This application is based upon and claims the benefits of priorities from Japanese Patent Application Nos. 2003-393021 and 2003-404849 filed on Nov. 21, 2003 and Dec. 3, 2003, respectively, the entire contents of which are incorporated herein by reference.
This application is related to a co-pending U.S. patent application entitled “PIERCING TERMINAL FOR COAXIAL CABLE” and being filed on even date herewith. The co-pending application is expressly incorporated herein by reference.
The present invention relates to a pressure connection structure with coaxial cables, especially a pressure connection structure for coaxial cables using piercing terminals. More particularly, it relates to a pressure connection structure for coaxial cables using piercing terminals suitable for connections with outer coaxial cables and a connector utilizing the pressure connection structure.
In regard to compact electronic systems such as notebook-sized personal computer, cellular telephones, and digital video cameras, systems with their involved devices movably mounted in various forms have been in common use in recent years because of good usability. Examples of such electronic systems include one having a liquid crystal display device which can be folded and superposed on its main body or swung about the body. In the case where a signal and a power source are supplied to such display device, a flexible cable has been mainly used in the past. However, a coaxial cable has been recently often used for such movable electrically-connecting portion instead of a flexible cable as described above in the context of the debut of a thinner coaxial cable having an outer diameter of 0.5 mm as an ultra-thin coaxial cable.
As a pressure connection structure for such coaxial cable, a pressure connection structure in which a piercing terminal is applied (e.g. JP-A-2001-223039) has been previously known.
In JP-A-2001-223039, as shown in
Further, in the case where a ultra-thin coaxial cable 150 is used in a movable portion of a compact electronic system as described above, a plurality of ultra-thin coaxial cables 150 can be used for connection with a main circuit board such as a mother board so as to transmit signals to be transmitted in parallel, as shown in
However, in the case where a plurality of ultra-thin coaxial cables 150 are fixed to one side of the connector in this way, when the ultra-thin coaxial cables 150 are as ultrathin as 1 mm or less in diameter, it becomes difficult to mount the cables to the connector.
In regard to the mounting of a ultra-thin coaxial cable on a connector, for example, in JP-A-2001-223039, connection to the core conductor wire 151 can be established by press-connecting the piercing terminal 100, while connection of the outer conductor-plexus-shielding layer 153 requires that the outer conductor-plexus-shielding layer 153 is previously bared and then connected to a ground terminal of a contact. Accordingly, the number of steps required to process a terminal of the ultra-thin coaxial cable 150 is increased.
The first object of the invention is to provide a pressure connection structure for coaxial cables, which can reduce the number of steps required to process terminals of ultra-thin coaxial cables 150 or simplify the process.
In addition, in the case where ultra-thin coaxial cables 150 as described above are press-connected, it is preferable to minimize the pitch between ultra-thin coaxial cables 150 in order to attain connections at a higher density by use of ultra-thin coaxial cables. This is because the significance of using ultra-thin cables might be otherwise weakened. Further, it is preferable to form the piercing terminal 100 itself from a thin plate thereby to make the space occupied by the piercing terminal as small as possible. What is desired is to enhance the rigidity of a connection structure with coaxial cables to the extent that the connection structure can withstand pressure connection while avoiding widening the pitch between coaxial cables.
The second object of the invention is to provide a pressure connection structure for piercing terminals suitable for connection of coaxial cables at a higher density.
In regard to the piercing terminal disclosed in JP-A-2001-223039, when the distance L between the core conductor wire 151 and outer conductor-plexus-shielding layer 153 is compared with the distance L1 between the core conductor wire 151 and the piercing terminal 100 electrically connected to the outer conductor-plexus-shielding layer 153, it is found that L and L1 are in the relation L>L1, as shown in
The third object of the invention is to avoid impedance variations which may remarkably affect transmission of minute signals.
In consideration of the foregoing, the invention provides a pressure connection structure with coaxial cables arranged as described below.
