This application relates to tire pressure checking tools and the utilization of these tools.
Rental vehicles from rental agencies typically do not have any valve caps on the valve stems of the vehicle wheels of the rental vehicles. The absence of valve caps is not because the cars were built this way by the different original equipment manufacturers (OEMs), but because rental agency employees do not want to handle the valve caps. Every time a vehicle is returned to the rental office, the agency is obligated, as a normal check up of the vehicle, to verify the pressure in each tire of the returned vehicle even if this vehicle could be equipped with an individual pressure display of each tire on the instrument panel of the vehicle.
In these situations, a technician has to remove the valve caps, one at a time, use a tire gauge and make a manual note with the corresponding vehicle identification number (VIN) that the vehicle has the correct pressure in the tires. Knowing that the technician will have to remove the caps again when the vehicle comes back from the next customer, the technician never bothers to put the caps on in order to save time, or over-inflates the tire to minimize having to deal with future pressure checks and re-inflations.
The valve cap of a valve stem has different critical functions. First, it protects the valve core mechanism of the valve stem against dirt, salt, and debris from the road and other sources that could eventually damage the valve core mechanism. If the valve core mechanism is damaged, its spring and seal functions could lead to potential leaks. If debris goes though the open valve mechanism during tire inflation, this debris could interfere with the valve core sealing cup mechanism leading to leaks.
Many late model vehicle valve caps, especially those equipped with tire pressure monitoring systems (TPMS), also have an O-ring seal that seals the valve stem from debris, water and so forth. This further improves the tightness of the valve stem assembly against air leaks by acting as a secondary seal. If the valve cap is not placed on the valve stem, or if some debris are located around the valve core mechanism spring, or if some debris are stuck on the cup seal, some potential air leaks could happen leading eventually to a leaking or flat tire. Furthermore, failure to reinstall valve caps exposes the end of the valve stem and valve core to potentially highly corrosive brine solutions used for ice melting on highways, automotive/wheel cleaning chemicals, and so forth.
The non-replacement of the caps potentially results in the above-mentioned problems. Consequently, some user dissatisfaction has resulted from these previous instances where the cap is not reinstalled.
For a more complete understanding of the disclosure, reference should be made to the following detailed description and accompanying drawings wherein:
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity. It will further be appreciated that certain actions and/or steps may be described or depicted in a particular order of occurrence while those skilled in the art will understand that such specificity with respect to sequence is not actually required. It will also be understood that the terms and expressions used herein have the ordinary meaning as is accorded to such terms and expressions with respect to their corresponding respective areas of inquiry and study except where specific meanings have otherwise been set forth herein.
Approaches are described herein that provide a tool that reads identification information from the vehicle (typically via dash VIN reading/recognition or via barcode scan in the door jamb, but other methods are possible) and automatically determines the type(s) of tire pressure sensor low frequency (LF) trigger, radio frequency (RF) protocol, or other possible method to trigger the TPMS sensors mounted on the vehicle, in addition to the recommended cold pressures (RCP) for the vehicle tires. Responsively, information is received from the vehicle including tire pressure information such that the valve caps do not have to be removed. Consequently, better tire pressure control, increased productivity and a reduction in potential for erroneous records by the technician performing the tire service work, increased safety for drivers renting the vehicles, potentially decreased liability of the rental agencies, and improved vehicle maintenance history are all provided.
Based upon the captured vehicle information via the VIN, etc., reading, one or more tire pressure sensor activation/trigger methods are determined. The determined one or more tire pressure sensor activation/trigger methods are then used to activate the sensors without further input from the tire pressure check tool user. The sensors are then triggered one-at-a-time via the tire sidewall with the described handheld tire pressure check tool (typically in an outdoor car return collection lot), or multiples could also be simultaneously triggered in a more shop type environment (such as a reconditioning shop “assembly line”) via the described handheld tool or perhaps in combination with hardwired LF triggers in the shop, but other methods are possible. Tire pressure information is responsively received from the activated tire pressure monitoring (TPM) sensors.
In some aspects, the tire pressure information is presented to a user via, a screen on the tool. In other aspects, a determination is made as to whether the tire pressure information falls below a predetermined first threshold or above a predetermined second threshold. In still other aspects, the information is transmitted to a central location such as a rental agency office. More detailed vehicle information could also be retrieved by the tool via the VIN and TPM sensors as will later be outlined.
In other of these embodiments, a portable tool that is configured to obtain data from a TPM sensor includes an interface and a controller. The interface has an input and an output. Alternatively, the tool could also be hardwired in the garage or outdoor service facility to trigger the vehicle TPM sensors automatically upon being driven through an LF trigger field.
The controller is coupled to the interface and is configured to request vehicle identification information at the output and responsively receive the requested vehicle identification information from a vehicle at the input. The controller is further configured to, based upon the received vehicle information, determine one or more tire pressure sensing approaches or parameters. The controller is configured to use the determined one or more tire pressure sensing approaches or parameters to activate a plurality of tire pressure monitoring (TPM) sensors at the vehicle via the output. The controller is further configured to responsively receive tire pressure information at the input from the activated TPM sensors.
Referring now to
The sensors 112, 114, 116, and 118 communicate with a receiver 120. The communication between the TPMS monitors 112, 114, 116, and 118 and the receiver 120 is accomplished in one aspect via wireless, radio frequency (RF) links, but other methods are possible.
The TPMS monitors 112, 114, 116, and 118 may include processing devices and memories and execute computer instructions to sense and transmit tire pressure (or other) data. In these regards, the TPMS monitors 112, 114, 116, and 118 may themselves include structures, devices, or apparatus that actually sense the pressure (or other types of data) in the tires 104, 106, 108 and 110.
