor 50 if the pressure measured by sensor 60 reaches or exceeds a preset safety value, such as 1010 mbar. To prevent spasmodic operation of the motor, and consequent fitful rolling or unrolling of bag 12, controller 62 is also typically configured to provide a time delay before reactivating motor 50 once the motor has halted due the preset pressure safety value being reached.



FIG. 4 is a schematic graph of pressure vs. time, according to an embodiment of the present invention. The graph shows the change of pressure, as measured by sensor 60, as implantee 20 operates assembly 10 or assembly 80 to roll bag 12 onto spindle 56. Rolling the bag onto the spindle increases the pressure in system 40, and particularly initially in bag 12. Thus, during an initial period T1, the pressure measured by sensor 60 increases until it reads the preset safety value of 1010 mbars, at which point controller 62 deactivates motor 50, so that bag 12 does not roll onto (or roll off) spindle 56. During the preset delay time period, herein assumed to be period T2, the pressures in system 40 equalize, and during this time period motor 50 remains deactivated. At the conclusion of the preset delay time period, and assuming implantee 20 has operated assembly 10 or 80 to continue rolling bag 12 onto spindle 56, controller 62 reactivates motor 50 to further roll the bag onto the spindle, so that during a time period T3 the pressure measured by sensor 60 again increases until the pressure safety value is reached, whereupon the controller deactivates the motor.


Implantee 20 may operate assembly 10 or assembly 80 to unroll bag 12 from spindle 56, for example to alleviate the overpressure referred to above. In this case the unrolling by motor 50 is typically configured to be slow enough so that the pressure remains substantially equal throughout closed system 40.


It will be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art.

Claims
  • 1. Apparatus, comprising: an enclosure;a fluid-tight bag located within the enclosure;a fluid-tight valve connected to the fluid-tight bag;a tube, having a first end connected to the fluid-tight bag via the fluid-tight valve, and a second end connected to a balloon within a breast implant fitted to an implantee;a spindle, located within the enclosure, connected to the fluid-tight bag, and configured to rotate under control of the implantee so as to roll the fluid-tight bag onto the spindle or to unroll the fluid-tight bag from the spindle, and thus transfer a fluid, contained in the balloon, the tube, and the fluid-tight bag, therebetween;a motor, located within the enclosure, connected to the spindle so as to rotate the spindle; andtracks, located within the enclosure, along which the motor and the spindle are configured to slide while the spindle rotates.
  • 2. The apparatus according to claim 1, and comprising a pressure sensor connected to the fluid-tight bag so as to measure pressure therein.
  • 3. The apparatus according to claim 1, and comprising a controller within the enclosure configured to operate the spindle, and further comprising a further controller, located remote from the enclosure and under control of the implantee, configured to communicate wirelessly with the controller.
  • 4. The apparatus according to claim 1, wherein the fluid comprises a liquid.
  • 5. The apparatus according to claim 1, wherein the fluid comprises a gas.
  • 6. A method, comprising: providing an enclosure;locating a fluid-tight bag within the enclosure;connecting a fluid-tight valve to the fluid-tight bag;connecting a first end of a tube to the fluid-tight bag via the fluid-tight valve, and a connecting a second end of the tube to a balloon within a breast implant fitted to an implantee;connecting a spindle, located within the enclosure, to the fluid-tight bag, and configuring the spindle to rotate under control of the implantee so as to roll the fluid-tight bag onto the spindle or to unroll the fluid-tight bag from the spindle, and thus transfer a fluid, contained in the balloon, the tube, and the fluid-tight bag, therebetween;connecting a motor, located within the enclosure, to the spindle so as to rotate the spindle; andproviding tracks, located within the enclosure, along which the motor and the spindle are configured to slide while the spindle rotates.
  • 7. The method according to claim 6, and comprising connecting a pressure sensor to the fluid-tight bag so as to measure pressure therein.
  • 8. The method according to claim 6, and comprising operating the spindle with a controller within the enclosure, and further comprising locating a further controller, remote from the enclosure and under control of the implantee, that is configured to communicate wirelessly with the controller.
  • 9. The method according to claim 6, wherein the fluid comprises a liquid.
  • 10. The method according to claim 6, wherein the fluid comprises a gas.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a Divisional Application under 35 U.S.C. § 121 of U.S. patent application Ser. No. 15/432,585, filed Feb. 14, 2017, which claims priority under 35 U.S.C § 119 to Provisional Patent Application No. 62/301,180, filed Feb. 29, 2016. The entire contents of these applications are incorporated by reference herein in their entirety