A pressure connection structure with coaxial cables, characterized by including:
In such pressure connection structure with coaxial cables, the protruding direction of the pair of piercing blades of each piercing terminal embedded in the first housing part is opposite to the direction in which the U-shaped leading end portion of each press-connecting contact in the second housing part protrude therefrom. On this account, especially in the case where the coaxial cables are ultra-thin cables with a diameter of 0.5 mm or less, more reliable pressure connection can be made. In other words, each piercing terminal in the first housing part tear a pair of holes in outer insulating layer in an up and down direction, and each press-connecting contact in the second housing part tear a hole in the inner insulating layer in a direction different from the direction in the case of the piercing terminals, which makes it possible to tear holes in the inner and outer insulating layers while a coaxial cable is pressed and sandwiched from the different directions by the paired clipping pieces of each piercing terminal and the U-shaped leading end portion of each press-connecting contact. This can avoid the risk that an unstable coaxial cable in the housing may be displaced, thereby causing the piercing terminal to short-circuit with the core conductor wire.
The pressure connection structure with coaxial cables, characterized by further including a pectinated flat-plate-shaped ground terminal of a conductive material having first and second comb tooth-like members, the ground terminal provided in a place in the second housing part opposed to the plurality of piercing terminals provided in the first housing part when the second housing part and the first housing part are combined up and down, one of the first comb tooth-like members disposed between the locationally-corresponding paired clipping pieces, two of the second comb tooth-like members nearest to the one first comb tooth-like member disposed outside the locationally-corresponding paired clipping pieces,
According to the above pressure connection structure, when the first and second housing parts are combined up and down, one of the first comb tooth-like members is disposed between the locationally-corresponding paired clipping pieces, and two of the second comb tooth-like members nearest to the one first comb tooth-like member are disposed outside the locationally-corresponding paired clipping pieces. This can avoid the risk that when the piercing blades of the clipping pieces tear holes in outer insulating layer, the tearing stress produced by tearing holes in the outer insulating layer may cause deformation of the clipping pieces thereby to widen or narrow the clearance between them.
Also, even in the case where a ultra-thin conductive metal plate is adopted for the clipping pieces, two pair of reinforcing ribs each extending from corresponding one of the curved portions toward the leading end and/or the rear end of the corresponding clipping piece are provided, thereby making it possible to realize high density pressure connection in the condition where the rigidity is enhanced and the distance between coaxial cables is narrowed. In other words, it is intended here to prevent the curved portions partially formed as described above from causing the decrease in rigidity of the piercing terminal when a thin metal plate is used to form the piercing terminal. In the case where the clipping pieces are formed from a thin metal sheet, the curved portions provided extending in a direction perpendicular to the direction of inserting the pair of clipping pieces may work as mechanical springs under the action of a stress caused by stabbing the pair of clipping pieces into the outer insulating layer. In such case it becomes harder to insert the clipping pieces, and therefore the clipping pieces may be inserted in a wrong direction to cause short circuit. However, such case can be prevented by providing the reinforcing ribs as described above.
Further, since the paired clipping pieces of each piercing terminal are opposed to and substantially in parallel with each other, and spaced by a distance larger than an outer diameter of the core conductor wire and smaller than an outer diameter of the inner insulating layer, the piercing terminal can be prevented from short-circuiting with the core conductor wire. Moreover, the paired curved portions are interposed in the respective clipping pieces and formed so as to take forms outwardly convex with respect to the respective clipping pieces and uninterrupted across the width of the clipping pieces and as such, it is possible to sufficiently ensure an area for the electrical contact between the outer conductor-shielding layer and the paired clipping pieces.
In addition, the two pairs of reinforcing ribs may be composed of two rows of reinforcing ribs arrayed in parallel in a direction of a width of the corresponding one of the clipping pieces, and extend in the same direction as the first and second housing parts are combined, and the two rows of reinforcing ribs may define therebetween a ground-terminal-receiving groove for receiving the ground terminal.
According to this arrangement, the ground terminal is inserted in the ground-terminal-receiving groove for receiving the ground terminal provided between the reinforcing ribs, whereby the clearance between the clipping pieces can be retained, and the clipping pieces and the ground terminal can be maintained in a certain locational relation in a longitudinal direction of the ground terminal as described above. Also, it is possible to prevent the displacement of the first and second housing parts relative to each other in the condition where the first and second housing parts are assembled up and down.