The receiver 120 includes hardware and/or software to receive (and in some examples transmit) information from the TPMS monitors 112, 114, 116, and 118. The receiver 120 is disposed at an appropriate location within the vehicle 101.
Since the maintenance technician has to perform the task to check the air pressure every time a vehicle is returned and has to complete a check list, it is typically more efficient (e.g., in terms of cost, time, accuracy of data and so forth) to offer per rental agency the tool 102 which reads the VIN 122 of the vehicle 101. The VIN 122 (or other vehicle identification information) of the vehicle 101 can be read by any appropriate approach. The tool 102 then determines which kind or type of LF protocol, Recommended Cold Pressures (RCPs) (which could be different pressures between front and rear tires if the vehicle has a split placard configuration from the OEM), and/or the appropriate RF protocol to be used to trigger the TPM sensors 112, 114, 116, and 118 (note that 4 sensors are only used here as a typical example, but more or less sensors are possible) mounted on the vehicle 101. The tool 102 triggers each sensor 112, 114, 116, and 118 on the vehicle, records and displays the pressure for each tire on the said vehicle including their location (e.g., left front, right front, left rear, and right rear). The display may be made according to a display screen on the tool 102.
The LF approach may relate to different LF transmission frequencies that are used to wake up the TPM sensor 112, 114, 116, and 118. The LF approach is typically different for different automobile manufacturers. The RF transmission protocol may relate to the data format or baud rate (to mention two examples) used to transmit information from the TPM sensors 112, 114, 116, and 118. The RF transmission protocol is typically different for different automobile manufacturers.
This information (e.g., tire pressure and location) obtained from the TPM sensors can be used by the rental agency to manage tire rotation history, if the sensors are embedded in the tire or otherwise somehow married to the tire. It can also be of particular benefit for vehicles with a split placard (i.e., pressure in the tires is different for front tires and rear) to ensure proper pressures for both front and rear tires. Other information that could be displayed/connected for traceability and record keeping is the associated VIN, the date, and the time of the day the check was performed. This information could provide a clear history of the vehicle tire maintenance. Also, the technician's name that performed the check can also be displayed.
All the data could be recorded in a database either in the tool, printed on a built-in or separate printer, or transmitted (e.g., via a wireless local area network (WLAN), via Bluetooth, or via some other wired or wireless connection) to another location (e.g., a docketing station within the rental agency office).
The tool 102 could also indicate to the user that the tire is properly inflated via color coding with a green light or other symbol or on a small screen in the vehicle 101. In this case, the tool is automatically comparing known RCPs or other information against the test samples that were just recorded, and as such, the technician does not need to remove the cap and inflate or deflate the tire (time and money saved). If the tire is underinflated or over inflated, a yellow (minimal difference) light or red (significant difference) light or other symbols could be lit on the tool 102 or at some other location. A small screen on the tool 102 or some other location (e.g., a central location such as the headquarters of the rental agency) could also display the current pressure with the RCP of the vehicle or by how much air pressure (e.g., as measured in psi, and so forth) the tire needs to be deflated or inflated.
For vehicles that are returned without time for the tires to cool down before the technician performs a tire check, the tool 102 could be equipped with a simple temperature sensor that would automatically compensate the received tire pressure temperature with air temperature inside the tire (received) and the external ambient temperature. The operator could be offered this option or the tool could be equipped with an integrated thermometer tip that automatically makes this adjustment without further involvement by the operator.
In order to simplify the tool and to reduce tool costs and tool updates, each agency could choose from the tool supplier cataloging the applicable model, brand, and model year of the vehicles in the fleet (cost of tool could be linked to required vehicle coverage). Tools could also capture the embedded in the tire radio frequency identification (RFID) chip data. With this extended data, the rental agencies could keep track of the age of the tires on a specific vehicle, verify that the original tires weren't stolen off the vehicle (happens often with rental fleets), tire maintenance schedule, tire/vehicle compatibility (regarding load ratings, and so forth), tire recall history, and so forth.
The tool could also have a Bluetooth connection or via any wireless connections to the vehicle. Upon a button press on the vehicle internet protocol (IP), the latest received TPM data by the TPM receiver of the said vehicle could be transferred directly to the tool.
Consequently, better tire pressure control, increased productivity of the technician performing the work, increased safety for drivers renting the vehicles, potentially decreased liability of the rental agencies, and improved vehicle maintenance history are all provided.
Referring now to
At step 206, the determined one or more tire pressure sensor trigger signals are used to activate singularly or activate a plurality of tire pressure monitoring (TPM) sensors at the vehicle. At step 208, tire pressure information is responsively received from the activated TPM sensors.
In some aspects, the tire pressure information is presented to a user via a screen on the portable tool. In other aspects, a determination is made as to whether the tire pressure information falls below a predetermined first threshold or above a predetermined second threshold. In still other aspects, the information is transmitted to a central location such as a rental agency office.
Referring now to
The controller 304 is coupled to the interface 302 and is configured to transmit a request 305 for vehicle identification information 310 at the output 308 and responsively receive the requested vehicle identification information 310 from a vehicle at the input 306. The controller 304 is further configured to, based upon the vehicle information 310, determine one or more tire pressure sensor triggers or parameters. The controller 304 is configured to use the determined one or more tire pressure sensor triggers or parameters to activate singularly or a plurality of tire pressure monitoring (TPM) sensors at the vehicle via the output 308. The controller 304 is further configured to responsively receive tire pressure information 312 at the input 306 from the activated TPM sensors.
