The invention relates to a pressure control device for the continuous adjustment of hydraulic systems.
Proportional valves are typically used for continuous adjustment of a hydraulic system. The proportional valves are control devices with an electrical input signal that, once a control instruction is provided, adjust a hydraulic system with a continuously varying signal in order to continuously influence the output parameter of the control loop, for example in form of the force of a hydraulic power cylinder.
The input element for the electrical signal, in particular in the form of electrical current, is the proportional solenoid, which converts an electrical signal into a force. The proportional solenoid applies, via the magnetic field it generates, a force to a ferromagnetic body, commonly in the form of an armature. By adapting the control geometry in conjunction with a non-magnetic zone, the magnetic force-stroke characteristic can vary such that an almost path-independent constant magnetic force can be generated. The non-magnetic zone is generated in a conventional manner by a welding process, which must be monitored at great expense in order to obtain consistent quality. The electrical signal is generated by an amplifier with internal current control. The resistance change of the coil is compensated for by the electric current, and the influencing of the current is compensated by the movement of the ferromagnetic armature in the magnetic field. It is usually necessary to use an overlaid dither to reduce friction. These measures for the reduction of friction on the electrical side of the valve then in turn necessitate suitable measures in the mechanical portion of the proportional valve, such as in the mounting of the ferromagnetic armature as well as very precisely machined surfaces for guiding the mechanical components.
In order to avoid the disadvantages of proportional valves described above, document EP 2 431 640 A2 discloses a method for controlling a ballistic movement of a barrier element of a valve. The retaining element is formed for blocking a flow cross-section of the valve. The barrier element can be switched to a first switch position and a second switch position. The barrier element occupies the first switch position in a rest position. The barrier element is moved out of its rest position in response to an activation signal.
This method known per se is used in a hydraulic control system for the supply and accurately timed dispensing of an accurate amount of lubricant to a lubrication point in a large 2-stroke diesel engine. The lubricant quantity is dispensed via a 2/2-way valve, which is ballistically controlled. This means that the valve is controlled via current pulses of short duration, which pulses are generally not sufficient to bring the valve piston to its end position in the instance of full opening. The opening stroke occurs ballistically, that is, the piston is pushed in the opening direction by the pulse-like magnet actuation. Under the action of the valve spring, which acts against this opening movement and the flow force applied at the valve, the piston falls back into its closed end position. The duration of the pulse determines the amount of oil dispensed for each ballistic opening stroke. With the described operating mode with the known control method, average volume flow can be set, which flows can for example be less than the nominal volume flow of the basic valve by a factor of 1/10000.
Based on this prior art, an object of the invention is to provide commercial proportional pressure control valves that are simplified with respect to their valve behaviour, and then, can be realised cost-effectively and functionally reliable by using other structure.
This object is basically met by a pressure control device that exhibits at least the following features:
The solution according to the invention permits a particularly simple, continuous adjustment of the output parameter of a control loop with selector valves, preferably with leak-proof selector valves, and without complex amplifier electronics. The solution according to the invention permits a low-wear switching of the respective valve. Any non-linearity that occurs is influenced by the control device in such a way that a continuous adjustment is in any case achievable. The pressure control device according to the invention is particularly efficient at handling hydraulic energy.
The selector valves used according to the invention are significantly easier to realize than proportional valves with respect to the design of the magnetic system. In particular the control cone system can be realized more easily, because substantially horizontally extending force-stroke characteristics do not necessarily have to be observed, as in the case of the proportional pressure control valve. Any variations regarding the magnetic force, which are caused through the welding process and the production in the proportional valves known per se, do not play a role as long as a minimum force is achieved. The same also applies to the variance in the magnetic force line in series production. In addition, there is no need for a conventional mounting of the armature with a DU bearing to reduce friction, or for the dither control.
A combination with one or several sensor devices, in particular using at least one pressure sensor, and a suitable microprocessor unit, makes it possible to easily reproduce fully functional proportional valves. Processors with a lower clock frequency are sufficient, which helps to reduce the costs for the entire pressure control device.
The control circuit used in the context of the pressure control device includes the control device itself, the actuator that, in a conventional manner, has the actual solenoid valve and a valve driver, the hydraulic system and the already mentioned sensor. This sensor of the sensor devices sends the currently measured value or actual value as a signal to the microprocessor. This microprocessor then compares this actual value with the nominal value, which arrives at the microprocessor from a higher-order input point. Depending on the magnitude of the error e, produced by the difference of the nominal value and the actual value, the microprocessor determines the additional switching method for the two valves used. Due to this system, a proportional behaviour of a proportional pressure control valve is obtained with two simple selector valves. Unlike proportional valves, such selector valves have no hysteresis, and a pressure minimization function, a pressure limitation or pressure control can be easily realized with the pressure control device according to the invention.