The pressure connection structure with coaxial cables, characterized in the plurality of coaxial cables are disposed in a common plane at regular intervals,
According to this arrangement, the leading end portions of the coaxial cables with their inner insulating layers bared are laminated with a first resin sheet, whereas portions of the coaxial cables spaced from the coaxial cables' leading end portions laminated with the first resin sheet by a distance larger than a distance between each piercing terminal and the corresponding press-connecting contact, which are to be press-connected to the coaxial cable, are laminated with a second resin sheet. This makes it possible to press-connect the piercing terminals and press-connecting contacts with a plurality of coaxial cables all at once upon putting the plurality of coaxial cables between the first and second housing parts all at once to hold the cables therebetween. Therefore, the pressure-connection structure according to the invention has an advantage such that the press-connection work can be simplified significantly. In addition, the first and second resin sheets are spaced apart by a distance larger than the distance between each piercing terminal and its corresponding press-connecting contact, which are to be press-connected to the coaxial cable, and as such, the first and second resin sheet can be prevented from interfering with the press-connecting work.
According to the above-described pressure connection structure with coaxial cables, the protruding direction of the pair of piercing blades of each piercing terminal embedded in the first housing part is opposite to the direction in which the U-shaped leading end portion of each press-connecting contact in the second housing part protrudes therefrom. This simplifies the press-connecting work when the piercing terminals and press-connecting contacts are press-connected to the coaxial cables and therefore pressure connection can be made more reliably. Especially, in the case where ultra-thin coaxial cables having a diameter of 0.5 mm or less are bundled into a harness form to make their connections all at once, higher effects can be achieved.
Further features of the invention, its nature, and various advantages will be more apparent from the accompanying drawings and the following detailed description of the invention.
The embodiments of the invention will be described below in reference to the drawings. The invention is not limited to the embodiments, and various changes and modifications may be made in design.
Piercing Terminal
A configuration of a piercing terminal according to the invention will be described in reference to
The piercing terminals 1 are formed into the form of a hooop (i.e. in series) by performing cutting, stamping, etc. with respect to a belt-shaped, thin conductive metal sheet, in which the piercing terminals 1 are coupled through a common member 2 at predetermined intervals as shown in
The piercing terminals 1 illustrated in
As seen from the leading end of the piercing terminal 1, the piercing terminal has a pair of opposed clipping pieces 3, 4, and a coupling portion 5 for coupling base portions of the clipping pieces 3, 4 to each other, which take generally the form of a horseshoe in top view. The coupling portion 5 and the clipping pieces 3, 4 define an opening 6 for receiving a coaxial cable 50. The opening 6 leads to an accommodation space which is defined by the clipping pieces 3, 4 and is in communication with the outside.
Each clipping piece 3 (4) has a piercing blade 3A (4A) formed by chamfering a leading end of the clipping piece 3 (4) into a taper. Also, each clipping piece 3 (4) has a curved portion 3B (4B) provided in a vicinity of its base portion between the base portion located in the rear of the clipping piece (in a lower portion thereof in the drawing) and the piercing blade 3A (4A). Each curved portion 3B (4B) is formed so as to take an outwardly convex form with respect to the clipping piece 3 (4). The curved portions 3B, 4B pinch and hold a coaxial cable 50 therebetween by outer periphery portions of an outer conductor-shielding layer 53 of the coaxial cable, which is to be described later, thereby to come into face-to-face contact with the cable and establish a good electrical contact condition. In addition, the curved portions 3B, 4B are formed so as to extend in a direction perpendicular to the direction of stabbing the piercing terminal 1 into the coaxial cable 50 or in a direction which deviates from the direction of stabbing the piercing terminal 1.