It should be understood that any of the devices described herein (e.g., the tools, the controllers, the receivers, the transmitters, the sensors, any presentation or display devices, or the external devices) may use a computing device to implement various functionality and operation of these devices. In terms of hardware architecture, such a computing device can include but is not limited to a processor, a memory, and one or more input and/or output (I/O) device interface(s) that are communicatively coupled via a local interface. The local interface can include, for example but not limited to, one or more buses and/or other wired or wireless connections. The processor may be a hardware device for executing software, particularly software stored in memory. The processor can be a custom made or commercially available processor, a central processing unit (CPU), an auxiliary processor among several processors associated with the computing device, a semiconductor based microprocessor (in the form of a microchip or chip set) or generally any device for executing software instructions.
The memory devices described herein can include any one or combination of volatile memory elements (e.g., random access memory (RAM), such as dynamic RAM (DRAM), static RAM (SRAM), synchronous dynamic RAM (SDRAM), video RAM (VRAM), and so forth)) and/or nonvolatile memory elements (e.g., read only memory (ROM), hard drive, tape, CD-ROM, and so forth). Moreover, the memory may incorporate electronic, magnetic, optical, and/or other types of storage media. The memory can also have a distributed architecture, where various components are situated remotely from one another, but can be accessed by the processor.
The software in any of the memory devices described herein may include one or more separate programs, each of which includes an ordered listing of executable instructions for implementing the functions described herein. When constructed as a source program, the program is translated via a compiler, assembler, interpreter, or the like, which may or may not be included within the memory.
It will be appreciated that any of the approaches described herein can be implemented at least in part as computer instructions stored on a computer media (e.g., a computer memory as described above) and these instructions can be executed on a processing device such as a microprocessor. However, these approaches can be implemented as any combination of electronic hardware and/or software.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. It should be understood that the illustrated embodiments are exemplary only, and should not be taken as limiting the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2428089 | Mumma et al. | Sep 1947 | A |
2451859 | Mumma et al. | Oct 1948 | A |
3777062 | Ogawa | Dec 1973 | A |
3814839 | Lubarsky et al. | Jun 1974 | A |
3814840 | Lubarsky et al. | Jun 1974 | A |
4589063 | Shah et al. | May 1986 | A |
4703359 | Rumbolt | Oct 1987 | A |
4734674 | Thomas et al. | Mar 1988 | A |
4737761 | Dosjoub et al. | Apr 1988 | A |
4742857 | Gandhi | May 1988 | A |
4774511 | Rumbolt et al. | Sep 1988 | A |
4924210 | Matsui et al. | May 1990 | A |
4959810 | Darbee | Sep 1990 | A |
4999622 | Amano et al. | Mar 1991 | A |
5061917 | Higgs et al. | Oct 1991 | A |
5196682 | Englehardt | Mar 1993 | A |
5201067 | Grube | Apr 1993 | A |
5223844 | Mansel | Jun 1993 | A |
5228077 | Darbee | Jul 1993 | A |
5231872 | Bowler et al. | Aug 1993 | A |
5243430 | Emmons | Sep 1993 | A |
5255313 | Darbee | Oct 1993 | A |
5303259 | Loveall | Apr 1994 | A |
5335540 | Bowler et al. | Aug 1994 | A |
5365225 | Bachhuber | Nov 1994 | A |
5414761 | Darbee | May 1995 | A |
5434572 | Smith | Jul 1995 | A |
5455570 | Cook | Oct 1995 | A |
5515052 | Darbee | May 1996 | A |
5537463 | Escobosa | Jul 1996 | A |
5540092 | Handfield et al. | Jul 1996 | A |
5552917 | Darbee | Sep 1996 | A |
5562787 | Koch et al. | Oct 1996 | A |
5564101 | Eisfeld et al. | Oct 1996 | A |
5581023 | Handfield et al. | Dec 1996 | A |
5585554 | Handfield et al. | Dec 1996 | A |
5600301 | Robinson, III | Feb 1997 | A |
