This disclosure relates generally to equipment utilized and operations performed in conjunction with a subterranean well and, in an example described below, more particularly provides a pressure control device.
A pressure control device is typically used to seal off an annular space between an outer tubular structure (such as, a riser, a housing on a subsea structure in a riser-less system, or a housing attached to a surface wellhead) and an inner tubular (such as, a drill string, a test string, etc.), and to divert flow from the annular space to other well equipment. If an annular seal of the pressure control device can rotate with the inner tubular, the pressure control device may be referred to by those skilled in the art as a “rotating control device,” a “rotating blowout preventer” or a “rotating drilling head.” In some pressure control devices, the annular seal does not rotate with the inner tubular.
Therefore, it will be appreciated that advancements are continually needed in the arts of constructing and operating pressure control devices. These advancements could be implemented for various types of pressure control devices installed in conjunction with land-based or water-based rigs.
Representatively illustrated in
In the example depicted in
At the earth's surface, the tubular string 12 extends through a wellhead 20. Various items of equipment are installed on the wellhead 20, including valves 22, a blowout preventer stack 24, an annular preventer 26 and a pressure control device 30.
In other examples, the wellhead 20 could be at a subsea location. Any of the valves 22, blowout preventer stack 24, annular preventer 26 and pressure control device 30 could be positioned at the subsea location, or they could be positioned above, at or below a water level, or on a rig or platform.
Thus, the scope of this disclosure is not limited to any of the specific details of the wellbore 14, the wellhead 20, the other items of equipment, locations of any of these elements, or configurations of these elements as described herein or depicted in the drawings. In addition, the scope of this disclosure is not limited to use of any particular number, combination or arrangement of equipment with a well.
In the
The annular seal 32 seals off and prevents flow through an annulus 34 surrounding the tubular string 12 in the pressure control device 30. However, the annulus 34 below the annular seal 32 is in communication with a lateral outlet 36. The annulus 34 is also in communication with the annulus 28 downhole.
In one example of a drilling operation, drilling fluid 38 can be circulated (e.g., using a “mud” pump or rig pump 40 at surface) through the tubular string 12, into the annulus 28 (such as, via nozzles in a drill bit 42), and then via the annulus 28 to the wellhead 20. Drilling fluid 38 that flows to the annulus 34 is prevented by the annular seal 32 from flowing further longitudinally upward, and so the fluid 38 is instead diverted laterally through the outlet 36 to other well equipment.
The well equipment connected to the outlet 36 can include flow control and measurement devices 44 (such as, chokes, valves, flowmeters, pressure and temperature sensors, etc.), separation devices 46 (such as, gas and solids separators) and fluid conditioning devices 48 (such as, weighting and fluid loss control additives, etc.). The conditioned drilling fluid 38 is returned to the pump 40 for re-circulation through the tubular string 12 and annuli 28, 34 during the drilling operation.
In a technique known to those skilled in the art as “managed pressure drilling,” the circulation of the drilling fluid 38 is essentially “closed loop.” Pressure in the wellbore 14 downhole can be controlled by means other than varying a weight of the drilling fluid 38 or friction due to the fluid flow. For example, with the drilling fluid 38 being circulated by the pump 40 in the
Note that it is not necessary, in keeping with the principles of this disclosure, for a managed pressure drilling operation to be performed, or for pressure in the annulus 28 to be controlled by variably restricting return flow of the drilling fluid 38. The scope of this disclosure is not limited to any particular type of drilling operation in which the pressure control device 30 is used.
In the
As depicted in
Referring additionally now to
As depicted in
In other examples, the latch 54 could be combined with components (such as, the annular seal 32) that are releasably secured by the latch in the body 52. In still further examples, the latch 54 could be actuated by means other than pressure (e.g., an electrical actuator could be used). Thus, the scope of this disclosure is not limited to any particular details of the latch 54 as described herein or depicted in the drawings.
In the
The passage 56 also extends longitudinally through an inlet 58. The swivel mechanism 50 rotatably connects the body 52 and the inlet 58, so that relative rotation is permitted between the body and the inlet about a longitudinal axis 60.