Now, focusing on the rigidity of clipping pieces 3, 4 against an insertion force produced when the piercing terminal 1 is stabbed and inserted into the coaxial cable 50, it is expected that the rigidity should be reduced in the direction of stabbing the piercing terminal 1 into the coaxial cable by formation of the curved portions 3B, 4B. Then, the rigidity, which is thus weakened in the direction of stabbing the piercing terminal 1 into the coaxial cable 50, is built up by providing two pairs of reinforcing ribs 3C, 4C on the respective clipping pieces 3, 4 composed of belt-shaped, thin metallic plates. The pairs of reinforcing ribs 3C, 4C extend in an up and down direction in the drawing and are each shaped into a convex form. In other words, the two pairs of reinforcing ribs 3C, 4C are formed extending from the relevant curved portions 3B, 4B toward the leading and rear ends of the respective clipping pieces 3, 4 (upward and downward in the drawing). Also, each pair of reinforcing ribs 3C (4C) is composed of two rows of reinforcing ribs 3C (4C) which are provided in parallel in a direction of the width (i.e. the width of the belt-shaped form) of the clipping piece 3(4) adjacent to each curved portion 3B (4B); each row of reinforcing ribs 3C (4C) extends in the up and down direction in the drawing. Incidentally, the up and down direction is substantially identical with the direction in which the first and second housing parts 10, 20 are combined up and down. Each pair of reinforcing ribs 3C (4C) is formed by press working as convex portions extending toward the leading and rear ends of the respective clipping piece 3 (4) with the relevant curved portion 3B (4B) located in the middle thereof. Accordingly, the two pairs of reinforcing ribs 3C, 4C are formed protruding outwardly from the respective clipping pieces 3, 4 and their insides are recessed. As described above, the two pairs of the reinforcing ribs 3C, 4C are formed on the respective clipping pieces 3, 4 so as to be opposed to each other; each pair of the reinforcing ribs 3C (4C) is composed of paired reinforcing ribs 3C (4C) arrayed in parallel. Thus, a ground-terminal-receiving groove 3D (4D) is formed between the paired reinforcing ribs 3C (4C). In the ground-terminal-receiving groove 3D (4D), a pectinated rectangular flat-plate-shaped ground terminal 40 to be described later can be inserted. Each ground-terminal-receiving groove 3D (4D) has a width of M, which is arranged to be equal to the width of the ground terminal 40 or somewhat larger than the width so as to allow the insertion of the ground terminal 40. The ground terminal 40 is disposed in contact with the piercing terminal 1 electrically connected to the outer conductor-shielding layer 53 by press-connection, and therefore the ground terminal 40 is to be electrically connected to the outer conductor-shielding layer 53 indirectly. An outline-keeping comb tooth-like member 41 of the ground terminal 40 tears a hole in the outer insulating layer 54 made from a resin and is directly press-connected to the outer conductor-shielding layer 53, whereby an electrical connection is established therebetween. Further, the ground terminal 40 is arranged to serve as a ground when it is connected to an outer electrical circuit, etc. through a connector or by solder. It is preferable to arrange a pressure connection structure such that the width between the outline-keeping comb tooth-like members 41 is set at a value somewhat smaller than the outer diameter of the outer conductor-shielding layer 53 of the coaxial cable 50, thereby to ensure a good press-connection, i.e. a direct electrical connection, between the ground terminal 40 and the outer conductor-shielding layer 53.
Assembling Structure of Coaxial Cable and Piercing Terminal to Housing
An assembling structure of the piercing terminal 1 and coaxial cable 50 to a housing will be described in reference to
The first housing part 10 is formed from an electrically-insulative resin material and takes a rectangular form in plane view. In the first housing part 10, a plurality of horseshoe-shaped piercing terminal-receptacle holes 13 for the piercing terminals 1 are pierced from the bottom surface 11 to the top surface 12. In other words, the first housing part 10 has a plurality of piercing terminal-receptacle holes 13 for receiving the respective piercing terminals 1 formed therein and arrayed in a line at predetermined intervals H. Each piercing terminal 1 includes a pair of clipping pieces 3, 4 composed of conductive metal thin plates. Each piercing terminal 1 is to be inserted into one of the terminal-receptacle holes 13, and then the piercing terminal 1 is to be embedded in the first housing part with its piercing blades 3A, 4A of its leading ends protruding outwardly.
The horseshoe-shaped terminal-receptacle holes 13 are provided in a longitudinal direction of the first housing part 10 at predetermined intervals H, while in a location opposite to the location of the horseshoe-shaped piercing terminal-receptacle hole 13 for each piercing terminal 1 in a shorter side direction of the first housing part 10 is formed a contact-receptacle hole 14 for the press-connecting contact 30, penetrating the first housing part 10 from its bottom surface 11 to the top surface 12.
Further, on a prolongation of a straight line segment along which the horseshoe-shaped terminal-receptacle holes 13 are arrayed in parallel, there is formed a ground-terminal-receptacle hole 15 for receiving the pectinated rectangular flat-plate-shaped ground terminal 40 penetrating the first housing part 10 from its top surface 12 to the bottom surface 11.
Meanwhile, the second housing part 20 has a ground-terminal-receptacle hole 23 formed in a location which agrees with the location of the above-described ground-terminal-receptacle hole 15 when the first and second housing parts 10, 20 are assembled up and down; the ground-terminal-receptacle hole 23 penetrates the second housing part from its top surface 21 to the bottom surface 22 and has the same form as the ground-terminal-receptacle hole 15.