Other objects, advantages and salient features of the present invention will become apparent from the following detailed description, which, taken in conjunction with the drawings, discloses a preferred embodiment of the present invention.
Referring to the drawings that form a part of this disclosure and that are schematic and not to scale:
The function of a commercial proportional pressure control valve shall firstly be briefly explained, which function is also to be realized with the pressure control device according to the invention. Such pressure controllers are usually pressure controllers with a slide design. In the de-energized state, the pressure supply connection or pump connection is closed. Furthermore, the consumer connection is connected to the tank connection in a fluid-conducting or fluid communication manner. If a current signal is now applied to the proportional solenoid of the pressure control valve, the magnet presses with a force corresponding to the strength of the current on the control piston of the valve. The control piston is then moved against a return spring, and the hydraulic oil flows from the pressure supply connection or pump connection to the consumer connection. Due to a hydraulic consumer that is connected to the consumer connection, for example, in the form of a directional slide valve, pressure builds up at the consumer connection, which can, for example, act on a pressure indicating pin of the proportional pressure control valve and, to this extent, generates a force counteracting the force of the proportional solenoid. This pressure in turn produces a movement of the control piston with the pressure indicating pin moved back into the above-described starting position, which results in the reduction of inflow from the pressure supply connection or pump connection until the pressure applied at the consumer connection once again corresponds to the magnetic force minus the spring force of the return spring, and thus, the pressure value setting to the applied current signal. If the connected consumer does not require any more pressurised fluid at the consumer connection, for example because the directional slide valve is at the end-stop, the control piston moves back further and closes the inlet bore.
If, due to the pressure relief of the consumer at the consumer connection of the valve, the output pressure falls below the pressure setting, the armature once more presses the control piston into a control position, and the control process begins again. The maximum achievable control pressure is in principle defined by the magnetic force of the proportional solenoid. If the pressure at the consumer connection rises above the specified value, the control piston is moved with the armature in such a way that the connection from the consumer connection to the tank connection is opened. This movement of the control piston limits the pressure at the consumer connection. In the instance of an interruption of the control current, the control piston is drawn back by the pressure at the consumer connection and by the return spring. The consumer connection is then connected to the tank connection, and the consumer pressure at the consumer connection drops to the tank level applied at the tank connection.
The above-described known pressure control function for a commercial proportional pressure control valve shall now be reproduced according to the invention with two leak-proof 2/2-way selector valves (i.e., non-proportional 2-way/2-position selector valves). These 2/2-way selector valves permit a leakage-free blocking of the hydraulic consumer connected to these valves, are only settable in fully open and fully closed positions and are not settable in intermediate positions between the fully open and fully closed positions while performing pressure control.
To provide further clarification, reference is made to the depiction according to
In addition to a voltage supply 24 in the form of conventional voltage sources 24, the selector valves 10, 12 also require a valve driver 28, controlled by electronic switches 26 and actuating magnets connected thereto. The switches 26 are preferably controlled by field effect transistors 100, 102 (FET), which are components of the control device 14. The conventional transistors, which are not depicted in detail, receive their input signals from the already-mentioned PID control circuit for each of the selector valves 10, 12. The output signals of the PID controller are symbolically depicted in
The two selector valves 10, 12 constitute the control edges of the pressure control device. The one control edge, as the pump control edge, provides the pressure minimization function of the first selector valve 10. The other control edge, as the tank control edge, provides the pressure limiting function of the second selector valve 12. The PID controller, depicted at the top when viewing
The pressure sensor 20 depicted in
The PWM (Pulse Width Modulated) frequency should preferably be significantly above the cut-off frequency of both valves 10, 12 as far as the mechanical design, as well as the actuating magnets 28 for the valves are concerned. A proportional valve only ever reacts to the pressure in the immediate proximity of the valve. With the proposed pressure control device according to the invention it is possible to sense the control variable itself at any location in the hydraulic system. Thus the control loop may be designed as required depending on the overall system and the desired control function.