5602524 | Mock et al. | Feb 1997 | A |
5614906 | Hayes | Mar 1997 | A |
5624265 | Redford | Apr 1997 | A |
5661651 | Geschke et al. | Aug 1997 | A |
5663496 | Handfield et al. | Sep 1997 | A |
5698353 | Jeong | Dec 1997 | A |
5706247 | Merritt et al. | Jan 1998 | A |
5731516 | Handfield et al. | Mar 1998 | A |
5731763 | Herweck | Mar 1998 | A |
5732283 | Rose et al. | Mar 1998 | A |
5741966 | Handfield et al. | Apr 1998 | A |
5768499 | Treadway et al. | Jun 1998 | A |
5808558 | Meek et al. | Sep 1998 | A |
5838229 | Robinson, III | Nov 1998 | A |
5841390 | Tsui | Nov 1998 | A |
5844131 | Gabelmann et al. | Dec 1998 | A |
5880363 | Meyer et al. | Mar 1999 | A |
5883305 | Jo et al. | Mar 1999 | A |
5900808 | Lebo | May 1999 | A |
5926087 | Busch et al. | Jul 1999 | A |
5959751 | Darbee | Sep 1999 | A |
5963128 | McClelland | Oct 1999 | A |
5965808 | Normann et al. | Oct 1999 | A |
6002450 | Darbee | Dec 1999 | A |
6005486 | Fridley | Dec 1999 | A |
6011463 | Cormier, Sr. | Jan 2000 | A |
6014092 | Darbee | Jan 2000 | A |
6018993 | Normann et al. | Feb 2000 | A |
6021319 | Tigwell | Feb 2000 | A |
6034597 | Normann et al. | Mar 2000 | A |
6078270 | Shim | Jun 2000 | A |
6087930 | Kulka et al. | Jul 2000 | A |
6112165 | Uhl et al. | Aug 2000 | A |
6124786 | Normann et al. | Sep 2000 | A |
6141792 | Acker et al. | Oct 2000 | A |
6154658 | Casi | Nov 2000 | A |
6155119 | Normann et al. | Dec 2000 | A |
6169480 | Uhl et al. | Jan 2001 | B1 |
6169907 | Chang et al. | Jan 2001 | B1 |
6181241 | Normann et al. | Jan 2001 | B1 |
6192747 | Fennel | Feb 2001 | B1 |
6194999 | Uhl et al. | Feb 2001 | B1 |
6201819 | Luders | Mar 2001 | B1 |
6204758 | Wacker et al. | Mar 2001 | B1 |
6208341 | van Ee et al. | Mar 2001 | B1 |
6218936 | Imao | Apr 2001 | B1 |
6259361 | Robillard et al. | Jul 2001 | B1 |
6271748 | Derbyshire et al. | Aug 2001 | B1 |
6275148 | Takamura et al. | Aug 2001 | B1 |
6297731 | Flick | Oct 2001 | B1 |
6298095 | Kronestedt et al. | Oct 2001 | B1 |
6333698 | Roddy | Dec 2001 | B1 |
6362731 | Lill | Mar 2002 | B1 |
6369703 | Lill | Apr 2002 | B1 |
6396408 | Drummond et al. | May 2002 | B2 |
6400263 | Kokubo | Jun 2002 | B1 |
6408232 | Cannon et al. | Jun 2002 | B1 |
6438467 | Pacsai | Aug 2002 | B1 |
6441728 | Dixit et al. | Aug 2002 | B1 |
6445286 | Kessler et al. | Sep 2002 | B1 |
6446502 | Normann et al. | Sep 2002 | B1 |
6453737 | Young et al. | Sep 2002 | B2 |
6463798 | Niekirk et al. | Oct 2002 | B2 |
6469621 | Vredevogd et al. | Oct 2002 | B1 |
6477165 | Kosco | Nov 2002 | B1 |
6486773 | Bailie et al. | Nov 2002 | B1 |
6489888 | Honeck et al. | Dec 2002 | B1 |
6490452 | Boscovic et al. | Dec 2002 | B1 |
6507306 | Griesau | Jan 2003 | B1 |
6518891 | Tsutsui et al. | Feb 2003 | B2 |
6567032 | Mullaly | May 2003 | B1 |
6571617 | Van Niekerk et al. | Jun 2003 | B2 |
6612165 | Juzswik et al. | Sep 2003 | B2 |
6622552 | Delaporte | Sep 2003 | B1 |
6630885 | Hardman et al. | Oct 2003 | B2 |
6633229 | Normann et al. | Oct 2003 | B1 |
6662642 | Breed et al. | Dec 2003 | B2 |
6667687 | DeZori | Dec 2003 | B1 |
6681164 | Berghoff et al. | Jan 2004 | B2 |
6693522 | Tang et al. | Feb 2004 | B2 |
6704364 | Lim et al. | Mar 2004 | B1 |
6705155 | Katou | Mar 2004 | B2 |
6710708 | McClelland et al. | Mar 2004 | B2 |
6731205 | Schofield et al. | May 2004 | B2 |
6737965 | Okubo | May 2004 | B2 |
6738697 | Breed | May 2004 | B2 |
6747590 | Weber | Jun 2004 | B1 |
6750761 | Newman | Jun 2004 | B1 |
6774778 | Lin | Aug 2004 | B2 |
6778380 | Murray | Aug 2004 | B2 |
6788193 | King et al. | Sep 2004 | B2 |
6794993 | Kessler et al. | Sep 2004 | B1 |
6801872 | Normann et al. | Oct 2004 | B2 |
6802213 | Agrotis | Oct 2004 | B1 |
6804999 | Okubo | Oct 2004 | B2 |
6822603 | Crimmins et al. | Nov 2004 | B1 |
6828905 | Normann et al. | Dec 2004 | B2 |
6832573 | Evans et al. | Dec 2004 | B2 |
6871157 | Lefaure | Mar 2005 | B2 |
6879252 | DeZorzi et al. | Apr 2005 | B2 |
6885282 | Desai | Apr 2005 | B2 |
6885292 | Katou | Apr 2005 | B2 |
6885293 | Okumura | Apr 2005 | B2 |
6885296 | Hardman et al. | Apr 2005 | B2 |
6888471 | Elsner et al. | May 2005 | B2 |
6897770 | Lill | May 2005 | B2 |