Then, in the condition where the coaxial cable 50 is disposed in place on the first housing part 10, the second housing part 20 containing the press-connecting contacts 30 is pressed against the first housing part 10 from above, while the ground terminal 40 is inserted into the ground-terminal-receptacle holes 23, 15, and the piercing terminals 1 are inserted into the horseshoe-shaped terminal-receptacle holes 13, whereby the piercing terminals 1 are assembled to the housing. In this situation, just stabbing the piercing terminal 1 into the coaxial cable 50 can electrically connect the outer conductor-shielding layer of the coaxial cable 50 with the ground terminal 40 through the piercing terminal 1. This is because the first and second housing parts 10, 20 are made from an insulative material. This connecting method is to be described later in reference to
First Housing Part
The first housing part 10 will be described here in reference to
The first housing part 10 is composed of an insulative material made by molding of a resin, etc. As described above, the first housing part 10 takes a rectangular form in plane view, and has a plurality of horseshoe-shaped terminal-receptacle holes 13 for piercing terminals 1 pierced therein; the horseshoe-shaped terminal-receptacle holes 13 penetrate the first housing part 10 from its bottom surface 11 to the top surface 12 and are arrayed at predetermined intervals H along a longer side direction of the first housing part 10. In a location opposite to the location of the horseshoe-shaped piercing terminal-receptacle hole 13 for each piercing terminal 1 in a shorter side direction of the first housing part 10 is formed a contact-receptacle hole 14 for the press-connecting contact 30, penetrating the first housing part 10 from its bottom surface 11 to the top surface 12.
Also, the first housing part 10 has a cable-receiving groove 16 for each coaxial cable 50 provided in the top surface 12 thereof astride the horseshoe-shaped piercing terminal-receptacle hole 13 and the contact-receptacle hole 14 opposite to the terminal-receptacle hole 13. A coaxial cable 50 to be placed in the cable-receiving groove 16 is widely known, which is composed of a core conductor wire 51, an inner insulating layer 52 for covering the core conductor wire 51, an outer conductor-shielding layer 53 for covering the inner insulating layer 52, and an outer insulating layer 54 for covering the outer conductor-shielding layer 53, as shown in
At the time when a coaxial cable 50 is placed in the cable-receiving groove 16, the coaxial cable 50 has been preprocessed, thereby having made its outer conductor-shielding layer 53 and outer insulating layer 54 stripped off by a predetermined length of L from its leading end and bared the inner insulating layer 52. Thus, the coaxial cable 50 takes the form of a cable with a shoulder such that the cable has a diameter R1 in a range up to the predetermined length L from its end along its length and has another diameter R2 larger than R1 in the remaining range. According to the geometrical condition, each cable-receiving groove 16 is composed of a groove 16A arc-shaped in section having the diameter R1 and a groove 16B arc-shaped in section having the diameter R2. Herein, the groove 16A lies in a range of from the leading end of the cable-receiving groove 16 to a distance away from the leading end by a length shorter than L, the range including the contact-receptacle hole 14; and the groove 16B lies in the remaining range, i.e. the range starting from a distance away from the leading end by the length L.
Further, on a prolongation of a straight line segment along which the horseshoe-shaped terminal-receptacle holes 13 are arrayed in parallel, there is formed a ground-terminal-receptacle hole 15 for the pectinated rectangular flat-plate-shaped ground terminal 40 penetrating the first housing part 10 from its top surface 12 to the bottom surface 11. Further, in the top surface 12 between adjacent horseshoe-shaped terminal-receptacle holes 13, there are individually provided outline-keeping member-receiving grooves 17 each having a predetermined depth for receiving the outline-keeping comb tooth-like member 41 of the ground terminal 40 for keeping the outline of a coaxial cable 50. The distance between the outline-keeping comb tooth-like members 41 is set to be smaller than R2 so as to put the a coaxial cable 50 between the outline-keeping comb tooth-like members 41 and hold it from outside the outer insulating layer 54, i.e. a portion of the cable with the largest diameter.