In this manner, a connector 62 of the inlet 58 can be rotationally aligned with certain well equipment (such as, the annular preventer 26), while the outlet 36 is also rotationally aligned with other well equipment (such as, the flow control and measurement devices 44).
As depicted in
In other examples, the connector 62 may not be in the form of a flange. A threaded connection, for example, could be used to connect the inlet 58 to well equipment (such as, the annular preventer 26).
If the inlet 58 (including the connector 62), the body 52 and the outlet 36 were permanently fixed in their relative rotational orientations, then the outlet 36 would also have a fixed number of separate rotational orientations relative to the item of equipment (such as, the flow control and measurement devices 44 in the
In the
The swivel mechanism 50 also includes a rotary coupling 66 for permitting relative rotation between the body 52 and the inlet 58, but preventing significant relative longitudinal displacement between the body 52 and the inlet.
The rotary coupling 66 example of
As depicted in
The lugs 68 are positioned between oppositely facing shoulders 70a, 72a of the respective recesses 70, 72, thereby preventing longitudinal separation of the body 52 and inlet 58. The inlet 58 engages a shoulder 52a in the body 52, thereby preventing the inlet from being received further in the body. Alternatively, engagement between the lugs 68 and the recesses 70, 72 could limit the distance the inlet 58 can be received in the body 52.
The lugs 68 can be radially retracted into the recess 70 in the body 52 using threaded fasteners 74 or other types of actuators. In the
The body 52 and inlet 58 can be assembled and disassembled while the lugs 68 are disengaged from the recess 72. When it is desired to connect the body 52 and the inlet 58, the fasteners 74 can be rotated to thereby radially inwardly displace the lugs 68 into engagement with the recess 72.
A seal 76 isolates the passage 56 from the rotary coupling 66 and the exterior of the pressure control device 30. Note that other types of rotary couplings may be used in the swivel mechanism 50, in keeping with the principles of this disclosure.
Referring additionally now to
The lock device 64 in this example includes a series of circumferentially distributed teeth 78 secured to the inlet 58, and an engagement member 80 that is radially displaceable relative to the body 52. The engagement member 80 has an engaged position, in which the engagement member is engaged with one or more of the teeth 78 and relative rotation between the body 52 and inlet 58 is prevented, and a disengaged position, in which the engagement member is not engaged with any of the teeth 78 and relative rotation between the body 52 and inlet 58 is permitted.
The teeth 78 in this example are in the form of a segmented ring gear, with the teeth 78 corresponding to the gear teeth. In other examples, the teeth 78 could be separate structures, the teeth could be in the form of projections, recesses, grooves or any other structures that can be circumferentially distributed and engaged by another member to fix the relative rotational orientation between the body 52 and the inlet 58.
The engagement member 80 in this example has teeth 82 formed thereon for complementary engagement with the teeth 78. The engagement member 80 can be displaced radially by rotating a threaded fastener 84.
In a locked configuration, as depicted in
Referring additionally now to
As depicted in
When the piston 88 is displaced upward (as viewed in
When the piston 88 is displaced downward (as viewed in
The split ring 86 has an extension 94 with oppositely facing inclined surfaces 94a, 94b formed thereon. When the piston 88 displaces to its unlatched position, the split ring inclined surface 94a engages an inclined surface 88a of the piston, which engagement biases the split ring 86 to displace radially outward. When the piston 88 displaces to its latched position, the split ring inclined surface 94b engages an inclined surface 88b of the piston, which engagement biases the split ring 86 to displace radially inward.
Referring additionally now to
As depicted in
The outer housing 104 has an annular recess 110 formed thereon. The recess 110 is configured for complementary engagement by the split ring 86 (see
When the split ring 86 is displaced radially inward, as described above, into engagement with the recess 110, the replaceable assembly 110 is secured in the pressure control device 30. When the split ring 86 is displaced radially outward, as described above, out of engagement with the recess 110, the replaceable assembly 110 is released for retrieval from the pressure control device 30.
A seal 112 seals between the body 52 and the outer housing 104 when the replaceable assembly 110 is received in the body 52. Seals 114 seal between the outer housing 104 and the inner mandrel 102.