6904796 | Pacsai et al. | Jun 2005 | B2 |
6906624 | McClelland et al. | Jun 2005 | B2 |
6910627 | Simpson-Young et al. | Jun 2005 | B1 |
6914523 | Munch et al. | Jul 2005 | B2 |
6915146 | Nguyen et al. | Jul 2005 | B1 |
6915229 | Taguchi et al. | Jul 2005 | B2 |
6919798 | Ide | Jul 2005 | B2 |
6920785 | Toyofuku | Jul 2005 | B2 |
6922140 | Hernando et al. | Jul 2005 | B2 |
6927679 | Taguchi et al. | Aug 2005 | B2 |
6941803 | Hirohama et al. | Sep 2005 | B2 |
6972671 | Normann et al. | Dec 2005 | B2 |
6983649 | Katou | Jan 2006 | B2 |
6996418 | Teo et al. | Feb 2006 | B2 |
7002455 | Buck et al. | Feb 2006 | B2 |
7010968 | Stewart et al. | Mar 2006 | B2 |
7015801 | Juzswik | Mar 2006 | B1 |
7017403 | Normann et al. | Mar 2006 | B2 |
7034661 | Lonsdale et al. | Apr 2006 | B2 |
7039397 | Chuey | May 2006 | B2 |
7042348 | Schulze et al. | May 2006 | B2 |
7050794 | Chuey et al. | May 2006 | B2 |
7084749 | Honeck et al. | Aug 2006 | B1 |
7084751 | Klamer | Aug 2006 | B2 |
7088226 | McClelland et al. | Aug 2006 | B2 |
7095316 | Kachouh et al. | Aug 2006 | B2 |
7096003 | Joao et al. | Aug 2006 | B2 |
7103460 | Breed | Sep 2006 | B1 |
7104438 | Benedict | Sep 2006 | B2 |
7113083 | Suitsu | Sep 2006 | B2 |
7116213 | Thiesen et al. | Oct 2006 | B2 |
7116218 | Ogawa et al. | Oct 2006 | B2 |
7120430 | Christenson et al. | Oct 2006 | B2 |
7137296 | Shida et al. | Nov 2006 | B2 |
7148793 | Lin | Dec 2006 | B2 |
7161466 | Chuey | Jan 2007 | B2 |
7161476 | Hardman et al. | Jan 2007 | B2 |
7164117 | Breed et al. | Jan 2007 | B2 |
7173520 | Desai et al. | Feb 2007 | B2 |
7224269 | Miller et al. | May 2007 | B2 |
7243535 | Shimura | Jul 2007 | B2 |
7254994 | Schulze et al. | Aug 2007 | B2 |
7307480 | Shiu et al. | Dec 2007 | B2 |
7315240 | Watabe | Jan 2008 | B2 |
7318162 | Rineer et al. | Jan 2008 | B2 |
7369491 | Beshai et al. | May 2008 | B1 |
7380450 | Durif | Jun 2008 | B2 |
7382239 | Song et al. | Jun 2008 | B2 |
7414523 | Li et al. | Aug 2008 | B2 |
7453350 | Kachouh et al. | Nov 2008 | B2 |
7478554 | Roth et al. | Jan 2009 | B2 |
7508762 | Ohtani | Mar 2009 | B2 |
7512109 | Trott et al. | Mar 2009 | B2 |
7518495 | Tang et al. | Apr 2009 | B2 |
7519011 | Petrus et al. | Apr 2009 | B2 |
7535841 | Beshai et al. | May 2009 | B1 |
7642904 | Crano | Jan 2010 | B2 |
7663502 | Breed | Feb 2010 | B2 |
7688192 | Kenny et al. | Mar 2010 | B2 |
7697497 | Grube et al. | Apr 2010 | B2 |
7817543 | Beshai et al. | Oct 2010 | B2 |
7884707 | Wittliff et al. | Feb 2011 | B2 |
7885603 | Santavicca | Feb 2011 | B2 |
7895886 | Tozawa et al. | Mar 2011 | B2 |
7900198 | Kasman | Mar 2011 | B2 |
7948364 | Lin et al. | May 2011 | B2 |
8013725 | Murata et al. | Sep 2011 | B2 |
8015864 | Petrucelli | Sep 2011 | B2 |
8019323 | Jheng et al. | Sep 2011 | B2 |
8027359 | Iwamura | Sep 2011 | B2 |
8031598 | Beshai et al. | Oct 2011 | B2 |
8035257 | Fornage | Oct 2011 | B2 |
8049533 | Lin | Nov 2011 | B1 |
8082579 | Shimizu et al. | Dec 2011 | B2 |
8155617 | Magnusson et al. | Apr 2012 | B2 |
8185093 | Jheng et al. | May 2012 | B2 |
8319378 | Fornage | Nov 2012 | B2 |
8330594 | Suzuki et al. | Dec 2012 | B2 |
8332104 | Greer et al. | Dec 2012 | B2 |
8576060 | Deniau et al. | Nov 2013 | B2 |
20010050611 | Achterholt | Dec 2001 | A1 |
20020030592 | Laitsaari et al. | Mar 2002 | A1 |
20020059825 | Lundqvist | May 2002 | A1 |
20020067285 | Lill | Jun 2002 | A1 |
20020075145 | Hardman et al. | Jun 2002 | A1 |
20020084895 | Dixit et al. | Jul 2002 | A1 |
20020086708 | Teo et al. | Jul 2002 | A1 |
20020087250 | Pacsai | Jul 2002 | A1 |
20020121132 | Breed et al. | Sep 2002 | A1 |
20020126005 | Hardman et al. | Sep 2002 | A1 |
20020130803 | Conway et al. | Sep 2002 | A1 |
20020144134 | Watanabe et al. | Oct 2002 | A1 |
20020168795 | Schuumans | Nov 2002 | A1 |
20020186320 | Carlsgaard | Dec 2002 | A1 |
20020190852 | Lin | Dec 2002 | A1 |
20030005759 | Breed et al. | Jan 2003 | A1 |
20030009270 | Breed | Jan 2003 | A1 |
20030030553 | Schofield et al. | Feb 2003 | A1 |
20030050070 | Mashinsky et al. | Mar 2003 | A1 |
20030071723 | Tang et al. | Apr 2003 | A1 |
20030079537 | Luce | May 2003 | A1 |
20030080860 | Stewart et al. | May 2003 | A1 |