Ground Terminal
Now, a configuration of the ground terminal 40 will be described in reference to
The ground terminal 40 is composed of a thin plate made of a metal having an electrically conducting property, and has ground-terminal-holding protrusions 42 respectively provided in two end portions thereof in its longitudinal direction; the protrusions 42 serve to hold the ground terminal 40 in the ground-terminal-receptacle hole 15 after the ground terminal 40 is forced into the hole 15. The ground-terminal-holding protrusions 42 make the thickness of the ground terminal 40 larger than the width of the ground-terminal-receptacle hole 23. As a result, when the ground terminal 40 is inserted into the ground-terminal-receptacle hole 23, the ground terminal 40 is to be forced into the hole 23 and thus held therein. The ground terminal 40, which can be forced into the hole and held therein in this way, can avoid falling out of the second housing part 20 accidentally.
Further, between the ground-terminal-holding protrusions 42, there are alternately disposed the above-described outline-keeping comb tooth-like members 41 for keeping the outline of a coaxial cable 50 and clearance-keeping comb tooth-like members 43 for keeping the clearance between the clipping pieces 3, 4.
Moreover, between the outline-keeping comb tooth-like members 41 is formed one clearance-keeping comb tooth-like member 43, which has a length shorter than that of the outline-keeping members 41 and serves to force down a coaxial cable 50 from outside the outer insulating layer 54, i.e. a portion of the cable with the largest diameter. The clearance-keeping comb tooth-like member 43 also serves to prevent the displacement of each coaxial cable.
Second Housing Part
A structure of the second housing part will be described in reference to
The second housing part 20 is composed of an insulative material made by molding of a resin, etc. In the second housing part 20, the press-connecting contact 30 shaped into a thin rod form is fixed so that its first end 31 is lead out from the bottom surface 22 of the second housing part and the second end 32 is led out from a first side 24 of the second housing part 20. The first end 31 of the press-connecting contact 30 is electrically connected to the core conductor wire 51 of a coaxial cable 50, and the second end 32 is electrically connected to a wired circuit on an outer circuit board by soldering or connection under pressure. In other words, the press-connecting contact 30 is provided in the second housing part 20, protruding in a direction in parallel with the direction in which the first and second housing parts 10, 20 are combined up and down and opposite to the direction in which the piercing terminal 1 is embedded. Further, a U-shaped leading end portion of the press-connecting contact 30, especially a press-connecting blade 32, i.e. the first end 32, tears a hole in the inner insulating layer 52 and is electrically connected to the core conductor wire 51.
Further, the second housing part 20 has a second side 25 opposite to the first side 24 from which the press-connecting contact 30 is led out; a guide groove 26 which extends from a second side 25 thereof inwardly and is capable of placing a coaxial cable 50 thereon is provided on the second housing part 20.
In locations in the bottom surface 22 of the second housing part 20 opposited to the location of each horseshoe-shaped piercing terminal-receptacle hole 13 in an up and down direction when the first and second housing parts 10, 20 are assembled up and down, there is formed a pair of grooves 26A, 26B into which paired clipping pieces 3, 4 of each piercing terminal 1 are inserted.
In a location in the second housing part 20 near to the first side 24 on a prolongation of a straight line segment along which the guide groove 26 extends and opposite to the location of each contact-receptacle hole 14 in an up and down direction, an opening 27 for leading out the first end 31 of each press-connecting contact 30 is formed.
Press-Connecting Contact
A structure of the press-connecting contact 30 will be described in reference to
Each press-connecting contact 30 has a press-connecting blade 32 formed in a U-like form in front view in a first end 31 of the contact; the press-connecting blade 32 serves to tear a hole in the inner insulating layer 52 of a coaxial cable 50 thereby to electrically connect the press-connecting contact 30 to the core conductor wire 51 of the coaxial cable 50 when the coaxial cable 50 is pressed against the inner insulating layer 52. In a central portion of the press-connecting blade 32 is formed a press-connecting groove 32A for leading and fixing the core conductor wire 51, the width of which becomes gradually narrower from two apexes of the first end 31 toward the center thereof. Also, the press-connecting groove 32A is arranged to have a width somewhat smaller than an outer diameter r1 of the core conductor wire 51 in order to maintain a good condition for electrical connection with the core conductor wire 51.
The press-connecting contacts 30 are individually separated from the common member B to which they are coupled in the form of a hoop, and when the second housing part 20 is molded, each the press-connecting contact 30 is partially sealed in the second housing part 20.