The collar 108 is secured to the inner mandrel 102 with multiple radially displaceable lugs 116 received in annular recesses 118, 120 formed in the respective collar 108 and inner mandrel 102 (see
As depicted in
The lugs 116 can be radially retracted into the recess 118 in the collar 108 using threaded fasteners 122 or other types of actuators. In the
The collar 108 and inner mandrel 102 can be assembled and disassembled while the lugs 116 are disengaged from the recess 120. When it is desired to connect the collar 108 and the inner mandrel 102, the fasteners 122 can be rotated to thereby radially inwardly displace the lugs 116 into engagement with the recess 120.
The annular seal 32 is attached to the collar 108 with bolts or other fasteners 124 that extend through circumferentially distributed holes 126 in the collar 108 (see
Note that the arrangement of the collar 108 with the lugs 116, recesses 118, 120, fasteners 124 and recesses 128 provides a vertically compact configuration. This allows the overall pressure control device 30 to be vertically shorter, thereby saving expense in construction of the pressure control device, and saving vertical space at a well installation.
It may now be fully appreciated that the above disclosure provides significant advancements to the arts of designing, constructing and utilizing pressure control devices with subterranean wells. In one aspect, the swivel mechanism 50 with the lock device 64 provides for convenience, speed and enhanced adjustability in rotationally aligning the inlet 58 and outlet 36 with well equipment. In another aspect, the latch 54 provides for reliable and convenient securement of the annular seal 32 and/or other components (such as, bearings if the seal is rotatable) in the pressure control device 30. The swivel mechanism 50, the latch 54 and the seal attachment collar 108 are, in examples described above, longitudinally compact, so that an overall vertical height of the pressure control device 30 can be reduced.
The above disclosure provides to the art a pressure control device 30 for use with a subterranean well. In one example, the pressure control device 30 can include a body 52 having a central longitudinal passage 56, and a laterally extending outlet 36 in communication with the passage 56, an annular seal 32 secured to the body 52 and configured to seal off an annulus 34 surrounding a tubular string 12 in the passage 56, an inlet 58 longitudinally aligned and in communication with the passage 56, and a swivel mechanism 50 having locked and unlocked configurations. The swivel mechanism 50 permits relative rotation between the body 52 and the inlet 58 about a common longitudinal axis 60 in the unlocked configuration, and the swivel mechanism 50 prevents relative rotation between the body 52 and the inlet 58 in the locked configuration.
The swivel mechanism 50 may comprises a lock device 64 including a series of circumferentially distributed teeth 78 and an engagement member 80, the engagement member 80 engaging the teeth 78 in the locked configuration, and the engagement member 80 being disengaged from the teeth 78 in the unlocked configuration.
The teeth 78 may be secured to the inlet 58. The engagement member 80 may be rotatable with the body 52 relative to the inlet 58 in the unlocked configuration.
The swivel mechanism 50 may include a rotary coupling 66 that substantially prevents relative longitudinal displacement between the body 52 and the inlet 58, but permits relative rotational displacement between the body 52 and the inlet 58. The rotary coupling 66 may comprise one or more radially displaceable lugs 68 received in recesses 70, 72 in the body 52 and the inlet 58.
The pressure control device 30 may include a collar 108 attached to the annular seal 32, and radially displaceable lugs 116 that releasably attach the collar 108 to an inner mandrel 102 of a replaceable assembly 100. The collar 108 may be attached to the annular seal 32 with fasteners 124, the fasteners 124 extending through holes 126 formed through the collar 108. The fasteners 124 may be received in recesses 128 adjacent respective ones of the holes 126.
A method of operating a pressure control device 30 with a subterranean well is also provided to the art by the above disclosure. In one example, the method can include securing an inlet 58 of the pressure control device 30 to well equipment (such as, the annular preventer 26), rotating an outlet 36 of the pressure control device 30 about a longitudinal axis 60 of the inlet 58, locking a swivel mechanism 50 of the pressure control device 30, thereby preventing rotation of the outlet 36 relative to the inlet 58, and sealing off an annulus 34 surrounding a tubular string 12 extending through the inlet 58.