20030080861 | Okubo | May 2003 | A1 |
20030095553 | Shiomoto et al. | May 2003 | A1 |
20030110851 | Tsujita | Jun 2003 | A1 |
20030112138 | Marguet et al. | Jun 2003 | A1 |
20030117276 | Marguet et al. | Jun 2003 | A1 |
20030117277 | Marguet et al. | Jun 2003 | A1 |
20030122660 | Kachouh et al. | Jul 2003 | A1 |
20030131297 | Fischel et al. | Jul 2003 | A1 |
20030179082 | Ide | Sep 2003 | A1 |
20030197594 | Olson et al. | Oct 2003 | A1 |
20030197595 | Olson et al. | Oct 2003 | A1 |
20030197603 | Stewart et al. | Oct 2003 | A1 |
20030197604 | Ogawa et al. | Oct 2003 | A1 |
20030201783 | Steber | Oct 2003 | A1 |
20030228879 | Witkowski | Dec 2003 | A1 |
20040027241 | Forster | Feb 2004 | A1 |
20040039509 | Breed | Feb 2004 | A1 |
20040041698 | Lin | Mar 2004 | A1 |
20040061601 | Freakes | Apr 2004 | A1 |
20040113765 | Suitsu | Jun 2004 | A1 |
20040130442 | Breed et al. | Jul 2004 | A1 |
20040149025 | Toyofuku | Aug 2004 | A1 |
20040172179 | Miwa | Sep 2004 | A1 |
20040174246 | Mitchell | Sep 2004 | A1 |
20040203370 | Luo et al. | Oct 2004 | A1 |
20040215382 | Breed et al. | Oct 2004 | A1 |
20050039103 | Azenko et al. | Feb 2005 | A1 |
20050046584 | Breed | Mar 2005 | A1 |
20050075145 | Dvorak et al. | Apr 2005 | A1 |
20050104722 | Tang et al. | May 2005 | A1 |
20050132792 | Lemense | Jun 2005 | A1 |
20050134446 | Stewart et al. | Jun 2005 | A1 |
20050156722 | McCall et al. | Jul 2005 | A1 |
20050179530 | Stewart et al. | Aug 2005 | A1 |
20050192727 | Shostak et al. | Sep 2005 | A1 |
20050264405 | Ueda | Dec 2005 | A1 |
20060001535 | Hafele et al. | Jan 2006 | A1 |
20060006992 | Daiss et al. | Jan 2006 | A1 |
20060012475 | Froitzheim et al. | Jan 2006 | A1 |
20060017554 | Stewart et al. | Jan 2006 | A1 |
20060022813 | Schulze et al. | Feb 2006 | A1 |
20060025897 | Shostak et al. | Feb 2006 | A1 |
20060044125 | Pierbon | Mar 2006 | A1 |
20060114107 | Kim et al. | Jun 2006 | A1 |
20060145829 | Watabe | Jul 2006 | A1 |
20060148456 | Chuey | Jul 2006 | A1 |
20060152342 | Turner et al. | Jul 2006 | A1 |
20060161327 | Emmerich et al. | Jul 2006 | A1 |
20060187014 | Li et al. | Aug 2006 | A1 |
20060192661 | Gerardiere | Aug 2006 | A1 |
20060201241 | Durif | Sep 2006 | A1 |
20060217850 | Geerlings et al. | Sep 2006 | A1 |
20060235641 | Fink et al. | Oct 2006 | A1 |
20060273889 | Schulze et al. | Dec 2006 | A1 |
20060277989 | Lee | Dec 2006 | A1 |
20070063814 | Olson et al. | Mar 2007 | A1 |
20070069947 | Banet et al. | Mar 2007 | A1 |
20070090936 | Nornes | Apr 2007 | A1 |
20070176736 | Chuey et al. | Aug 2007 | A1 |
20070182531 | Kuchler | Aug 2007 | A1 |
20070190993 | Chuey et al. | Aug 2007 | A1 |
20070194898 | Fukumori | Aug 2007 | A1 |
20070210920 | Panotopoulos | Sep 2007 | A1 |
20070213951 | Van Eeden | Sep 2007 | A1 |
20070223484 | Crowle et al. | Sep 2007 | A1 |
20070247294 | Baader et al. | Oct 2007 | A1 |
20070279201 | Casey et al. | Dec 2007 | A1 |
20080001729 | Kyllmann | Jan 2008 | A1 |
20080024287 | Boyle et al. | Jan 2008 | A1 |
20080037458 | Myszne | Feb 2008 | A1 |
20080062880 | Yew et al. | Mar 2008 | A1 |
20080080447 | Grube et al. | Apr 2008 | A1 |
20080094198 | Yu | Apr 2008 | A1 |
20080100430 | Kochie et al. | May 2008 | A1 |
20080141766 | Roth et al. | Jun 2008 | A1 |
20080143593 | Graziano et al. | Jun 2008 | A1 |
20080157954 | Tsuchida | Jul 2008 | A1 |
20080165688 | Beshai et al. | Jul 2008 | A1 |
20080173082 | Hettle et al. | Jul 2008 | A1 |
20080177441 | Marlett et al. | Jul 2008 | A1 |
20080204217 | Costello et al. | Aug 2008 | A1 |
20080205553 | Costello et al. | Aug 2008 | A1 |
20080211672 | Pei | Sep 2008 | A1 |
20080240283 | Iwamura | Oct 2008 | A1 |
20080256260 | Magnusson et al. | Oct 2008 | A1 |
20080282965 | Crano | Nov 2008 | A1 |
20080285507 | Mukherjee et al. | Nov 2008 | A1 |
20080320243 | Mitsuzuka et al. | Dec 2008 | A1 |
20090021362 | Kochie | Jan 2009 | A1 |
20090033478 | Deniau et al. | Feb 2009 | A1 |
20090045930 | Fu | Feb 2009 | A1 |
20090067854 | Yokogawa et al. | Mar 2009 | A1 |
20090070863 | Shimizu et al. | Mar 2009 | A1 |
20090108992 | Shafer | Apr 2009 | A1 |
20090109012 | Petrucelli | Apr 2009 | A1 |