Connection Between Piercing Terminal and Coaxial Cable and its Effect and Advantage
The structures of the piercing terminal 1, first and second housing parts 10, 20, ground terminal 40, and press-connecting contact 30 have been described above in reference to
First, a plurality of coaxial cables 50 are disposed at the predetermined intervals H. Then, a resin sheet 59 is laminated to the central portion 55 of the plurality of coaxial cables 50 from above the outer insulating layers 54 of the coaxial cables to bundle into a group of coaxial cables. Further, in two end portions 56 of the group of coaxial cables 50, which are spaced away from two ends of the central portion 55 by a predetermined distance G respectively, another resin sheet 58 holds the group of coaxial cables 50 in the condition where two leading end portions 57 of each coaxial cable 50 are bared so that the inner insulating layer 52 of a thin wire portion of each coaxial cable 50 is exposed to the outside.
In other words, a group of coaxial cables 50 are processed as follows. First, in two leading end portions 57 of each coaxial cable, the outer insulating layer 54 and outer conductor-shielding layer 53 are removed thereby to bare the inner insulating layer 52. Then, the central portion 55 of the group of the coaxial cables 50 is laminated with the resin sheet 59, whereas the two end portions 56, each partially including the leading end portions 57 of grouped coaxial cables, are laminated with the resin sheet 58 different from the resin sheet 59, provided that the central portion 55 and each of the two end portions 56 are spaced away from each other by a distance G larger than the distance F between the piercing terminal 1 and press-connecting contact 30, to which coaxial cables 50 are to be press-connected. The reasons why such distance F is ensured in this embodiment are as follows. The first is piercing terminals 1 and press-connecting contacts 30 are made of a thin metallic plate whenever possible thereby to narrow a pitch H between coaxial cables when the coaxial cables are bundled into a wire harness form and as such, it is required to reduce the risk that piercing terminals 1 and press-connecting contacts 30 are deformed by stabbing forces produced when the piercing terminals 1 and press-connecting contacts 30 are stabbed into coaxial cables. The second is it is intended to enable the visual alignments with respect to each cable-receiving groove 16 of the first housing part 10 and each guide groove 26 of the second housing part 20 to be performed easily.
Then, the grouped coaxial cables 50 illustrated by
Next, piercing terminals 1 are forced into the horseshoe-shaped terminal-receptacle holes 13 from below the first housing part 10, while the ground terminal 40 is forced into the ground-terminal-receptacle hole 15 from above.
As described above, each piercing terminal 1 includes a pair of opposed clipping pieces 3, 4 which are arranged in parallel and spaced from each other by a small distance larger than the outer diameter r1 of the core conductor wire 51 and smaller than the outer diameter R2 of the inner insulating layer 52. Each piercing terminal 1 further includes: piercing blades 3A, 4A formed by chamfering leading ends of the clipping pieces 3, 4 into tapers; a pair of curved portions 3B, 4B interposed in the respective clipping pieces 3, 4, each of which is shaped into an outwardly convex form extending across the width of the respective clipping pieces 3, 4; a pair of reinforcing ribs 3C shaped into an outwardly-convex form, arrayed in two rows in parallel in a direction of the width of the clipping piece 3, and extending from the curved portion 3B toward the leading and rear ends of the clipping piece 3 with the curved portion 3B interposed between the reinforcing ribs 3C in each row; and a pair of reinforcing ribs 4C shaped into an outwardly-convex form, arrayed in two rows in parallel in a direction of the width of the clipping piece 4, and extending from the curved portion 4B toward the leading and rear ends of the clipping piece 4 with the curved portion 4B interposed between the reinforcing ribs 4C in each row. The portions between reinforcing ribs 3C and between reinforcing ribs 4C will serve as ground-terminal-receiving grooves 3D, 4D.
As described above,
The distance h between the clipping pieces 3, 4 is larger than the outer diameter r1 of the core conductor wire 51 and smaller than the outer diameter R2 of the inner insulating layer 52, more specifically the distance h is somewhat smaller than the outer diameter R2 of the inner insulating layer 52. Hence, the clipping pieces 3, 4 can slide between the periphery of the inner insulating layer 52 and the outer conductor-shielding layer 53 while brushing against the periphery of the inner insulating layer 52 and then protrude from the coaxial cable outwardly. This makes it possible to avoid the risk that the clipping pieces 3, 4 may short-circuit with the core conductor wire 51.