US Referenced Citations (98)
Number Name Date Kind
146805 Cox Jan 1874 A
1091063 Hutchinson Mar 1914 A
1263798 Otto Apr 1918 A
3852833 Koneke et al. Dec 1974 A
3919724 Sanders et al. Nov 1975 A
3934274 Hartley, Jr. Jan 1976 A
4433440 Cohen Feb 1984 A
4615704 Frisch Oct 1986 A
4624671 Kress Nov 1986 A
4643733 Becker Feb 1987 A
4773908 Becker Sep 1988 A
4775379 Fogarty et al. Oct 1988 A
4790309 Becker Dec 1988 A
4944749 Becker Jul 1990 A
4969892 Burton et al. Nov 1990 A
4969898 Calogero Nov 1990 A
4969899 Cox, Jr. Nov 1990 A
5019101 Purkait et al. May 1991 A
5181907 Becker Jan 1993 A
5219360 Georgiade Jun 1993 A
5507808 Becker Apr 1996 A
5549672 Maddock et al. Aug 1996 A
5630843 Rosenberg May 1997 A
5723006 Ledergerber Mar 1998 A
5776159 Young Jul 1998 A
5845813 Werner Dec 1998 A
5882353 VanBeek Mar 1999 A
6113569 Becker Sep 2000 A
6183514 Becker Feb 2001 B1
6540702 Sarango Apr 2003 B1
6755861 Nakao Jun 2004 B2
7081136 Becker Jul 2006 B1
7615074 Carvalio Nov 2009 B2
7762982 Shah Jul 2010 B1
8080057 Kronowitz Dec 2011 B2
8197542 Becker Jun 2012 B2
8202317 Becker Jun 2012 B2
8308630 Birk et al. Nov 2012 B2
8394118 Jones et al. Mar 2013 B2
8398710 Forsell Mar 2013 B2
9265921 Korman Feb 2016 B2
10548712 Govari Feb 2020 B2
20020011497 Farris Jan 2002 A1
20050284215 Falsetti Dec 2005 A1
20060069403 Shalon et al. Mar 2006 A1
20060100578 Liberman May 2006 A1
20060161196 Widgerow Jul 2006 A1
20070050026 Carvalio Mar 2007 A1
20070276478 Marmureanu et al. Nov 2007 A1
20080275569 Lesh Nov 2008 A1
20090210056 Forsell Aug 2009 A1
20100010531 Shalon et al. Jan 2010 A1
20100010871 Mengerink Jan 2010 A1
20100087843 Bertolote et al. Apr 2010 A1
20100108717 Szymanski May 2010 A1
20100204792 Greco Aug 2010 A1
20100211166 Miller et al. Aug 2010 A1
20100228347 Schuessler Sep 2010 A1
20100324688 Doty Dec 2010 A1
20110106249 Becker May 2011 A1
20110153017 McClellan Jun 2011 A1
20110160854 Berg et al. Jun 2011 A1
20110160859 Doty Jun 2011 A1
20110230845 Pascal et al. Sep 2011 A1
20110264213 Demiranda Oct 2011 A1
20120059349 Kuo Mar 2012 A1
20120116509 Forsell May 2012 A1
20130007980 Worker et al. Jan 2013 A1
20130013063 Del Vecchio Jan 2013 A1
20130013084 Birk Jan 2013 A1
20130079807 Korman Mar 2013 A1
20130237915 Barrelli et al. Sep 2013 A1
20130245758 Chitre et al. Sep 2013 A1
20130341353 Harris Dec 2013 A1
20140031619 Moon Jan 2014 A1
20140100656 Namnoum et al. Apr 2014 A1
20140142556 Kuo May 2014 A1
20140156001 Davodian Jun 2014 A1
20140200396 Lashinski et al. Jul 2014 A1
20140221732 Dayton Aug 2014 A1
20140222145 Kronowitz Aug 2014 A1
20140236210 Payne et al. Aug 2014 A1
20150038976 Roschak et al. Feb 2015 A1
20150374906 Forsell Dec 2015 A1
20160045312 Braido et al. Feb 2016 A1
20160228603 Nguyen et al. Aug 2016 A1
20160250017 McClellan Sep 2016 A1
20160310711 Luxon et al. Oct 2016 A1
20170079737 Jones et al. Mar 2017 A1
20170127929 Schutt et al. May 2017 A1
20170165025 Payne et al. Jun 2017 A1
20170333179 Forsell Nov 2017 A1
20180153684 Van Heugten et al. Jun 2018 A1
20180200714 Viovy et al. Jul 2018 A1
20180279889 Lee Oct 2018 A1
20190091001 Forsell Mar 2019 A1
20190111206 Forsell Apr 2019 A1
20190223971 Payne et al. Jul 2019 A1
Foreign Referenced Citations (6)
Number Date Country
101284639 Oct 2008 CN
19923183 Nov 2000 DE
1547549 Jun 2005 EP
2453839 Mar 2014 EP
9504561 Feb 1995 WO
2016003718 Jan 2016 WO
Non-Patent Literature Citations (3)
Entry
Extended European Search Report for European Application No. 17158382.6-1664, dated Jul. 27, 2017, 8 pages.
International Search Report and Written Opinion for International Application No. PCT/IB2018/056354, dated Nov. 16, 2018, 12 pages.
Mentor, “Becker Expander/Mammary Prostheses (Reconstruction Adjunct Study),” 2002, Retrieved from the internet http://www.mentorwwllc.com/documents/Becker.pdf, 16 pages.
Related Publications (1)
Number Date Country
20200170784 A1 Jun 2020 US
Provisional Applications (1)
Number Date Country
62301180 Feb 2016 US
Divisions (1)
Number Date Country
Parent 15432585 Feb 2017 US
Child 16781170 US