20090179747 | Lin et al. | Jul 2009 | A1 |
20090184815 | Suzuki et al. | Jul 2009 | A1 |
20090207859 | Beshai et al. | Aug 2009 | A1 |
20090224901 | Yu | Sep 2009 | A1 |
20090231114 | Yu | Sep 2009 | A1 |
20090245803 | Garner et al. | Oct 2009 | A1 |
20090267751 | Kaleal | Oct 2009 | A1 |
20090291710 | Jheng et al. | Nov 2009 | A1 |
20090310477 | Lee et al. | Dec 2009 | A1 |
20100071453 | Isono | Mar 2010 | A1 |
20100308987 | Haas et al. | Dec 2010 | A1 |
20110140876 | Deniau | Jun 2011 | A1 |
20110181321 | Matsudera | Jul 2011 | A1 |
20110211414 | Musha | Sep 2011 | A1 |
20110250860 | Lin | Oct 2011 | A1 |
20110267024 | Halberstadt | Nov 2011 | A1 |
20110294548 | Jheng et al. | Dec 2011 | A1 |
20120001745 | Li | Jan 2012 | A1 |
20120117788 | Deniau | May 2012 | A1 |
20120119895 | Deniau | May 2012 | A1 |
20120139751 | Lin | Jun 2012 | A1 |
20120147184 | Siann et al. | Jun 2012 | A1 |
20120185110 | Deniau et al. | Jul 2012 | A1 |
20120274461 | Colombo et al. | Nov 2012 | A1 |
20130282231 | Farr | Oct 2013 | A1 |
20140139332 | Mouchet | May 2014 | A1 |
20150015389 | McIntyre | Jan 2015 | A1 |
20150015390 | McIntyre | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
1521027 | Aug 2004 | CN |
103503353 | Jan 2014 | CN |
4492128 | Jun 1996 | DE |
19503756 | Aug 1996 | DE |
19720123 | Jul 1998 | DE |
19924830 | Nov 2000 | DE |
10014076 | Oct 2001 | DE |
10040238 | Mar 2002 | DE |
10247761 | Jun 2003 | DE |
10217239 | Jul 2003 | DE |
10207014 | Aug 2003 | DE |
10307265 | Oct 2003 | DE |
69529456 | Nov 2003 | DE |
10247149 | Apr 2004 | DE |
60108973 | Jul 2005 | DE |
60202342 | Dec 2005 | DE |
60023387 | Jul 2006 | DE |
102005004825 | Aug 2006 | DE |
102005059009 | Jun 2007 | DE |
102007039599 | Mar 2008 | DE |
102008008237 | Aug 2009 | DE |
102008033051 | Feb 2010 | DE |
793579 | Sep 1997 | EP |
1013483 | Jun 2000 | EP |
1026016 | Aug 2000 | EP |
1291230 | Mar 2003 | EP |
1428694 | Dec 2003 | EP |
1440824 | Jul 2004 | EP |
1494877 | Jan 2005 | EP |
1536392 | Jun 2005 | EP |
1547827 | Jun 2005 | EP |
1562162 | Aug 2005 | EP |
1026015 | May 2006 | EP |
1674299 | Jun 2006 | EP |
1352763 | Apr 2008 | EP |
1340629 | Jun 2008 | EP |
2387032 | Oct 2003 | GB |
2420415 | May 2006 | GB |
2500697 | Oct 2013 | GB |
62003537 | Jan 1987 | JP |
63090407 | Apr 1988 | JP |
05107134 | Apr 1993 | JP |
8244423 | Sep 1996 | JP |
2000142044 | May 2000 | JP |
2000238515 | Sep 2000 | JP |
2001080321 | Mar 2001 | JP |
2001312860 | Sep 2001 | JP |
2002064404 | Feb 2002 | JP |
03025817 | Jan 2003 | JP |
2003025817 | Jan 2003 | JP |
2003-312220 | Nov 2003 | JP |
2004-145474 | May 2004 | JP |
2005289116 | Oct 2005 | JP |
2006015832 | Jan 2006 | JP |
2007010427 | Jan 2007 | JP |
2007200081 | Aug 2007 | JP |
2007283816 | Nov 2007 | JP |
2008137585 | Jun 2008 | JP |
4265448 | Feb 2009 | JP |
5502729 | May 2014 | JP |
03068216 | Aug 2003 | KR |
1020070040883 | Apr 2007 | KR |
10-2009-0091001 | Aug 2009 | KR |
38461 | Jun 2004 | RU |
2238190 | Oct 2004 | RU |
2398680 | Jun 2006 | RU |
2409480 | Jul 2006 | RU |
2352473 | Apr 2009 | RU |
9420317 | Sep 1994 | WO |
9422693 | Oct 1994 | WO |
9908887 | Feb 1999 | WO |
0072463 | Nov 2000 | WO |
0145967 | Jun 2001 | WO |
02094588 | Nov 2002 | WO |
03016079 | Feb 2003 | WO |
2004038674 | May 2004 | WO |
2005085651 | Sep 2005 | WO |
2005116603 | Dec 2005 | WO |
2007006871 | Jan 2007 | WO |
2009006518 | Jan 2008 | WO |
2008-103973 | Aug 2008 | WO |
2008106387 | Sep 2008 | WO |
2008107430 | Sep 2008 | WO |
2012097154 | Jul 2012 | WO |
2013063061 | May 2013 | WO |
WO 2013063061 | May 2013 | WO |
2013152294 | Oct 2013 | WO |
2015015692 | Feb 2015 | WO |
Entry |
---|
International Search Report and Written Opinion dated Apr. 30, 2015 from corresponding International Patent Application No. PCT/US2015/016174. |
“Sony Remote Commander Operating Instructions RM-V701/V801”, 1998, Sony Corporation. |
“Philips Magnavox 4 Function with Back Lighted Keypad Universal Remote” Operating Instructions, printed Oct. 2012, Philips Electronics North America Corporation. |
“RadioShack 8-In-One Touch Screen Remote Control”, Owner's Manual, 2001, RadioShack Corporation. |