The rotating step may include rotating the outlet 36 relative to the inlet 58 while the inlet 58 is secured to the well equipment.
The locking step may include displacing an engagement member 80 into engagement with at least one of multiple circumferentially distributed teeth 78. The displacing step may include displacing the engagement member 80 radially relative to the inlet 58.
The method may include securing the inlet 58 to a body 52 of the pressure control device 30 by displacing one or more lugs 68 into a position in which the lugs 68 prevent substantial relative longitudinal displacement between the body 52 and the inlet 58, but permit relative rotation between the body 52 and the inlet 58.
The outlet 36 may extend laterally from the body 52. The outlet 36 is in communication with a passage 56 extending longitudinally through the body 52.
The method may include latching an annular seal 32 as part of a replaceable assembly 100 of the pressure control device 30. The attaching step can comprise radially displacing one or more lugs 116 into engagement with an annular recess 120 formed on an inner mandrel 102 of the replaceable assembly 100.
A well system 10 is also described above. In one example, the well system 10 can comprise a pressure control device 30 including an annular seal 32 that seals off an annulus 34 surrounding a tubular string 12 extending longitudinally through the pressure control device 30. The pressure control device 30 further includes an outlet 36, an inlet 58 secured to well equipment (such as, the annular preventer 26), and a swivel mechanism 50 that permits relative rotation between the outlet 36 and the inlet 58 in an unlocked configuration and prevents relative rotation between the outlet 36 and the inlet 58 in a locked configuration. The swivel mechanism 50 includes circumferentially distributed teeth 78, and an engagement member 80 that engages at least one of the teeth 78 in the locked configuration.
The engagement member 80 is disengaged from the teeth 78 in the unlocked configuration, and the engagement member 80 displaces radially relative to the inlet 58 between engagement and disengagement with the teeth 78.
The swivel mechanism 50 comprises a rotary coupling 66 that substantially prevents relative longitudinal displacement between the outlet 36 and the inlet 58, but permits relative rotational displacement between the outlet 36 and the inlet 58. The rotary coupling 66 may comprise one or more radially displaceable lugs 68 received in a recess 72 in the inlet 58.
Although various examples have been described above, with each example having certain features, it should be understood that it is not necessary for a particular feature of one example to be used exclusively with that example. Instead, any of the features described above and/or depicted in the drawings can be combined with any of the examples, in addition to or in substitution for any of the other features of those examples. One example's features are not mutually exclusive to another example's features. Instead, the scope of this disclosure encompasses any combination of any of the features.
Although each example described above includes a certain combination of features, it should be understood that it is not necessary for all features of an example to be used. Instead, any of the features described above can be used, without any other particular feature or features also being used.
It should be understood that the various embodiments described herein may be utilized in various orientations, such as inclined, inverted, horizontal, vertical, etc., and in various configurations, without departing from the principles of this disclosure. The embodiments are described merely as examples of useful applications of the principles of the disclosure, which is not limited to any specific details of these embodiments.
In the above description of the representative examples, directional terms (such as “above,” “below,” “upper,” “lower,” etc.) are used for convenience in referring to the accompanying drawings. However, it should be clearly understood that the scope of this disclosure is not limited to any particular directions described herein.
The terms “including,” “includes,” “comprising,” “comprises,” and similar terms are used in a non-limiting sense in this specification. For example, if a system, method, apparatus, device, etc., is described as “including” a certain feature or element, the system, method, apparatus, device, etc., can include that feature or element, and can also include other features or elements. Similarly, the term “comprises” is considered to mean “comprises, but is not limited to.”
Of course, a person skilled in the art would, upon a careful consideration of the above description of representative embodiments of the disclosure, readily appreciate that many modifications, additions, substitutions, deletions, and other changes may be made to the specific embodiments, and such changes are contemplated by the principles of this disclosure. For example, structures disclosed as being separately formed can, in other examples, be integrally formed and vice versa. Accordingly, the foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the spirit and scope of the invention being limited solely by the appended claims and their equivalents.