To aid in the further description, reference is made to
The digital pressure control valve according to
In order to change the pressure, the closing element of the control edge is opened according to the pressure-change speed
that is, the control device 14 opens, depending on the error, the corresponding control edge so as to increase or decrease the pressure. The opening cross-section A results approximately from the equation A≈d·π·x. In this equation, d represents the seat diameter of the respective valve, and the stroke x of the valve piston stands according to the above equation for the pressure-change speed dependent on the pressure differential Δp between pump pressure and consumer pressure or respectively between consumer pressure and tank pressure. Moreover, the stroke x of the valve piston is also dependent on the modulus of elasticity E of the liquid as well as the consumer volume V. The opening stroke is primarily dependent on the pressure differential Δp; the smaller the pressure differential the larger is the stroke x. Pressure differentials of Δp=0 bar or Δp<0 bar result in the maximum opening of the respective valve 10, 12. In a simulation of the valve, all other parameters remained essentially constant. The stroke x of the respective valve 10, 12 is therefore not directly determined by the control device 14, but is, as explained, dependent on the described system parameters.
Since the selector valves 10, 12, which are used as part of the pressure control device according to the invention, are standard valves, there are to that extent no particular requirements concerning switching time or service life. They are otherwise characterized as low-wear components. Compared to conventional slide valves, the selector valves 10, 12 are rated as dirt-resistant. The valves 10, 12 are also rated as energy efficient due to low hydraulic losses, as well as a low power consumption in control mode. As shown in
With the proportional valves known per se it is only possible to control the pressure directly at the respective valve. With the proposed solution according to the invention, the pressure sensor of the sensor device 20 may be disposed in a place separate from the respective selector valve 10, 12. The selector valves 10, 12 themselves are commercially available and inexpensive. Moreover, the pressure control device according to the invention permits a flexible adaptation to different applications since the control device 14 is freely programmable through the microprocessor 16. None of the functions are performed by the mechanical arrangement.
While one embodiment has been chosen to illustrate the invention, it will be understood by those skilled in the art that various changes and modifications can be made therein without departing from the scope of the invention as defined in the claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 007 424.5 | Jun 2015 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/000897 | 6/2/2016 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/198149 | 12/15/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3210626 | Wierzbicki | Oct 1965 | A |
3858598 | Carman | Jan 1975 | A |
4117967 | Regelson | Oct 1978 | A |
4241750 | Furuse | Dec 1980 | A |
4244396 | Friedland | Jan 1981 | A |
4253480 | Kessel | Mar 1981 | A |
4394871 | Czajka | Jul 1983 | A |
4638837 | Buike | Jan 1987 | A |
4813339 | Uno | Mar 1989 | A |
4835970 | Shimamura et al. | Jun 1989 | A |
4887636 | Rothen | Dec 1989 | A |
4904027 | Skantar | Feb 1990 | A |
4961441 | Salter | Oct 1990 | A |
5020564 | Thoman | Jun 1991 | A |
5269341 | Nusz | Dec 1993 | A |
5313873 | Gall | May 1994 | A |
5426874 | Nakata | Jun 1995 | A |
5499647 | Robert | Mar 1996 | A |
5813226 | Krone | Sep 1998 | A |
5954089 | Seymour | Sep 1999 | A |
6216456 | Mitchell | Apr 2001 | B1 |
6338358 | Watanabe | Jan 2002 | B1 |
6356811 | Beselt | Mar 2002 | B1 |
6851350 | Lissel | Feb 2005 | B2 |
6860284 | Wuerth | Mar 2005 | B2 |
7505818 | Kohler | Mar 2009 | B1 |
8118256 | Cahill | Feb 2012 | B2 |
20020117214 | Tucker | Aug 2002 | A1 |
20030038221 | Fu | Feb 2003 | A1 |
20040186630 | Shier | Sep 2004 | A1 |
20050061373 | McLaughlin | Mar 2005 | A1 |
20080105789 | Smith | May 2008 | A1 |
20100309601 | Shvartsman | Dec 2010 | A1 |
20110049970 | Hironaka | Mar 2011 | A1 |
20130111897 | Kuhlman | May 2013 | A1 |
20140358304 | Muir | Dec 2014 | A1 |
20160306370 | Shan | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
36 27 278 | Mar 1987 | DE |
43 31 930 | Mar 1995 | DE |
10 2009 057 359 | Jun 2010 | DE |
10 2011 118 651 | May 2013 | DE |
10 2013 205 961 | Oct 2014 | DE |
10 2013 016 759 | Apr 2015 | DE |
2 431 640 | Mar 2012 | EP |
Entry |
---|
International Search Report (ISR) dated Aug. 10, 2016 in International (PCT) Application No. PCT/EP2016/000897. |
Number | Date | Country | |
---|---|---|---|
20180173253 A1 | Jun 2018 | US |