Kais Mnif, “A Smart Tire Pressure Monitoring System”, Sensors Magazine, Nov. 1, 2001. |
International Search Report and Written Opinion dated Sep. 28, 2012, from corresponding International Patent Application No. PCT/US2011/047112. |
International Search Report dated Apr. 6, 2012, from corresponding International Patent Application No. PCT/US2011/047087. |
International Search Report and Written Opinion mailed on Oct. 15, 2008, for Application No. PCT/US2008/069006. |
International Preliminary Report on Patentability mailed on Jan. 14, 2010, for Application No. PCT/US2008/069006. |
Chinese Office Action mailed on Apr. 19, 2011, for Chinese Application 200880023390.7 (Corresponding to PCT/US2008/069006). |
Chinese Office Action (second) mailed on Feb. 16, 2012, for Chinese Application 200880023390.7 (Corresponding to PCT/US2008/069006). |
Chinese Office Action (third) mailed on Oct. 10, 2012, for Chinese Application 200880023390.7 (Corresponding to PCT/US2008/069006). |
Japanese Office Action mailed on Jun. 7, 2012, for JP Application 2010-515252 (Corresponding to PCT/US2008/069006). |
International Search Report and Written Opinion dated Sep. 28, 2012, from corresponding International Patent Application No. PCT/US2011/047104. |
Germany Office Action dated Nov. 19, 2012. |
Germany Office Action dated Sep. 17, 2007. |
Preliminary Invalidity Contentions of Defendant Continental Automotive Systems US, Inc.; dated Jan. 17, 2012, In the United States District Court for Western District of Virginia Lynchburg Division, Civil Action No. 6:11-CV-00014-NKM. |
Amended Invalidity Contentions of Defendant Continental Automotive Systems US, Inc.; dated Jun. 18, 2012, In the United States District Court for Eastern District of Michigan Southern Division, Civil Action No. 2:12-CV-10715-SJM-MJH. |
Plaintiffs' Initial Infringement Contentions; dated Dec. 15, 2011, In The United States District Court for Western District of Virginia Lynchburg Division, Civil Action No. 6:11-CV-00014-NKM-RSB. |
Joint Claim Construction and Prehearing Statement, dated Jun. 11, 2012, from co-pending litigation: Schrader-Bridgeport Int'l, Inc. v. Continental Automotive Sys, US, Inc., case docket No. 2:12-CV-10715-SJM-MJH, (filed Feb. 16, 2012, E.D. Mich.). |
Plaintiffs' Opening Claim Construction Brief, dated Jun. 26, 2012, from co-pending litigation: Schrader-Bridgeport Int'l, Inc. v. Continental Automotive Sys, US, Inc., case docket No. 2:12-CV-10715-SJM-MJH, (filed Feb. 16, 2012, E.D. Mich.). |
USPTO Translation of JP2003025817A, translated from Japanese by Schreiber Translations, Inc., Feb. 2013. |
Jeff Burgess, “TPMS Demonstration Kit”, AN1943/D, Rev 1, Apr. 2002, Motorola, Inc., 2002 (16 pgs.). |
Machine Translation of RU2423246 C1. |
Translation of Abstract of KR1020070040883A. |
Search Report dated Aug. 20, 2015, from GB Patent Application No. GB1503824.3. |
International Search Report and Written Opinion dated Sep. 28, 2012, from corresponding International Patent Application No. PCT/US2011/047108. |
Search Report dated Jun. 20, 2014, from EP Patent Application No. 11870613.4. |
Search Report dated Jun. 30, 2014, from EP Patent Application No. 11870701.7. |
Search Report dated Mar. 24, 2015, from EP Patent Application No. 11870650.6. |
Search Report dated Apr. 19, 2012, from International Patent Application No. PCT/US2012/021082. |
Jeff Burgess, “Tire Pressure Monitoring System Reference Design”, Tire Pressure Monitor System Demo, AN1951/D, Rev 1, May 2003, Motorola, Inc., 2003 (24 pgs.). |
“Motorola's MPXY8000 Series Tire Pressure Monitoring Sensors”, Motorola Sensor Products Division Transportation & Standard Products Group, Motorola, Inc., May 2003 (22 pgs.). |
Alfred Pohl et al. “Wirelessly Interrogable Surface Acoustic Wave Sensors for Vehicular Applications”, IEEE Transactions On Instrumentation and Measurement vol. 46, No. 4, IEEE, Aug. 1997 (8 pgs..). |
“Tire pressure Warning System Using Direct Measurement Method (Soarer)” G0880A ISSN: 0388-3841, vol. 51 No. 7, pp. 174-179, Toyota Motor Corporation, May 2, 2002 (6 pgs.). |
Number | Date | Country | |
---|---|---|---|
20150239305 A1 | Aug 2015 | US |