Further, in the condition where the piercing terminal 1 is press-connected to a coaxial cable 50, the curved portions 3B, 4B are located on the periphery the coaxial cable 50 pinched and hold between the clipping pieces 3, 4, and the center of curvature of the inner diameter of each of the curved portions 3B, 4B shaped into arcs substantially coincides with the center of the coaxial cable 50, and therefore the distance between the outer conductor-shielding layer 53 and core conductor wire 51 of the coaxial cable 50 can be kept substantially constant in a portion of the coaxial cable 50 pinched and held by the clipping pieces 3, 4 as well as in the other portion of the cable. Thus, it becomes possible to minimize changes of impedance between the outer conductor-shielding layer 53 and core conductor wire 51.
In addition, the curved portions 3B, 4B of the pair of opposed clipping pieces 3, 4 are provided so as to lie on the same virtual circle and the outer diameter of the curved portions 3B, 4B located on the same virtual circle substantially coincides in size with the inner diameter of the outer conductor-shielding layer 53 taking the form of a tube in section. Accordingly, it can be expected as an advantage that an area for electrical connection between the outer periphery portions of the curved portions 3B, 4B and inner portions lying on a circle formed by the inner diameter of the outer conductor-shielding layer 53 can be ensured sufficiently.
Further, in the case where the first housing part 10 and second housing part 20 are combined with each other up and down, the clearance-keeping comb tooth-like member 43 is disposed between the clipping pieces 3, 4 and the comb tooth-like members 41 for keeping the outline of a coaxial cable 50 are disposed outside the clipping pieces 3, 4. This can avoid the risk that when the piercing blades 3A, 4A of the clipping pieces 3, 4 tear holes in outer insulating layer 54, the tearing stress produced by tearing holes in the outer insulating layer 54 may cause deformation of the clipping pieces 3, 4 thereby to widen or narrow the clearance between them.
The second embodiment as a modification of the first embodiment will be described in reference to
In
The grounding path of the outer conductor-shielding layer 53 of the coaxial cable 50 is formed by the following steps. First, the piercing terminal 1 is connected to the outer conductor-shielding layer 53 of the coaxial cable 50. Then, when the outline-keeping comb tooth-like members 41 of the ground terminal 40 are press-inserted along the ground-terminal-receiving grooves 3D, 4D formed between paired reinforcing ribs 3C of the piercing terminal 1 and between paired reinforcing ribs 4C thereof, the outline-keeping comb tooth-like members 41 inwardly tear holes in the outer insulating layer 54 of the coaxial cable 50, which is located radially outside the ground-terminal-receiving grooves 3D, 4D, and are press-connected to the outer conductor-shielding layer 53. Further, the ground terminal 40 is connected to the outline-keeping shell 60 formed from a conductive metallic plate. The resultant male connector may be connected to a female connector 70 previously mounted on the main circuit board by soldering.
Next, a press-connecting method in the second embodiment will be described in reference to
First, in the step illustrated by
In the step illustrated by
In the step illustrated by
In the step illustrated by
In the step illustrated by
In the step illustrated by
In the step illustrated by
The male connector is connected to a female connector as illustrated by
Referring now to
The invention can provide a pressure connection structure for coaxial cables, in which coaxial cables are bundled in the form of a cable harness, thereby enabling high-density simple pressure connection. In addition, the pressure connection structure for coaxial cables is especially suitable for application to coaxial cables having a diameter of 0.5 mm or smaller. The structure makes it possible to utilize coaxial cables at a high density as electricity transmitting cables for a unit to be operated such as an LCD screen instead of conventional flexible cables. In addition, the pressure connection structure of the invention is arranged so that even when a piercing terminal for a coaxial cable is connected to an outer conductor-shielding layer of the coaxial cable, the impedance between the core conductor wire and outer conductor-shielding layer doesn't vary between an electrically-connecting portion involved in electrical connection of the piercing terminal to the coaxial cable and other portions of the coaxial cable. Since impedance changes can be reduced in an electrically-connecting portion involved in electrical connection of a piercing terminal to the coaxial cable in comparison with other portions of the coaxial cable like this, the application of the pressure connection structure of the invention to a connector for electrical connection, which has been increasingly reducing in pitch size in recent years, makes it possible to avoid impedance changes caused by a connector for electrical connection in a related electrical circuit.
Number | Date | Country | Kind |
---|---|---|---|
2003-393021 | Nov 2003 | JP | national |
2003-404849 | Dec 2003 | JP | national |